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CHAPTER I

INTRODUCTION

In exploring the nature, the first and foremost component needed to identify is

the relation between objects of interest. This fact is inevitably universal, from

natural sciences to social sciences and even epistemology. Associations must be

illustrated or proved before discussing their rationales, thus systematic ways to

clarify associations are crucial indeed.

Formally, probability and statistic theory provides rigorous tools to attack this

task: consider objects under study as random variables or random samples. In

this framework, uncertainty in reality is not an obstacle for detecting the depen-

dence between two random objects in both population and sample levels. Mea-

suring dependence probabilistically and statistically plays an eminent role in the

uncertainty-embedded fields such as economics, finance, engineering, geology, me-

teorology, etc.

There have been many explicitly defined dependence measures proposed. For

examples, see [4, 5, 9, 10, 12, 13, 18, 19]. Ideally, a function of two random

variables is considered a dependence measure if it fulfills a certain set of desirable

properties:

• Well-Defined Property: A dependence measure must be well-defined in the

sense that the same pair of random variables whose distribution functions

are continuous must yield identical measured values of dependence.

• Normalization Property: The possible values of dependence measure should

form closed interval. Conventionally, the range of dependence measure is

[0, 1].

• Independence Detectability Property: Its zero value should be able to iden-
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tify independence between random variables.

• Dependence Detectability Property: The maximum value of a dependence

measure should be able to identify maximum dependence between random

variables. For different types of dependence measures, maximum depen-

dence may refer to complete dependence, mutual complete dependence, or

monotonic dependence. Given random variables X and Y , X and Y are

said to be completely dependent (CD) if either there is a Borel measurable

function f such that Y = f(X) with probability one or there exists a Borel

measurable function g making X = g(Y ) almost surely. They are called

mutually completely dependent (MCD) if Y is a Borel invertible measurable

transformation of X. Finally, they are said to be monotonically dependent

if Y is a strictly monotonic transformation of X.

• Invariant Property: Dependence between random variables should not vary

when transforming one or both random variables by functions of a certain

type. If a dependence measure R satisfies R(f(X), g(Y )) = R(X, Y ) for any

strictly monotonic functions f, g and random variables X and Y , then R is

called monotonic invariant. If this property holds for all injective functions,

then R is said to be injective invariant.

Furthermore, is interesting in association between random variables, then a

measure of this type of dependence should be symmetric. That is; the order of

random variables when computing dependence measure must not affect their asso-

ciations. This type of dependence measures is called by us a symmetric dependence

measure. Otherwise, it is called a non-symmetric dependence measure. The latter

is also useful despite the lack of symmetry because under some circumstances,

one-sided dependence is more suitable.

However, there have been proposed dependence measures whose properties

were not investigated thoroughly as dependence measures. Firstly, the Trutschnig’s

ζ1 was introduced in [20]. This dependence measure is derived from the topology

induced by derivative-based metric on the space of bivariate copulas, defined as
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joint distribution functions of a pair of random variables uniformly distributed

on [0, 1]. By its construction, ζ1 is not symmetric. And it is proved to be able

to detect the dependence and independence while the other properties were not

studied. Secondly, the more generalized non-symmetric dependence measure of

Li, denoted as τ , is proposed in [10]. It can be considered as the generalized ver-

sion of ζ1. Although its ability to detect complete dependence is proved, its lack

of concrete definition of what Li called distance-like function makes it unclear to

claim this as a dependence measure. We will also propose a way to symmetrize

the non-symmetric measures of dependence.

In [14], Reshef et al. introduced maximal information coefficient (MIC) as

a dependence measure. In the first version, it is proposed as a statistic. As

the statistics of random samples, it has many attractive properties since its zero

value can detect the independence between random pair of data samples and

its value converges to one if the pair of random samples are drawn from the

distribution of complete dependent random variables when sample size goes to

infinity. Moreover, statistical MIC is invariant under the transformations of that

data samples with strictly increasing maps. Later, the probabilistic MIC appeared

in [15]. Nonetheless, this paper focused on proving that the statistical MIC is a

consistent estimator of the probabilistic MIC and providing algorithm to compute

it efficiently. Its properties as a probabilistic measure of dependence has not been

explored yet.

Lastly, from observation, dependence measures seem to have trade-off between

the stronger types of invariance and the stronger types of ability to detect depen-

dences. That is; the larger class under which it is invariant, the wider class of

dependence having maximum value of dependence measure. It is then natural to

ask whether there is a dependence measure which is both invariant in the strong

mode (such as bijective transformation) and able to catch the dependence in the

stronger mode (such as monotonic dependence). It may be possible by the ex-

istences of concrete dependence measure having that pair of properties or it has

contradiction in an axiomatic level.



4

Here are the objectives of this thesis:

(i) Investigate the dependence measure properties of ζ1;

(ii) Give additional assumptions to the distance-like function in the definition of

τ , show rigorous proof of its properties, and provide its symmetrization and

its corresponding properties;

(iii) Explore the properties of the probabilistic MIC as a dependence measure;

(iv) Find possible interrelationships between each type of invariance and depen-

dence detectability properties axiomatically.

Throughout this thesis, we attempt to fill in the tables summarizing the de-

pendence measures satisfying pairs of invariance and dependence detectability

properties. For non-symmetric dependence measures, here is the summary table.

MD detect. CD detect.

Monotone inv.

Injective inv. Impossible τ (including ζ1, r)

Table 1.1: The summary table for non-symmetric dependence measures.

For convenience, we recall the definitions of ζ1, r, and τ . Here, A is the copula

of random variables X, Y having continuous marginal distributions. Moreover,

denote the closed interval [0, 1] as I.

• ζ1 from Trutschnig (see [20]) is defined as

ζ1(Y | X) := 3D1(A,Π) = 3

∫
I

∫
I
|∂1A(x, y)− ∂1Π(x, y)|dxdy

where ∂1 denotes the partial derivative operator with respect to the first

place and Π is defined by Π(x, y) = xy for x, y ∈ I.
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• r from Dette, Siburg, and Stoimenov (see [5]) is defined as

r(Y | X) := 6

∫
I

∫
I
(∂1A(x, y)− ∂1Π(x, y))

2dxdy.

• τ from Li (see [10]) is defined as

τ(Y | X) :=
τ(A)

τ(M)

where, for any copula C,

τ(C) :=

∫
I

∫
I
φ(∂1C(x, y)− ∂1Π(x, y))dxdy,

φ : [−1, 1] → [0,∞] continuous, convex, and satisfies φ(−x) = φ(x) for all

x ∈ [−1, 1], and φ(x) = 0 if and only if x = 0. Recall that M(x, y) :=

min{x, y}.

And the following is the table for symmetric dependence measures:

MD detect. MCD detect. CD detect.

Monotone inv. σ τ̃ , ω, να

Injective inv. Impossible S, ω∗, ν∗

Table 1.2: The summary table for symmetric dependence measures.

Let us recall the definitions of dependence measures appearing in the table.

• Maximal correlation (S) from Rényi (see [13]) is defined by

S(X,Y ) = sup
f,g

R(f(X), g(Y ))

where the supremum is taken over the set of all Borel measurable functions

and R is the Pearson’s correlation of two random variables.

• σ from Schweizer and Wolff (see [18]) is defined by

σ(X,Y ) := 12

∫
I2
|A− Π|dλ2.
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• ω from Siburg and Stoimenov (see [19]) is defined by

ω(X,Y ) :=
√
3∥A− Π∥S :=

√
3

∫
I

∫
I
∥∇(A(x, y)− xy)∥2dxdy

where ∥ · ∥ denotes the usual two-dimensional Euclidean norm and ∇ means

the Laplacian.

• ω∗ from Ruankong, Santiwipanont, and Sumetkijakan (see [16]) is defined

by

ω∗(X, Y ) :=

(
3 sup
U,Y ∈I(C)

∥U ∗ A ∗ V ∥ − 2

)1/2

where ∗ is the product of copulas defined by

A ∗B(x, y) =

∫
I
∂2A(x, t)∂1B(t, y)dt

and the invertibility of copula C means CT ∗ C = C ∗ CT = M where

CT (x, y) := C(y, x). The class of invertible copulas is written as I(C).

• ν∗, να from Kamnitui, Santiwipanont, and Sumetkijakan (see [8]) is defined

by

ν∗(X, Y ) :=
√
6|[A]|∗ − 3 =

√
6 sup
U,Y ∈I(C)

|[U ∗ A ∗ V ]| − 3

and, for α ∈ (0, 1),

να(X, Y ) := αν(X, Y ) + (1− α)ν∗(X,Y )

where

|[C]| :=
∫
I2

(
CT ∗ C + C ∗ CT

)
dλ2

and ν(X,Y ) :=
√

6|[A]| − 3.

• τ̃ is defined by

τ̃(X, Y ) :=
1

2
(τ(Y | X) + τ(X | Y )).

The blank cells in the tables mean there have not been any dependence mea-

sures satisfying those pairs of properties and the word impossible clearly denotes

that there are no dependence measures satisfying that pair of properties. For the
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case of MIC, its properties are proved and an enlightening example illustrating

the possibility to possess stronger invariant properties will be given.

The structure of this thesis is given as follow: this first chapter is an intro-

duction. It provides the motivations and leading objectives. The second chapter

is preliminaries. It contains a collection of prerequisites for proving the main

results later. After one has all the tools for attacking the problems, the main

results are proved and presented separately in three chapters. Chapter three is

devoted to the main results on the dependence measure properties of ζ1 and τ ,

and a lemma on incompatibility between an invariant property and a maximum

dependence detectability. In the last chapter, we have three tasks. The first sec-

tion is the symmetrization of Li’s τ into a symmetric one while the section on the

properties of MIC follows. The end of this chapter will be a concluding remark on

further research agenda for symmetric dependence measures along with its version

of incompatibility lemma.



CHAPTER II

PRELIMINARIES

Throughout this thesis, we denote N,Q, and R as the set of all natural, rational,

and real numbers respectively. The other frequently seen notation is I, a symbol

for the closed unit interval [0, 1].

2.1 Measure Theory

Firstly, the most fundamental object is the so-called σ-algebra.

Definition 2.1. Let F be a collection of subsets of a nonempty set X, then F is

said to be a σ-algebra of X if the following are satisfied:

(i) ϕ ∈ F ;

(ii) F ∈ F implies F c ∈ F ;

(iii) {Fn}n∈N ⊆ F implies ∪n∈NFn ∈ F .

The pair (X,F) will be called a measurable space and elements of σ-algebra are

called measurable sets.

From definition, {ϕ,X} and the power set of X are σ-algebras, which can be

thought of as minimum and maximum σ-algebras. However, under many circum-

stances, we need some in-between size σ-algebra containing some desired family

of subsets. To achieve this point, the following lemma helps.

Lemma 2.2. The intersection of a nonempty collection of σ-algebras is also a

σ-algebra.
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Corollary 2.3. Given a collection E of subsets of set X. Then, there exists the

smallest σ-algebra containing E. This σ-algebra is called the σ−algebra generated

by E and denoted as σ(E).

The most frequently seen σ-algebra of this type is, given topological space

(X, τ), σ(τ) the Borel σ-algebra of X and we also write B(X) customarily. In this

work, we deal with B(R),B(I),B(R2), and B(I2) mainly. The elements in the Borel

σ-algebra are called Borel sets. Moreover, since the Borel σ-algebra is generated

by all open sets, one can prove that almost all of the subsets of real line, says

singleton, closed, open, clopen interval are Borel sets.

Since we have a measurable space, the set function defined to measure the

measurable set can be proposed.

Definition 2.4. For any measurable space (X,F), a function µ : F → [0,∞) is

called a measure if

(i) µ(ϕ) = 0;

(ii) for disjoint collection {Fn}n∈N of F ,

µ

(
∞∪
n=1

Fn

)
=

∞∑
n=1

µ(Fn).

The triplet (X,F , µ) is called a measure space.

Intuitively, length of interval on the real line seems to be measure. But it

requires more work to generalize it to a measure.

Definition 2.5. Let E = {(a, b),∅ : a, b ∈ R}. Define λ∗, called Lebesgue outer

measure on R, by

λ∗(E) = inf

{
∞∑
n=1

l(En) : En ∈ E , E ⊆ ∪∞
n=1En

}

where l(a, b) = b− a for all a, b ∈ R such that a < b.
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This means that, given a subset E of real line, Lebesgue outer measure is the

sum of the length of bases of usual topology on real line generating smallest open

set containing E. The following is the definition of measurability in the sense of

Lebesgue.

Definition 2.6. Let λ∗ be the Lebesgue outer measure on R and B ⊆ R. A set

B is called Lebesgue measurable if

λ∗(E) = λ∗(E ∩B) + λ∗(E ∩Bc)

for all E ⊆ R.

And the following defines what Lebesgue measure is.

Theorem 2.7. Let λ∗ be the Lebesgue outer measure on R and E be a collection

of all Lebesgue measurable subsets of R. Then the following properties hold:

(i) E is a σ-algebra on R;

(ii) The restriction of λ∗ to E is a measure on E , called Lebesgue measure on R

and denoted as λ.

Moreover, any Borel set is Lebesgue measurable.

From Lebesgue measure, it has related concept called a Lebesgue-Stieltjes mea-

sure on R. The definition is given as follow:

Definition 2.8. Let F : R → R be a bounded increasing and right-continuous

function and E be a family of all Lebesgue measurable subsets, then µF ((a, b)) :=

F (b)−F (a) extends to a finite measure on R. This measure µF is called Lebesgue-

Stieltjes measure

In fact, one can construct measure space from relatively weak structure of

collection of subsets and, then, extend it to the rich structure likes σ-algebra

later.

Definition 2.9. Let X be a set and P ⊆ P(X) where P(·) denotes the power

set. Then P is called a semi-ring if the following conditions hold:
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(i) If A,B ∈ P , then A ∩B ∈ P .

(ii) If A,B ∈ P , then ArB = ∪k
n=1Cn where Cn ∈ P for some k ∈ N

Definition 2.10. Let X be a set and P ⊆ P(X). Then a function µ : P → [0,∞]

is called a pre-measure if the following conditions hold:

(i) If ∅ ∈ P , then µ(∅) = 0.

(ii) If A1, A2, . . . , Ak are elements in P such that Ai ∩ Aj = ∅ for all i ̸= j and

∪k
n=1An ∈ P , then µ(∪k

n=1Ak) =
∑k

n=1 µ(An).

(iii) If E ⊆ ∪∞
n=1An where E,An ∈ P for all n ∈ N, then µ(E) ≤

∑∞
n=1 µ(An).

Remark 2.11. From Definition 2.10, the pre-measure µ is called σ-finite if there

is a sequence {Ak}∞k=1 of elements in P such that ∪∞
k=1Ak = X and µ(Ak) < ∞

for all k ∈ N. Furthermore, the measure space having σ−finite measure is called

a σ-finite measure space.

The following definition is the general version of outer measure.

Definition 2.12. Let X be a set. Then a function µ∗ : P(X) → [0,∞] is called

an outer measure if the following conditions hold:

(i) µ∗(∅) = 0.

(ii) If A1, A2 ∈ P(X) such that A1 ⊆ A2, then µ∗(A1) ≤ µ∗(A2).

(iii) If A1, A2, . . . , are elements in P(X) for all n ∈ N, then

µ(∪∞
n=1Ak) ≤

∑∞
n=1 µ(An).

And, since outer measure is defined, measurability with respect to outer mea-

sure is also determined.

Definition 2.13. Let µ∗ be an outer measure on X and B ⊆ X. A set B is called

µ∗-measurable if

µ∗(E) = µ∗(E ∩B) + µ∗(E ∩Bc)

for all E ⊆ X.
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Proposition 2.14. Let µ∗ be an outer measure on X and M be the collection of

all µ∗-measurable subsets of X. Then the following properties hold:

(i) M is a σ-algebra on X.

(ii) The restriction of µ∗ to M is a complete measure.

That is; for any set A such that µ∗(A) = 0, if B ⊆ A, then B ∈ M.

Theorem 2.15. Let X be a set, P ⊆ P(X) such that P ̸= ∅ and µ : P → [0,∞]

be a function. Then a function µ∗ : P(X) → [0,∞] defined by

µ∗(E) =

 0 if E = ∅

inf{
∑∞

k=1 µ(Ek) : E ⊆ ∪∞
k=1Ek, Ek ∈ P} if E ̸= ∅

is an outer measure, called outer measure induced by µ.

From Theorem 2.15, the restriction of µ∗ to M, the collection of all µ∗-

measurable subsets, is called the Carathéodory measure induced by µ, denoted

by µ̄. And the following consequence is one of standard measure theoretic machin-

ery to extend pre-measure on semiring to be a measure on a set of measurable sets

with respect to outer measure.

Theorem 2.16. (Carathéodory-Hahn extension theorem) Let X be a set. If µ is a

pre-measure on a semi-ring P ⊆ P(X), then the Carathéodory measure µ̄ induced

by µ is an extension of µ. Moreover, if µ is σ-finite, then µ̄ is the unique measure

extending µ.

This extension is powerful tool to construct many measures since many collec-

tion of subsets in consideration is semiring, for example the collection of interval

or rectangle in R,R2 respectively. In fact, given two σ−finite measure spaces, one

can construct a product measure.

Theorem 2.17. Let (X,F , µ), (Y,G, ν) be two σ−finite measure spaces and define

F ⊗G to be the σ−algebra generated by the set of Cartesian product of elements of
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F ,G respectively, which is called measurable rectangles. Then, there is the unique

measure µ× ν on F ⊗ G such that, for F ∈ F and G ∈ G,

µ× ν(F ×G) = µ(F )ν(G).

