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CHAPTER I 

INTRODUCTION 

1.1 Background 

  It is becoming increasingly difficult to ignore air pollution as one of the more 

serious environmental problems in the cities especially in developing countries.  The 

United States Environmental Protection Agency (US EPA) reported that the two 

worst air pollution problems are urban air quality and indoor air pollution with 52% 

and 27% of the air pollution from industrial and transportation, respectively.  

Emissions from motor traffic are a very important source of urban air pollution 

throughout the world.  In addition, US EPA indicated that pollution from highway 

construction can similarly impact the air quality.  A study by Kuhns et al. (2004) 

pointed out that roadside air pollution contributed about 29%, 35% and 58% of the 

total volatile organic compounds (VOCs), total nitrogen oxides (NOx), and total 

carbon monoxide (CO) emitted, respectively in the US.  Recent evidence suggests that 

these concentrations are often higher in cities where urban development and increased 

traffic volumes add to the emissions; while street canyon conditions inhibit dispersion 

and mixing, resulting in high ground level concentrations which often exceeded the 

concentrations of industrial sources (Chen et al., 2008). 

According to Thoma et al. (2008), more than 35 million people in the US live 

close to roads.  These people are exposed to transportation pollution and many exhibit 

varying levels of health effects that are generally associated with NOx and VOCs. In 

Thailand, emission loads from mobile sources for NOx  and VOCs were 264,648 and 

232,973 tons/year, respectively, while NOx  and VOCs  from gasoline generated were 

about 35,886 tons (15.4%) and 34,133 tons (12.9%), respectively (PCD, 1997). To 

mitigate air pollution, several efforts are being applied including source reduction and 

treatment controls. A recent technology being implemented is the use of 

heterogeneous photocatalytic materials on the building surface.  Photocatalytic 

compounds such as titanium dioxide (TiO2), which can degrade organic and inorganic 

pollutants in the air, may eliminate harmful air pollutants such as NOx and VOCs in 

the presence of ultraviolet (UV) light (Cassar, 2004). Several studies have shown that 
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surfaces coated with TiO2 can be self-cleaning (Fujishima and Zhang, 2006).  

Recently TiO2 concrete pavement, made by mixing of Portland cement and TiO2, has 

been proposed as a substitute substrate for air remediation through heterogeneous 

photocatalytic degradation of air pollutants (Ruot et al., 2009). 

The potential of photocatalytic cementitious materials for pavement roads have 

been demonstrated in a number of laboratory research with NOx as the pollutants.  

There are very few studies assessing the TiO2 concrete for VOCs removal.  There is a 

need to further understand the impact of TiO2 on air quality.  Furthermore, there are 

very few studies investigating the loss of catalytic activity due to aging of concrete.  

However, experimental data reported thus far are rather mixed, and there are no 

general agreements on the effect of each variable on the photocatalytic reaction of the 

TiO2 cement.  Moreover, not much is known about the intermediate and by products 

generated from these reactions (Mo et al., 2009) 

This research investigates the application of TiO2 concrete, as an innovative 

technology and approach, for the heterogeneous photocatalytic degradation of 

benzene, toluene, ethylbenzene and xylene (BTEX).  Experiments will be conducted 

in a laboratory-scale reactor with concrete slabs containing TiO2.  Variables to be 

studied include BTEX concentrations, relative humidity (RH), flow rate (Q), UV 

intensity (I) and aging of TiO2 concrete slab.  

1.2 Objective 

The objective of this research is to investigate the application of TiO2-based 

concrete pavement for the photocatalytic degradation of BTEX in the air under 

different environment conditions. 

1.3 Hypotheses 

When exposed to UV light, TiO2-based concrete pavements are effective in 

oxidizing BTEX and the amount of BTEX degraded are dependent on the 

environmental conditions.   
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1.4 Scope of the study 

1.Experiments were conducted in a laboratory-scale photo reactor where 

various environmental conditions (BTEX concentrations, relative humidity, intensity, 

air flow rate) can be varied.  

2.Experimental method was adapted from ISO 22197-1: Test method for air 

purification performance of semiconducting photocatalytic materials -Part 1: Removal 

of nitric oxide. 

3.TiO2-based concrete slabs were prepared based on the concrete mix design 

provided by Missouri Department of Transportation (MoDOT).  

4.Concentration of BTEX was analyzed using a Gas Chromatograph with a 

Photoionization Detector (GC/PID).  
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CHAPTER II 

LITERATURE REVIEWS 

2.1  Introduction 

 Air pollution, in urban areas, is one of the more important environmental 

issues that need to be addressed (Ishihara et al., 2010) to minimize health problems.  

Exposure to high levels of air pollutants may result in irritation of throats and eyes, or 

breathing difficulties (Cocheo et al., 2011).  Long-term exposure to air pollution may 

cause damage to the immune, neurological, and respiratory systems and in extreme 

cases, may even cause death (Schwartz, 2011).  There are several sources of air 

pollutions as shown in Fig.2.1 with the major emission sources from industry (52%) 

and transportation (27%). 

 

Figure 2.1 Sources of air emissions (Source: Environment Canada, 2002) 

A significant source of urban air pollution is emissions from transportation systems 

which include any air pollution that is emitted by motor vehicles, engines, airplanes and 

equipment that moves from one location to another (Sawyer et al., 2000).  The main 

pollutants emitted by vehicles are carbon monoxide (CO), oxides of nitrogen (NOx), volatile 

organic compounds (VOCs) and particulates as shown in Fig. 2.2.  Figure 2.3 shows the main 

http://www.sciencedirect.com/science/article/pii/B9780444522726000611
http://www.sciencedirect.com/science/article/pii/B9780444522726000623
http://en.wikipedia.org/wiki/Air_pollution
http://en.wikipedia.org/wiki/Motor_vehicles
http://en.wikipedia.org/wiki/Engines
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sources of NOx and VOCs in the US.  Emissions from road vehicles, one of the main sources 

of NOx and VOCs, contribute about 30% and 29% of NOx and VOCs, respectively.  

 

 

Figure 2.2 Main air pollution in the U.S. (Source: EPA, 2010) 

 

Figure 2.3 Mobile source air pollutants (Source: Christopherson, 2000) 

Air pollution is further amplified when NO2 and volatile organic compounds 

(VOCs) from motor vehicles react photocatalytically in the presence of sunlight to 

form ozone, a secondary long-range pollutant (Calvert, 1994).  Another impact of 

NO2 is the generation of acid rain. 
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In many countries, mobile sources may be one of the largest contributors of 

pollutants that are known or suspected to cause cancer or serious respiratory health 

problems.  For example, incomplete combustion of gasoline and diesel may result in 

emission of benzene, a known human carcinogen (Johnson et al., 2009), and 

formaldehyde, acetaldehyde, 1,3-butadiene and diesel particulate matter which are 

probable human carcinogens (Kirman and Grant, 2012).  Mobile sources of air toxics 

have been estimated to account for as much as half of all cancer cases that are 

attributed to outdoor sources of air toxics (EPA, 1995).  However, the number of 

vehicles on the road and the distance travelled continue to grow which would mean 

that new and advanced technologies will be required to maintain or reduce the amount 

of toxic compounds in the environment.  Air pollution can be mitigated by reducing 

emissions from the sources and/or by removing the air pollutants present in the air. 

One of the innovative approaches currently used in removing air pollution from air is 

to use surfaces that are coated with chemically-reactive compounds such as 

photocatalysts. 

2.2  Principle of Titanium Dioxide (TiO2) Photocatalysis 

 2.2.1  Background of titanium dioxide   

Among the many photocatalysts, TiO2 is an excellent photocatalyst with 

diverse applications in water and air pollution control to treat various organic 

pollutants.  There are more than 2000 companies worldwide selling air purification 

products that incorporate TiO2 materials (Cassar, 2004).  The wide usage of TiO2 is 

due to its high chemical stability in acidic and basic conditions, nontoxicity, and the 

relatively low cost and high photocatalytic activity in comparison to other metal oxide 

photocatalysts.  TiO2 can be mixed with concrete with minimal change in its 

performance and effectiveness.  Under weak solar irradiation, TiO2 can decompose 

various air pollutants such as hydrocarbons (Wu et al., 2007), aldehyde 

(Dechakiatkrai et al., 2007), halogenated compounds (Hung et al., 2007), nitrogen-

containing compounds (Alberici et al., 2001), sulfur-containing compounds (Portela et 

al., 2007) and inorganic compounds at low concentrations (Ao et al.,2003; Wang et 

al., 2007;  Zhang et al., 2003).  
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Table 2.1 shows the basic physical-chemical properties of TiO2.  TiO2 exists in 

three different structures: anatase (tetragonal), brookite (orthorhombic) and rutile 

(tetragonal). Anatase shows the highest photoactivity of the three structures due to its 

higher surface density of active sites for adsorption and photocatalysis (Zhao and 

Yang, 2003) while rutile is the most thermodynamically stable of the thee structures.  

Anatase and brooktile are metastable and transform to rutile by heating (Debabrata 

and Shimanti, 2005). The band gap energies for anatase and rutile have been 

estimated to be 3.2 and 3.0 eV, respectively, which is the band gap energy of anatase 

corresponding to photons with a wavelength of 388 nm (wavelength of UV light 

range between 300-400 nm). Anatase  is currently commercially available as thin, 

transparent films that can be used to coat glass, tiles, and other materials (Berdahl and 

Akbari, 2008).  Overall, the efficient oxidizing effect and qualification of TiO2 makes 

it proper for the degradation of organic and inorganic compounds at low 

concentrations and Fig. 2.4 and 2.5 show different crystalline structures of TiO2 and 

band gaps, valence bands and conduction bands of common semiconductors and 

standard redox potentials respectively.  

