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ABSTRACT 

The use of genetic search algorithms (GA) as spectral band se lectors is popular in the field of 

remote sensing. Nevertheless. class informaLion thaL has been used in the existing research for 

testing the performance of the GA-based band selec tor is broad (Ie. Anderson's level I or II). This 

means that each class possesses distinct spec tral characteristics from one another, and it is 

relatively easy for the band selector to lind spec tral bands that maintain high spectral separability 

between classes. None of the existing stud ies has tested the band se lec tor on class inform;ltion that 

possesses very similar spectral characteristics (e.g. species-level data). A question therefore 

remains if the band selector can deal with such complexity. As a result. the key hypothesis of thi : , 

researc h is that the GA-based band selector can be used for selecting a meaningful subset of 

spectral bands that maintains spectra l separability between species c lasses. The testing data in use 

dre very high-dimensional. spec trome ter records that comprise 2151 bands of leaf spectra of 1(j 

tropical mangrove species Tht: results turne d out that the GA-based band selec tor was able to cupe 

wi th spectral similarity al the species leve l. It meaningfully selectr:d spr:ctral bands that rela ted to 

principal physio-chemical properties of plants . and. simu ltanr:ously. maintained the separability 

br?tween species c lasses at a high level. 
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1. Introduction 

Since the first introduction by Holland (1975), many forms of genetic algorithms (GA) have been 

continuously proposed for remote sensing applications: (i) image segmentation and classification 

(Tseng and Lai, 1999; Pal et aI., 2001; Harvey et aI., 2002; Liu et aI., 2004; Bandyopadhyay, 2005); 
. . . 

(ii) sub-pixel classification (Mertens et aI., 2003); (iii) model optimization (Jin and Wang, 2001 ; Chen, 

2003; Fang et aI., 2003); (iv) image registration (Jones et aI., 2000; Chalermwat et aI., 2001); (v) pixel 

aggregation (Lu and Eriksson, 2000); and (vi) image band selection (Siedlecki and Sklansky, 1989; 

Lofy and Sklansky, 2001; Kavzoglu and Mather, 2002; Yu et aI. , 2002; Fang et aI., 2003; Kooistra et 

aI., 2003; Luo et aI., 2003; Ulfarsson et aI., 2003; Cogdill and Rippke, 2004). Ranking by the number 

of publications, using GA as band selectors is the most popular. 

In general , band selectors help alleviate the problem of high-dimensional complexity (Bellman, 1961; 

Kendall, 1961; Hughes, 1968; Fukunaga, 1990; Shahshahani and Landgrebe, 1994) that usually 

affects the outcome of analyzing multiple band data (e .g . multisensors, multi-temporal, or 

hyperspectral images). In most cases. a large number of image bands (Le. N20 bands) are too 

complex for familiar parametric tools (e.g . Jeffries-Matusita distance, Bhattacharyya distance, 

Maximum Likelihood classifier, etc.). Mathematically, the complexity of using such a large number of 

bands does not only decay the precision of class model estimation of these parametric tools 

(Bellman, 1961; Hughes. 1968), but it also causes the singularity of covariance matrix inversion 

(Fukunaga . 1990). Additionally. this high-dimenSional complexity results in an excessive demand of 

field samples in which, in most cases. it is not feasible in practice due to the time and budget 

limitations (Shahshahani and Landgrebe. 1994). 

By comparison, GA-based band selectors perform better than many other popular band selection 

algorithms (e.g. branch and bound search, exhaustive search, and sequential forward selection) 

(Siedlecki and Sklansky. 1989) The comparison has been rigorously done using a synthetic error 

model instead of real remotely sensed data so as to eliminate the variables (e.g. sample size. the 

number of sp ectral bands. the number of classes of interest, etc .) that could cause bias to the 

outcome of the comparison. In addition . mounting evidence of success of GA-based band selec tors 

in real -life remote sensing applications are also found in recent literature: (i) selec ting a subset of 

multiple sensor/date data for image classification (Lo fy and Sklansky. 2001; Kavzoglu and Mather, 

2002; Ulfarsson et ai, 2003); (ii ) selecting spec tral bands that relate to physiochemical 
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characteristics of plants and soils (Fang et aI., 2003, Kooistra et aI., 2003 and Cogdill and Rippke, 2004); 