This measure is called a product measure µ× ν.

In this thesis, the product measure we used often is the product measure of

two Lebesgue measures, and it will be denoted as λ2.

For the finite measure space eqiupped with topology, the support of measure

µ, denoted by supp(µ), is defined to be the smallest closed measurable subset of

full measure. Note that any measurable set which does not contain any part of

support will have measure zero.

Next, since we finish introducing the notion of measure, one can define what

measuable function is.

Definition 2.18. Let (X,F) and (Y,F ′) be measurable spaces. A function f :

X → Y is called (F ,F ′)-measurable if f−1(E) ∈ F for all E ∈ F ′. If F is either R

or C, then a (B(R),B(F))-measurable function is said to be Borel measurable.

Because Borel set comes from open sets, continuous function is Borel measur-

able. Moreover, monotonic function is also Borel measurable. Basic operation of

several Borel measurable function, such as addition, scalar and pointwise multipli-

cation, quotient with non-zero function, taking absolute value and square root can

give a new measurable function from the old. And, given a sequence of measurable

functions, its corresponding limit supremum and infemum are measurable, thus

limit is measurable if exist. Lastly, composition preserves measurability of two

measurable function.

The notion of almost everywhere properties are defined below.

Definition 2.19. Let (X,F , µ) be a measure space. The property P (x) holds

µ-almost everywhere, denoted by P (x) µ-a.e., if there is a measurable set N ⊆ X

such that µ(N) = 0 and P (x) holds for each x ∈ X rN.
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An important class of measurable functions is simple function. This type of

functions will be used to construct integration later.

Definition 2.20. Let (X,F) be a measurable space. Define, for any measurable

set A, the characteristic function of A by the function χA : X → {0, 1} such

that χA(x) := 1 for x ∈ A and χA(x) = 0 otherwise. A measurable function

f : X → R is called a simple function if it has finite range. Equivalently, a function

f : X → R is a simple function if and only if there exist real numbers a1, a2, . . . , an
and pairwise disjoint measurable sets A1, A2, . . . , An such that X = ∪n

i=1Ai and

f =
∑n

i=1 aiχAi
.

One may ask the question whether Borel measurable injective function has

Borel measurable inverse. The answer is yes, though this fact is not trivial and

require advanced notions like analytic set and polish space, which is out-of-scope

for this study. This is the theorem called Lusin-Suslin theorem

Theorem 2.21. (Lusin-Suslin) Any Borel measurable one-to-one map has Borel

measurable inverse.

The actual usage of simple function is to approximate the non-negative mea-

surable function.

Proposition 2.22. Let f : X → R be nonnegative measurable function, then there

exists an increasing sequence {fn}∞n=1 of nonnegative simple functions such that

fn → f .

For the simple function, the integral is defined as follow.

Definition 2.23. Let (X,F , µ) be a measure space and s a nonnegative simple

function, which can written as s =
∑n

i=1 aiχAi
where a1, a2, . . . , an are nonneg-

ative real values and A1, A2, . . . , An such that X = ∪n
i=1Ai are pairwise disjoint

measurable sets. The integral of s with respect to the measure µ is defined by∫
X

sdµ =
n∑

i=1

aiµ(Ai).
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And the properties on integral of simple function are given here.

Proposition 2.24. Let s, t be nonnegative simple funcitons on X and c ≥ 0. Then

(i)
∫
X
csdµ = c

∫
X
sdµ,

(ii)
∫
X
(s+ t)dµ =

∫
X
sdµ+

∫
X
tdµ,

(iii) If s ≤ t, then
∫
X
sdµ ≤

∫
X
tdµ.

And this is the definition of integral in general.

Definition 2.25. Let f : X → [0,∞] be a measurable function. The integral of

f with respect to the measure µ is defined by∫
X

fdµ = sup{
∫
X

sdµ : s is simple and 0 ≤ s ≤ f}.

If E ∈ F , then the integral of a measurable function fχE with respect to the

measure µ is defined as ∫
E

fdµ =

∫
X

fχEdµ.

Proposition 2.26. Let f, g : X → [0,∞] be measurable, and A,B ∈ F . Then

(i) If f ≤ g, then
∫
X
fdµ ≤

∫
X
gdµ,

(ii) If A ⊆ B, then
∫
A
fdµ ≤

∫
B
fdµ,

(iii) If c > 0, then
∫
X
cfdµ = c

∫
X
fdµ,

(iv) If µ(A) = 0, then
∫
A
fdµ = 0.

Proposition 2.27. Let f : X → [0,∞] be measurable, and A ∈ F . Then

(i) If
∫
A
fdµ = 0, then f(x) = 0 a.e. on A,

(ii) If
∫
A
fdµ <∞, then f(x) <∞ a.e. on A.

The existence of approximate simple function makes defining integral be well-

defined. The following well-known theorem yields many properties.
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Theorem 2.28. [The Monotone Convergence Theorem] Let {fn}n∈N be a sequence

of nonnegative measurable functions on X. If

(i) f1(x) ≤ f2(x) ≤ · · · ≤ ∞ for every x ∈ X, and

(ii) limn→∞ fn(x) = f(x) for each x ∈ X,

then limn→∞
∫
X
fndµ =

∫
X
fdµ.

Monotone convergence theorem, along with properties of integral of simple

functions, induces many results.

Proposition 2.29. Let f, g : X → [0,∞] be measurable functions. Then∫
X

(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ.

Corollary 2.30. Let {fn}n∈N be a sequence of nonnegative measurable functions

on X. Then ∫
X

∞∑
n=1

fndµ =
∞∑
n=1

∫
X

fndµ.

Corollary 2.31. Let f be a nonnegative measurable function on X, and {En}n∈N
a sequence of disjoint measurable sets. Then∫

∪∞
n=1En

fdµ =
∞∑
n=1

∫
En

fdµ.

In fact, integral can be defined for real-valued measurable function, even in

case of complex-valued measurable function.

Definition 2.32. Let f be a real valued measurable function on X. Let f+ :=

max{f, 0} and f− := min{−f, 0}. Then the integral of f with respect to µ is

defined by ∫
X

fdµ =

∫
X

f+dµ+

∫
X

f−dµ

if at least one of the integral on the right side is finite.

Note that for any real-valued measurable function f , one can write f = f+−f−

and |f | = f+ + f−.

The following formula gives a useful tool to convert the integral with respect

to this measure into other integral with respect to other measure.
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Theorem 2.33. (Change of Variables) Let (X,F1, µ) be a measure space, (Y,F2)

be another measurable space and g : X → Y be a measurable function. Define a

measure ν on Y by ν = µ(g−1(B)) for all measurable sets B ⊆ Y. If f : Y → R̄ is

measurable, then
∫
X
f ◦ gdµ =

∫
Y
fdν.

In the case of multidimensional Lebesgue measure space, the change of variable

formula will have more concrete form. For this thesis, the version of the invertible

linear transformation suffices.

Theorem 2.34. Let n ∈ N, f : Rn → Rn be a Borel measurable function with

respect to n−fold Lebesgue measure and T : Ω → Rn be a continuously differentiable

injective map on open subset Ω ⊆ Rn such that DxT , the Jacobian matrix of T

evaluated at x ∈ Rn, is invertible for all x ∈ Rn. Then, f ◦ T is also Borel

measurable. Moreover, if f is nonnegative or integrable,

∫
Ω

f ◦ T (x)dλn(x) =
∫
T (Ω)

f(x)| detDxT |−1dλn(x).

And, one of the main integral inequality involving convex function is introduced

by Jensen.

Theorem 2.35. Let f : X → R be a bounded measurable function on finite measure

space and φ a convex function from R to R. Then, one has

φ

(∫
X

fdµ

)
≤
∫
X

(φ ◦ f)dµ.

The strict equality holds if and only if f is almost surely constant function with

respect to µ.

From integration, one can define the following.

Definition 2.36. Define the set, for 1 ≤ p ≤ ∞,

Lp(X) :=

{
f : X → R |

∫
X

|f |pdµ <∞
}

and ∥f∥p :=
(∫

X
|f |pdµ

) 1
p . Then the space Lp(X) is a vector space. Moreover,

the subspace Lp(X)/ ∼ where ∼ denotes the almost everywhere equality relation
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normed vector space. This one is called Lp space. And the set

L∞(X) := {f : X → R | ∃M ≥ 0, |f | ≤M a.e.}

along with

∥f∥∞ := inf{M ≥ 0 | |f | ≤M a.e.}

is also normed vector space called an L∞ space.

When considering convergence of measurable functions, there are two modes

of convergences in this work, and one in term of random variables which is defined

later.

Definition 2.37. A sequence of measurable functions {fn}n∈N is said to converge

almost everywhere to measurable function f if there is a measurable set of full

measure such that fn → f on that set.

Definition 2.38. Let {fn}n∈N be a sequence of measurable functions from a mea-

sure space (X,F , µ) to R2 and f : (X,F , µ) → R2 be another measurable function.

Then, one says that fn → f almost uniformly if for any ϵ > 0, there is ηϵ ∈ F

such that µ(ηϵ) < ϵ and fn → f uniformly on X r ηϵ. This definition also works

for the case of real-valued functions.

In the case of a finite measure space, the following theorem is useful to see

the relationship between these two type of convergences. This theorem is due to

Egoroff.

Theorem 2.39. Let {fn}n∈N be a sequence of measurable functions from finite

measure space (X,F , µ) to R and f : (X,F , µ) → R be another measurable func-

tion. Then, if fn → f almost everywhere, then fn → f almost uniformly.

And, lastly, in the case of measurable function on closed unit interval equipped

with Borel σ−algebra and Lebesgue measure, the following type of function has a

prominent role in ergodic theory and this study.

Definition 2.40. The Borel measurable function φ : I → I is said to be measure

preserving if for any B ∈ B(I), λ(φ−1(B)) = λ(B).
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2.2 Probability and Copula Theory

Any finite measure space whose measure of total space is one will be called a

probability space while that measure will be called a probability measure, always

write as (Ω,F , P ), and measurable set in this case is called an event. Real-valued

measurable function on probablity space is called a random variable and the in-

tegral of a random variable with respect to the probability measure will be called

an expectation, i.e. given random variable X, define EX :=
∫
Ω
XdP. Variance

of X is the expectation of the random variable (X − EX)2. Note that variance

exists if |X|2 has finite integral, that is X has the finite second moment. The set

of elements ω ∈ Ω which yields X(ω) ̸= 0 is called support of X while support of

probability measure is the complement of union of all open sets having the prob-

ability measure of zero. Note that support of the probability measure must be

one. In several case, support can be smaller than the full set Ω. A vector-valued

function whose components are random variable on a common probability space

is called a random vector. Characteristic function will be called indicator function

in this context and is written by 1B for measurable set B.

Above paragraph is just a collection of probability notions that are borrowed

from measure theory. And all contents following this will be the pure probability

theory.

Theorem 2.41. LetX be a random variable on (Ω,F , P ), and PX(A) := P (X−1(A))

for all A ∈ B(R). Then PX is a probability measure. This new measure is called

a distribution or push-forward measure of X.

Definition 2.42. Let X be a random variable on Ω, and

FX(x) := P ({ω : X(ω) ≤ x})

for each x ∈ R. Then FX is said to be the cumulative distribution function (cdf)

of X. In the case of random vector whose component is X, Y , the joint cumulative

of X,Y is the function FX,Y : R2 → I defined by, for x, y ∈ R2,

FX,Y (x, y) := P (X ≤ x, Y ≤ y)
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And the cdf of each component is called a marginal cdf.

One of the random variables seen usually is uniform random variable. In case

of finite set, a uniform random variable on this set is the random variable whose

support is this set and has equal probabilty of occurring each outcome is one over

size of that set. On the other hand, uniform random variable on compact interval

[a, b] is the random variable which takes value in [a, b] and has cdf F (x) := x/(b−a)

for x ∈ [a, b], F (x) := 0 if x < a and F (x) := 1 if x > b. It is denoted by

X ∼ Uniform([a, b]).

Univariate cdf is monotonic, has limit as 0 when argument tends to minus

infinity and 1 if argument goes to infinity, and is right-continuous.

The random variable is said to be continuous if its cdf is a continuous function

and, on the contrary, is discrete if its cdf is just an increasing function with at

most countably infinite point.

By change of variable formula, one has two equivalent definition of expectation

of random variable X.

EX :=

∫
Ω

XdP =

∫
R
xdFX(x).

One of the topic distinguishing probability from being merely pure measure

theory is independence.

Definition 2.43. Let {Bα : α ∈ Λ} be a family of events in probability space

(Ω,F , P ). {Bα : α ∈ Λ} is said to be (mutually) independent if for any finite

subfamily {α1, . . . , αk} ⊆ Λ,

P

(
k∩

j=1

Bαj

)
=

k∏
j=1

P
(
Bαj

)
.

The class {Eα : α ∈ Λ} is called independent if for any choice of event Eα ∈ Eα,

{Eα : α ∈ Λ} is independent. Last but not least, the collection of random variables

{Xα : α ∈ Λ} is independent if the family of σ-algebras generated by random vari-

able Xα for α ∈ Λ is independent where σ-algebra generated by random variable

X, says σ(X), is defined by
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σ(X) := X−1(B(R)) := {X−1(B) : B ∈ B(R)} (2.1)

Equivalently, random variables {Xα : α ∈ Λ} is independent if for any finite

subcollection {α1, . . . , αk} ⊆ Λ and Bαj
∈ B(R) for j ∈ {1, . . . , k},

P (Xαj
∈ Bαj

, j ∈ {1, . . . , k}) =
k∏

j=1

P (Xαj
∈ Bαj

) (2.2)

In fact, especially in this work, the case will be restricted to the two random

variable case. And, by some measure theoretic technique, it suffices to check

independence between two random variables X,Y , by just showing that whether

joint cdf can be reduced to just multiplication of two marginal cdf.

From above characterization of independence of set of random variables, one

can see that independence in random variables holds if and only if joint distribution

of subcollection of random variables equals product of marginal distributions of

each components for any finite subfamily of all of random variables. This viewpoint

is handy for computing task.

On the other hand, given two random variables X and Y , complete dependence

can be defined in the following way:

Definition 2.44. Given some probability space, random variable Y is said to

be completely dependent on a random variable X if there is a Borel measurable

function f such that P (Y = f(X)) = 1. In case that Y is completely dependent

on X and vice versa, X and Y are mutually complete dependent. In case that the

function f is strictly monotonic, Y is said to be monotonic dependent on X.

The other feature of probability theory differentiate itself away from general

measure theory is conditioning. Conditioning is mainly the augmentation of ex-

pectation and probability with some sort of given class of events, sub σ-algebra A

of F in particular.

Definition 2.45. Let (Ω,F , P ) be a probability space, A ⊆ F a sub σ-algebra,

and X a random variable on above space. Then, the conditional expectation of X

given A is a random variable Y which is A-measurable and, for A ∈ A,
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∫
A

Y (ω)P (dω) =

∫
A

X(ω)P (dω) (2.3)

One can see that, by Radon-Nikodym theorem1, conditional expectation exists

and unique a.e. by, given a random variable X and a sub σ-algebra A, defining

set function ν on A as the right hand side of identity (2.3). Obviously, ν is

absolutely continuous with respect to P and, thus, the corresponding Radon-

Nikodym derivative is indeed conditional expectation and it is unique a.e. as we

desire. Up to this point, we denote the conditional expectation of X given A

as E(X | A) or EAX. The property (2.3) is called the averaging property of

conditional expectation.

One of the special case is when the information for conditioning X is other

random variable Y . Then, to deal with this situation, define the conditional

expectation of X given Y as E(X | Y ) := E(X | σ(Y )).

Next, conditional probability given A can be defined as P (B | A) := E(1B | A),

which is naturally similar to unconditional distribution as well.

The problem arises when one wants to find conditional probability of event

B given a point Y = y since event {Y = y} may have zero measure. To make

this possible, use the fact that there exists the measurable function ϕ such that

E(X | Y ) = ϕ ◦ Y P -a.e. The conditional expectation of X given Y = y or a

version of conditional of X given Y .

Moreover, the following concept is needed for developing further results.

Definition 2.46. Let (Ω,F , P ) be a probability space. A mapping κ : R×B(R) →

I is called as Markov kernel if the following are satisfied:

(i) For all B ∈ B(R), x 7→ κ(x,B) is a measurable function; and

(ii) For all x ∈ R, B 7→ κ(x,B) is a probability measure.

From the notion of Markov kernel, it induces an important concept which is

used frequently in the studies on theoretical stochastic processes and copula theory

called regular conditional distribution.
1see any measure theory textbook, such as [17]
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Definition 2.47. Let (Ω,F , P ) be a probability space, A ⊆ F a sub σ-algebra,

and X a random variable on above space. Then (a version of) regular conditional

distribution of X given A is a Markov kernel κX,A from Ω×F to I such that, for

any F ∈ F ,

κX,A(ω, F ) = P (X ∈ F | A)(ω) (2.4)

And it can be proved that given some prescribed random variable and sub σ-

algebra, there exists corresponding regular conditional distribution uniquely a.e.,

see Kallenberg (2002) and Klenke (2013). In particular, the case of interest in

the context of this study is when the sub σ-algebra is generated by other random

variable, says we have Y and σ(X). Under this circumstance, we have κY,X :=

κY,σ(X). Note that for the case mentioned recently, one has, for all B ∈ B(R),

κY,X(X(ω), B) = E(1B ◦ Y | X)(ω) a.e. (2.5)

Regular conditional distribution is not only useful as the tool for characterize

stochastic process, but also handy for computing conditional expectation of a

measurable function of random variables X, Y given value of X.