 
Table 2.1 Basic physical-chemical properties of titanium dioxide (TiO2)  
(Source: Akimoto, 1994; Winkler and Jochen, 2003) 
 

 
 
 
 
 

Properties Values 

Molecular formula TiO2 
Molar mass 79.866 g/mol 
Appearance White solid 

Odor Odorless 
Density 4.23 g/cm3 
Melting point 1843 °C 
Boiling point 2972 °C 

Solubility in water Insoluble 

http://en.wikipedia.org/wiki/Solubility
http://en.wikipedia.org/wiki/Water
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Figure 2.4 Different crystalline structures of TiO2 (Simons and Dachille, 1967) 

 
 

 

 
Figure 2.5 Band gaps, valence bands and conduction bands of semiconductors 

(Petlicki and van de Ven, 1998) 
 

2.2.2  Reactions of TiO2  

Figure 2.6 shows the schematic diagram of the UV photocatalytic oxidation 

process of VOCs using TiO2 as the catalyst. The ability of TiO2 to degrade pollutants 
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photocatalytically is based on the strong oxidation and reduction potential of its 

valence band (VB) and conduction band (CB), respectively.  Reaction begins when 

TiO2 absorbs a photon when irradiated with UV light ranging from 300-400 nm.  If 

the energy absorbed is equal or larger than the band gap, an electron moves from the 

VB to CB, generating an electron hole pair (h+ and e-).  These highly active electron 

hole pairs can either recombine producing heat or be used to reduce or oxidize species 

at the semiconductor surface.  The positive holes (h+) reacts with water to form the 

hydroxyl radical (OH•) while electrons react with molecular oxygen to form the 

superoxide anion (O2
-) which further reacts with H+ to produce the hydroxyl radical 

(OH•).  Finally, the hydroxyl radical (OH•) generated reacts with pollutants to 

produce final end products (CO2, H2O and intermediate compounds). Equations (1) - 

(9) describe the reaction pathways using titanium dioxide (TiO2) as a semiconductor. 
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Figure 2.6 Photocatalysis and reaction mechanisms of TiO2  

(Yasushiro and Takayuki, 2008) 

2.2.3  TiO2 -based building materials 

TiO2-based building materials have been used as coating materials on 

structures and walls for air purification (Poon and Cheung, 2007), self-disinfecting 

surfaces (Jun et al., 2001), self-cleaning surfaces (Shang et al., 2007) and for anti-

fogging purposes (Wang et al., 2006).  TiO2-based building materials are widely used 

in road structures such as pavement, road- blocks, soundproof walls, tunnel and paints 

wall and in building materials and interior furnishings such as paints, tiles wall paper, 

and window blinds.  

Recent developments in the field of photocatalytic oxidation have led to a 

renewed interest in construction materials containing photocatalysts within the 
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framework of a strategy to eliminate air pollution.  A current application of TiO2-

based materials under research is the use of TiO2-based concrete for road pavements.  

One reason for the use of TiO2-based concrete pavements is that optimal reactions of 

the pollutants may occur due to the close proximity of the motor vehicle emissions 

and the concrete pavements.  Lackhoff et al. (2003) noted that cement is an important 

and popular substrate because of its relative low cost and large-scale application.   

Concrete structures with their large surfaces serve as a medium where air pollutants 

are sorbed and/or trapped which help to reduce pollutants in the atmosphere but at the 

same time make the concrete surfaces aesthetically dirty or unacceptable (Lackoff et 

al., 2003; Cassar, 2004).  Cassar (2004) showed that cement itself exhibits limited 

amounts of photocatalytic degradation but its photocatalytic reactions increased when 

TiO2 was added.  Cassar (2004) observed that the TiO2-concrete mixture had 

photocatalytic effect that was higher than TiO2 alone.   

 
2.2.4  Parameters impacting photocatalytic efficiency 

There are many environmental factors that affect the photocatalytic oxidation 

of TiO2-based concrete material.  Understanding these relationships will assist in 

predicting and obtaining a desired outcome and to develop the technology further for 

real world applications.  Environmental factors impacting photocatalysis include 

pollutant types, pollution concentrations, relative humidity, air flow rate, UV light 

intensity, and the cleanliness of the surface of TiO2-based material.  However, in 

many situations; more than one environmental parameter may impact the 

photocatalytic effect, making it difficult to clearly identify the dominant 

environmental parameter.   

 

Pollutants concentration   

   Providing the pervious study about the photocatalytic oxidation for various 

compounds which use the pollutants concentration as a parameter to study the PCO 

reactions. For example, Einaga et al. (1999) reported that the percent removal 

decreased from 90% to 10% when the benzene concentration increased from 80 to 

260 ppmv.   Ku et al. (2001) presented results that showed a change in percent 

removal from 80% to 55% when the trichloroethylene concentration of TCE increased 
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from 240 to 640 ppmv.  The decrease in percent removal was attributed to the 

increase in mass transfer rate and the accumulation of oxidation products on the 

surface which in turn inhibit the absorption of pollutants and potentially lead to the 

deactivation of the photocatalyts (Ao et al. 2002; Demeestere et al., 2008).  Other 

studies that showed similar results on the influence of pollutants concentration are Liu 

et al. (1997), Hager et al. (2000), Ku et al. (2001), Shen and Ku (2002) and 

Demeestere et al. (2004)   

 

Relative humidity (RH) 

  Several researchers found that increasing the relative humidity would increase 

the degradation rates (Einaga et al., 1999, 2001; Belver et al., 2003; Jeong et al., 

2005).  For example, Einaga et al. (2002) reported that increasing relative humidity of 

benzene, toluene and cyclohexene was increased the pollutants reaction rates.  Several 

studies indicated that the presence of water vapour may have an inhibiting effect or an 

activating effect or no effect on the photocatalytic oxidation reactions of VOCs (Guo 

et al., 2008, Takeuchi et al., 2010).  An explanation for the inhibition was that water 

molecules compete with the pollutant molecules for available surfaces (Wang et al., 

2007; Demeestere et al., 2008; Sleiman et al., 2009).   Sleiman et al. (2009) 

demonstrated that water forms one or more layers of water film on the surface which 

may prevent the pollutant from reaching the TiO2 layer.  Einaga et al. (1999) reported 

that the percent removal of benzene in the gas-phase at 80 ppmv, increased from 5 to 

92 % with an increase in relative humidity from 0 to 65 %.  Many researchers found 

in their experiments that a higher relative humidity was supported by an increase in 

the formation of CO2 (Blount and Falconer, 2002).   

To successfully understand this technology, optimal humidity conditions for 

photocatalytic reactions should be identified.  Liu et al. (2008) suggested a 55% 

relative humidity for the optimal removal of formaldehyde while Quici et al. (2010) 

proposed that at very low concentration of toluene a 10% RH was suitable for the 

optimal degradation in the presence of light and TiO2.  However, there seemed to be a 

discrepancy in whether an optimal relative humidity exists (Liu et al., 2008; Sleiman 

et al., 2009).  For example, Sleiman et al. (2009) research on toluene photocatalytic 

oxidation showed that there was no optimum relative humidity and Ao et al. (2004) 
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were unable to find an optimal humidity level for degradation of formaldehyde.  Ao et 

al. (2002) noted that the effect of water vapor (relative humidity) may be dependent 

on the pollutant type and its concentrations. 

 

 Light Intensity (I) 

 Many scientists have argued that photodegradation cannot occur in the 

absence of light (Zhao and Yang, 2003; Poon and Cheung, 2007; Liu et al., 2008).  

Consequently, a photocatalyst such as TiO2 would need light as an energy source to 

degrade any pollutants. As described earlier in the photocatalytic reaction mechanism, 

the wavelength and quantity of photons (intensity) are basically responsible for the 

photocatalytic activity.  A wavelength between 300-400 nm is required for the 

photoactivation of TiO2.  This wavelength range corresponds to the ultraviolet range.  

It has conclusively been shown that higher intensities of UV light (more photons) will 

result in higher photocatalytic oxidation rates (Zhao and Yang 2003). 

Work done by Zhao and Yang (2003) showed that increasing the light 

intensity from 0.08 to 0.45 mW/cm2 resulted in an increase in the degradation rate of 

TCE from 0.08 x 10-6 to 0.25x 10-6 mol/s g.  Similarly, Strini et al. (2005) showed that 

enhancing the irradiance from 0 to 1500 μW/cm2 resulted in an increase in the 

oxidation of o-xylene and ethylbenzene and a slight increase in the oxidation of 

benzene and toluene.  The relationship between intensity and photocatalytic oxidation 

rates is generally linear (demeestere el al., 2012) while the oxidation rate is dependent 

upon the type of chemical pollutant.  The intermediates formed are also dependent on 

the intensity.  For example, Zhao and Yang (2003) demonstrated by using the 

germicidal lamps at a higher intensity, in higher oxidation rates and formation of more 

intermediates were obtained as compared to lower intensities using black lamps. 

 

Flow rate (Q) 

As previously noted, an increase in air flow rate has a negative impact on NOx 

reduction efficiencies (Dylla et al., 2011).  The faster flow rate means less contact time 

for the photocatalytic reaction to occur, resulting in lower reduction efficiencies.  