(iii) selecting a spectral subset of hyperspectral data for image classification (Yu et aI., 2002) 

Nevertheless, class information that has been used in the aforementioned studies ([Lofy and Sklansky, 

2001], [Kavzoglu and Mather, 2002], [Yu et aI., 2002] and [Ulfarsson et aI., 2003]) for testing the 

performance of the GA-based band selector is broad (i.e. USGS level I or " (Anderson et aI., 1976)). This 
. " . . . . ' . 

means that each class possessesdistinctspectral characteristics from one another, and it is relatively 

easy for GA to find spectral bands that maintain high spectral separability between classes. None of the 

aforementioned studies has tested the band selector on class information that possesses very similar 

spectral characteristics (e.g. species-level data). A question therefore remains if GA can deal with such 

complexity. The key hypothesis of this research is that the GA-based band selector can be used for 

selecting a meaningful subset of spectral bands that maintains spectral separability between species 

classes. As a result, building and testing a GA-based spectral band selection tool is the main objective 

of this study. The testing data in use are very high-dimensional, spectrometer records that comprise 2151 

bands of leaf spectra of 16 tropical mangrove species. 

2. Species-level data and methods 

2.1 . Species-level hyperspectral data 

2.1.1 . Mangrove leaf preparation 

Top-level canopies of 16 tropical mangrove species (Table 1) were collected using a line-transect 

method in the natural mangrove forest of Ao Sawi (Sawi Bay), the province of Chumporn, the south of 

Thailand (10° 15'N, 99° 7'E) on February, 6, 2001 . This line-transect method enabled us to collect the 
, 

.. mangrove canopies from pioneer, intermediate. and landward zones. The canopies were only sampled 

from fUlly-grown trees (i.e. > 2.5 m tall). During the sampling campaign. speCies identification was 

carried out by the staffs of Royal Thai Forestry Department; taxonomy follows Tomlinson (1994) and 

Teeratanatorn (2000) . At the laboratory. the leaves were then picked off the canopies for the spectral 

measurement. 
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Table I 
TIliny spectra 'of mangrove leaves were colkctcd per mangrovc 
species, using a 215 I-band spectroradiometer 

Mangrove species Specics code Number of spectra 

Avicemlia alha 

Acrostichlllll aurelllll 2 
81l1guiera C)ii17drita 3 
8111glliera gYlllnon-lriza 4 
81uglliera paniflora 5 
Cr?Fiops ragal (i 

Excoecaria agalloc1la 7 

Heritiera liftorali.l 
Lwwl i (;cera littorel1 9 
Llltnnitzera racelllosa 10 

lv)pa jhlficwls II 
Plllclrea illdica 12 
Rlli:::oplrora apicldata 13 

Rlrizoplrora TIlUcrollal.iJ 14 

SOllllcratia ol'ata 15 
Xyfocar{JCls grallatum 1() 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

2.1.2. Leaf spectral measurements 

The leaves were randomly shuffled and .separated evenly into 30 piles per mangrove species. Each 

pile of leaves (top side up) was placed on top of a black metal plate painted with ultra-flat black 

paint until the background metal plate could not be seen. Next, the spectral response of each leaf 

plate was recorded 20 times. Each plate was rotated 90 0 horizontally after every fifth record to 

compensate for the bi-directional reflectance distribution function (BRDF). Then, the mean of the 20 

records was calculated to construct a radiance curve. Finally, the radiance was converted to a 

reflectance curve by using a reference panel as well as the correction of the spectrometer internal 

current (dark current). The steps above were followed for all other leaf plates. As a result, we have 

30 reflectance curves per each mangrove species (Table 1). The spectral mean of each species is 

illustrated in Fig. 1 . 

• 

http:TIlUcrollal.iJ
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Mean Spectra of 16 Mangroves 

LumnilQra racemoSlJ. 
----~~ 

LumniJul'4 liJtOTea 

400 900 1400 1900 2400 

Wavelength (nm) 

Fig. 1. The plot represents mean leaf spectra of 16 mangrove species stacked on top of one another. Each 

reflectance value tick mar\( along the y-axis is 0.2 reflectance value apart. 