And, since one has (regular) conditional distribution function, one can define

relative term of independence as follow.

Definition 2.48. Let X, Y, Z be random variables. then one says X,Z are con-

ditionally independent given Y if, for any Borel sets B1, B2,

P (X ∈ B1, Z ∈ B2 | Y ) = P (X ∈ B1 | Y )P (Z ∈ B2 | Y ) a.e.

There are many modes of convergence for sequences of random variables or

vectors. But one relevant and weakest mode will be introduced here.

Definition 2.49. Let {X⃗n} be a sequence of random vectors and X⃗ be other

random vector. Then, X⃗n is said to converge in distribution to X⃗ if joint cdf of

X⃗n converges to joint cdf of X⃗ for every continuity point.

Before going further, one introduces, for any subset of Euclidean space S, P(S)

as the set of all random vectors or random variables whose supports are S.
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For the space of real-valued random variables P(R), the functionR : P(R)2 → R

is said to be dependence measure in the sense of Rényi if the following are fulfilled:

(i) R is well-defined;

(ii) R is normalized, i.e. 0 ≤ R(X,Y ) ≤ 1 for any X, Y ∈ P(R);

(iii) For X, Y ∈ P(R), R(X, Y ) = 0 if and only if X,Y are independent;

(iv) R is complete dependence detectable, i.e. for all X, Y ∈ P(R), R(X, Y ) = 1

if either Y is CD on X or vice versa;

(v) R is bijective invariant, i.e. for any Borel injections f, g, R(f(X), g(Y )) =

R(X, Y ) for any X,Y ∈ P(R);

(vi) If (X,Y) are jointly normal random vector with correlation coefficient ρ, then

R(X, Y ) = |ρ|.

Then, Schweizer and Wolff criticized the Rényi’s postulation to be too strong

and, in that day, there is only maximal correlation which can satisfy all of Rényi’s

axiom (see [18]). Moreover, maximal correlation takes unit value too often since

it can be one whenever one of two random variables is just the Borel measurable

function of another. Thus, they propose the new postulation.

For the space of real-valued random variables P(R), the functionR : P(R)2 → R

is said to be dependence measure in the sense of Schweizer-Wolff if the following

are fulfilled:

(i) R is well-defined;

(ii) R is normalized, i.e. 0 ≤ R(X,Y ) ≤ 1 for any X, Y ∈ P(R);

(iii) For X, Y ∈ P(R), R(X, Y ) = 0 if and only if X,Y are independent;

(iv) R is monotonic dependence detectable, i.e. for all X, Y ∈ P(R), R(X, Y ) = 1

if and only if Y is MD on X;
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(v) R is monotonic invariant, i.e. for any strictly monotonic mappings f, g,

R(f(X), g(Y )) = R(X,Y ) for any X, Y ∈ P(R);

(vi) If (X, Y ) is jointly normal random vector with correlation coefficient ρ, then

R(X, Y ) = φ(|ρ|) for some strictly increasing function φ;

(vii) If {(Xn, Yn)}n∈N ⊆ P(R2) such that (Xn, Yn) → (X, Y ) in distribution to

some random vector (X,Y ) ∈ P(R2), then limn→∞R(Xn, Yn) = R(X, Y ).

After the study of Schweizer and Wolff, Siburg and Stoimenov invented the de-

pendence measure called as ω which satisfying maximal dependence detectability

in the middle of two extreme dependence structures, says monotonic and complete

dependence (see [19]).

For the space of real-valued random variables P(R), the functionR : P(R)2 → R

is said to be dependence measure in the sense of Siburg-Stoimenov if the following

is fulfilled:

(i) R is well-defined;

(ii) R is normalized, i.e. 0 ≤ R(X,Y ) ≤ 1 for any X, Y ∈ P(R);

(iii) For X, Y ∈ P(R), R(X, Y ) = 0 if and only if X,Y are independent;

(iv) R is mutually dependence detectable, i.e. for all X, Y ∈ P(R), R(X, Y ) = 1

if and only if Y and X are MCD;

(v) R is monotonic invariant, i.e. for any strictly monotonic mappings f, g,

R(f(X), g(Y )) = R(X,Y ) for any X, Y ∈ P(R);

(vi) If {(Xn, Yn)}n∈N ⊆ P(R2) such that (Xn, Yn) → (X, Y ) in distribution to

some random vector (X,Y ) ∈ P(R2), then limn→∞R(Xn, Yn) = R(X, Y ).

Under some circumstances, one may consider the real-valued function on the

Cartesian product of the sets of random variables which have almost the same

properties with dependence measures in above senses but symmetry. This will be
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called a non-symmetric dependence measure and one writes R(Y | X) instead of

R(X,Y ) for any random variables X,Y . Invariance property for a non-symmetric

dependence measure is defined as R(Y | f(X)) = R(Y | X) for any f in some

kinds of functions such as monotonic or injective transformations. And, complete/

monotonic dependent detectability is the property that R(Y |X) = 1 if and only if

Y = f(X) for f Borel measurable/monotonic function.

Since the dependence measure in any sense need invariance, one probabilistic

object which is reasonable for using as ingredient for dependence measure is copula.

Definition 2.50. A (bivariate) copula C is the function C : I2 → I satisfying the

following conditions:

(i) (Boundary condition) ∀x, y ∈ I2, C(x, 0) = 0 = C(0, y), C(x, 1) = x, and

C(1, y) = y; and

(ii) (2-increasing property) for any rectangle R := [x1, x2]× [y1, y2] where

x1, x2, y1, y2 ∈ I,

VC(R) := C(x2, y2)− C(x1, y2)− C(x2, y1) + C(x1, y1) ≥ 0. (2.6)

The set of all copulas will be denoted by C. And, by standard measure the-

oretic technique, one can extend VC to a unique measure µC on I2 such that

µC(R) = VC(R) for any measurable rectangle R ∈ B(I2). Moreover, from bound-

ary condition, µC becomes doubly stochastic. That is; for any B ∈ B(I),

µC(B × I) = λ(B) = µC(I×B).

Since copula can induce two-fold measure, the notion of support can be con-

sidered. The support of copula means the support of measure induced by that

copula.

One of the essential properties of copula, inheriting from 2-increasing property,

is the non-decreasing in each place. This implies that ∂iC exists λ-a.e. on I and

Ran(∂iC) ∈ I for any i ∈ {1, 2}. Moreover, for C ∈ C, one can define transposition

of C by CT (u, v) := C(v, u) for u, v ∈ I. Obviously, transposition is still copula.
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From above properties, one has the following technique for viewing integral

of partial derivative of copula as the integral with respect to Lebesgue-Stieltjes

measure induced by partial derivative, see [8].

Proposition 2.51. Let f be a bounded measurable function on I and C be a

copula. Then, one has∫
I
f(t)∂1C(x, dt) =

d

dx

∫
I
f(t)∂2C(x, t)dt

for almost all x ∈ I with respect to λ.

Moreover, to integrate 2-place function on I2 with respect to µC where C is

any copula, the following theorem is a so-called disintegration theorem.

Proposition 2.52. Let C be a copula and g : I2 → R an integrable function with

respect to µC , then∫
I2
g(x, y)dµC(x, y) =

∫
I

∫
I
g(x, y)∂1C(x, dy)dx =

∫
I

∫
I
g(x, y)∂2C(dx, y)dy.

The following theorem is milestone to make copula become important.

Theorem 2.53. (Sklar) For a pair of random variables (X,Y ) on common prob-

ability space (Ω,F , P ) with joint distribution FX,Y and marginal distributions

FX , FY of X, Y respectively. Then, there is a copula C satisfying

FX,Y (x, y) = C(FX(x), FY (y)) (2.7)

for all x, y ∈ R̄. The copula corresponding to the joint distribution is unique up

to Ran(FX)×Ran(FY ). Conversely, given a copula C and distribution functions

FX , FY of X, Y respectively, then the 2-place function defined by (2.7) is a joint

distribution function of X, Y with the marginals FX , FY .

Sklar’s theorem is powerful especially in the case of considering the random

variables with continuous distribution functions. Thus, we will assume that every

random variables in this work have continuous distribution functions to obtain

that any pair of random variables has the unique copula to fulfill the condition



28

in Sklar’s theorem. Under this circumstance, denote as (X, Y ) ∼ A where A is

the unique copula satisfying assertion (2.7), and we will call that A is connecting

copula of (X, Y ). In other word, we will say that the copula connecting (X,Y ) is

denoted by AX,Y . Furthermore, Sklar’s theorem also give equivalence definition of

copula to be the joint distribution function of two uniform random variables on I.

The upcoming property can be considered as scale invariant property for cop-

ula.

Proposition 2.54. Given random variables X,Y with connecting copula AX,Y

and f, g strictly monotonic functions. Then, the following holds true:

(i) if both f, g are strictly increasing, then Af(X),g(Y ) = AX,Y ;

(ii) if f is strictly increasing and g is strictly decreasing, then

Af(X),g(Y )(u, v) = u− AX,Y (u, 1− v) for all u, v ∈ I;

(iii) if f is strictly decreasing and g is strictly increasing, then

Af(X),g(Y )(u, v) = v − AX,Y (1− u, v) for all u, v ∈ I;

(iv) if both f, g are strictly decreasing, then

Af(X),g(Y )(u, v) = u+ v − 1 + AX,Y (1− u, 1− v) for all u, v ∈ I.

These are important examples of copulas.

Example 2.55. • (Counter-monotonic copula) W (x, y) := max{x+y−1, 0};

• (Independence copula) Π(x, y) := xy;

• (Co-monotonic copula) M(x, y) := min{x, y}.

The reasons to give these examples are, firstly, W,M are pointwise lower,

upper bound of copula space. These are called Fréchet-Hoeffding bounds. And,

additionally, all of them have probabilistic meanings, which are indicated by the

following proposition.

Proposition 2.56. For random variables X, Y with continuous distributions, one

has
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(i) (X, Y ) ∼ W if and only if there is strictly decreasing function f such that

Y = f(X) with probability 1;

(ii) (X, Y ) ∼ Π if and only if X, Y are independent;

(iii) (X, Y ) ∼ M if and only if there is strictly increasing function f such that

Y = f(X) with probability 1.

For the space of all copulas, one can give the algebraic structure by the following

binary operation.

Definition 2.57. On the space of all copulas, says C, define the operation ∗ on C

by, for A,B ∈ C and (u, v) ∈ I2,

A ∗B(u, v) :=

∫
I
∂2A(u, t)∂1B(t, v)dt. (2.8)

This operation is named as (Markov) *-product.

Darsow, Nguyen and Olsen (see [4]) proved that its is binary operation and

(C, ∗) is monoid with identity element M and, additionally, null element Π. More-

over, one can also show straightforwardly that, for (u, v) ∈ I2 and A ∈ C,

(i) W ∗ A(u, v) = v − A(1− u, v);

(ii) A ∗W (u, v) = u− A(u, 1− v);

(iii) W ∗ A ∗W (u, v) = u+ v − 1 + A(1− u, 1− v).

Hence, for random variables X, Y with continuous distribution functions whose

connecting copula AX,Y ∈ C and strictly monotonic mappings f, g,

(i) if both f, g are strictly increasing, then Af(X),g(Y ) = AX,Y ;

(ii) if f is strictly increasing and g is strictly decreasing, then

Af(X),g(Y ) = AX,Y ∗W ;

(iii) if f is strictly decreasing and g is strictly increasing, then

Af(X),g(Y ) = W ∗ AX,Y ;



30

(iv) if both f, g are strictly decreasing, then Af(X),g(Y ) =W ∗ AX,Y ∗W .

∗-product can be used to characterize the copula connecting two random vari-

ables, if one has information about other random variable which forms the condi-

tional independence.

Theorem 2.58. Let X,Y, Z be random variables such that X,Z are conditionally

independent given Y and CX,Y , CY,Z , CX,Z are corresponding connecting copula,

then CX,Z = CX,Y ∗ CY,Z .

And Ruankong, Santiwipanont, and Sumetkijakan (2013), see [16], proved this

lemma.

Lemma 2.59. Let X, Y be random variables and g : R → R a Borel measurable

function, then g(X), Y are conditionally independent given X.

Combining this result with theorem above yields this result. In the case of

Borel injection, the another result will be consequence from Lusin-Suslin theorem.

Lemma 2.60. Let X, Y be random variables and g : R → R a Borel measurable

function, then Cg(X),Y = Cg(X),X ∗ CX,Y . Moreover if g is Borel injection, then

CX,Y = CX,g(X) ∗ Cg(X),Y .

In view of algebra, it is natural to ask about invertibility of elements in copula

space. One will define as follow.

Definition 2.61. Let C ∈ C. Then, C is said to be left (right) invertible if

CT ∗ C = M (C ∗ CT = M). If it is both left and right invertible, it is called

invertible.

The following proposition gives the characterization of complete dependence

between random variables by partial derivatives, and invertibility of the corre-

sponding connecting copula.

Proposition 2.62. Let X, Y be random variables with associating connecting

copula C ∈ C, then the following are equivalent:
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• Y is completely dependent on X;

• C is left invertible;

• ∂1C ∈ {0, 1} a.e.

Similarly, the following are equivalent:

• X is completely dependent on Y ;

• C is right invertible;

• ∂2C ∈ {0, 1} a.e.

Surprisingly, copula can be connected with the special type of linear maps on

L∞, which is defined below.

Definition 2.63. The linear map T : L∞(I,B(I), λ) → L∞(I,B(I), λ) is said

to be a Markov operator if it is positive, has a constant function on (I,B(I))

as fixed point, and preserves integral in the sense that, for f ∈ L∞(I,B(I), λ),∫
I(Tf)(t)dt =

∫
I f(t)dt.

Durante (see [6]) showed that any Markov operator T : L∞(I,B(I), λ) →

L∞(I,B(I), λ) has the unique extension to T : Lp(I,B(I), λ) → Lp(I,B(I), λ) for

p ∈ [1,∞). Thereby, it is legitimate to use the terminology of Markov operator

on any type of Lp space, especially L1 as in [20]. And, for convenience, the space

of all Markov operators will be denoted by M.

The connection between copula and markov operator is established by Olsen,

Darsow, and Nguyen (see [11]), which is stated here.

Theorem 2.64. Algebraic isomorphism between (C, ∗) and (M, ◦) where ◦ denotes

composition of functions is constituted by the following two mappings:

(i) Φ: C → M defined by

Φ(A)(f)(x) := (TAf)(x) :=
d

dx

∫
I
∂2A(x, t)f(t)dt;
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(ii) Ψ: M → C defined by

Ψ(T )(x, y) := AT (x, y) :=

∫
[0,x]

(T1[0,y])(t)dt

for any A ∈ C, f ∈ L1(I,B(I), λ), and x, y ∈ I.

The connection between copula and Markov kernel is shown in [6] in the fol-

lowing statement. Given random variable X,Y with connecting copula A ∈ C and

κA a regular conditional distribution of Y given X, then

µA(B1 ×B2) =

∫
B1

κA(x,B2)dx.

In particular, λ(B) =
∫
I κA(x,B)dx. Conversely, any Markov kernel κ satisfying

above assertion will be automatically a regular conditional distribution of Y given

X. Accordingly, one may refer to a Markov kernel of copula A for instead of

regular conditional distribution of underlying random variables directly.

Given a copula space C, define D1 : C2 → R by, for A,B ∈ C

D1(A,B) :=

∫
I

∫
I
|κA(x, [0, y])− κB(x, [0, y])|dydx. (2.9)

Trutschnig (see [20]) proved that (C, D1) is a complete separable metric space

and, for any random variable X, Y with connecting copula A, Y is complete depen-

dent to X if and only if D1(A,Π) =
1
3
. These fact will lead us to the construction

of Trutschnig’s ζ1, and it symmetric version.

For more convenience, this lemma help us to think of regular conditonal dis-

tribution, analytically, in term of derivative and Markov operator.

Lemma 2.65. For any A ∈ C and x, y ∈ I ,

κA(x, [0, y]) = ∂1A(x, y) = TA1[0,y](x).

Proof. By the property of Markov kernels of copulas, one has∫
[0,x]

κA(t, [0, y])dλ(t) = µA([0, x]× [0, y]) = A(x, y).
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Since Markov kernel is bounded and integrable, Lebesgue differentiation theorem

can be applied here to obtain that

∂1A(x, y) =
d

dx

∫
[0,x]

κA(t, [0, y])dλ(t) = κA(x, [0, y]).

Furthermore, by isomorphism between copula and Markov operator spaces, one

has A(x, y) =
∫
[0,x]

TA1[0,y](t)dλ(t). By the same argument to the above assertion,

one gets

κA(x, [0, y]) = ∂1A(x, Y ) =
d

dx

∫
[0,x]

TA1[0,y](t)dλ(t) = TA1[0,y](x).

This finishes the proof.

By above lemma, one can rewrite D1(A,B), for A,B ∈ C as follow.

D1(A,B) =

∫
I

∫
I
|∂1A(x, y)− ∂1B(x, y)| dxdy. (2.10)

And, in case of modifying ζ1 into symmetric version, the following are useful.

Lemma 2.66. Let X,Y be random variables such that (X, Y ) ∼ A ∈ C, then

(Y,X) ∼ AT where ·T is transposition.

Proof. Let X, Y be two random variables with X ∼ FX , Y ∼ FY and (X, Y ) has

the connecting copula A. Then, by Sklar’s theorem, one has, for x, y ∈ R,

P (Y ≤ y,X ≤ x) = P (X ≤ x, Y ≤ y)

= A(FX(x), FY (y))

= AT (FY (y), FX(x)).