Demeestere et al. (2008) showed that higher removal efficiencies and lower 

concentrations of toluene were obtained when toluene was exposed for longer periods 
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to a TiO2-based roof tiles.  Similarly, Sleiman et al. (2009) showed an increase in flow 

rate resulted in a decrease in the removal efficiency of toluene from 95% to 65%.  

This is due to an increase in flow rate which tends to decrease the residence time in 

the photocatalytic reactor, and an increase in concentration of pollutants which tends 

to increase the mass transfer rate and accumulation of final products (Ao et al., 2002; 

Zhao and Yang, 2003).  

 

Temperature  

  Compared to other environmental parameters, temperature is the less 

investigated as many of the experiments were performed at ambient temperature.   

Several studies reported benzene was showed no significant degradation effect of 

temperature ranging between 15 and 70◦C but the generation of CO2 was found to 

increase slightly (Hager and Bauer, 1999; Belver et al., 2003).  In another study, 

Hager and Bauer (1999) reported maximum toluene degradation at 25 °C from the 

temperatures ranging between 5 and 75◦C and they also recommend that the low 

number of adsorbed water molecules at high temperatures probably affected the 

generation of hydroxyl radicals which may be the cause for the decline in 

photocatalytic activity.  In agreement with these results, Belver et al. (2003) 

demonstrated that toluene conversion decreased slightly with an increase in 

temperature from 70 to 140◦C.  

 

2.2.5 Data gaps and research questions about TiO2 photocatalytic     

Oxidation 

 

Although there are many evidence on the pollutant removal of photocatalytic 

building and construction materials, there are several observations and problems when 

these materials are used in full-scale applications.  Since the TiO2 is immobilized in 

the construction material, there may be significant loss in photocatalytic activity since 

a majority of the TiO2 is embedded in the concrete.  Rachel et al. (2002) maintained 

that TiO2 slurries in decomposing 3-nitrobenzenesulfonic in water were showed more 

efficient than TiO2-cement modifies and TiO2 - red bricks, moreover; Rachel et al. 

(2002) meditated that the catalytic activity loss probably comes from the presence of 
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ionic species which would be reduction of active surface.  However, mechanisms 

leading to catalyst deactivation are not fully clear therefore a better understanding and 

knowledge of catalyst lifetime and of parameters affecting catalyst deactivation is of 

major importance for the applicability of heterogeneous photocatalytic technology.  

A second issue is the production of intermediates and by products and the 

accumulation of inert materials such as clays and soot with time on the surface which 

will decrease the photoactivity by blocking reactive sites (Ameen and Raupp, 1999; 

Martra et al., 1999; Cao et al., 2000; Blount and Falconer, 2002; Einaga et al., 2002).  

In addition, generation of undesirable intermediates with worst environmental and 

health impact than the starting pollutants may strongly affect the application of 

photocatalyst-based materials.  

Another issue that needs further investigation is the impact of aging of the 

TiO2-based materials.  Lackhoff et al. (2003) stated that the carbonation of the TiO2-

modified cements with time (over several months) led to changes in cement surface 

structure and a noticeable loss in catalytic efficiency.  A report published by the Hong 

Kong Environmental Protection Department claimed that the photocatalytic activity 

of TiO2-coated paving blocks decreased significantly after 4 months of exposure in a 

downtown area due to the accumulation of contaminants on the block surface (Yu, 

2003).  

 A serious weakness in the literature available is that  research work are not 

standardized, i.e.,  many articles cannot be compared to each other, due to differences 

in  environmental parameters such as light, amount of catalyst, reactor set-up, reaction 

time, and type and concentration of pollutants used .  Another question that needs to 

be addressed is the fate and transport of the photocatalytic materials used which are 

usually added as nano-materials and the possible health effects of nano-materials and 

the byproducts formed in incomplete photo-oxidation (Yu, 2003).  The particle size of 

nanoscopic photocatalysts is so small that it is possible for the materials to enter the 

human body triggering adverse health effects (Wang et al., 2008). 
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2.3  Air Purification of Nitrogen Oxide (NOx) 

2.3.1  Background, qualification and toxicity  

NOx is a group of highly reactive gases consisting of nitric oxide (NO) and 

nitrogen dioxide (NO2).  These compounds originate from combustion of fuels at high 

temperatures (EPA, 2010).  NOx is one of the six major pollutants listed as a criteria 

pollutant in the ambient air quality standards required by the Clean Air Act 1970 (Tao 

et al., 2010).   A negative effect associated with NOx emissions is the formation of 

troposphere ozone when NOx reacts with volatile organic compounds in the presence 

of sunlight.   Ozone can cause adverse effects such as damage to lung tissue and 

reduction in lung function in susceptible populations.  The American Lung 

Association estimates that nearly 50 % of United States inhabitants live in areas that 

are not ozone compliance (EPA, 2010). 

 Numerous studies have shown that short term exposures to high 

concentrations of NOx can have negative effects on human health (McConnel et al., 

2010).  Mobile sources contribute up to 58% of NOx pollution emitted in the United 

States (EPA, 2010).  The concentration of NOx increases in areas with high traffic 

density (Jimenez et al.,1999). Compared to ambient concentrations, NOx 

concentrations for in-vehicle microenvironment and near-roadway microenvironment 

are 200 –300% higher and 30–100% higher, respectively (EPA, 2011).   

2.3.2  Current work to eliminate nitrogen oxide (NOx) 

 Recently, several studies have been presented to illustrate the use of self-

cleaning concrete for air remediation purposes to degrade nitrogen oxides (NOx) and 

volatile organic compounds (VOCs).   Due to the increase in use of photocatalytic 

materials for air purification,  a Japanese standard was issued for the evaluation of the 

air purification materials for the removal of nitric oxide  in 2004 (JIS R 1701-1, 

2004).  A few years later, the International Organization for Standardization (ISO) 

published its own version of a test to evaluate the performance of photocatalytic 

materials (ISO 22197-1, 2007).  Some earlier studies include work done by Murata et 

al. (1999) on TiO2 concrete blocks air purifying pavement for NOx degradation and 

http://en.wikipedia.org/wiki/Volatile_organic_compounds
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work by Cassar (2004) on the combined use of TiO2 and cement for the  synergetic 

effects of  photocatalytic reducation of NOx.  

Since the publication of the Japanese and ISO standard test, experiments have 

been conducted to answer several of the issues facing the use of TiO2-based materials 

for air pollution mitigation.  Poon and Cheung (2007) evaluated paving blocks made 

by waste materials and TiO2 for NO removal  and found that an optimum mix design  

consisting of recycled glass, sand, cement and 10% TiO2 removed maximum at 4 

mg/hr/m2 of NO removal.  Husken et al. (2007) carried out a comparative analysis of 

different photocatalytic cementitious products under laboratory conditions and found 

that NOx degradation varied significantly, with some cementitious products achieving 

40% degradation whereas others showed almost no effect.  Poon et al. (2007) and 

Chen et al. (2008) observed that incorporating recycled glass cullets in cementitious 

paving blocks gave rise to enhanced photocatalytic activity towards NO degradation.  

This enhanced effect can be explained by the increased porosity and light 

transmittance effects.  The same authors also reported that long curing ages may lead 

to a significant loss of photocatalytic activity - probably due to a change in the 

internal microstructure of concrete caused by cement hydration (Chen et al., 2008).  

Similarly, Husken et al. (2009) recently found that the extent of substrate roughness 

of the photocatalytic concrete helped in NOx degradation.  

Recent research has shown that a thin surface coating of TiO2 is able to 

remove a significant portion of NO from the atmosphere when placed as close as 

possible to the source of pollution (Dylla et al., 2010).  Likewise, Hassan et al. (2010) 

evaluated three application methods of TiO2 onto concrete pavement.  These methods 

were an ultrathin cementitious- based coating, a water-based TiO2 solution and a 

sprinkling of TiO2 to the fresh concrete surface before hardening.  TiO2 incorporated 

into an ultrathin cementitious surface layer was more durable than the other two 

methods while maintaining high environmental removal efficiencies.  These studies, 

however, did not fully address the effectiveness of the photocatalytic compounds, and 

the reaction mechanisms and rates.  The fate of reaction products such as whether all 

the NOx was oxidized by photocatalytic concrete,  whether the end products 

precipitate on the concrete, and the effect of  NO2 and NO mixtures on degradation 
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rates have not been evaluated.  If nitrate salts were produced, will they be removed 

from concrete surface by rain and significantly pollute surface water. 

Some studies have reported lower photocatalytic activity of TiO2 when used in 

immobilized form rather than in suspended form (Rachel et al., 2002) due to lower 

availability of TiO2 reactive surfaces and possible inhibition of other compounds.  

Lackhoff et al. (2003) reported a decreased in atrazine degradation and attributed the 

decrease to cement carbonation over time.  

 TiO2-modified cement is already commercially available (Cassar and Pepe, 

1998) and has been successfully used in several European constructions and 

monuments, such as the Roman Catholic Church “Dives in Misericordia” in Rome, 

Italy and the “Cité des Arts et de la Musique” palace in Chambéry, France.  The 

utilization of TiO2-modified cement was studied in Europe under the Photocatalytic 

Innovative Covering Applications for Depollution Assessment (PICADA) program.  