The spectral measurement was conducted under laboratory conditions by using a 

spectroradiometer (Field Spec Pro FR, Analytical Spectral Device, Inc.). This spectroradiometer was 

equipped with three spectrometers (i.e. VNIR, SWIR1, and SWIR2), covering 350 nm to 2500 nm, 

with sampling intervals of 1.4 nm between 350 nm and 1000 nm, and 2 nm between 1000 nm and 
• 

2500 nm. The spectral resolution of the spectrometers was 3 nm for the wavelength interval 350 nm 

to 1000 -nm, and 10 nm for the wavelength interval 1000 nm to 2500 nm. The sensor, equipped with a 

field of view of 25 0 
, was mounted on a tripod and positioned 0.5 m above the leaf plate at the nadir 

position. A halogen lamp fixed on the tripod at the same position as the sensor of the spectrometer 



5 

was used to illuminate the sample plate. The room was conditioned to be dark with 25°C in order to 

avoid unwanted external energy sources. 

The reader may note that leaf stacking experiments could cause some degrees of additional 

uncertaintyto the resultant spectra. However,we did not try to remove sucl:laneffect from our 
.' ' . . 

spectral data. We included them in the measured signal and assumedthat they are signal noise (i.e., 

Measured Mangrove Signal=Mean Mangrove Signal+Mangrove Spectral Variations+Signal Noise) . 

Moreover, we have no intention to simulate any effect of background spectra (e.g., background 

spectra of understory plants and soils) in our measurement. We wanted to measure "pure" mangrove 

spectra from the leaf plate and use them for testing the proposed algorithm. 

Statistical separability of the species-level data used in this study is also plotted in Fig . 2 (after 

Vaiphasa et aI., 2005) so as to indicate where, along the whole wavelength region, the mangroves 

are likely to be spectrally separable (i.e. the locations where the black line (p-value trace) are below 

the lower statistical threshold (a=0 .01 ». Full details on this statistical visualization and its limitations 

as well as other aspect of stati stical studies can be found in the previous work (Vaiphasa et aI., 2005; 

Vaiphasa, 2006). 

ANOVA te st 

0 .3:\ 0 .75 

0.30 

I 0.60 

0 25 

0 .4G II 
c.o 0.20 ~ 
:l it 
<0 n 

0;
0. 15 " 0 

0 .30 " 
0. 10 

0.'15 

0.05 

350 ~so 750 95 0 1150 1350 1550 1750 1950 21 50 2350 

___________W___av'-'-e'-'-Ie-'ng'--th---'--(n_m~) __________ 
• 


Fig. 2. After Vaiphasa et al. (7005) . the p lot shows p-values of the ANOVA test (b lack line) plotting against a 

laboratory reflec tance of Rhizopho ra apic ulata (gray line). Th e p-va lues ind ica te where . a long the w hole wavelength 

regi on. the ma ngroves are likely to be spectrally separable . 

2.2. Genetic search algorithms (GA) 
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The theory of GA is first introduced by Holland (1975). The elaboration of its practical side including 

a basic computer source code can be found in Goldberg (1989). In this report. step-by-step 

guidelines of Goldberg (1989) are strictly followed (see Fig. 3). As a result. there is no attempt to 

make an exhaustive description of GA. but three major connections between the concept of GAand 

remote sensing applications are emphasized (i.e. gene encoding scheme. reproduction mechanism. 

and fitness criterion). Additionally. the code of GA used in this study has been developed in IDL 

language at the Intemationallnstitute for Geo-Information Science and Earth Observation (ITe) 

(Vaiphasa.2003). 

Genetic Algorithm 

Inpu! Surc~ 

Plor • ."et.fl 
Fig. 3. A flowchart showing the 

process of the genetic algorithm 

used in this study.
OC!nc,,,tIt IniSaI 

C .. leub ';e F;:n ~ss 

SC::t.' 

?~p \.l IJl: ' cn 

1+---.. 

• 
2.2.1. Gene encoding 

The gene encoding scheme in use is a direct method instead of binary encoding that is popularly 

used in related studies (Siedlecki and Sklansky. 1989; Kavzoglu and Mather. 2002; Yu et al.. 2002). 

The key reasons for choosing direc t encoding are that it is transparent for tracking the process of 
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evolution as well as straightforward for reproducing the population (i.e. crossover and mutation) 

(Vaiphasa, 2003). 