(2.11)

Thanks to Sklar’s theorem, again, corresponding copula connecting (Y,X) is

unique, thus we are done.

In fact, from measure preserving functions f, g : I → I and uniform ran-

dom variable X on I, the corresponding connect copula of the random variables

f(X), g(X), denoted by Cf,g can be found by

Cf,g(x, y) = P (f(X) ≤ x, g(X) ≤ y)

= P (X ∈ f−1([0, x]) ∩ g−1([0, y]))

= λ(f−1([0, x]) ∩ g−1([0, y])).
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Lastly, the following definition of shuffle of Min is given.

Definition 2.67. The copula C is a shuffle of Min if there exist k ∈ N, finite col-

lections {si}ki=0, {tj}kj=0 ⊆ I and σ ∈ Sk such that {si}ki=0, {tj}ki=0 form partitions

of I and, for 1 ≤ i ≤ k, each of [si−1, si]× [tσ(i)−1, tσ(i)] is square containing mass

of si − si−1 of C uniformly on either one of diagonals.

Shuffle of Mins are invertible. This fact will be used later.

2.3 Basic Information Theory

In this part, the basic notions of information theory used in this work will be

treated here.

Definition 2.68. Given discrete random variables X,Y whose supports are the

sets X ,Y respectively, one can define the (Shannon’s) entropy as

H(X) :=
∑
x∈X

log

(
1

P (X = x)

)
P (X = x). (2.12)

Definition 2.69. Let X, Y be discrete random variables or vectors with common

support X and probability mass function p, q respectively. The Kullback-Leiber

divergence, or shortly divergence, of p and q as

D(X ∥ Y ) := D(p ∥ q) :=
∑
x∈X

p(x) log

(
p(x)

q(x)

)
. (2.13)

Note that, intuitively, divergence is the average logarithmic discrepency be-

tween two distributions when using one as the reference for computing expectation.

And one of its special caseis one of the most important concept in information the-

ory is mutual information. The definition is given below.

Definition 2.70. Let X,Y be discrete random variables whose supports are the

sets X ,Y respectively. The mutual information as

I(X,Y ) :=
∑
x∈X

∑
y∈Y

log

(
P (X = x, Y = y)

P (X = x)P (Y = y)

)
P (X = x, Y = y). (2.14)

Moreoever, we call I(X,Y )
logmin{|X |,|Y|} the normalized score of X, Y .
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Again, one can view mutual information as I(X,Y ) = D(p ∥ q) where p is

the probability mass function of (X, Y ) and q is the probability mass function of

(X, Y ′) where X,Y ′ are independent and Y ′ is identically distributed to Y .

Note that by convexity of logarithm function and Jensen’s inequality, both

entropy and divergence are non-negative. Moreover, the mutual information has

a bound

I(X,Y ) ≤ logmin{H(X), H(Y )}. (2.15)

For the comprehensive treatment on information theory, see [2].

However, all of above deinitions are defined for discrete random variables and

random vectors. For the case of continuous random variables and vectors, as

assumed throughout this thesis, one may consider cutting the range of random

vectors into several pieces and put the probability mass to each piece by using

the probability that the values of random vectors lies in that piece. In the case of

considering random variables with compact support, the following definition gives

us a nice way to partition the range into the collection of subrectangles.

Definition 2.71. For the compact interval [a, b] ⊆ R and natural numbers k, l, the

k-by-l grid of [a, b]2 (or, shortenly k-l grid) is a partition of [a, b]2 into k columns

and l rows respectively. The collection of rows and column of k-by-l grid will be

denoted as {Ci}ki=1 and {Rj}lj=1, respectively. The set of all k-by-l grids is denoted

by G(k, l).

Since one has a grid, any pair of random variables jointly distributed on I2 can

be used to make the new discrete random variables. The method to do this task

is given below.

Definition 2.72. For random variables X,Y jointly distributed on I2 and a k-

by-l grid G with columns {Ci}ki=1 and rows {Rj}lj=1, ColG(X, Y ) is the random

variable defined by ColG(X, Y )(ω) := i whenever X(ω) ∈ Ci. And RowG(X,Y )

is the random variable defined by RowG(X,Y )(ω) := j if Y (ω) ∈ Rj. Denote

random vector

(X, Y )G := (ColG(X, Y ),RowG(X, Y )).
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This is called as discretization of (X, Y ) by grid G.

From this definition, one can define maximal information coefficient.

Definition 2.73. For variables X,Y jointly distributed on I2, k, l ∈ N, and a

k-by-l grid G, define IG(X,Y ) := I(ColG(X, Y ),RowG(X, Y )). And, furthermore,

given random vector (X, Y ) on I2 and k, l ∈ N, define the k-by-l characteristic

entry of (X,Y) as

Mk,l(X, Y ) := sup
G∈G(k,l)

IG(X, Y )

logmin{k, l}
.

Definition 2.74. For random variables X,Y jointly distributed on I2, define mu-

tual information of X, Y , by

MIC(X, Y ) := sup
k,l∈Nr{1}

Mk,l(X,Y ) = sup
k,l∈Nr{1}

sup
G∈G(k,l)

IG(X, Y )

logmin{k, l}
. (2.16)

From the definition, one can view MIC as the maximal normalized score of

those random variables over every possible choices of grids’ size and grid-cutting

methods.



CHAPTER III

NON-SYMMETRIC DEPENDENCE MEASURES

To ensure the well-defined property of dependence measures discussed in this the-

sis, all random variables are assumed to have continuous distribution function.

3.1 Trutschnig’s dependence measure

First of all, recall the definition of Trutchnig’s dependence measure ζ1. For the

random variables X, Y with connecting copula CX,Y , one defines

ζ1(Y | X) := 3D1(CX,Y ,Π) = 3

∫
I

∫
I
|∂1CX,Y (x, y)− ∂1Π(x, y)|dxdy.

The properties of ζ1 are listed in the following single theorem.

Theorem 3.1. For any random variables X, Y , ζ1(Y | X) satisfies all of the

following preoperties:

(i) ζ1(Y | X) is well-defined;

(ii) 0 ≤ ζ1(Y | X) ≤ 1;

(iii) ζ1(Y | X) = 0 if and only if X, Y are independent;

(iv) ζ1(Y | X) = 1 if and only if Y is completely dependent on X;

(v) For any Borel injection f : R → R, ζ1(Y | f(X)) = ζ1(Y | X).

Proof. In [20], the ζ1 is proved to have the first four properties. However, the last

property, (v) is not proved. To prove this, the following lemma is needed.

Lemma 3.2. For any copulas A and B , D1(A ∗B,Π) ≤ D1(B,Π).
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Proof. Let A,B ∈ C, since Π is the null element of C,

D1(A ∗B,Π) = D1(A ∗B,A ∗ Π)

=

∫
I

∫
I

∣∣∣∣ ∂∂xA ∗B(x, y)− ∂

∂x
A ∗ Π(x, y)

∣∣∣∣ dxdy
=

∫
I

∫
I

∣∣∣∣ ∂∂x
∫
I

∂

∂t
A(x, t)

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
dt

∣∣∣∣ dxdy
=

∫
I

∫
I

∣∣∣∣∫
I

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
∂1A(x, dt)

∣∣∣∣ dxdy
≤
∫
I

∫
I

∫
I

∣∣∣∣ ∂∂tB(t, y)− ∂

∂t
Π(t, y)

∣∣∣∣ ∂1A(x, dt)dxdy
=

∫
I

∫
I

d

dx

∫
I

∣∣∣∣ ∂∂tB(t, y)− ∂

∂t
Π(t, y)

∣∣∣∣ ∂2A(x, t)dtdxdy
=

∫
I

∫
I

∣∣∣∣ ∂∂tB(t, y)− ∂

∂t
Π(t, y)

∣∣∣∣ ∂2A(1, t)dtdy
−
∫
I

∫
I

∣∣∣∣ ∂∂tB(t, y)− ∂

∂t
Π(t, y)

∣∣∣∣ ∂2A(0, t)dtdy
=

∫
I

∫
I

∣∣∣∣ ∂∂tB(t, y)− ∂

∂t
Π(t, y)

∣∣∣∣ dtdy
= D1(B,Π).

This chain of inequality, de facto, requires several clarifications. The fourth and

sixth lines are applications of Proposition 2.51. The fifth line comes from the

Jensen’s inequality and recall that absolute value is a convex function. The seventh

line is the consequence of fundamental theorem of calculus. This finishes the

proof.

The above lemma can be used to prove the fifth property of ζ1(· | ·) Asssuming

X,Y are random variables with connecting copula CX,Y and f is a Borel injection.

By above lemma and Lemma 2.60, one has

D1(Cf(X),Y ,Π) = D1(Cf(X),X ∗ CX,Y ,Π) ≤ D1(CX,Y ,Π)

and

D1(CX,Y ,Π) = D1(CX,f(X) ∗ Cf(X),Y ,Π) ≤ D1(Cf(X),Y ,Π).

Thereby, one has
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ζ1(Y | f(X)) = 3D1(Cf(X),Y ,Π) = 3D1(CX,Y ,Π) = ζ1(Y | X).

3.2 Li’s generalization of copula-based dependence mea-

sures

The more general version of Truschnig’s ζ1 and, in fact, Dette et al.’s r, is Li’s τ ,

which is defined by, for random variables X, Y with connecting copula CX,Y ,

τ(Y | X) :=
τ(CX,Y )

τ(M)

where φ : [−1, 1] → [0,∞] such that φ is continuous, convex, φ(x) = 0 if and only

if x = 0, and, for any C ∈ C,

τ(C) :=

∫
I

∫
I
φ(∂1C(x, y)− ∂1Π(x, y))dxdy.

Note that both ζ1 and τ are special cases of this class of dependence mea-

sure. Before going on, the following technical is the main tool for proving various

properties of τ, which is called data-processing inequality (DPI) in [10].

Lemma 3.3. For any copulas A,B ∈ C, τ(A ∗ B) ≤ τ(B). Equality holds if and

only if ∂1B(t, y) − y is almost surely constant function with respect to measure

induced by Lebesgue-Stieltjes measure induced by ∂1A(x, ·) almost all x, y ∈ I.

Proof. Let A,B ∈ C, then one has

τ(A ∗B) =

∫
I

∫
I
φ

(
∂

∂x
A ∗B(x, y)− ∂

∂x
A(x, y)

)
dxdy

=

∫
I

∫
I
φ

(
∂

∂x
A ∗B(x, y)− ∂

∂x
A ∗ Π(x, y)

)
dxdy

=

∫
I

∫
I
φ

(
∂

∂x

∫
I

∂

∂t
A(x, t)

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
dt

)
dxdy

=

∫
I

∫
I
φ

(∫
I

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
∂1A(x, dt)

)
dxdy
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≤
∫
I

∫
I

∫
I
φ

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
∂1A(x, dt)dxdy

=

∫
I

∫
I

d

dx

∫
I
φ

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
∂2A(x, t)dtdxdy

=

∫
I

∫
I
φ

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
∂2A(1, t)dtdy

−
∫
I

∫
I
φ

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
∂2A(0, t)dtdy

=

∫
I

∫
I
φ

(
∂

∂t
B(t, y)− ∂

∂t
Π(t, y)

)
dtdy

= τ(B).

For the main argument for showing this chain of inequalities, it uses the same

arguments as Lemma 3.2 except the fifth line which this proof imposes Jensen’s

inequality in the general setup. Thus, by the equality condition of Jensen’s in-

equality, the strict equality of the fifth line holds if and only if ∂
∂t
B(t, y)− ∂

∂t
Π(t, y)

is almost surely constant on t with respect to measure induced by ∂1A(x, .) for

almost all (x, y) ∈ I2 with respect to λ2.

For the properties of τ , the following theorem summarized all of them.

Theorem 3.4. For any random variables X, Y , τ(Y | X) satisfies all of the

following properties:

(i) τ(Y | X) is well-defined;

(ii) 0 ≤ τ(Y | X) ≤ 1;

(iii) τ(Y | X) = 0 if and only if X, Y are independent;

(iv) τ(Y | X) = 1 if and only if Y is completely dependent on X;

(v) For any Borel injection f : R → R, τ(Y | f(X)) = τ(Y | X).

Proof. (i) It’s obviously due to the assumption that random variables in this

study possess continuous ditribution functions and, thus, corresponding con-

necting copula exists and is unique.
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(ii) To prove for the lower bound, let X, Y be random variables with connecting

copula C, then one has

τ(C) =

∫
I

∫
I
φ(∂1C(x, y)− ∂1Π(x, y))dxdy

=

∫
I2
φ(∂1C(x, y)− y)dλ2(x, y)

≥ φ

(∫
I

∫
I
(∂1C(x, y)− y)dxdy

)
(3.1)

= φ

(∫
I
(C(1, y)C(0, y)− y)dy

)
= φ(0)

= 0

= τ(Π).

The Fubini’s theorem is applied from line one to line three while the third

line uses the Jensen’s inequality to plug the integral into φ, thus τ(C) ≥ 0 as

needed. For an upper bound in (ii), since C ∗M = C, Lemma 3.3 inequality

says that τ(C) = τ(C ∗M) ≤ τ(M).

(iii) Firstly, let τ(C) = 0. From the proof of (ii), the inequality (3.1) becomes

equality if and only if ∂1C(x, y) − y is almost surely constant with respect

to λ2. That is; there exists K ∈ R such that ∂1C(x, y) − y = K almost all

(x, y) ∈ I2 with respect to λ2. Then, by the fundamental theorem of calculus,

K =

∫
I

∫
I
(∂1C(x, y)− y)dxdy

=

∫
I

(∫
I
∂1C(x, y)dx−

∫
I
ydx

)
dy

=

∫
I
(C(1, y)− C(0, y)− y)dy

= 0.

Thus, ∂1C(x, y) = y almost all (x, y) ∈ I2 with respect to λ2. Thus, C = Π

by the fundamental theorem of calculus. The converse is trivial since one

has τ(Π) = 0.
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(iv) Let X, Y be random variables with copula C. First of all, assume that Y

is completely dependent on X, C will be left invertible, thus, CT ∗ C = M.

Lemma 3.3 implies τ(M) = τ(CT ∗ C) ≤ τ(C). Combined with the upper

bound of τ(C), one has τ(C) = τ(M).

To show the other direction of the proof, assume that τ(Y | X) = 1, i.e.

τ(C) = τ(M). Thereby, one has τ(C∗M) = τ(M). By the equality condition

of Lemma 3.3, one has that for almost all (x, y) ∈ I2 with respect to λ2,

∂1M(t, y)−y is almost surely constant on t with respect to measure induced

by ∂1C(x, t), i.e. there is some κy ∈ R such that ∂1M(t, y) − y = κy for

almost all t ∈ I with respect to Lebesgue-Stieltjes measure µ∂1C(x,·) induced

by ∂1C(x, ·).

One claims that for almost all x ∈ I with respect to λ, the support of

Lebesgue-Stieltjes measure µ∂1C(x,·) induced by ∂1C(x, ·) is a singleton. To

prove this claim, denote Mx := supp(µ∂1C(x,·)) for almost all x ∈ I with

respect to λ. Let a := infMx, b := supMx and suppose that a < b. Then

λ((a, b)) > 0. From the assertion before the stating the claim, there is y ∈

(a, b) such that ∂1M(t, y)− y is almost surely constant on t with respect to

µ∂1C(x,·).

Define

Ey,x := {t ∈Mx : ∂1M(t, y)− y = κy} ⊆Mx.

Note that µ∂1C(x,·)(Ey,x) = 1. Then, one has µ∂1C(x,·)(Ey,x∩[a, y)) > 0 because

if µ∂1C(x,·)(Ey,x∩[a, y)) = 0, then µ∂1C(x,·)(Ey,x∩[y, b]) = 1 due to Ey,x ⊆ [a, b],

which implies

1 = µ∂1C(x,·)(Ey,x)

= µ∂1C(x,·)(Ey,x ∩ [a, b])

= µ∂1C(x,·)(Ey,x ∩ ([a, y) ∪ [y, b]))

= µ∂1C(x,·)(Ey,x ∩ [a, y)) + µ∂1C(x,·)(Ey,x ∩ [y, b])

= µ∂1C(x,·)(Ey,x ∩ [y, b]).
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From the fact that Ey,x ⊆Mx, one obtains µ∂1C(x,·)(Mx ∩ [y, b]) = 1 since

1 ≥ µ∂1C(x,·)(Mx ∩ [y, b]) ≥ µ∂1C(x,·)(Ey,x ∩ [y, b]) = 1.

Thus, by the fact that Mx is a subset of [a, b] with has unit µ∂1C(x,·)-measure,

µ∂1C(x,·)(Mx ∩ [a, y)) = 0 since one has

1 = µ∂1C(x,·)(Mx)

= µ∂1C(x,·)(Mx ∩ [a, b])

= µ∂1C(x,·)(Mx ∩ ([a, y) ∪ [y, b]))

= µ∂1C(x,·)(Mx ∩ [a, y)) + µ∂1C(x,·)(Mx ∩ [y, b])

= 1 + µ∂1C(x,·)(Mx ∩ [y, b]).