Several projects were carried out to verify the effectiveness of the photocatalytic 

cementitious materials under ambient conditions.  For example, a street in the city 

centre of Bergamo, Italy was re-paved with photocatalytic concrete paving blocks to  

a total surface area of about 12,000 m2.  Monitoring equipment placed at two 

locations (one at the area where photocatalytic blocks were laid and the other at the 

extension of the road paved by normal bituminous concrete as a reference) showed an 

average NOx abatement of 45% during the day from 9 am to 5 pm (Guerrini et al., 

2007).  A similar project was carried out in Antwerp, Belgium, where 10,000 m2 of 

photocatalytic pavement blocks were laid on a parking lane.  Measurements at the site 

indicated a decrease in NOx peak concentrations due to the presence of the 

photocatalytic materials.  The photocatalytic activities of these blocks was retested in 

the laboratory after they were in service for two years and were found to show no 

reduction in NOx removal efficiency after the paving blocks were washed with 

distilled water (Beeldens, 2007).  In Guerville, France, three artificial street canyons 

were built to evaluate the depollution performance of walls covered with 

photocatalytic concrete.  Continuous monitoring of NOx concentrations in the TiO2-

treated street canyon showed NOx concentrations that were 36.7–82.0% lower than 

the concentrations observed in the reference canyons (Maggos et al., 2008). 
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In summary, the self-cleaning and depollution properties of TiO2-based 

cementatious materials have been evaluated in laboratory-scale (Strini et al., 2005; 

Poon and Cheung, 2007; Demeestere et al., 2008; Ruot et al., 2009) and at full-scale 

applications(Cassar et al., 2007; Maggos et al., 2008) with the main focus on the 

decontamination  of NOx (Poon and Cheung, 2007; Husken et al., 2009; Ballari et al., 

2011).  Table 2-2 provides a summary of NOx change in the presence of various 

environmental parameters.  There are several studies that investigated the removal of 

volatile organic compounds (VOCs), such as BTEX (Strini et al., 2005; Demeestere et 

al., 2008; Ramirez et al., 2010). However, only a few studies paid attention to the 

direct impact of the cementitious materials on the final photocatalytic performances 

(Chen and Poon, 2009) and the characteristics of the TiO2 on the surface that are 

responsible for the photocatalytic reaction ( Ruot et al., 2009) 

 
2.4  Air purification of Volatile Organic Compounds (VOCs) 

 2.4.1.  Background, qualification and toxicity  

VOCs are classified by the World Health Organization (WHO) as all organic 

compounds excluding pesticides with boiling points in the range of 50 to 260°C.  

VOCs are typically higher in indoor environments than in outdoor environments.  

However, outdoor air is considered a source for indoor VOC pollution.  Although the 

largest source of VOCs pollution is from building materials, motor vehicles are 

responsible for about 29% (Kuhns et al., 2004).  For example, aromatic hydrocarbons 

such as toluene, xylenes, ethylbenzene, trimethylbenzenes, and aliphatic hydrocarbons 

are found in gasoline and in incomplete combustion of gasoline (Wang et al., 2007).  

These petroleum hydrocarbons are the most common VOCs found in both indoor and 

outdoor environments (Ao et al., 2004).  

Among the many VOCs emitted from mobile sources, benzene, toluene, 

ethylbenzene and xylenes (BTEX) are of major concern and are in the list of 189 

hazardous air pollutants in the 1990 Clean Air Act.  Benzene is a human carcinogen 

(Category A) whereas ethylbenzene has been classified by the International Agency 

for Research on Cancer (IARC) as a Group 2B carcinogen.  Not much is known about 

http://en.wikipedia.org/wiki/International_Agency_for_Research_on_Cancer
http://en.wikipedia.org/wiki/International_Agency_for_Research_on_Cancer
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Table 2.2 Impact of environmental parameters on the rate of NOx degradation   

(adapted from Joel Sikkema, 2012) 

Parameter Change Change in  NOx 
Degradation  Rate References 

Irradiance 
  

Husken et al., 2009; Ballari et 
al., 2011; Beeldens et al., 2011 

Relative humidity 
(RH) 

 

 

 

 

Husken et al., 2009; Dylla et al., 
2010; Ballari et al., 2011; Dylla 

et al., 2011 

NOx 
concentration 

 

 

 

 

Husken et al., 2009; Ballari et 
al., 2010; Ballari et al., 2011; 

Beeldens et al., 2011 

NOx / NO2 ratio 
 

 

 

 Dylla et al., 2011 

Flow rate through 
reactor 

 

 

 

 

Husken et al., 2009; Ballari et 
al., 2010; Dylla et al., 2010; 

Dylla et al., 2011 
Air way path 

height 
  Ballari et al., 2010 

TiO2 

concentration 

  

/ 

Husken et al., 2009; 
Dylla et al., 2010 

 

TiO2 specific 
surface area 

  
Husken et al., 2009 

Pavement 
specific surface 

area 

  

/  

Husken et al., 2009; 
Dylla et al., 2010; Dylla et al., 

2011 

Homogeneity of 
TiO2 distribution 

  
Husken et al., 2009 

Color pigment   Husken et al., 2009 

Pavement age  
 Beeldens et al., 2011 

Roadway 
contaminants 

  Dylla et al., 2011 

- Inconclusive 
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The reaction of BTEX with TiO2-based concrete pavements. Currently,            

a standard test for testing VOCs has not been developed yet (Anibal et al., 2010).  

2.4.2.  Current work to eliminate VOCs 

Several researchers reported that the reaction efficiency of BTEX was 

dependent on the amount of BTEX adsorbed on the TiO2 catalyst (Hennezel and Ollis, 

1997; Ao et al., 2002).  Strini et al., (2005) examined the degradation of BTEX 

mixture gas by using TiO2 powder mixed with white Portland cement and found that 

the percent removal ranged between 5% and 54% and o-xylene was showed the 

highest photocatalytic activity, followed by ethylbenzene, toluene and benzene.  Strini 

and co-workers observed that the degradation rate of BTEX of pure TiO2 was 3-10 

times greater than a cementitious sample with 3% TiO2 and the degradation rates were 

dependent on the concentrations of the BTEX and the intensity.  However, the 

photocatalytic activity was not dependent on the TiO2 content.  Demeestere et al. 

(2008) studied toluene degradation by using TiO2 as a photocatalyst in building 

materials.  Their experiments were focused on the effect of pollutant concentration, 

air relative humidity and gas flow rate.  They found that at high inlet concentration 

and relative humidity was presented low toluene removal efficiency, whereas better 

performance was noticed with increased residence time in the reactor. Under the 

proper conditions percent removal were reached up 78 ± 2%.  Anibal et al. (2010) 

studied eight cementitious materials enriched with TiO2 by using two different 

coating methods which were dip-coating and sol–gel and found that high percent 

removal (up to 86%) were obtained with the dip-coated samples.  Figure 2.3 presents 

the probable change in the degradation rate of BTEX for a change in the 

environmental parameter. 

Since there are not many studies on the reaction of VOCs with the TiO2-based 

cementitious materials, there are many questions regarding the reaction rates of 

various VOCs, the reaction mechanisms, the fate of reaction products especially 

potentially hazardous chemicals, and the effect of environmental parameters.  Outdoor 

testings of these cementitious materials are limited where conditions such as blinding 

due to inert materials may affect the degradation efficiency of these materials.   
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Table 2.3 Impact of environmental parameters on the degradation rate of BTEX  
 

Parameter Change Change in BTEX 
Degradation  Rate References 

VOCs 
concentration 

  Einaga et al.,1999; Ku et al., 
2001; Ao et al., 2002; 

Demeestere et al., 2008; 
Sleiman et al., 2009 

Relative 
humidity (RH) 

 

 

 

 

/   

 

Hager and Bauer,1999; 
Einaga et al., 1999, 2001, 
2002; Maira et al., 2001b; 

Kim and Hong, 2002; Belver 
et al., 2003; Jeong et al., 

2005 

Light Intensity 
(I) 

 

 

 

 
Fujishima et al., 2000; Zhao 

and Yang, 2003; Strini et 
al.,2005 

Flow rate (Q) 
(↑ velocity and ↓ 
residence time) 

 

 

 

 

Ao et al., 2002; Zhao and 
Yang 2003; Demeestere et 

al.,2008; Sleiman et al., 
2009 

Temperature 
 

 

 

 

Hager and Bauer ,1999; 
Belver et al., 2003 

Ageing of slab 
  Lackhoff et al., 2003; Yu, 

2012 

Regeneration of 
intermediates 

  

 

Ameen and Raupp, 1999; 
Martra et al.,1999; Cao et 

al., 2000; Blount and 
Falconer, 2002; Einaga et 

al., 2002 
Oxygen 

concentration 
 

 Demeestere et al.,2007 

Roadway 
contaminants 

 
 - 

 

- Inconclusive or no data available 
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Development of a model to describe the mass transport and photocatalytic 

reaction of various pollutants under various realistic scenarios will be helpful in 

predicting the effectiveness of the cementitious materials for other conditions that 

were not tested in the laboratory.  In addition, the effectiveness of TiO2 in colored 

matrix should be evaluated if the materials are to be used widely as building 

materials.  
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CHAPTER III 
METHODOLOGY 

 
3.1  Materials and Apparatus 

 3.1.1  Chemicals 

- 10 ppmv of benzene, toluene, ethylbenzene and xylenes each provided 

by Praxair, Inc. (Danbury, CT, USA) 

-  Polymethyl methacrylate (PMMA) 

- Cement (Type I) and cement (TiO2-based) (Buzzi Unicem, Selma, MO, 
USA) 

-  Fine aggregate (ASTM C778 standard sand, U.S. Silica Co., 

Bridgeton, MO, USA) 