Fig. 4a illustrates an example of two chromosomes with chromosome size (number of gene inside 

the chromosome) equal to 6. Following the direct encoding scheme, the 1 st chromosome comprises 

6 different genes flagged by the letter A to F, and the 2nd one comprises gene G to L. Each gene 

can be assigned with a band label. For example, the 1st chromosome, {A, B, C, D, E, F}, in Fig. 4a 

can be assigned with an array of band names, {Band 2, Band 8, Band 37, Band 59, Band 97, Band 

99}, and, similarly, the {G, H, I, J, K, L} can be set to {Band 3, Band 5, Band 38, Band 55, Band 83, 

Band 100}. 

Reproduction Scheme 

A Irt chro moso m e 

-r dcomosome 

1'" offspring (original) 

A 
1!1. ofrspring( mut.:.. t e(~ 

Fig. 4. The figures illustrate (a) Two parent 

chromosomes, (b) Two offspring chromosomes, 

and (e) An example of random mutation. Each 

block alphabet represents a spectral band label. 

(c 

2.2.2. Reproduction mechanism 

The mechanism of crossover and mutation is illu stra ted in Fig. 4. By mating the two chromosomes in 

Fig. 4a , the offspring that they produce share, in thi s example, half the characters of the first parent 

and the other half from the second parent. The two offspring are shown in Fig. 4b. Occasionally, 

some of the genes in any newly produced chromosome are randomly a1tered by mutation. This 

phenomenon causes a change in the character of the offspring, independent from the chromosome 

composition of the parents. The illustration of the mutation effect is shown in Fig. 4c. The "J" gene is 

mutated to the "X" gene through random mutation . In remote sensing context. this is equal to a 

random fiip of a band label inside a chromosome. 
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2.2.3. Fitness criterion 

The fitness function chosen in this study is a well known spectral angle mapper based nearest 

neighbor classifier (SAM). It is responsible for calculating fitness scoreso(the chromosome 

population during the evolution process (see Fig. 3). This means that the evolution is guided by the 

classification accuracy reported by SAM. Chromosomes (Le. a subset of spectral bands) that 

possess higher classification accuracy are likely to have more chance to mate and produce young 

chromosomes that possess lower classification accuracy. The reader is recommended to consult 

Kruse et al. (1993) and Keshava (2004) for additional details on SAM. 

3. Experiments and results 

3.1. Initializing the genetic search algorithm 

GA was initialized with the following parameters: population size=1000, crossover rate=100%, and 

mutation rate= 1 %. The maximum number of generations was 500. The fitness function (i.e. SAM) 

was trained with half of the mangrove spectra of Table 1 (15 spectra per class), and the other half 

was used for calculating online fitness progress 

3.2. Choosing an appropriate chromosome size 

Since the genetic algorithm in use was an unconstrained combinatorial optimization search (i.e. 

search without any constraint or penalty on the size of a chromosome), preliminary runs of GA had to 

be carried out to look for an appropriate chromosome size (i.e. chromosome size = the number of 

genes in a chromosome) that maintained high class separability (i.e. classification accuracy). The 

80% level of classification accuracy was chosen as a threshold in this study as it was appropriate for 

separating very similar spectra of 16 mangrove species (USGS level III or IV (Anderson et aI., 1976)). 

As a result, it was found that a minimum chromosome size that could maintain class separability 

above the chosen threshold was four. A comparison between the performance of three different 

chromosome sizes (i.e. chromosome size=-2, 3, and 4) was illustrated in Fig. 5. 
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Search Progress 
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Fig . 5. A comparison between the perfonmance of three different chromosome sizes. 

3.3. Running the genetic search algorithm 

GA with chromosome size four was repeatedly run 30 times to check the consistency of the results_ 

The spectra were randomly rotated at the start of every run (i.e. data rotation) to avoid the bias. The 

real-time progress was plotted for each run in Fig. 6. The highest fitness score of each run was 

marked with a cross. Overall, the genetic algorithm quickly reac hed an averaged fitness score level 

of 80% at about the 100lh generation. 

Search Progress 
100 
90 

80 

70 
;';'.. 60 
~ 50 

,.. 
If 

~- m 
i 

~ I 
'$. 40 

30 
20 

I 

i 
10 

0 

100 200 300 400 500 1 

No . ofGentr.tions 

Fig. 6. The real-time progress of 30 runs (gray lines) with their peaks (c rosses ), mean (b lack line). nd standard 

deviation limits (dashed lines). 