This means the support of µ∂1C(x,·) does not contain [a, y) which gives us

infMx ≥ y > a, a contradiction. By the same argument, one can proof that

µ∂1C(x,·)(Ey,x∩(y, b]) > 0. From both [a, y)∩Ey,x and (y, b]∩Ey,x have positive

µ∂1C(x,·)-measure, there exist a′ < y < b′ such that {a′, b′} ⊆ Ey,x. This

means, since y is fixed and a′, b′ ∈ Ey,x, ∂1M(a′, y) = ∂1M(b′, y). However,

since ∂1M(t, y) = 1[0,y](x) for x ∈ I and a′ < y < b′, it yields

∂1M(a′, y) = 1[0,y](a
′) = 1 > 0 = 1[0,y](b

′) = ∂1M(b′, y),

a contradiction. Thus, the proof of this claim is completed.

From above claim, for almost all x, define function f to send x to the single

point in supp(µ∂1C(x,·)). one can see that for any integrable function g on I2,

by Proposition 2.52,∫
I2
g(x, y)dµC(x, y) =

∫
I

∫
I
g(x, y)∂1C(x, dy)dx

=

∫
I

∫
{f(x)}

g(x, y)∂1C(x, dy)dx

=

∫
I
g(x, f(x))dx.

That is, integration g with respect to µC coincides with the integration with

respect to λ2 along the set {(x, f(x)) : x ∈ I}. This means copula C has
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support on this set, thus C is copula connecting X ∼ Uniform(I) and f(X),

then we are done.

(v) This property can be proved in the same way to the property (v) of ζ1.

except use Lemma 3.3 rather than Lemma 3.2.

3.3 Concluding Remark

From the above section, one can see that τ , by this concrete condition on φ,

is the class of non-symmetric dependence measures satisfying several properties,

especially it is injective invariant and complete dependence detectable. Note that,

since τ is the generalization of ζ1 and r, all of non-symmetric dependence measures

in this work share the same set of properties.

In an axiomatic way, this small lemma will give which pair of properties we

cannot expect on non-symmetric dependence measure to possess.

Lemma 3.5. There is no non-symmetric dependence measure which can be both

monotonic dependence detectable and injective invariant.

Proof. Suppose that there exists a non-symmetric dependence measure R(· | ·)

such that it is both monotonic dependence detectable and injective invariant and

let X be a uniform random variable on I. Since the identity map ι : I → I is

strictly increasing, then R(X | X) = R(ι(X) | X) = 1. Let fα : I → I be the map

such that

fα(x) =

x+ (1− α) if x ∈ [0, α)

x− α if x ∈ [α, 1].

This map is obviously injection, thus one has

R(X | fα(X)) = R(X | X) = 1.

However, X is not a strictly monotonic function of fα(X) since f−1
α is not mono-

tonic, though even injection, map, this yields a contradiction.
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Thus, from above impossibility lemma and what we prove in this section give

us this summarize table.

MD detect. CD detect.

Monotone inv.

Injective inv. Impossible τ (including ζ1, r)

Table 3.1: Recalling the summary table for non-symmetric dependence measures.

The blank spaces mean there is no dependence measure satisfying that pair of

properties while the word impossible means this pair of properties cannot hold si-

multaneously. The table tell us that trade-off between stronger type of invariance

and stronger type of ability to detect dependence exists. Thus, if one can prove

that some particular non-symmetric measure of dependence has the strong invari-

ance property such as injective one, the expectation to hope that it can detect a

quite strong type of dependence such as monotonic dependence is certainly fail.

Anyway, since there are still blank space which is neither able to find contradic-

tion nor propose concrete dependence measure to fulfill these set of properties, the

room to play with this table is still available. For the other direction, only Dette

et al.’s r has its kernel-based estimator and, furthermore, that estimator has nice

asymptotic properties. The statistical work dedicated to propose the estimators

of the Li’s τ , is not happened. Although, the definition of τ makes introducing its

nice estimators become challenging, it worths our consideration since it will cover

a large class of estimators of non-symmetric dependence measures.



CHAPTER IV

SYMMETRIC DEPENDENCE MEASURES

4.1 Symmetric version of Li’s dependence measures

Before going on, the addition sufficient condition to construct symmetric version

of τ is needed. φ is assumed additionally to be symmetric around zero in the

sense that φ(−x) = φ(x) for all x ∈ [−1, 1]. From this point, now it is the time

to propose our modified version of τ . And random variables are assumed to have

continuous distribution function as well.

Definition 4.1. For random variablesX and Y , define the symmetrized τ , denoted

as τ̃ , by

τ̃(X,Y ) :=
1

2
(τ(Y | X) + τ(X | Y )) (4.1)

And here is the theorem summarizing properties of τ̃ .

Theorem 4.2. For any random variables X and Y , one has

(i) τ̃(X, Y ) is well-defined;

(ii) 0 ≤ τ̃(X,Y ) ≤ 1;

(iii) τ̃(X, Y ) = τ̃(Y,X);

(iv) τ̃(X, Y ) = 0 if and only if X,Y are independent;

(v) τ̃(X, Y ) = 1 if and only if X and Y are mutually complete dependent;

(vi) τ̃(f(X), g(Y )) = τ̃(X,Y ) for any strictly monotonic functions f, g.

Proof. Let X and Y be random variables with (X,Y ) ∼ C for some C ∈ C.

(i) This property is inherited from the definition of τ.
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(ii) Boundedness of τ̃(X, Y ) into I is a direct consequence of boundedness of τ .

(iii) Obvious from the definition.

(iv) Assume that τ̃(X, Y ) = 0. Since τ(Y | X) and τ(X | Y ) are nonnegative,

they must be both zero. So X and Y are independent. The converse is

trivial since independence between X and Y implies τ̃(X, Y ) = 0.

(v) Assume unit value of τ̃(X, Y ) and suppose that X and Y are not mutually

completely dependent. That is; without loss of generality, τ(Y | X) < 1.

Then, since 0 ≤ τ(X | Y ) ≤ 1, one has and

0 ≤ τ(Y | X) + τ(X | Y ) < 2,

thus τ̃(X,Y ) < 1, a contradiction. Thus, maximal value implies the mutual

complete dependence between X and Y . Conversely, assume that X,Y are

mutually completely dependent. Then, Y is completely dependent on X and

vice versa. Thus τ̃(X,Y ) = 1.

(vi) For the last property, the following lemma is needed.

Lemma 4.3. Let φ : [−1, 1] → [0,∞) be continuous, convex, satisfying

φ(−x) = φ(x) for any x ∈ [−1, 1], and φ(x) = 0 if and only if x = 0,

X and Y random variables and f a strictly monotonic function, then

τ(f(Y ) | X) = τ(Y | X).

Proof. Let X and Y be random variables with connecting copula CX,Y ∈ C

and f a strictly monotonic transformation. By Proposition 2.54, if f is a

strictly increasing map, one has CX,f(Y ) = CX,Y , which implies

τ(f(Y ) | X) = τ(Y | X).

For the case of strictly decreasing f , Proposition 2.54 also implies that, for

any x, y ∈ I,

CX,f(Y )(x, y) = x− CX,Y (x, 1− y). (4.2)
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Then, let T : R2 → R2 such that (x, y) 7→ (x, 1−y). This map is continuously

differentiable, injective, and its Jacobian D(x,y)T is invertible. Moreover, the

absolute value of its determinant is one for every point x ∈ R2 and T (I2) = I2.

By Theorem 2.34, the setup that φ(−x) = φ(x) and the equation (4.2), one

has

τ(CX,f(Y )) =

∫
I

∫
I
φ(∂1CX,f(Y )(x, y)− ∂1Π(x, y))dxdy

=

∫
I

∫
I
φ(∂1(x− CX,Y (x, 1− y))− ∂1Π(x, y))dxdy

=

∫
I

∫
I
φ((1− ∂1CX,Y (x, 1− y))− y)dxdy

=

∫
I

∫
I
φ(∂1Π(x, 1− y)− ∂1CX,Y (x, 1− y))dxdy

=

∫
I

∫
I
φ(∂1CX,Y (x, 1− y)− ∂1Π(x, 1− y))dxdy

=

∫
I2
φ((∂1CX,Y − ∂1Π) ◦ T (x, y))dλ2(x, y)

=

∫
I2
φ((∂1CX,Y − ∂1Π)(x, y))dλ2(x, y)

=

∫
I2
φ(∂1CX,Y (x, t)− ∂1Π(x, t))dλ2(x, t)

= τ(CX,Y ).

From the above lemma, we are ready for the proof of invariance property of

τ̃ . Let f, g be strictly monotonic functions. Then one can obtain

τ̃(f(X), g(Y )) =
1

2
(τ(g(Y ) | f(X)) + τ(f(X) | g(Y )))

=
1

2
(τ(g(Y ) | X) + τ(f(X) | Y ))

=
1

2
(τ(Y | X) + τ(X | Y ))

= τ̃(X,Y ).

The second line comes from the injective invariance of τ , note that strictly

monotonic functions are injective, and the third line is the consequence of

the above lemma.
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4.2 Maximal information coefficient (MIC)

To make MIC be compatible with other dependence measure, all of random vari-

ables are also assumed to have continuous distribution function, this assumption

is also useful because the proof for ability to detect complete dependence employs

copula techniques. Properties of MIC, which is defined by expression (2.16), can

be summarized in a single theorem.

Theorem 4.4. For random variables X and Y , MIC satisfies the following:

(i) (Normalization) 0 ≤ MIC(X,Y ) ≤ 1;

(ii) (Symmetry) MIC(X, Y ) = MIC(Y,X);

(iii) (Independence Detectability) MIC(X,Y ) = 0 if and only if X and Y are

independent;

(iv) (Monotonic Invariance) MIC(φ(X), ψ(Y )) = MIC(X, Y ) for any strictly

monotonic transformations φ and ψ;

(v) (Complete Dependence Detectability) MIC(X,Y ) = 1 if either Y is CD on

X or X is CD on Y .

Proof. (i) Non-negativity comes from the fact that the mutual information

is always non-negative. Now, let X, Y be random variables, k, l natu-

ral numbers exceeding 1, G a k-by-l grid with columns {Ci}ki=1 and rows

{Rj}lj=1, and consider H(ColG(X, Y )) and H(RowG(X,Y )). We will show

that H(ColG(X, Y )) is bounded by log k. Let p be the probability mass

function of ColG(X,Y ) and q be the probability mass function of a discrete

uniform random variable on the set {1, 2, . . . , k}. By the setup, q(x) = 1
k

for



50

any x ∈ {1, 2, . . . , k}. Thus, by the non-negativity of divergence, one has

0 ≤ D(p ∥ q)

=
∑
x∈X

p(x) log

(
p(x)

q(x)

)
=
∑
x∈X

p(x) log(kp(x))

=
∑
x∈X

p(x) log k +
∑
x∈X

p(x) log(p(x))

= log k −
∑
x∈X

p(x)(− log(p(x)))

= log k −H(ColG(X,Y )).

This means H(ColG(X,Y )) ≤ log k. By the same fashion, H(RowG(X,Y ))

is also bounded above by log l.

Finally, from above assertion and the expression (2.15) one has

IG(X,Y ) = I(ColG(X, Y ),RowG(X,Y ))

≤ min(H(ColG(X,Y )), H(RowG(X, Y )))

≤ min(log k, log l)

= logmin{k, l}.

This assertion implies that any k-by-l characteristic entry of (X, Y ) is always

bounded above by 1. As a result, MIC(X,Y ) must not exceed 1.

(ii) First of all, let us observe that, for random variables X,Y , MIC(X, Y ) is the

supremum of the set

I(X,Y ) :=

{
IG(X, Y )

logmin{k, l}
| k, l ∈ Nr {1}, G ∈ G(k, l)

}
. (4.3)

Note that IG(X, Y ) = IG̃(Y,X) where G̃ is the transpose partition of G,

i.e. the column partition of G̃ is from the row partition of G and the row

partition of G̃ is from the column partition of G. To see this point, let

k, l ∈ N r {1} and G ∈ G(k, l) with rows and columns {Ci}ki=1, {Rj}nj=1.

Choose G̃ ∈ G(k, l) with columns C̃j := Rj and rows R̃i := Ci for all
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j ∈ {1, . . . , l} and i = {1, . . . , k}. One will have {X ∈ Ci} = {X ∈ R̃i}

and {X ∈ Rj} = {X ∈ C̃j} for any such i, j, thus the summand of both

IG(X, Y ) and IG̃(Y,X) are identical.

Then, it easily follows that I(X,Y ) = I(Y,X). Hence, MIC(X, Y ) =

MIC(Y,X).

(iii) Firstly, suppose that X, Y are independent random variables, also denoted

by X ⊥ Y . Let k, l ∈ N and G ∈ G(k, l) with columns {Ci}ki=1 and rows

{Rj}lj=1. Since {Ci}ki=1 and {Rj}lj=1 are partitions of I, all of elements are

B(I)-measurable. One yields

P (ColG(X, Y ) = i,RowG(X, Y ) = j) = P (X ∈ Ci, Y ∈ Rj)

= P (X ∈ Ci)P (Y ∈ Rj)

= P (ColG(X,Y ) = i)

× P (RowG(X,Y ) = j)

for (i, j) ∈ {1, . . . , k} × {1, . . . , l}. This implies

log

(
P (ColG(X,Y ) = i,RowG(X, Y ) = j)

P (ColG(X, Y ) = i)P (RowG(X, Y ) = j)

)
= log 1 = 0

for all i = 1, . . . , k and j = 1, . . . , k. Thus, one gets

IG(X, Y ) = I(ColG(X, Y ),RowG(X, Y ))

=
k∑

i=1

l∑
j=1

log

(
P (ColG(X, Y ) = i,RowG(X,Y ) = j)

P (ColG(X, Y ) = i)P (RowG(X, Y ) = j)

)
× P (ColG(X, Y ) = i,RowG(X,Y ) = j)

= 0.

One can prove the converse assertion by contrapositive. The following lemma

in supplementary material of [14] which is handy for this purpose.

Lemma 4.5 ([14]). For any a ∈ I, define χa to be function on I such that

χa(x) = 0 if x ∈ [0, a) and χa(x) = 1 otherwise. Then, for any random

variables X,Y on I, if I(χa(X), χb(Y )) = 0 for all a, b ∈ I, then X and Y

are independent.
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Thus, to prove the contraposition, suppose that X,Y be random variables

which are not independent. Then, by above lemma, there is a, b ∈ I such

that I(χa(X), χb(Y )) = δ for some δ > 0. Thus, consider a 2-by-2 grid such

that it partitions I on the x-axis into 2 pieces by a and, also, partitions I on

the y-axis into 2 pieces by b. This implies that

IG(X,Y ) =
2∑

i=1

2∑
j=1

log

(
P (ColG(X,Y ) = i,RowG(X, Y ) = j)

P (ColG(X, Y ) = i)P (RowG(X, Y ) = j)

)
× P (ColG(X,Y ) = i,RowG(X, Y ) = j)

=
2∑

i=1

2∑
j=1

log

(
P (X ∈ Ci, Y ∈ Rj)

P (X ∈ Ci)P (Y ∈ Rj)

)
P (X ∈ Ci, Y ∈ Rj)

=
1∑

m=0

1∑
n=0

log

(
P (χa(X) = m,χb(Y ) = n)

P (χa(X) = m)P (χb(Y ) = n)

)
× P (χa(X) = m,χb(Y ) = n)

= I(χa(X), χb(Y ))

= δ > 0.

The third equality comes from the fact that {X ∈ C1} = {X ∈ [0, a)} =

{χa(X) = 0} and {X ∈ C2} = {X ∈ [a, 1]} = {χa(X) = 1}. Similarly, one

also obtains {Y ∈ R1} = {χb(Y ) = 0} and {Y ∈ R2} = {χb(Y ) = 1}. Since

the MIC(X,Y ) is the supremum of IG(X,Y ) over all natural numbers k, l

exceeding 1 and G ∈ G(k, l), MIC(X, Y ) is bounded away from zero.

(iv) By the symmetry, it suffices to show that MIC(φ(X), Y ) = MIC(X, Y ) for

any strictly monotonic mapping φ since if we have two strictly monotonic

transformations φ, ψ, then

MIC(φ(X), ψ(Y )) = MIC(X,ψ(Y )) = MIC(ψ(Y ), X) = MIC(Y,X)

= MIC(X, Y ).

Moreover, considering the case of strictly increasing transformations is enough

since the other case can be proved similarly. The desired result follows if we

can show that I(X,Y ) = I(φ(X), Y ). For each G ∈ G(k, l) with columns
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{Ci}ki=1 and rows {Rj}lj=1, choose G̃ consisting of columns {φ(Ci)}ki=1 and

rows {Rj}lj=1. Since φ is strictly increasing, one has

{X ∈ Ci} = {φ(X) ∈ φ(Ci)} = {φ(X) ∈ C̃i},

so this yields IG(X,Y ) = IG̃(φ(X), Y ) ∈ I(φ(X), Y ).

The other inclusion can be proved similarly using the quasi-inverse of φ, i.e.

the function φ[−1] : R → R defined by

φ[−1](x) := inf{y ∈ R : φ(y) ≥ x}.

Note that quasi-inverse of strictly increasing function is well-defined and

satisfies φ[−1](φ(x)) = x for x ∈ R. Moreover, for any x, t ∈ R, φ(x) ≥ t

if and only if x ≥ φ[−1]. To see this inclusion, consider G ∈ G(k, l) with

columns {Ci}ki=1 and rows {Rj}lj=1. Choose G̃ with columns {φ[−1](Ci)}ki=1

and the same rows. One can see that, by the properties of quasi-inverse,

{φ(X) ∈ Ci} = {X ∈ φ[−1](Ci)} = {X ∈ C̃i}.

Thus, one also has IG(φ(X), Y ) = IG̃(X, Y ) and I(X,Y ) = I(φ(X), Y ),

which implies the equality of MIC(X,Y ) and MIC(φ(X), Y ).