-  Nanopure water 

 

3.1.2  Instruments and laboratory-ware 

 

-  Black Light Blue (BLB) fluorescent lamps 15 W UV-A illumination 

(15BLB, Ultra-Violet Products, LLC, Tokyo, Japan) 

 - UV radiometer (VLX-3W, Vilber Lourmet, Eberhardzell, Germany) 

 -  Mass flow controller (GFC MFC, Aalborg, Orangeburg, NY, USA) 

 -  Traceable hygrometer (Cole-Parmer, Vernon Hills, IL, USA)  

 -  Gastight sample lock syringe (Hamilton, Reno, NV, USA) 

- Gas Chromatography with Photo Ionization Detector (Tracor 540 

GC/PID, Madrid,   Spain) 

-  Headspace vials aluminum seal with septa and crimp (Restek, 

Bellefonte, PA, USA) 

 -  Oven 

- Gas washing bottle 

-  Miscellaneous laboratory glassware 
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Figure 3.1 Traceable hygrometer and UV radiometer 

 

 

 
 

Figure 3.2 Mass flow controller and Black Light Blue (BLB) fluorescent lamps 

15 W UV-A illumination 
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Figure 3.3 Headspace vials and aluminum seal with septa and Crimp 

3.2  Experimental Procedures 

  3.2.1  Preparation of photocatalytic concrete slabs 

Preparation of concrete slabs was based on the concrete mix design of the 

Missouri Department of Transportation (MoDOT).  Components of the concrete mix 

were cement (cement with TiO2 or Type I cement), fine aggregate (ASTM C778 

standard sand, U.S. Silica Co.) and water which were mixed in the following 

proportions: 624 kg/m3, 262 kg/m3 and 1412 kg/m3 respectively.  Given the small 

volume of the slabs prepared, the mix did not include coarse aggregate (Sikkema et 

al., 2012).  Concrete slabs prepared measured 152 mm × 152 mm × 25 mm (23,104 

mm2 exposed area).  The slabs were made by using a two-lift procedure with equal 

volumes of a Type I cement for the bottom lift followed by the photocatalytic-active 

cement for the top lift. TiO2 was mixed into the cement rather than a surface coating 

as abrasion from the tires of the motor vehicles would rapidly remove the TiO2 from 

the surface of the cement.   

Immediately after pouring the first and second lift, a damp cloth and plastic 

sheet were laid over the slab surface for a 24-h period while the slab cured.  The slabs 

were then removed from their forms and cured for 14 days in 100% relative humidity.  

The concrete slab was then cleaned by immersing in nanopure water for 2 hours and 

then dried for 20 hours in an oven at 60o C.  The concrete slab was then wrapped in 

aluminum foil and sealed in a plastic bag until use.  The procedure used in the 
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preparation of the slab was similar to that employed by the International Organization 

for Standardization (ISO) Standard 22197-1:2007(E).  Figure 3.1 shows a typical 

concrete slab used for testing while Figure 3.2 shows the procedure to make the 

concrete slab.  

 

 

Figure 3.4 Typical concrete slab for laboratory- scale testing 

 

 

Figure 3.5 Method for making TiO2 -based concrete slabs 

 

 



28 
 

3.2.2 Laboratory setup 

     Experiments were conducted in a laboratory-scale photoreactor which was 

built and adapted according to ISO 22197-1: Test Method for Air Purification 

Performance of Semiconducting Photocatalytic Materials - Part 1: Removal of Nitric 

Oxide (Sikkema et al., 2012).  The schematic diagram of the experiment apparatus is 

shown in Figure 3.3. The photoreactor was made of polymethyl methacrylate material 

(PMMA) and its dimensions were 1.9 m long, 0.45 m wide and 0.68 m high.  A TiO2 

slab was placed in the photoreactor with an air gap of 5 mm between the concrete slab 

and a borosilicate glass window.  The photoreactor and its associated pipings were 

checked for air tightness before each test.  The experimental setup was operated in a 

continuous flow-through mode using house air and a tank containing 10 ppmv of each 

of the BTEX compounds in nitrogen gas (Praxair, Inc., Danbury, CT, USA).  Both 

house air and BTEX gas flow rates were carefully controlled using mass flow 

controllers (GFC MFC, Aalborg, Orangeburg, NY, USA).  Part or all of the house air 

was saturated with water using a gas washing bottle and then mixed with the BTEX 

gas to obtain various BTEX concentrations and relative humidity in the gas mixture.  

A traceable hygrometer (Cole-Parmer, Vernon Hills, IL, USA) was used to measure 

the relative humidity and temperature.  The BTEX gas then flowed over through a 

cross section with a width of 150 mm consisting of the concrete slab.  The space 

between the concrete slab and the borosilicate glass window was approximately 5mm.  

UV irradiation was provided by 15 W UV-A (black-light blue) fluorescent lamps 

(XX-15BLB, Ultra-Violet Products, LLC, Tokyo, Japan) at an irradiance intensity 

between 0.5 - 12 W/m2.  The UV irradiance was measured by an UV radiometer 

(VLX-3W, Vilber Lourmet, Eberhardzell, Germany). A gas sampling point was 

located after the photoreactor.  By using the by-pass mode (no air flow into the 

photoreactor), the inlet concentrations of five target pollutants (benzene, toluene, 

ethylbenzene and o-, m-, p-xylenes) were measured.  After determining the inlet 

concentration, the by-pass mode was switched over to the photoreactor mode where 

the air flowed over the concrete slab.  The photoreactor was operated in this mode for 

at least 10 minutes to reach steady state conditions before an air sample was collected 

from the sampling port to determine the amount of target pollutants removed.     
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Environment parameters studied include BTEX concentrations, relative 

humidity (RH), flow rate (Q), UV intensity (I), ageing of the slab and partially 

covering the slab by dirt taken from  a full-scale site).   The environmental parameters 

and their conditions used in the experiments are shown in Table 3.1. The experimental 

matrix is presented in Table 3.2.  

 

 

Figure 3.6 Schematic diagrams of experimental apparatus  

(adapted from Ballari et al., 2011) 
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Figure 3.7  Experiment setup in the laboratory at the Department of Civil, 
Construction and Environmental Engineering, Iowa State University, USA 

 

 

Figure 3.8 10 ppmv BTEX gas mixture for the experiment 
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Table 3.1 Environmental parameters used in the study 

Parameter Approximate Values Used 

Relative Humidity (%) 10, 25, 50, 70 

Flow rate (L/min) (Air velocity m/s) 1, 3, 5 (0.02, 0.07, 0.11) 

Intensity (w/m2) 5, 10, 12 

VOC concentrations 
Benzene, toluene, ethylbenzene and mixed 

isomers (o-,m-,p-Xylenes) 
1 ppmv for each VOC 

UV light source 
Blacklight blue fluorescent 

lamps 

 
Table 3.2 Experimental matrix for lab-scale photoreactor tests 
 

Change in 
Parameter 

Expt. 
Run 

BTEX 
Conc. 

(ppmv) 

Relative 
Humidity 

(%) 

Intensity 
(W/m2) 

Flow 
Rate 

(L/min) 

Pavement 
age 

(months) 

Relative 
Humidity 

1 1 10 10 3 0 
2 1 25 10 3 0 
3 1 50 10 3 0 
4 1 70 10 3 0 

UV   
Intensity 

5 1 50 5 3 0 
6 1 50 12 3 0 

Air flow 
rate 

7 1 50 10 1 0 
8 1 50 10 5 0 

Aging 
9 1 50 10 3 1 
10 1 50 10 3 3 
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3.2.3 Analytical method 

One mL of air sample was collected from the sampling port using a 1 mL 

gastight lock syringe (Hamilton, Reno, NV, USA) with a removable needle. The 

sample was directly injected into a Tracor 540 Gas Chromatograph with photo 

ionization detector (GC/PID) (see Figure 3.4). The GC was equipped with a 2 m 

column with an internal diameter 2 mm and packed with 1% SP1000 on Carbopack B 

60/80 mesh. Helium was used as a carrier gas with a flow rate of 40 mL/min. The 

initial GC oven temperature was set at 50 oC for 3 min, ramped to 220 oC at 8 oC/min, 

and held at this temperature to elute late peaks while the injection and detector port 

temperatures were kept constant at 175 oC and 250 oC, respectively. Peak areas were 

integrated using the EZ Chrom Elite Software. To evaluate the performance of TiO2-

based concrete on BTEX degradation, the mass removed per unit time per unit area of 

the slab were estimated.   

 

 
 

 
Figure 3.9 One mL syringe and Tracor 540 gas chromatograph 

 

3.2.4  Operational procedure 

 
The procedures for the operation of the photoreactor were as follows:  

1. A concrete slab was placed in the reactor cell.  

2. The quartz panel was cleaned with Windex and Kimwipes and was    

            carefully laid on the photoreactor over the slab by minimizing any    

            finger prints. 
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3. The quartz panel was then sealed to the photoreactor using plumber’s  

  putty.  

4. All valves and all connections to the mass flow controller and gas  

washing bottle were checked and set to bypass mode. 

5. The house air was turned on. 

6. The BTEX gas tank was turned on.   

7. The gases were adjusted using the mass flow controller to obtain the  

desired flow rate, concentration, and relative humidity. 

8. The gas was allowed to pass for 10 min. 

9. A 1 mL gas sample was taken from the sampling point and directly  

injected into GC-PID to measure the inlet concentration. 