An example of the evolution process of a single run wa s illustrated in Fig . 7 to give an impression of 

how GA worked. The horizontal axis represented band 18bels (or g enes) from B1 to B2151. The 

vertical axis of Fig. 7 is the frequency of gene types found in the population. In general, the gene 

distribution pattern converged from originally 2151 types o f genes at the 1st generation (Fig. 7a) to 

only a few kinds of genes at the 500
th 

generation (Fig . 7f) The convergence quickly happened as 
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early as the 100th generation (Fig . 7b) where most genes were already extinct. This convergent 

evolution from Fig. 7a to b directly connected to Fig. 6 where the majority of the progress lines 

leveled off at the 100lh generation as the convergence happened. Genes that dominated the 

evolution were individually texted in the plots. In this example, at the last generation (the 500ill 

generation), the gene pool was dominated by the following genes: 8369,8915,81050,81262, and 

81297. 

An Example of Convergent Evolution 
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Fig. 7. This is an example of Ihe convergence of gene distribulion patterns from (a) the 1st generation to (0 the SOOth 

generation . The horizontal axis represents band labels from 61 1062151 The vertical axis of each plot is Ihe 

frequency (count) of gene Iypes found in the population. 
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The winning chromosomes from every run were reported in Table 2 along with their fitness scores 

(Le. SAM classification accuracy). The best of all were chromosome No.2 and No.1 O. Both 

possessed an 86% level of classification accuracy. Then. all the genes of the30 winning 

chromosomes (i.e. 120 genes in total) are grouped by minimizing their variance. The results were 

. ilh,Jstratedin a plot against a mangrove reflectance (Fig. 8). It was found that the genes (spectral 

barids) can be grouped at 6 different spectral positions (mean± standard deviation): visible area (21 

genes at 513± 19 nm); red edge (15 genes at 717 ± 16 nm): nearinfrared region (9 genes at 1263±23 

nm);infrared slope (44 genes at 1385±27 nm): mid-infrared absorption pitch (5 genes at 1489±21 

rim). and mid-infrared peak (26 genes at 1669±25 nm). 
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3.4. Testing the key hypothesis 

The key hypothesis of this study was tested to see whether the results of band selection done by GA 

were meaningful. Specifically, the results of GA were statistically compared against the results of 

random selection using t-tests. Tile Jeffries· Matusita (J- M) distance was chosen as an evaluation 

tool (Richards, 1993). For each of the 30 winning chromosomes in Table 2, its 4 encapsulated 

spectral bands were used for calculating J ·M distances between all mangrove classes. The , averaged J-M distances of the 30 winning chromosomes were demonstrated in Table 3a. Next, the 

J ··M distances were calculated for 30 sets of randomly generated band combinations, and their 

averaged J-M distances were reported in Table 3b . Subsequently, the t-test results between the two 

cases were demonstrated in Table 3c in terms of p-valur:s It was clear that the class separability of 

band combinations selected by the genetic algorithm was significantly higher th:.Jn the class 

separability of randomly se lected band combinations with a <:)5% level of confidence (0 005). as 

most of the p-va lues (941 120:::::78%) in Tab le 3c were $00 :::' 
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4. Discussion and conclusion 

In this study. a form of GA-based band selectors was challenged to select spectral subsets of very 

highdimensional. species-level data. Unlike the broad-level data (i.e . Anderson's level I or II 

(Anderson et aI., 1976» used in the existing studies (Lofy and Sklansky, 2001; Kavzoglu and Mather, 

2002; Yu et aI., 2002; Ulfarsson et aI., 2003), spectral profiles of the specieslevel data were very 

similar (Figs. ' 1 and 2). Despite that, the results in Table 2 and Fig. 6 demonstrated that the GA

based band selector overcame spectral similarity of the species-level data as it was able to select 

spectral subsets tllat maintained class separability at an acceptable level (i.e. :::::an 80% level of 

classification accuracy). 

Additionally, the results of hypothesis testing in Table 3 also confirmed that band selection done by 

the GA-based band selector was meaningful. By majority, spectral separability between 16 

mangrove species when the spectral bands were selected by chance was significantly lower than 

when the spectral bands were selected by the GA-based band selector (i .e. with a 95% level of 

confidence) . 