(v) For the last result on complete dependence detectability, it requires more

demanding analytic tools. Thus, it will be restated and proved in Propo-

sition 4.25. Anyway, this is possible by approximating Borel measurable

functions by nice functions which yields the unit MIC along with showing

the continuity of MIC. These two main components will finish the proof of

this elegant property.

From now on, all random variables are assumed to be uniformly distributed

on I as every random variables with continuous distribution functions can be

transformed into a uniform [0, 1] random variable via a strictly increasing function.

The following type of Borel measurable function defined below is useful later.
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Definition 4.6. A Borel measurable function φ : I → I is said to be measure-

preserving if for any B ∈ B(I), λ(φ−1(B)) = λ(B).

In the following lemma, let us state a well-known fact which says that only

measure-preserving functions can transform a uniform [0, 1] random variable into

another uniform [0, 1] random variable.

Lemma 4.7. Let X,Y ∼ Uniform(I) and φ : I → I be a Borel measurable function

such that Y = φ(X) a.s., then φ must be measure-preserving. Moreover, if X

is a uniform random variable on I and φ : I → I is measure-preserving, then

Y := φ(X) ∼ Uniform(I).

Proof. Let X,Y ∼ Uniform(I) and φ : I → I be a Borel measurable function, then,

for any B ∈ B(I),

λ(φ−1(B)) = P (X ∈ φ−1(B)) = P (φ(X) ∈ B) = P (Y ∈ B) = λ(B).

This uses the property that X,Y ∼ Uniform(I), which yields P (X ∈ A) =

λ(A) and P (Y ∈ B) = λ(B) for any A,B ∈ B(I). On the other side, given

X ∼ Uniform(I) and φ : I → I. Define Y := φ(X). Then, for any y ∈ I,

P (Y ≤ y) = P (φ(X) ≤ y) = P (X ∈ φ−1([0, y])) = λ(φ−1([0, y])) = λ([0, y]) = y.

The third equality comes from the same reason as the first assertion of this lemma

and the next one is claimed by measure-preserving property. Since y ∈ I is arbi-

trary, one can say that Y ∼ Uniform(I).

Measure preserving maps from I to itself can be approximated by a sequence

of some nicer measure-preserving maps. This result is due to [1].

Theorem 4.8 ([1]). Let φ : I → I be a measure-preserving map. Then, there exists

a sequence of functions {fn}n∈N from I to itself such that all of them are one-to-one

piecewise linear measure-preserving functions and fn → φ almost everywhere1.
1Throughout this thesis, any one-to-one piecewise linear measure preserving map has finite

discontinuity points.
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The rationale behind using this type of approximation is that one-to-one piece-

wise linear measure-preserving functions have a useful characterization.

Proposition 4.9. Let φ : I → I be a Borel measurable function. Then φ is 1-1

piecewise linear measure-preserving if and only if there exists a partition {xi}ki=0

of I satisfying the following conditions:

(i) 0 := x0 < x1 < · · · < xk = 1;

(ii) for any i ∈ {1, . . . , k}, φ is linear on [xi−1, xi] with slope 1 or −1 and the

collection {φ([xi−1, xi])}ki=1 is also a partition of I.

Proof. Let φ be a 1-1 piecewise linear measure-preserving. Then, one has k ∈ N

and {xi}ki=0 such that {xi}ki=0 forms a partition of I and fulfills the condition

(i), And for each i ∈ {1, . . . , k}, there exists {mi}ki=1, {ci}ki=1 ⊆ R such that

φ(x) = mix+ ci for x ∈ [xi−1, xi]. Suppose that there is i0 ∈ {1, . . . , k} such that

mi0 /∈ {−1, 1}. Choose a, b ∈ I such that xi0−1 < a < b < xi0 and consider the

set B̃ := φ([a, b]). By the setup, φ is linear function on [a, b] of slope mi0 and

intercept term mi0 . Thus, one has λ(B̃) = λ(φ([a, b])) = |mi0 |(b − a). Since B̃ is

an subinterval of I, B̃ ∈ B(I). Note that, due to the fact that linear function is

injective, φ−1(B̃) = φ−1(φ([a, b])) = [a, b]. Once we suppose that mi0 /∈ {−1, 1},

λ(φ−1(B̃)) = b − a ̸= |mi0 |(b − a) = λ(B̃), a contradiction to φ is measure-

preserving. Thus, each piece of the graph of φ restricted each slice of partition must

have slope of unit magnitude. Moreover, {φ([xi−1, xi])}ki=1 is obvious a partition

of I because {xi}ki=0 is partition and φ is one-to-one and measure-preserving. The

last properties comes from the fact that for each i = 1, . . . , k, λ(φ([xi−1, xi])) =

|mi|(xi − xi−1) = (xi − xi−1) this use the slope properties recently proved. The

converse is obvious.

Corollary 4.10. Let φ : I → I be a Borel measurable function. Then φ is 1-1

piecewise linear measure-preserving if and only if there exists k ∈ N, partitions

{si}ki=0, {ti}ki=0 of I, a permutation σ of {1, . . . , k}, and {mi}ki=1 such that

(i) 0 := s0 < s1 < · · · < sk = 1 and 0 := t0 < t1 < · · · < tk = 1;
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(ii) φ maps [si−1, si] onto [tσ(i)−1, tσ(i)] linearly with slope mi ∈ {−1, 1}.

Remark 4.11. (i) In the characterization from Corollary 4.10, we call the 5-

tuple (k, {si}ki=0, {ti}ki=0, σ, {mi}ki=1) a shuffle representation of φ and we may

also write φ ∼ (k, {si}ki=0, {ti}ki=0, σ, {mi}ki=1).

(ii) If a shuffle representation has mi = 1 for all i ∈ {1, . . . , k}, it is called a

straight shuffle. In this case, one may drop out {mi} from the representation.

(iii) In fact, knowing {si} and σ will lead us to {ti}. Sometimes, {ti} may be

omitted and closed form of φ given the shuffle representation can be derived

analytically.

This representation of 1-1 piecewise linear measure-preserving map comes from

geometric aspect. Visualize the graph of identity function on I and partition the

x-axis into a finite number of intervals which cuts I2 into vertical stripes. Then

rearrange the stripes according to the underlying permutation map allowing a flip

about the vertical axis of symmetry.

A special case of one-to-one piecewise linear measure-preserving transformation

can give the unit MIC.

Proposition 4.12. Let X ∼ Uniform(I) and φ : I → I a one-to-one piecewise lin-

ear measure-preserving transformation whose all discontinuity points are rational

numbers in I. Then MIC(X,φ(X)) = 1.

Proof. Let X ∼ Uniform(I) and φ : I → I a one-to-one piecewise linear measure-

preserving transformation whose all discontinuity points are rational numbers in I.

By Remark (4.11), φ has the shuffle representation (k, {si}ki=0, {ti}ki=0, σ, {mi}ki=1).

Then, there are sequences {ni}k−1
i=1 and {di}k−1

i=1 of natural numbers such that si =

ni/di for all i = 1, . . . , k−1. Then, choose d∗ :=
∏k−1

i=1 di. This implies that, for all

i ∈ {1, . . . , k−1}, xi = ni

∏
j ̸=i dj/d

∗. Accordingly, for any i = 1, . . . , k−1, ∆xi =

(ni

∏
j ̸=i dj − ni−1

∏
j ̸=i−1 dj)/d

∗. One can notice that ni

∏
j ̸=i dj − ni−1

∏
j ̸=i−1 dj

is a natural number. Thus, each of [si−1, si] can be partitioned again as finite

collection of subintervals whose lengths are 1/d∗.
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Then, choose the equipartition grid G ∈ G(d∗, d∗) of size 1/d∗ × 1/d∗. Note

that this partition divides each square [si−1, si]× [tσ(i)−1, tσ(i)] into a collection of

small squares of size 1/d∗×1/d∗ and, since φ is one-to-one, each piece in [si−1, si] is

mapped into a piece in [φ(si−1), φ(si)] = [tσ(i)−1, tσ(i)] determined by σ only. That

is; for any i ∈ {1, . . . , k} and j ̸= σ(i), the rectangle Ci × Rj does not contain

the graph of (X,φ(X)). Moreover, the linear graph in every grid is one of the two

diagonal lines. Thereby,

I(X,φ(X))G =
d∗∑
i=1

d∗∑
j=1

log

(
P (ColG(X,φ(X)) = i,RowG(X,φ(X)) = j)

P (ColG(X,φ(X)) = i)P (RowG(X,φ(X)) = j)

)
× P (ColG(X,φ(X)) = i,RowG(X,φ(X)) = j)

=
d∗∑
i=1

d∗∑
j=1

log

(
P (X ∈ Ci, φ(X) ∈ Rj)

P (X ∈ Ci)P (φ(X) ∈ Rj)

)
P (X ∈ Ci, φ(X) ∈ Rj)

=
d∗∑
i=1

log

(
P (X ∈ Ci, φ(X) ∈ Rσ(i))

P (X ∈ Ci)P (φ(X) ∈ Rσ(i))

)
P (X ∈ Ci, φ(X) ∈ Rσ(i))

=
d∗∑
i=1

log((d∗)2P (X ∈ Ci))P (X ∈ Ci)

= log d∗.

The second equality from the last comes from law of total probability, the fact

that probability of X lies in Ci and φ(X) takes value outside of Rσ(i) is zero, and

X ∼ Uniform(I).

Then, the normalized score is I(X,φ(X))G/ log d
∗ = 1. Since MIC is supremum

of normalized score over all k, l > 1 and G ∈ G(k, l), MIC(X,φ(X)) must be

one.

In one of the nicest classes of measurable functions, MIC can detect relation of

this type with unit value. This result along with the continuity theorem of MIC

will be used to prove the detectability of larger classes of dependence later.

Another reason which makes assuming uniform random variables to be uniform

on I is that their joint distribution will be copula. Its measure theoretic properties

of the measure induced by a copula play an important role as a tool for bounding
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probability of uniform random variables on I taking value on some rectangle with

some small uniform bound.

Since the technique used in the proofs is approximation, we introduce some

distance between random vectors.

Definition 4.13. For random vectors X⃗, Y⃗ ∈ P(I2), define:

(i) dTV (X⃗, Y⃗ ) := supB∈B(I2)

(
P (X⃗ ∈ B)− P (Y⃗ ∈ B)

)
, and

(ii) dRTV (X⃗, Y⃗ ) := supR∈R(I2)

(
P (X⃗ ∈ R)− P (Y⃗ ∈ R)

)
,

where R(I2) denotes the class of Borel measurable rectangles. dTV , dRTV are called

the total variation and rectangular total variation distances, respectively.

Note that although both of them are quite similar in the constructions, the

main difference is that the total variation is the supremum of probabilistic distance

over the set of all measurable sets on I2 while the latter are the supremum of

the same distance, but over all measurable rectangles in I2. The total variation

distance is not the new metric in literature but rectangular version is newly defined

here since to prove any properties with copulas, dealing with measurable rectangles

is more convenient. Moreover, in the case of discrete random vectors with common

support, dTV and dRTV are the same.

The following lemma shows the property of dRTV which is used to prove con-

tinuity of MIC.

Lemma 4.14. Let X⃗, Y⃗ be two-dimensional random vectors on I2, then

dRTV ((X⃗)G, (Y⃗ )G) ≤ dRTV (X⃗, Y⃗ )

for any grid G ∈ G(k, l) and k, l ∈ Nr {1}.

Proof. Let X⃗, Y⃗ be two-dimensional random vectors on I2 and G ∈ G(k, l) for



59

natural numbers k, l exceeding 1. Thus, one has

dRTV ((X⃗)G, (Y⃗ )G)

= sup
B1,B2∈B(R)

(
P ((X⃗)G ∈ B1 ×B2)− P ((Y⃗ )G ∈ B1 ×B2)

)
= sup

B1,B2∈B(R)

(
P (X1 ∈

∪
i∈B1

Ci, X2 ∈
∪
j∈B2

Rj)− P (Y1 ∈
∪
i∈B1

Ci, Y2 ∈
∪
j∈B2

Rj)

)

≤ sup
B∈R(I2)

(
P (X⃗ ∈ B)− P (Y⃗ ∈ B)

)
= dRTV (X⃗, Y⃗ ).

The inequality comes from the fact that the supremum is taken on a larger set.

Before going to prove the continuity result of MIC, there are two technical

tools which are useful. The first tool is already proposed in [15].

Proposition 4.15 ([15]). Let (X, Y ) and (X̃, Ỹ ) be discrete random vectors with

common support {1, . . . , k}× {1, . . . , l}. If 0 ≤ δ ≤ 1
4
, then |I(X,Y )− I(X̃, Ỹ )| is

O
(
δ log

(
1
δ
+ δ logmin{k, l}

))
whenever dTV ((X, Y ), (X̃, Ỹ )) ≤ δ.

The second tool is the bound of difference of MIC of two random vectors.

Lemma 4.16. For any random pairs (X, Y ) and (X̃, Ỹ ),

|MIC(X,Y )−MIC(X̃, Ỹ )| ≤ sup
k,l∈Nr{1}

sup
G∈G(k,l)

∣∣∣∣∣ IG(X, Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

∣∣∣∣∣ .
Proof. Let (X,Y ) and (X̃, Ỹ ) be two pairs of random variables, then

IG(X,Y )

logmin{k, l}
=

(
IG(X, Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

)
+

IG(X̃, Ỹ )

logmin{k, l}
.

By sub-additivity of supremum, one has

sup
k,l∈Nr{1}

sup
G∈G(k,l)

IG(X, Y )

logmin{k, l}
≤ sup

k,l∈Nr{1}
sup

G∈G(k,l)

(
IG(X,Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

)

+ sup
k,l∈Nr{1}

sup
G∈G(k,l)

IG(X̃, Ỹ )

logmin{k, l}

≤ sup
k,l∈Nr{1}

sup
G∈G(k,l)

∣∣∣∣∣ IG(X,Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

∣∣∣∣∣
+ sup

k,l∈Nr{1}
sup

G∈G(k,l)

IG(X̃, Ỹ )

logmin{k, l}
.
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This implies

MIC(X, Y )−MIC(X̃, Ỹ ) ≤ sup
k,l∈Nr{1}

sup
G∈G(k,l)

∣∣∣∣∣ IG(X,Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

∣∣∣∣∣ .
Similarly, one obtains

MIC(X̃, Ỹ )−MIC(X,Y ) ≤ sup
k,l∈Nr{1}

sup
G∈G(k,l)

∣∣∣∣∣ IG(X̃, Ỹ )

logmin{k, l}
− IG(X,Y )

logmin{k, l}

∣∣∣∣∣
= sup

k,l∈Nr{1}
sup

G∈G(k,l)

∣∣∣∣∣ IG(X, Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

∣∣∣∣∣ .
So, one obtains

MIC(X, Y )−MIC(X̃, Ỹ ) ≥ − sup
k,l∈Nr{1}

sup
G∈G(k,l)

∣∣∣∣∣ IG(X, Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

∣∣∣∣∣ ,
then we are done.

Now we are ready to prove an other version of the continuity theorem of MIC

in the original version of [15].

Proposition 4.17. On P(I) equipped with topology induced by dRTV , the map

(X, Y ) 7→ MIC(X,Y ) is uniformly continuous.

Proof. Firstly, one will show that the collection of mappings

F = {(X,Y ) 7→ (X, Y )G : k, l ∈ Nr {1}, G ∈ G(k, l)}

is uniformly equicontinuous with respect to dRTV . Let ϵ > 0 and (X̃, Ỹ ) be another

random vector. Then, by Lemma 4.14, one yields that dRTV ((X, Y )G, (X̃, Ỹ )G)

does not exceed dRTV ((X,Y ), (X̃, Ỹ )). If choosing δ := ϵ and and assume that

dRTV ((X, Y ), (X̃, Ỹ )) ≤ δ, one has

dRTV ((X, Y )G, (X̃, Ỹ )G) ≤ dRTV ((X,Y ), (X̃, Ỹ )) ≤ ϵ.

Since dRTV and dTV coincide, one can see that the class of mappings F is also

uniformly equicontinuous when the domain is equipped with dRTV and range is

equipped with dTV .
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Then, from uniform equicontinuity of F and Proposition 4.15, one has that

F ′ := {(X,Y ) 7→ IG(X, Y )

logmin{k, l}
: k, l ∈ Nr {1}, G ∈ G(k, l)}

is also uniformly equicontinuous when the domain is equipped by dRTV .

Now we are ready to prove Proposition 4.17. Let (X, Y ) be a pair of random

variables and ϵ > 0. Then, by uniformly equicontinuity of F ′, there exists δ > 0

such that for any pair of random variables (X̃, Ỹ ) with dRTV ((X,Y ), (X̃, Ỹ )) < δ

and for any k, l ∈ Nr {1} and G ∈ G(k, l), one has∣∣∣∣∣ IG(X, Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

∣∣∣∣∣ < ϵ. (4.4)

Since k, l ∈ N r {1} and G ∈ G(k, l) are arbitrary, then one can conclude

from inequality (4.4) and Lemma 4.16 that for any random pair (X̃, Ỹ ) with

dRTV ((X, Y ), (X̃, Ỹ )) < δ,

|MIC(X,Y )−MIC(X̃, Ỹ )| ≤ sup
k,l∈Nr{1}

sup
G∈G(k,l)

∣∣∣∣∣ IG(X, Y )

logmin{k, l}
− IG(X̃, Ỹ )

logmin{k, l}

∣∣∣∣∣ < ϵ.

This finishes the proof.

To use the above continuity theorem, a mode of convergence of sequences of

functions is needed.