10.  By closing and opening the required valves, the by-pass mode was  

switched to the photoreactor mode and the UV light source was turned  

on as showed in Fig. 3.7 

11. The gas was allowed to pass though the photoreactor for 10 min 

12. A 1 mL gas sample was taken from the sampling point and directly  

injected into the GC-PID to measure the outlet concentration after 

reacting with the slab. 

13. The UV light was turned off and valves opened and closed to switch to  

the bypass mode. 

14. The necessary valves, flow rates, humidity were then adjusted for the  

next experimental run.   

 
 

Figure 3.10 Experiment with the UV light source on 
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CHAPTER IV 
 

RESULT AND DISCUSSIONS 
 

4.1  Photocatalytic Degradation of BTEX  

 

 Calibration curves for each compound for the gas chromatograph are 

presented in Appendix A.  The concentrations obtained from the gas chromatograph 

were analyzed and reported as the mass of organic compound removed per unit time 

per unit surface area.  The exposed area used was 23,104 mm2.  In addition, the 

percent removed were also estimated.  The equations for estimating the mass removed 

per unit time per unit surface area and percent removal are presented in Appendix B.    

      Control experiments were conducted as follows: experiments with a concrete 

slab without TiO2 in the bypass and reaction mode (with UV light off) and 

experiments with a concrete slab with TiO2 with UV light on in the bypass and 

reaction mode. BTEX concentrations for the reaction mode were about the same as 

the BTEX concentrations in the bypass mode as shown in Fig.4.1.  Based on these 

control experiments, it can be concluded that adsorption to the surface of the concrete 

slab was minimal and photocatalytic oxidation was minimal when the UV light was 

not on.   

 

 
Figure 4.1 The Control experiment for non-TX active cement (no TiO2) 

 and non- UV light 
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4.2  Effect of relative humidity on BTEX Degradation 

Fig. 4.2 shows the mass removal per time per unit area [(mg/(hrm2)] of each 

BTEX compound in the presence of UV light source for four different RHs (10%, 

25%, 50% and 70%).  The flow rate was kept constant at 3 L/min and the UV 

intensity was 10 W/m2.  The RH used covered the typical ambient air humidity range.  

For each RH, the inlet BTEX concentration was measured in the bypass mode and 

then the air was passed over the concrete slab and the outlet BTEX concentrations 

measured.  As indicated in Fig. 4.2, the mass removal of toluene, ethylbenzene, m-

xylene and o, p-xylene increased with an increase in RH from 10% to 50%.  These 

findings of the current study are consistent with those previous studies such as Einaga 

et al. (1999 and 2002), Belver et al. (2003) and Jeong et al. (2005).  For example, 

Einaga et al. (2002) indicated that an increase in the RH increased the reaction rate of 

benzene and toluene.   

In this study, the mass removed per unit time per unit area was lower for a RH 

of 70% as compared to a RH of 50%.   For benzene, the percent removed at 25% RH 

experiment showed a slightly lower mass removed than the mass removed at10% RH.  

The difference may not be statistically significant.   Other than that the trend for 

benzene removal was similar to that of the other BTEX compounds.  It can be seen 

from the Fig.4.2 that the optimal RH for BTEX removal was at a RH of about 50%.  

If the RH is low (10%) or high (> 70%) RH, water vapor on the surface of the slab 

has a negative effect on removal of BTEX.  The presence of water on the surface 

produces hydroxyl radicals which in turn degrade the BTEX.  However, low RH 

would mean a lower coverage of water molecules on the surface and therefore would 

not generate sufficient hydroxyl radicals while a higher RH would result in the 

surface covered with water which would require the BTEX to dissolve into the water 

layer before they can react with the hydroxyl radicals.  This finding is in agreement 

with the findings of Sleiman et al. (2009) who showed that water forms one or more 

layers of water film which require the BTEX to dissolve into the water layer before 

they can react with the hydroxyl radicals. It is possible that the part of the mass 

removed could be due to adsorption rather than photocatalytic degradation.   
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Figure 4.2 Mass of BTEX removed for different relative humidities 
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The experimental procedure used did not allow the removal mechanisms to be 

differentiated.  However, the mass adsorbed may be assumed to be much lower than 

the mass degraded.  Overall, the interest in this study is to assess the total mass 

removed by the TiO2-based concrete slab. 

 

 
 

Figure 4.3 Bar chart of mass of BTEX removed for different relative humidities 

Figure 4.3 presents the mass removed for each BTEX compound for all four 

relative humidities together on one graph.  The results showed that o and p-xylene 

were more readily oxidized than the other BTEX compounds.  The order from the 

most difficult to oxidize to the most readily oxidized compounds was benzene > 

toluene > ethylbenzene > o and p-xylene.  This is in good agreement with the 

previous studies of  Strini et al. (2005) and  Christos et al. (2011).   For m-xylene, the 

results showed that a 50% RH was the most suitable relative humidity with a 

significantly higher photocatalytic oxidation reaction  as shown  in Fig. 4.3. 

It can be summarized from this set of experiment that a 50% RH was the 

optimum experimental conditions for the degradation of BTEX compounds in the air 

stream. 
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4.3 Effect of flow rate on BTEX degradation of BTEX 
 

The effects of flow rate on benzene and toluene degradation are presented in 

Fig. 4.4. The flow rates in the experiments were 1, 3 and 5 L/min while the RH was 

set at 50% and the intensity was at 10 W/m2. Based on the percent removal for 

benzene (Fig. 4.4 a and c), there was a trend of decreasing percent removal when the 

flow rate increased from 1 L/min to 5 L/min.  This was probably true as the residence 

time for BTEX compounds would be the lowest for a flow rate of 5 L/min and 

therefore provided less contact time and reaction time.  These findings are consistent 

with those of Sleiman et al. (2009) who found that an increase in flow rate decreased 

the removal efficiency of toluene from 95% to 65%. Similarly, Demeestere et al. 

(2008) reported that longer gas residence time for toluene exposed to TiO2 roof tiles 

resulted in a lower amount of toluene and a correspondingly increase in removal 

efficiencies.   

However, when the mass removed per unit time and per unit area was 

estimated (Fig. 4.4 b and d) the trend was opposite to that for percent removal with a 

gradual increase in mass removed when flow rate increased from 1 L/min to 5 L/min.  

This may be explained by the higher mass per unit time for a higher flow rate and 

therefore even though the percent removal decreased with higher flow rate, the total 

mass removed was higher due to the higher mass input per unit time into the 

photoreactor. 
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Figure 4.4 Percent removal and mass removed for benzene (a and c)  

and toluene (b and d) for different flow rates 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Fig. 4.5 presents  all the data on the effect of flow rate on BTEX degradation 

in one graph.  The results showed that o and p-xylene were the most readily to 

oxidize. The order from the most difficult to oxidize to the most readily oxidized 

compounds was toluene > benzene > ethylbenzene > o and p-xylene.   

It can be summarized from this set of experiment that the mass degraded was a 

function of the flow rate with of m-xylenes. 

 

 

Figure 4.5 Mass removed of BTEX for different flow rate 
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4.4 Effect of UV intensity on BTEX degradation  
 

The third set of analyses examined the impact of UV intensity. As shown in 

Fig. 4.6, the mass removals per time per unit area for each BTEX compound exposed 

to three different UV intensities (5, 10 and 12 W/m2) at a RH of 50% and a flow rate 

of 3 L/min are presented. As expected, the mass removed per unit time per unit area 

increased with the UV intensity. For the intensity between 5 and 10 W/m2, the mass 

removed for m-xylene and o, p- xylene were shown to increase slightly while the 

mass removed for benzene, toluene and ethylbenzene showed a slight decrease.   

It can be assumed that light intensity between 5 and 10 W/m2 had similar 

effect but gave better mass removal when the light intensity was more than doubled at 

12 W/m2. The results of this work is agreement with that of Zhao and Yang (2003) 

and Strini et al. (2005) where an increase in light intensity resulted in an increase in  

the degradation rate of TCE and o-xylene. The decrease in m-xylene removal at 

intensity of 12 W/m2 may be due to the UV adsorption spectrum which may not be 

favorable in adsorbing UV light and therefore negatively impacting its degradation 

(Johnson el al., 2005). 
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Figure 4.6 Mass of BTEX removed for different intensities 
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Figure 4.7 presents the data for the mass removed for different UV irradiance 

in one graph.  The results showed that o and p-xylene were the most readily to 

oxidize. The order of degradation from the most difficult to oxidize to the most 

readily oxidized compounds was toluene > benzene > ethylbenzene > o and p-xylene 

which corresponded with a previous study by Strini et al. (2005).  

In the case of m-xylene, the mass removed was higher with an UV intensity of 

10 W/m² than  for 12 W/m2 .  

 

 
 

Figure 4.7 overall Mass removed of BTEX for different intensities 
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4.5 Effect of aging on BTEX degradation  

The last set of experimental runs examined the impact of the slab at different 

times after they were prepared. The mass removal per time per unit area of each 

BTEX compound in the presence of UV light source for a freshly prepared slab 

(laboratory slabs), the slab one month later and the slab three months. It was presented 

in Fig. 4.8.  The RH was set at 50%, flow rate at 3 L/min and the intensity at 10 

W/m2. From this data, the mass removed for ethylbenzene and m-xylene were found 

to decrease with the age of the slab while toluene and o, p-xylene showed a decrease 

from time zero to 1 month but then showed a slight increase for the slab in the third 

month.  Based on the results, one can presume that the mass removed for one month 

and three months may be the same in comparison to the initial mass removed when 

the slab was freshly prepared. For benzene, the mass removed showed a slight 

increase for the 1 month slab but the mass removed for the 3 month slab was the same 

as the freshly prepared slab. It seemed possible that there may be a loss of active sites 

on surface area over time due to the generation of reaction by-products or 

intermediates such as calcium carbonate which may blind the catalyst surface (Blanco 

et al., 1996; Ollis, 2000 ) or the pore at catalyst surface may be blocked by the fouling 

(Zhao and Yang, 2003). 