The success of the GA-based band selector may be explained by the chosen spectral locations 

(Fig. 8), as each location directly related to principal physio-chemical properties of plants that 

helped distinguish between the species. The details of the relationships between these spectral 

locations and plants ca n be found in the following literature. In brief, the band selected from the 

visible area was needed for discriminating between mangroves that possessed different leaf 

pigments and different sensitivity levels to the visible light source (Elvidge, 1987, 1990; Curran, 

1989; Menon and Neelakantan, 1992; Basak et aI., 1996; Kumar et aI., 2001; Das et aI., 2002). The 

band on the red-edge slope was for separating mangrove spec ies that contained different leaf 

pigments , internal leaf structure alld water (Elvidge, 1981, 1990; Curran, 1989; Kumar et aI., 

2001 ;Williams andNorris, 2001). Similar to the red edge band, the near-infrared band helped sort 

different plants according to the dissimilarity of their leaf internal structure such as the size of 

intercellular volume (Elvidge, 1987, 1990; Curran, 1989; Kuma r et al.. ~001; Williams and Norris, 

2001) Finally, the spectral information of the mid-infrared region (i .e the infrared slope, the mid

infrared absorrt ion pitch, and the mid-infrJred peak) W:.J.:;' necessary for dissolving the interndl 

structure vLlriabl e:;, LInd foliar biochemical contents other than the leaf pigments (Himmelsbach et ai, 

1988; Curran, 1989; Kumar ut ai, /001) 



IS 

The reader may note that the form of GA and its parameters used in this study were not the only 

options available. To tackle the problemat hand. itwas possible to alter the encoding scheme. 

population size. crossover rate. and .mutation rate. Additionally. the fitness function could be 

replaced with any popular pattern classifier other than SAM. Using other decision criteria for 

assigning parental chromosomes instead of thebiased roulette wheel. suggested by Goldberg 

(1989), is also possible. Even though the alteration may affect the evolution process depicted in Fig. 

3. it was expected that the robustness of the evolutionary search could still produce a similar 

outcome (see "freedom of choice" in Goldberg (1989), page 80). In other words, GA was likely to 

find meaningful spectral bands that possess high spectral separability despite the alteration. It is. 

however. beyond the scope of this study to compare different designs of GA and the use of different 

search parameters. 

The optimism gained from the results of this laboratory-level study (i.e. using laboratory spectra) 

encouraged further investigation into the potential of the GA-based band selector for vegetation 

, discrimination when hyperspectral images taken by airborne or satellite sensors above mangrove 

canopies are in use. This will surely increase the complexity of measured spectral signals as a 

( 	 number of additional factors are involved (e.g. the fluctuation of light source energy, the change of 

daily atmospheric states. the effect of canopy formations. the cost of accessibility, the coarser 

spatial and spectral resolutions of on-board hyperspectral sensors. the effect of seasonal changes, 

the effect of background soils and water, the difference between the energy of artificial lamps used 

in the laboratory and the sun. etc.). The reader may consult Ramsey and Jensen (1996) on this 

issue. They have illustrated the differences between leaf level and canopy-level spectra measured 

from Florida mangroves. Furthermore, it was also anticipated that the use of the GA-based band 

selector was not limited to the application of vegetation discrimination. The GA-based band selector 

is now being tested by the author to detect spectral bands that show strong vegetation responses to 

different physio-chemical treatments (e.g. ritrogen, illumination, etc.) in both laboratory and field 

scenarios. It is hoped that the GA-based band selector could be used as an alternative to traditional 

methods such as statistical and derivative analyses that are normAlly used for detecting vegetation 

responses to external influences (Tsai and Philpot, 1998; Mutanga et aI., 2003) 

In conclusion, thi s study strengthened the confidence of using GA as band selection tools. The 

results confirmed tha t the GA-based band selector was able to cope with sp0.ctral similarity at the 

species level It mea ningfully selected spectral bands that related to prinCipal physio-chemical 

properties of plants , and, simultaneously, maintained the separability between species classes at a 
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high level. Additionally. the application of the GA-based band selector other than vegetation 

discrimination such as the investigation into vegetation spectra in response to different physio

chemical treatments was also anticipated. 

• 

• 
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