Definition 4.18. Let {fn}n∈N be a sequence of measurable functions from measure

space (Ω,F , µ) to R2 and f : (Ω,F , µ) → R2 be another measurable function.

Then, one says that fn → f almost uniformly if for any ϵ > 0, there is Nϵ ∈ F

such that µ(Nϵ) < ϵ and fn → f uniformly on ΩrNϵ. This definition also works

for the case of real-valued functions.

In our context, almost uniform convergence has prominent role since it implies

the convergence of random vectors with respect to dRTV .

Theorem 4.19. Let {X⃗n}n∈N be a sequence of two-dimensional random vectors

whose components are uniform random variables on I and X⃗ is another random

vector with Uniform(I) components such that X⃗n → X⃗ almost uniformly. Then,

X⃗n → X⃗ in dRTV distance.
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Proof. Assume that X⃗n → X⃗ almost uniformly and let ϵ > 0. Then, there exists

Nϵ ∈ F such that such that µ(Nϵ) < ϵ and X⃗n → X⃗ uniformly on Ω r Nϵ.

This means there is N ∈ N such that ∥X⃗n(ω) − X⃗(ω)∥ < ϵ for any n ≥ N and

ω ∈ ΩrNϵ. Let B := [a, b]× [c, d] ⊆ I2. Define, for any k > 0 and x⃗ ∈ I2, B(x⃗; k)

an open ball centered at x⃗ with radius k and Bk =
∪

x⃗∈B B(x⃗; k). One would claim

two things.

Firstly, one claims {X⃗ ∈ B} r Nϵ ⊆ {X⃗n ∈ Bϵ} r Nϵ for n ≥ N . Let

ω ∈ {X⃗ ∈ B} r Nϵ, i.e. X⃗(ω) ∈ B and ω ∈ Ω r Nϵ. Since ω ∈ Ω r Nϵ, one

has ∥X⃗n(ω) − X⃗(ω)∥ < ϵ, thus X⃗n(ω) ∈ Bϵ since X⃗(ω) ∈ B. Moreover, because

ω ∈ ΩrNϵ, one has ω ∈ {X⃗n ∈ Bϵ}rNϵ.

The second claim proved here is {X⃗n ∈ Bϵ} r Nϵ ⊆ {X⃗ ∈ B2ϵ} for n ≥ N .

Let ω ∈ {X⃗n ∈ Bϵ} r Nϵ. This implies X⃗n(ω) ∈ Bϵ and ω ∈ Ω r Nϵ. Thus,

there is x⃗0 ∈ B such that ∥X⃗n(ω) − x⃗0∥ < ϵ. Furthermore, since ω ∈ Ω r Nϵ,

one has ∥X⃗n(ω)− X⃗(ω)∥ < ϵ. By triangle inequality, ∥X⃗(ω)− x⃗∥ < 2ϵ. This fact

combined with x⃗0 ∈ B proves this claim.

Now, we choose Ñ := N . Then, for all n ≥ Ñ ,

|P (X⃗n ∈ B)− P (X⃗ ∈ B)|

≤ |P (X⃗n ∈ B)− P (X⃗n ∈ Bϵ)|+ |P (X⃗n ∈ Bϵ)− P (X⃗ ∈ B)|

≤ P (X⃗n ∈ Bϵ rB) +
∣∣∣P ({X⃗n ∈ Bϵ}rNϵ)− P ({X⃗ ∈ B}rNϵ)

∣∣∣
+ P ({X⃗n ∈ Bϵ} ∩Nϵ) + P ({X⃗ ∈ B} ∩Nϵ)

≤ P (X⃗n ∈ Bϵ rB) + P (({X⃗n ∈ Bϵ}rNϵ)r ({X⃗ ∈ B}rNϵ))

+ P ({X⃗n ∈ Bϵ} ∩Nϵ) + P ({X⃗ ∈ B} ∩Nϵ)

< P (X⃗n ∈ Bϵ rB) + P ({X⃗ ∈ B2ϵ}r ({X⃗ ∈ B}rNϵ)) + 2ϵ

= P (X⃗n ∈ Bϵ rB) + P ({X⃗ ∈ B2ϵ} ∩ ({X⃗ ∈ B}rNϵ)
c) + 2ϵ

= P (X⃗n ∈ Bϵ rB) + P ({X⃗ ∈ B2ϵ} ∩ ({X⃗ ∈ B} ∩N c
ϵ )

c) + 2ϵ

= P (X⃗n ∈ Bϵ rB) + P ({X⃗ ∈ B2ϵ} ∩ ({X⃗ ∈ B}c ∪Nϵ)) + 2ϵ

≤ P (X⃗n ∈ Bϵ rB) + P (X⃗ ∈ B2ϵ rB) + P ({X⃗ ∈ Bϵ} ∩Nϵ)) + 2ϵ

< P (X⃗n ∈ Bϵ rB) + P (X⃗ ∈ B2ϵ rB) + 3ϵ.
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Then, consider the term P (X⃗n ∈ Bϵ r B). Since the components of X⃗n are

Uniform(I), one has that its joint probability measure of X⃗n will be induced mea-

sure from copula, says µCn for some Cn ∈ C. Then, one has

P (X⃗n ∈ Bϵ rB)

= µCn(Bϵ rB)

≤ µCn(([a− ϵ, b+ ϵ]× [c− ϵ, d+ ϵ])r ([a, b]× [c, d]))

≤ µCn(([a− ϵ, a]× I) ∪ ([b, b+ ϵ]× I) ∪ (I× [c− ϵ, c]) ∪ (I× [d, d+ ϵ]))

≤ µCn([a− ϵ, a]× I) + µCn([b, b+ ϵ]× I)

+ µCn((I× [c− ϵ, c]) + µCn(I× [d, d+ ϵ])

= 4ϵ.

The last line comes from the fact that copula measure is doubly stochastic. By

the same fashion, one has P (X⃗ ∈ B2ϵ rB) ≤ 8ϵ. Thereby,

|P (X⃗n ∈ B)− P (X⃗ ∈ B)| < 15ϵ.

Since the choice of B is arbitrary in B(I2), we are done.

And, given one-to-one piecewise linear measure-preserving transformation, one

finds another one-to-one piecewise linear measure-preserving function whose all

discontinuity points are rational numbers and both mappings are close enough on

the set of almost full measure.

Proposition 4.20. Let φ : I → I be a one-to-one piecewise linear measure-

preserving transformation. Then, for ϵ > 0, there is φ̃ : I → I a one-to-one

piecewise linear measure-preserving function whose all discontinuity points are

rational numbers and a set Mϵ ∈ B(I) such that λ(Mϵ) < ϵ and

sup
x∈IrMϵ

|φ(x)− φ̃(x)| < ϵ.

Proof. Let φ : I → I be a one-to-one piecewise linear measure-preserving transfor-

mation. By Corollary 4.10, one can consider its corresponding shuffle representa-

tion (k, {si}ki=0, {ti}ki=0, σ, {mi}ki=1). Without loss of generality, one can consider
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the case of only straight shuffle representation since dealing with flipped piece is

also the same2. Then, by definition of shuffle representation, one has, for any

i ∈ {1, . . . , k}, tσ(i) − tσ(i)−1 = si − si−1. This implies the following recurrence

relation:

ti − ti−1 = sσ−1(i) − sσ−1(i)−1 for all i ∈ {1, . . . , k}. (4.5)

From Equation (4.5), one has t0 = 0 (by setup) and, for i = 1, . . . , k

ti =
i∑

l=2

(tl − tl−1) + t1 =
i∑

l=1

(tl − tl−1) =
i∑

l=1

(sσ−1(l) − sσ−1(l)−1).

By definition of straight shuffle, for each i ∈ {1, . . . , k}, the graph of φ on [si−1, si]

will be the line segment from (si−1, tσ(i)−1) to (si, tσ(i)) with unit slope. Thus, one

has, for all i ∈ {1, . . . , k} and x ∈ [si−1, si],

φ(x) = x+ tσ(i) − si = x+

σ(i)∑
l=1

(sσ−1(l) − sσ−1(l)−1)− si. (4.6)

Then, let 0 < ϵ < min
1≤j≤k

∆sj. By density of Q ∩ I in I, there are q1, . . . , qk−1 ∈

Q ∩ I such that, for any i ∈ {1, . . . , k − 1},

λ([si−1, si])−
ϵ

2k2
< qi < λ([si−1, si]) (4.7)

and define qk := 1−
∑k−1

j=1 qj.

One can claim that |(si−si−1)−qi| ≤ ϵ/2k for any i ∈ {1, . . . , k}. For the case

of i ∈ {1, . . . , k−1}, expression (4.7) yields −ϵ/2k2 < 0 < (si−si−1)− qi < ϵ/2k2.

This implies

|(si − si−1)− qi| <
ϵ

2k2
, (4.8)

2In case of flipped part, one can get, by the same fashion that φ(x) = x + tσ(i) − si−1 on

that piece if φ ∼ (k, {si}, {ti}, σ,m). This implies, in case of φ̃ ∼ (k, {s̃i}, {t̃i}, σ,m), that for

x ∈ (I rMϵ) ∩ [si−1, si],

|φ(x)− φ̃(x)| = |(tσ(i) − t̃σ(i))− (si−1 − s̃i−1)|.

Thus, the proof in this case can be treated in the same way to the straight shuffle.
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so |(si − si−1)− qi| < ϵ/2k. For i = k, one has the following:

|(sk − sk−1)− qk| =

∣∣∣∣∣1−
k−1∑
j=1

(sj − sj−1)−

(
1−

k−1∑
j=1

qj

)∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
j=1

((sj − sj−1)− qj)

∣∣∣∣∣
≤

k−1∑
j=1

|(sj − sj−1)− qj|

<
ϵ(k − 1)

2k2

<
ϵ

2k
.

The second line from the bottom is the consequence of inequality (4.8). Then,

define {s̃i}ki=0 by s̃0 := 0, s̃k := 1 and, for i = 1, . . . , k − 1, s̃i :=
∑i

j=1 qj and

φ̃ : I → I a one-to-one piecewise linear measure preserving function such that φ̃

has shuffle representation (k, {s̃i}ki=0, σ). The closed form of φ̃ is, by the same

fashion, for x ∈ [s̃i−1, s̃i],

φ̃(x) = x+ t̃σ(i) − s̃i = x+

σ(i)∑
l=1

(s̃σ−1(l) − s̃σ−1(l)−1)− s̃i. (4.9)

Choose Mϵ :=
∪k

i=0B(si, ϵ/2k) ∩ I. Obviously, Mϵ ∈ B(I) and λ(Mϵ) < ϵ.

And, to finish the proof, one can show that |φ(x) − φ̃(x)| < ϵ for any x ∈

(I rMϵ) ∩ [si−1, si] and i = 1, . . . , k.

Let x ∈ (I rMϵ) ∩ [si−1, si]. By (4.6) and (4.9), one has

|φ(x)− φ̃(x)| = |(x+ tσ(i) − si)− (x+ t̃σ(i) − s̃i)|

= |(tσ(i) − t̃σ(i))− (si − s̃i)|

≤ |si − s̃i|+ |tσ(i) − t̃σ(i)|

=

∣∣∣∣∣si −
i∑

l=1

ql

∣∣∣∣∣+
∣∣∣∣∣∣
σ(i)∑
l=1

(sσ−1(l) − sσ−1(l)−1) +

σ(i)∑
l=1

(s̃σ−1(l) − s̃σ−1(l)−1)

∣∣∣∣∣∣
=

∣∣∣∣∣
i∑

l=1

((sl − sl−1)− ql)

∣∣∣∣∣
+

∣∣∣∣∣∣
σ(i)∑
l=1

(
(sσ−1(l) − sσ−1(l)−1)− (s̃σ−1(l) − s̃σ−1(l)−1)

)∣∣∣∣∣∣
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=

∣∣∣∣∣
i∑

l=1

((sl − sl−1)− ql)

∣∣∣∣∣
+

∣∣∣∣∣∣
σ(i)∑
l=1

(
(sσ−1(l) − s̃σ−1(l))− (sσ−1(l)−1 − s̃σ−1(l)−1)

)∣∣∣∣∣∣
=

∣∣∣∣∣
i∑

l=1

((sl − sl−1)− ql)

∣∣∣∣∣
+

∣∣∣∣∣∣
σ(i)∑
l=1

sσ−1(l) −
σ−1(l)∑
m=1

qm

−

sσ−1(l)−1 −
σ−1(l)−1∑

n=1

qn

∣∣∣∣∣∣
=

∣∣∣∣∣
i∑

l=1

((sl − sl−1)− ql)

∣∣∣∣∣
+

∣∣∣∣∣∣
σ(i)∑
l=1

σ−1(l)∑
m=1

((sm − sm−1)− qm)−
σ−1(l)−1∑

n=1

((sn − sn−1)− qn)

∣∣∣∣∣∣
=

∣∣∣∣∣
i∑

l=1

((sl − sl−1)− ql)

∣∣∣∣∣+
∣∣∣∣∣∣
σ(i)∑
l=1

((sσ−1(l) − sσ−1(l)−1)− qσ−1(l))

∣∣∣∣∣∣
≤

i∑
l=1

|(sl − sl−1)− ql|+
σ(i)∑
l=1

|(sσ−1(l) − sσ−1(l)−1)− qσ−1(l)|

<
ϵi

2k
+
ϵσ(i)

2k

<
ϵ

2
+
ϵ

2

= ϵ.

Since i ∈ {1, . . . , k} and x ∈ (IrMϵ)∩ [si−1, si] are arbitrary, we are done for this

proof.

To extend the theorem of [1] to the tool ready to prove complete dependence

detectability, the well-known Egoroff’s theorem in measure theory is handy. For

the proof of this theorem, see real analysis textbooks such as [17].

Theorem 4.21 ([17]). Let {fn}n∈N be a sequence of measurable functions from

finite measure space (Ω,F , µ) to R and f : (Ω,F , µ) → R be another measurable

function. Then, if fn → f almost surely, then fn → f almost uniformly.

Now, one obtains the weaker version of Theorem 4.8.
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Theorem 4.22. Let φ : I → I be measure-preserving. Then there exists a sequence

of one-to-one piecewise linear measure-preserving maps {fn}n∈N whose disconti-

nuity points of fn are rational numbers for n ∈ N such that fn → φ almost

uniformly.

Proof. Assume that φ is measure-preserving maps on I. Theorem 4.8 says there

is a one-to-one piecewise linear measure-preserving {φn}n∈N such that φn → φ

almost surely. Egoroff’s theorem implies that φn → φ weak uniformly. Then,

let ϵ > 0. By weakly uniform uniform convergence, there is Nϵ ∈ B(I) such that

λ(Nϵ) < ϵ/2 and supx∈IrNϵ
|φ(x) − φn(x)| < ϵ/2. For any n ∈ N, thanks to

Lemma 4.7, one has corresponding one-to-one piecewise linear measure-preserving

fn whose discontinuity points are rational numbers and Mϵ ∈ B(I) such that

λ(Mϵ) < ϵ/2 and supx∈IrMϵ
|fn(x) − φn(x)| < ϵ/2. Choose M̃ϵ := Nϵ ∪Mϵ. One

has λ(M̃ϵ) < ϵ and for any x ∈ I r M̃ϵ,

|φ(x)− fn(x)| ≤ |φ(x)− φn(x)|+ |φn(x)− fn(x)| < ϵ.

This finishes the proof.

And, the following is one of the key lemma.

Lemma 4.23. Let X ∼ Uniform(I) and {fn}n∈N be a sequence of measurable

functions on I to R and f : I → R be another measurable function such that

fn → f almost uniformly. Then (X, fn(X)) → (X, f(X)) almost uniformly too.

Proof. Assume that X ∼ Uniform(I) and {fn}n∈N is a sequence of measurable

functions on I to R and f : I → R be another measurable function such that fn → f

almost uniformly. Let ϵ > 0, then there exists Nϵ ∈ B(I) such that λ(Nϵ) < ϵ and

|fn(x) − f(x)| < ϵ for any x ∈ I r Nϵ. Define B̃ := {X ∈ Nϵ}. One has B̃ is

measurable set since X is random variable and P (B̃) = P (X ∈ Nϵ) = λ(Nϵ) < ϵ

since X ∼ Uniform(I). Moreover, for any ω ∈ Ωr B̃, X(ω) ∈ I rNϵ, so

∥(X(ω), fn(X(ω)))− (X(ω), f(X(ω)))∥ = |fn(X(ω))− f(X(ω))| < ϵ.

The proof is done here.
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Thus, one has following powerful corollary.

Corollary 4.24. Let X,Y ∼ Uniform(I) and φ : I → I be a Borel measurable

function such that Y = φ(X). Then, there exists a sequence of one-to-one piece-

wise linear measure-preserving maps {fn}n∈N whose discontinuity point of fn are

rational numbers for n ∈ N such that (X, fn(X)) → (X, f(X)) in dRTV .

Proof. Let X, Y ∼ Uniform(I) and φ : I → I be a Borel measurable function such

that Y = φ(X). Then, by Lemma 4.7, φmust be measure-preserving. By Theorem

4.22, there is a sequence of one-to-one piecewise linear measure-preserving func-

tions {fn}n∈N whose discontinuity point of fn are rational numbers for n ∈ N such

that fn → φ almost uniformly. By the above lemma, (X, fn(X)) → (X, f(X))

almost uniformly too. Lastly, by Theorem 4.19, (X, fn(X)) → (X, f(X)) in

dRTV .

From this point, we are ready to prove dependence detectability of MIC. For

convenience, we recall the statement and prove it here.