 

 

 

 

 



45 
 

 
 

 

 

Figure 4.8 Mass of BTEX removed for slab at different times after preparati 
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CHAPTER V 

 

CONCLUSIONS AND RECOMMEDATIONS 
 

5.1 Conclusions 

 

This study provides an account of and the reasons for the widespread use of 

TiO2 –based concrete in mitigating outdoor air pollution such as benzene, toluene, 

ethylbenzene, m-xylene and o-, p-xylene. The study investigated the effects of relative 

humidity, flow rate, intensity and slab aging on BTEX degradation. Within the 

conditions of the present study, the main conclusions of the study are as follows: 

 

   The optimum RH condition was found to be about 50% with lower mass 

removed for low RH (10%) and high RH (70%).   

   Low flow rate over the slab would increase the contact time which in turn 

resulted in higher percent removal of BTEX.  However, on a mass basis, 

the mass removed was lower for low flow rates.   

   Mass removed for all BTEX compounds except for m-xylene were found 

to increase with an increase in UV intensity to 12 W/m2.   

   Percent removal of BTEX decrease with time and it seemed possible that 

the lost of removal may be due to loss of active site in the mortar slab.  

 

 The evidence presented in this study suggests that addition of TiO2 

photocatalyst to the concrete for road pavements can be used in mitigating air 

pollution and purifying motor vehicle pollution. This study may not answer all the 

questions raised by interested parties, but provides the first steps in building a body of 

knowledge that can be used to compare this technology with other innovative 

pollution purification technologies and traditional purification technologies. Actual 

applications will need to consider the highly variable environmental conditions and 

other effects such as rain and dust which may impact the effectiveness of the TiO2-

based cementitious materials. 
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5.2 Recommendations for Future Work 

-  There are other parameters that needs further study and may have an 

effect on the effectiveness of TiO2- based pavement.  These parameters 

include pollutant concentration, % of TiO2 in slab, macro-structural 

characterization (porosity, surface roughness), TiO2 coating method, 

TiO2-modified cement type, and concentration of oxygen in the air. 

-   There is a need to understand the mechanisms and factors which lead 

to catalyst deactivation.  

-  Modelling of catalytic reactor performance should be develped for a 

pilot-scale practice or field work. 

-  There is a need in bridging the gap between artificial lab-scale and real 

environment conditions. 

- Research should be conducted on the regeneration techniques that may 

be applied in-situ or in parallel configured reactor modules. 

-  Another research challenge is identification of reaction products and 

understanding of degradation pathways. 
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A.1 Calibration curve for Relative humidity set 
 

Table A.1 Calibration curve data of Benzene humidity set 
 

Sample Concentration (ppm) Area 
1 0.25 1936 
2 0.5 3840 
3 1.0 9440 

 
y = 0.000110067x, R2 = 0.969596 

 

 

 
 

Figure A.1 Calibration curve of Benzene for RH set 
 

 
 
Table A.2 Calibration curve data of Toluene humidity set 
 

Sample Concentration (ppmv) Area 
1 0.25 2472 
2 0.5 4466 
3 1.0 12693 

 

y = 8.30483* 10-5 * X, R2 = 0.925952 
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Figure A.2 Calibration curve of Toluene for RH set 
 

Table A.3 Calibration curve data of Ethylbenzene humidity set 
 

Sample Concentration (ppm) Area 
1 0.25 2893 
2 0.5 5870 
3 1.0 15336 

 
y = 6.83199* 10-5 * X, R2 = 0.949207 

 

 
 

Figure A.3 Calibration curve of Ethylbenzene for RH set 
 
 

Table A.4 Calibration curve data of m-Xylene humidity set 
 

Sample Concentration (ppm) Area 
1 0.25 1764 
2 0.5 2749 
3 1.0 5144 

 
y = 0.000187439x, R2 = 0.972506 



62 
 

 

 
 

Figure A.4 Calibration curve of m-Xylene for RH set 
 

Table A.5 Calibration curve data of o and p-Xylene humidity set 
 

Sample Concentration (ppm) Area 
1 0.25 2622 
2 0.5 4562 
3 1.0 10066 

 
y = 0.000201572x, R2 = 0.993036 

 

 

 
 

Figure A.5 Calibration curve of o and p-Xylene for RH set 
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A.2 Calibration curve for flow rate set 
 

Table A.6 Calibration curve data of Benzene for flow rate set 
 

Sample Concentration (ppm) Area 
1 0.25 1457 
2 0.5 4749 
3 1.0 7150 

 
 

y = 0.000130461x, R2 = 0.923197 

 

 

 
 

Figure A.6 Calibration curve of o and Benzene for flow rate set 
 
 

Table A.7 Calibration curve data of Toluene for flow rate set 
 

Sample Concentration (ppm) Area 
1 0.25 2078 
2 0.5 7593 
3 1.0 10033 

 
y = 8.82294* 10-5 * X, R2 = 0.840585 
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Figure A.7 Calibration curve of o and Toluene for flow rate set 
 

 
Table A.8 Calibration curve data of Ethylbenzene for flow rate set 

 
Sample Concentration (ppm) Area 
1 0.25 2828 
2 0.5 10689 
3 1.0 12908 

 

y = 6.56336* 10-5 * X, R2 = 0.766447 

 

 

Figure A.8 Calibration curve of Ethylbenzene for flow rate set 
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Table A.9 Calibration curve data of m-Xylene for flow rate set 
 

Sample Concentration (ppm) Area 
1 0.25 1695 
2 0.5 4775 
3 1.0 5182 

 

y = 000152175x, R2 = 0.670415 

 

Figure A.9 Calibration curve of m-Xylene for flow rate set 
 

 
Table A.10 Calibration curve data of o and p-Xylene for flow rate set 

 
 

Sample Concentration (ppm) Area 
1 0.25 2168 
2 0.5 7557 
3 1.0 8414 

 
 

y = 000192068x, R2 = 0.692961 
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Figure A.10 Calibration curve of o and p-Xylene for flow rate set 
 
 

A.3 Calibration curve for Intensity and aging set 
 
Table A.11 Calibration curve data of Benzene for intensity and aging set  

 
Sample Concentration (ppm) Area 

1 0.25 2061 
2 0.5 4117 
3 1.0 7012 

 
 

y = 000136288x, R2 = 0.977188 

 

Figure A.11 Calibration curve of Benzene for flow rate set 
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Table A.12 Calibration curve data of Toluene for intensity and aging set  
 

 
Sample Concentration (ppm) Area 

1 0.25 3053 
2 0.5 5280 
3 1.0 10325 

 
 

y = 9.54645* 10-5 * X , R2 = 0.993348 

 

 

 

Figure A.12 Calibration curve of Toluene for intensity and aging set 
 

Table A.13 Calibration curve data of Ethylbenzene for intensity and aging set  
 
 

Sample Concentration (ppm) Area 
1 0.25 6629 
2 0.5 10522 
3 1.0 16285 

 
 

y = 5.52646* 10-5 * X, R2 = 0.896520 
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Figure A.13 Calibration curve of Ethylbenzene for intensity and aging set 

 
Table A.14 Calibration curve data of m-Xylene for intensity and aging set  

 
 
Sample Concentration (ppm) Area 

1 0.5 3351 
2 1.0 5998 

 
y = 0.000162556x , R2 = 0.979002 

 

 

 
 

Remark: Standard gas concentration 0.25 ppm was ignored due to it was an error 
 
 

Figure A.14 Calibration curve of m-Xylene for intensity and aging set   
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Table A.15 Calibration curve data of o and p-Xylene for intensity and aging set  
 

 
Sample Concentration (ppm) Area 

1 0.25 4581 
2 0.5 6286 
3 1.0 11089 

 
 

y = 0.000167631x, R2 = 0.918925 

 

 
 

Figure A.15 Calibration curve of o and p-Xylene for intensity and aging set 
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B.1 Mass removed and percent removal  
 

To evaluate the results, the mass removed per time per unit surface area 
[mg/(hrm2)] of each BTEX compound in the presence of UV light source was 
calculated as presented in Equations (1)  and (2) 

 
 

Flow rate (m3/hr)   x   Concentrations (mg/m3) =   mg/hr       (1) 
 

 

 = mg/(hrm2)          (2) 

 
 

To evaluate the BTEX percent removal, Equation (3) is used as follows:  
 

 
 

 Percent removal  =  (A0-At ) x 100%                    (3) 
                                     
 

 
Where;  Ao = Initial GC peak area of each BTEX compounds 

At = GC peak area of BTEX after passing the   

photoreactor 

 

 
 

 

A0 
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Figure B.1 Chromatogram for control experiment in the bypass mode without TiO2 

 

Figure B.2 Chromatogram for control experiment in the photoreactor mode without 
TiO2 
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Figure B.3 Chromatogram for control experiment in the bypass mode without UV 
source 

 

Figure B.4 Chromatogram for control experiment in the photoreator mode without 
UV source 
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Table B.1 control experiment for No-TiO2 and No-UV at Q=3 L/min,  

RH=10%, I=10 W/m2 

 
 

POLLUTANTS 

No-TiO2 

 

No-UV 

CONCENTR
ATION 

(mg/L) 
BY PASS 

CONCENTRA
TION 
(mg/L) 

PHOTOREAC
TOR 

CONCENTR
ATION 

(mg/L) 
BY PASS 

CONCENTR
ATION 
(mg/L) 

PHOTOREA
CTOR 

Benzene 0.773 0.768 0.931 0.926 

Toluene 0.571 0.568 0.721 0.716 

Ethylbenzene 0.395 0.392 0.491 0.485 

m-Xylene 0.412 0.407 0.414 0.411 

o and p-Xylene 0.765 0.758 1.083 1.075 

 
 
 

 
Figure B.5 Chromatogram of BTEX at Q=3 L/min, RH=10%, I=10 W/m2 in the 

bypass mode 
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Figure B.6 Chromatogram of BTEX at Q=3 L/min, RH=10%, I=10 W/m2 in the 
photoreactor mode 

 

Table B.2 Mass removed of BTEX at Q=3 L/min, RH=10%, I=10 W/m2 

 
 

POLLUTANTS 

Q=3 L/min, RH=10%, I=10 W/m2  
MASS 

REMOVED[mg/(hrm2)] 
CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 0.439 0.393 1.16 
Toluene 0.356 0.327 0.86 

Ethylbenzene 0.369 0.304 2.22 
m-Xylene 0.402 0.39 0.41 

o- and p-Xylene 0.678 0.615 2.15 
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Figure B.7 Chromatogram of BTEX at Q=3 L/min, RH=25%, I=10 W/m2 
 in the bypass mode 

 

Figure B.8 Chromatogram of BTEX at Q=3 L/min, RH=25%, I=10 W/m2 
 in the photoreactor mode 
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Table B.3 Mass removed of BTEX at Q=3 L/min, RH=25%, I=10 W/m2 

 
 

POLLUTANTS 

Q=3 L/min, RH=25%, I=10 W/m2  
MASS 

REMOVED[mg/(h
rm2)] 

CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 0.407 0.369 0.96 
Toluene 0.381 0.31 2.1 

Ethylbenzene 0.389 0.308 2.77 
m-Xylene 0.451 0.42 1.06 

o- and p-Xylene 0.77 0.649 4.13 
 

 

 

Figure B.9 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=10 W/m2 
 in the bypass mode 
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Figure B.10 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=10 W/m2  
in the photoreactor mode 

 

Table B.4 Mass removed of BTEX at Q=3 L/min, RH=50%, I=10 W/m2 

 
 

POLLUTANT
S 

Q=3 L/min, RH=50%, I=10 W/m2  
MASS 

REMOVED[mg/(h
rm2)] 

CONCENTRATION 
(mg/L) 

BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 
Benzene 0.47 0.371 2.49 
Toluene 0.426 0.345 2.4 

Ethylbenzene 0.419 0.328 3.11 
m-Xylene 0.623 0.446 6.05 

o and p-Xylene 0.866 0.645 7.56 
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Figure B.11 Chromatogram of BTEX at Q=3 L/min, RH=70%, I=10 W/m2  
in the bypass mode 

 

Figure B.12 Chromatogram of BTEX at Q=3 L/min, RH=70%, I=10 W/m2 
 in the photoreactor mode 
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Table B.5 Mass removed of BTEX at Q=3 L/min, RH=70%, I=10 W/m2 

 
 

POLLUTANTS 

Q=3 L/min, RH=50%, I=10 W/m2  
MASS 

REMOVED 
[mg/(hrm2)] 

CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 0.405 0.372 0.78 
Toluene 0.355 0.314 1.21 

Ethylbenzene 0.345 0.310 1.19 
m-Xylene 0.380 0.379 0.03 

o and p-Xylene 0.737 0.598 4.74 
 

 

 

Figure B.13 Chromatogram of BTEX at Q=1 L/min, RH=50%, I=10 W/m2 
in the bypass mode 
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Figure B.14 Chromatogram of BTEX at Q=1 L/min, RH=50%, I=10 W/m2 in the 
photoreactor mode 

 

Table B.6 Mass removed of BTEX at Q=1 L/min, RH=50%, I=10 W/m2 

 
 

POLLUTANT
S 

Q=1 L/min, RH=50%, I=10 W/m2  
MASS 

REMOVED[mg/(h
rm2)] 

CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 0.423 0.160 2.2 
Toluene 0.270 0.118 1.5 

Ethylbenzene 0.255 0.108 1.67 
m-Xylene 0.303 0.158 1.65 

o- and p-Xylene 0.561 0.202 4.09 
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Figure B.15 Chromatogram of BTEX at Q=5 L/min, RH=50%, I=10 W/m2  
in the bypass mode 

 

Figure B.16 Chromatogram of BTEX at Q=5 L/min, RH=50%, I=10 W/m2 
 in the photoreactor mode 
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Table B.7 Mass removed of BTEX at Q=5 L/min, RH=50%, I=10 W/m2 

 
 

POLLUTANT
S 

Q=5 L/min, RH=50%, I=10 W/m2  
MASS 

REMOVED[mg/(h
rm2)] 

CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 0.578 0.434 6.03 
Toluene 0.420 0.350 3.46 

Ethylbenzene 0.396 0.281 6.55 
m-Xylene 0.363 0.282 4.61 

o and p-Xylene 0.772 0.545 12.9 
 

 

 

 
 

Figure B.17 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=5 W/m2  
in the bypass mode 
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Figure B.18 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=5 W/m2 
 in the photoreactor mode 

 

Table B.8 Mass removed of BTEX at Q=3 L/min, RH=50%, I=5 W/m2 

 
 

POLLUTANTS 

Q=3 L/min, RH=50%, I=5 W/m2  
MASS 

REMOVED[mg/(h
rm2)] 

CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 0.917 0.754 4.09 
Toluene 0.758 0.623 4.00 

Ethylbenzene 0.502 0.401 3.45 
m-Xylene 0.522 0.374 5.05 

o and p-Xylene 0.944 0.795 5.09 
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Figure B.19 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=12 W/m2  
in the bypass mode 

 

Figure B.20 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=12 W/m2 
 in the photoreactor mode 
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Table B.9 Mass removed of BTEX at Q=5 L/min, RH=50%, I=12 W/m2 

 
 

POLLUTANTS 

Q=3 L/min, RH=50%, I=12 W/m2  
MASS 

REMOVED[mg/(h
rm2)] 

CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 1.019 0.811 5.22 
Toluene 0.804 0.570 6.93 

Ethylbenzene 0.511 0.382 4.40 
m-Xylene 0.534 0.381 5.22 

o and p-Xylene 0.979 0.744 8.02 
 

 

Figure B.21 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=10 W/m2  
in the bypass mode for 1 month aging 
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Figure B.22 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=10 W/m2 
 in the photoreactor mode for 1 month aging 

 

Table B.10 Mass removed of BTEX at Q=3 L/min, RH=50%, I=10 W/m2 and aging 1 
month  
 

 
 

POLLUTANTS 

Q=3 L/min, RH=50%, I=10 W/m2 

Aging 1 month 
 

MASS 
REMOVED[mg/(h

rm2)] 
CONCENTRATION 

(mg/L) 
BY PASS 

CONCENTRATION 
(mg/L) 

PHOTOREACTOR 

Benzene 0.902 0.774 3.22 
Toluene 0.678 0.659 0.56 

Ethylbenzene 0.482 0.402 2.73 
m-Xylene 0.507 0.398 3.72 

o and p-Xylene 0.924 0.849 2.56 
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Figure B.23 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=10 W/m2  
in the bypass mode for 3 months aging 

 

Figure B.24 Chromatogram of BTEX at Q=3 L/min, RH=50%, I=10 W/m2  
in the photoreactor mode for 3 months aging 
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Table B.11 Mass removed of BTEX at Q=3 L/min, RH=50%, I=10 W/m2 and aging 3 
month  

 
 

POLLUTANTS 

Q=3 L/min, RH=50%, I=10 W/m2 

Aging 3 month 
 

MASS 
REMOVED[mg/(h

rm2)] 
CONCENTRATION 

(mg/L) 

BY PASS 

CONCENTRATION 

(mg/L) 
PHOTOREACTOR 

Benzene 0.948 0.850 2.46 
Toluene 0.732 0.693 1.16 

Ethylbenzene 0.511 0.457 1.84 
m-Xylene 0.497 0.452 1.54 

o and p-Xylene 1.042 0.95 3.14 
 
 
 
Table B.12 Percent removal of Benzene at different flow rate 

 
 

FLOW RATE 

Benzene 
RH = 50%, I = 10 W/m2 

 
PERCENT 

REMOVAL (%) GC Peak Area 

BY PASS 

GC Peak Area 

PHOTOREACTOR 

Q = 1 L/min 3245 1226 66.22 
Q = 3 L/min 6794 5111 24.77 
Q = 5 L/min 4429 3325 24.93 

 

 

Table B.13 Percent removal of Toluene at different flow rate 

 
 

FLOW RATE 

TOLUENE 
RH = 50%, I = 10 W/m2 

 
PERCENT 

REMOVAL (%) GC Peak Area 
BY PASS 

GC Peak Area 
PHOTOREACTOR 

Q = 1 L/min 3064 1341 56.23 
Q = 3 L/min 7952 5721 28.06 
Q = 5 L/min 4757 3969 16.57 
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