Proposition 4.25. MIC(X, Y ) = 1 if either Y is CD on X or X is CD on Y .

Proof. Firstly, assume X, Y ∼ Uniform(I) such that there is a Borel measurable

function f : I → I which making Y = f(X) almost surely. By Corollary 4.24, the

sequence of one-to-one piecewise linear measure-preserving maps {fn}n∈N whose

discontinuity points of fn are rational numbers for n ∈ N such that (X, fn(X)) →

(X, f(X)) in dRTV exists. Proposition 4.12 claims that for every n ∈ N, one

has MIC(X, fn(X)) = 1. Finally, because of continuity of MIC with respect to

dRTV and (X, fn(X)) → (X, f(X)) in the mode of dRTV , one has MIC(X, Y ) =

MIC(X, f(X)) = 1. For the case that X is completely dependent on Y , symmetry

of MIC helps us to use the result proved here. This task of proving complete

dependence detectable is completed now.



69

4.3 Concluding Remark

From the results in the first two sections, one can conclude that τ̃ is a class of

symmetric dependence measure which is mutually complete dependence detectable

and monotonic invariant. MIC is proved to have complete dependence detectabil-

ity and monotonic invariance. Also, the incompatibilty can be proved in the same

way to the nonsymmetric case since the counterexample to impose contradiction

is bijection indeed. Thus, in the same fashion on the non-symmetric case, the

summary table for symmetric dependence measures is given.

MD detect. MCD detect. CD detect.

Monotone inv. σ τ̃ , ω, να

Injective inv. Impossible S, ω∗, ν∗

Table 4.1: Recalling the summary table for symmetric dependence measures.

One may observe about the absence of MIC in this table. From the above

section, MIC seems to be placed at the upper-right cell of the table since it can

was proved to be both monotonic invariant and complete dependence detectable.

However, there is a case that invariance and the detectability go beyond what we

proved.

Let X ∼ Uniform(I) and, for α ∈ (0, 1), define the map fα : I → I as, for x ∈ I,

fα(x) :=
x
α
χ[0,α)(x) +

x−1
α−1

χ[α,1](x). Its graph is illustrated in Figure 4.1. Consider

the random pairs (f1/3(X), f2/3(X)).

By tedious but straightforward calculation, MIC(f1/3(X), f2/3(X)) = 1. From

MIC(X,X) = 1, one of interesting point is that in this case, MIC is invariant ever

when transforming random variables by functions which are not one-to-one. For

the second important point, note that MIC is one in this case while f2/3(X) is

not completely dependent on f1/3(X) and vice versa. For the derivation of these

results, see appendix.
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Although this is just an example, general properties await further for explo-

rations. Possibility of new results on MIC’s invariance and dependence detectabil-

ity properties still loom large. Since MIC already has a consistent statistical

version, the study on finding its estimator is not needed.



APPENDIX

The appendix is devoted to proving some results on the example in the concluding

remark. Since the calculation is tedious but straightforward, showing the proof

here may be more appropriate.

Let us recall the setup. Let X ∼ Uniform(I) and the map fα : I → I, for

α ∈ (0, 1), is defined by

fα(x) =


x

α
if x ∈ [0, α)

x− 1

α− 1
if x ∈ [α, 1].

This function is called a tent map, and its graph is shown in Figure 4.1.

(0, 0)

(α, 1)

(α, 0) (1, 0)

Figure 4.1: The graph of fα on I.

Obviously, this function is not strictly monotone, yet clearly measure preserv-

ing. For completeness, we include a proof here in the following lemma.

Lemma 4.26. For α ∈ (0, 1), fα : I → I is a measure preserving map.
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Proof. Let α ∈ (0, 1) and [a, b] ⊆ I. Then, one yields

λ(f−1
α ([a, b])) = λ(f−1

α ([0, b]r [0, a]))

= λ(f−1
α ([0, b]))− λ(f−1

α ([0, a))

= λ(I r (αb, 1− (1− α)b))− λ(I r [αa, 1− (1− α)a])

= (1− (1− b+ αb− αb))− (1− (1− a+ αa− αa))

= b− a = λ([a, b]).

Since the set {[a, b] : a, b ∈ I and a < b} generates B(I), we are done.

Note that fα(X) is still a uniform random variable on I. Thus, for α, β ∈ (0, 1),

the joint probability distribution of fα(X) and fβ(X) will be the copula Cα,β where,

for any x, y ∈ I, this copula is defined by

Cα,β(x, y) = λ(f−1
α ([0, x]) ∩ f−1

β ([0, y]))

= λ ((I r (αx, 1− (1− α)x)) ∩ (I r (βy, 1− (1− β)y)))

= λ (I r ((αx, 1− (1− α)x) ∪ (βy, 1− (1− β)y))) .

(4.10)

To prove the claim, let us first consider the case α < β. There are following

subcases:

• Case 1: αx ≤ βy and 1− (1− α)x > 1− (1− β)y.

In this case, one has

Cα,β(x, y) = 1− λ((αx, 1− (1− α)x))

= 1− (1− (1− α)x− αx)

= x.

• Case 2: αx ≤ βy and 1− (1− α)x ≤ 1− (1− β)y.

For this case, if 1− (1− α)x < βy, one has

Cα,β(x, y) = 1− λ((αx, 1− (1− α)x))− λ((βb, 1− (1− β)y))

= 1− (1− (1− α)x− αx)− (1− (1− β)y − βy)

= x+ y − 1.
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And if 1− (1− α)x ≥ βy, one obtains

Cα,β(x, y) = 1− λ((αx, 1− (1− β)y)

= 1− (1− (1− β)y − αx)

= αx+ (1− β)y.

• Case 3: αx ≥ βy and 1− (1− α)x > 1− (1− β)y.

This case cannot happen since from the assumption, one has

α(1− β)xy ≥ (1− α)βxy.

However, since we assume α < β, the consequence is α(1 − β) < (1 − α)β,

which contradicts the recent assertion.

• Case 4: αx ≥ βy and 1− (1− α)x ≤ 1− (1− β)y.

This case is the same as the first case. One has Cα,β(x, y) = y.

Thus, the closed form of this copula is

Cα,β(x, y) =



x if x ≤ β
α
y and x < 1−β

1−α
y;

y if x ≥ β
α
y and x ≥ 1−β

1−α
y;

αx+ (1− β)y if x < β
α
y, x ≥ 1−β

1−α
y and x < 1−βy

1−α
;

x+ y − 1 if x < β
α
y, x ≥ 1−β

1−α
y and x ≥ 1−βy

1−α
.

(4.11)

In our example, we choose (α, β) = (1/3, 2/3). Denoting C := C1/3,2/3 and rear-

ranging the conditions, one gets more compact closed form as follow:

C(x, y) =



x if x ≤ 1
2
y;

y if x > 2y;

αx+ (1− β)y if 1
2
y < x ≤ 2y and x+ y < 3

2
;

x+ y − 1 if 1
2
y < x ≤ 2y and x+ y ≥ 3

2
.

(4.12)
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The support of this copula is the triangle ℓ1 ∪ ℓ2 ∪ ℓ3 where

ℓ1 := {(x, 2x) : x ∈ [0, 1
2
]};

ℓ2 := {(x, 3
2
− x) : x ∈ [1

2
, 1]};

ℓ3 := {(x, 1
2
x) : x ∈ I}.

The support of C is illustrated in Figure 4.2.

(0, 0)

(1
2
, 1)

(1, 1
2
)

Figure 4.2: The support of copula C := C1/3,2/3.

From the support of this copula, it is natural to choose the 2n×2n equipartition

grid of I2. Thereby, for any block Ci × Rj of this grid, one has µ(Ci × Rj) =

µ
([

i−1
2n
, i
2n

]
×
[
j−1
2n
, j
2n

])
where µ := µC1/3,2/3

. Furthermore, by Sklar’s theorem

and f1/3(X), f2/3(X) ∼ Uniform(I), one can find joint probability in each block by

P (f1/3(X) ∈ Ci, f2/3(X) ∈ Rj) = µ
([

i−1
2n
, i
2n

]
×
[
j−1
2n
, j
2n

])
Since we realize support

and grid, one can identify blocks containing each line of support and eliminate

others when computing IG(f1/3(X), f2/3(X)) from the fact that any measurable

set which does not contain any part of support will have zero measure.

Proposition 4.27. The collections

B1 := {Ci ×Rj : i ∈ {1, . . . , n} and either j = 2i or j = 2i− 1};

B2 := {Ci ×Rj : i = n+ 1, . . . , 2n and j = 3n− i+ 1};

B3 := {Ci ×Rj : j ∈ {1, . . . , n} and either i = 2j or i = 2j − 1}

are the collections of blocks those intersect ℓ1, ℓ2 and ℓ3 respectively.
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Proof. To show that B1 intersect ℓ1, it suffices to prove that for any i = 1, . . . , n,

the rectangle

(Ci ×R2i−1) ∪ (Ci ×R2i) =

[
i− 1

2n
,
i

2n

]
×
[
i− 1

n
,
i

n

]
has its lower-left and upper-right vertices, denoted by X⃗LL, X⃗UR respectively, lying

on ℓ1. Note that one has X⃗LL =
(
i−1
2n
, i−1

n

)
and X⃗LL =

(
i
2n
, i
n

)
for all i ∈ {1, . . . , n}.

Choose θ1 := 1 −
(
i−1
n

)
and θ2 := 1 − i

n
. Since i = 1, . . . , n, one can see that

θ1 ∈ (0, 1] and θ2 ∈ [0, 1). Moreover, one has

X⃗LL =

(
i− 1

2n
,
i− 1

n

)
=

((
1−

(
1− i− 1

n

))
1

2
, 1−

(
1− i− 1

n

))
=

(
θ1(0) + (1− θ1)

(
1

2

)
, θ1(0) + (1− θ1)(1)

)
= θ1(0, 0) + (1− θ1)

(
1

2
, 1

)
∈ ℓ1.

Similarly, one can show that X⃗UR = θ2(0, 0)+(1− θ2)
(
1
2
, 1
)
∈ ℓ1. Showing B2 and

B3 intersect ℓ2 and ℓ3 respectively can be done in the same fashion.

Any block Ci × Rj will be of zero measure with respect to µ since it does

not contain any part of support. Thus, the next step will be finding the measure

of blocks in B1 ∪ B2 ∪ B3. Thus, with (4.12), finding value of each summand of

IG(f1/3(X), f2/3), denoted by Mij, is possible.

It is not hard to see that C1 ×R1 ∈ B1 ∪ B3. Moreover, one has

µ(C1 ×R1) = µ

([
0,

1

2n

]2)
= C

(
1

2n
,
1

2n

)
=

1

3
· 1

2n
+

1

3
· 1

2n
=

1

3n
. (4.13)

And one has

M11 = log

(
µ(C1 ×R1)

P (f1/3(X) ∈ C1)P (f2/3(X) ∈ R1)

)
µ(C1 ×R1)

=
1

3n
log

(
1/3n

1/4n2

)
=

1

3n
log

(
4n

3

)
.

The following propositions will give the value of Mij in case of Ci ×Rj is in each

ℓi’s.
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Proposition 4.28. For any (i, j). If Ci ×Rj ∈ B1, then

Mij =


1
3n

log
(
4n
3

)
if (i, j) = (1, 1)

1
6n

log
(
2n
3

)
otherwise.

If Ci ×Rj ∈ B2, then Mij =
1
3n

log
(
4n
3

)
. And, if Ci ×Rj ∈ B3, then

Mij =


1
3n

log
(
4n
3

)
if (i, j) = (1, 1)

1
6n

log
(
2n
3

)
otherwise.

Proof. Firstly, one will prove for the case that Ci×Rj ∈ B1. The case (i, j) = (1, 1)

has been proved already. For the second case, let i ∈ {1, . . . , n} and either j = 2i

or j = 2i − 1 where i ̸= j ̸= 1. If j = 2i − 1 and considering the rectangle

Ci ×R2i−1 =
[
i−1
2n
, i
2n

]
×
[
2i−2
2n
, 2i−1

2n

]
, note that its upper- and lower-right vertices

lie in the region {(x, y) ∈ I2 : 1
2
y ≤ x ≤ 2y and x + y < 3

2
} and the upper- and

lower-left vertices are in {(x, y) ∈ I2 : x ≤ 1
2
y}. Therefore, one has

µ(Ci ×R2i−1)

= µ

([
i− 1

2n
,
i

2n

]
×
[
2i− 2

2n
,
2i− 1

2n

])
= C

(
i

2n
,
2i− 1

2n

)
− C

(
i

2n
,
2i− 2

2n

)
− C

(
i− 1

2n
,
2i− 1

2n

)
+ C

(
i− 1

2n
,
2i− 2

2n

)
=

[
1

3

(
i

2n

)
+

1

3

(
2i− 1

2n

)]
−
[
1

3

(
i

2n

)
+

1

3

(
2i− 2

2n

)]
−
(
i− 1

2n

)
+

(
i− 1

2n

)
=

1

3

(
2i− 1− 2i+ 2

2n

)
=

1

6n
.

Similarly, by the same argument, µ(Ci ×R2i) =
1
6n

. Thus, the value of Mij in this

case is

Mij = log

(
µ(Ci ×Rj)

P (f1/3(X) ∈ Ci)P (f2/3(X) ∈ Rj)

)
µ(Ci ×Rj)

=
1

6n
log

(
1/6n

1/4n2

)
=

1

6n
log

(
2n

3

)
.
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To prove this proposition in part of Ci × Rj ∈ B2, let i = n + 1, . . . , 2n and

j = 3n−i+1 and consider Ci×R3n−i+1 =
[
i−1
2n
, i
2n

]
×
[
3n−i
2n

, 3n−i+1
2n

]
. Note that the

upper- and lower-left vertices stay in {(x, y) ∈ I2 : 1
2
y ≤ x ≤ 2y and x+y ≥ 3

2
} and

the upper- and lower-right vertices lie in {(x, y) ∈ I2 : 1
2
y ≤ x ≤ 2y and x+y ≤ 3

2
}.

Then, one obtains

µ(Ci ×R3n−i+1)

= µ

([
i− 1

2n
,
i

2n

]
×
[
3n− i

2n
,
3n− i+ 1

2n

])
= C

(
i

2n
,
3n− i+ 1

2n

)
− C

(
i

2n
,
3n− i

2n

)
− C

(
i− 1

2n
,
3n− i+ 1

2n

)
+ C

(
i− 1

2n
,
3n− i

2n

)
=

[
i

2n
+

3n− i+ 1

2n
− 1

]
−
[
i

2n
+

3n− i

2n
− 1

]
−
[
1

3

(
i− 1

2n

)
+

1

3

(
3n− i+ 1

2n

)]
+

[
1

3

(
i− 1

2n

)
+

1

3

(
3n− i

2n

)]
=

1

2n
− 1

6n

=
1

3n
.

Thereby,

Mij = log

(
µ(Ci ×Rj)

P (f1/3(X) ∈ Ci)P (f2/3(X) ∈ Rj)

)
µ(Ci ×Rj)

=
1

3n
log

(
1/3n

1/4n2

)
=

1

3n
log

(
4n

3

)
.

The last case, when Ci ×Rj ∈ B3, the proof is exactly the same to Ci ×Rj ∈ B1.

now we are done.

Now we are ready for computing discretized mutual information since we know
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all of summands involving in this task.

IG(f1/3(X), f2/3(X)) =
2n∑
i=1

2n∑
j=1

Mij

=
n∑

i=1

Mi,2i +
n∑

i=2

Mi,2i−1 +
n∑

j=1

M2j,j +
n∑

j=2

M2j−1,j

+
2n∑

i=n+1

Mi,3n−i+1 + µ11

= 2(2n− 1)
1

6n
log

(
2n

3

)
+ n

1

3n
log

(
4n

3

)
+

1

3n
log

(
4n

3

)
=

1

3
log

(
4n

3

)
+

(
2

3
− 1

3n

)
log

(
2n

3

)
+

1

3n
log

(
4n

3

)
=

1

3
log

(
4n

3

)
+

2

3
log

(
2n

3

)
− 1

3n

(
log

(
2n

3

)
− log

(
4n

3

))
.

Thus, the normalized score takes value of

IG(f1/3(X), f2/3(X))

log 2n
=

1
3
log
(
4n
3

)
+ 2

3
log
(
2n
3

)
− 1

3n

(
log
(
2n
3

)
− log

(
4n
3

))
log 2n

=
1
3
log
(
4n
3

)
+ 2

3
log
(
2n
3

)
log 2n

− 1

3n

log
(
2n
3

)
− log

(
4n
3

)
log 2n

.

As n → ∞, the second term goes to 0 and the first term, by L’Hôpital’s rule,

goes to one since both nominator and denominator converge to infinity and

lim
n→∞

d
dn

1
3
log
(
4n
3

)
+ 2

3
log
(
2n
3

)
d
dn

log 2n
= lim

n→∞

1
3
· 3
4n

· 4
3
+ 2

3
· 3
2n

· 2
3

2
2n

= lim
n→∞

1

3
+

2

3
= 1.

By this type of grid, normalized score becomes 1, so is the MIC. Note that

these random variables f2/3(X) is not completely dependent on f1/3(X) since

∂1C(u, v) = 1
3

whenever (u, v) ∈ {(x, y) ∈ I2 : 1
2
y < x ≤ 2y and x + y < 3

2
}.

Note that this set has 2-dimensional Lebesgue measure of 3
8
. This implies what

we need. Also, since ∂2C = 1
3

on the same set, then f1/3(X) is not completely

dependent on f2/3(X).
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