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CHAPTER I 

INTRODUCTION 

 

The field of chemistry is currently facing major changes. In recent year, 

computer power has increased dramatically. This development, together with other 

factors, provides a new opportunity but also challenge to chemists in research and 

development. The research and development of the complex chemical system with the 

application of statistical and mathematical techniques have been confined mainly to 

analytical studies as Modern analytical chemistry. This modern analytical chemistry has 

long been recognized mainly as a measurement science. In its development, new 

methodologies developed in mathematical, computer, and biological sciences as well as 

other fields are also employed to provide in-depth and broad-range analysis. 

 

Previously, the main problem confronting analytical scientists was how to obtain 

data. At the time, measurements were labor-intensive, tedious, time-consuming, and 

expensive, with low-sensitivity, and manual recording. There were also problems of 

preparing materials, lack of proper techniques, as well as inefficient equipment and 

technical support. Chemists also had to extract as much information as possible about 

the structure, composition, and other properties of the system under investigation, which 

was an insurmountable task in many cases. After an analytical measurement, the data 

collected are often treated by different signal processing techniques. The aim is to obtain 

higher quality or “true” data and to extract maximum amount of meaningful information, 

although this is not easy to accomplish. For instance, in spectroscopic and 

chromatographic study, two experimental data were carried out on the same sample 

mixture. The two peaks acquired usually differed from each other to a certain extent 

because of the variations in instrumentation, experimental conditions, and other factors. 

In this condition, if the pure peak areas or peak positions are available, the 

concentrations of these compounds can also be determined with high level of accuracy. 

If the overlapping peaks that arise from different component mixtures, the determined 

concentrations of these components will be erroneous. Statistical methods can also be 

applied to help evaluating the results and to calculate the level of confidence or 
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identifying concentrations of the components. These data manipulation are very 

important in preparing a reliable report for an analytical test. Data treatment and data 

interpretation on, for instance, the spectroscopic and chromatographic studies is a part of 

an interdisciplinary known as chemometrics. 

 

The term chemometrics was introduced by Svate Wold and Bruce R. Kowalski in 

the early 1970s. Since then, Chemometrics is one of those subjects that use mathematical 

and statistical methods to handle, interpret, and predict chemical data. Chemometrics has 

been developing and is now widely applied to different fields of chemistry, especially 

modern analytical chemistry. The powerful methodologies have opened new vision for 

chemists and provided useful solutions for many chemical problems. Self-modeling 

curve resolution (SMCR) [1] has proved to be one of the most potent techniques in the 

chemometric world. There are more than 20 different self-modeling curve resolution 

methods or variations [2] which have been reported in the chemical literature. Nearly all 

of these techniques were originally developed and applied to estimate pure spectra and 

concentration profiles form mixture spectra.  

 

1.1   Definition of Self-Modeling Curve Resolution (SMCR) 

 The history of SMCR techniques stretches back to 1960. The starting point of 

SMCR lay in the recognition of the fact that if each component in a mixture has a 

different spectrum and corresponding concentration profile. The matrix rank of data 

matrix has a very good range of only one-component correspondence to the number of 

chemical components in the system. The SMCR technique consists of a family of 

chemometric methods that utilize a certain mathematical decomposition to resolve the 

two-way signals from instrumentally unresolved multi-component mixtures into factors 

for single species. As the terminology “self-modeling” implied, the SMCR, in principle, 

does not require a priori of any specific information concerning the data to resolve the 

pure variables. The only premises are a certain bilinear model for the data and some 

generic knowledge about the pure variable, such as non-negativity, unimodality and 

closure as natural constraint. In common practice, these premises are naturally satisfied 

for two-way data obtained from multivariate measurements on mixtures with varying 
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compositions. The SMCR provides a useful tool for exploring multi-component 

phenomena in complex chemical systems. 

 

1.2 Principles of SMCR 

 The SMCR methods basically treat the spectra as a data matrix (D) consisting of            

r rows of wavelength (nm) or spectral channels and c column of samples. 

 

 

                                        D        =  

 

 

The row and column headings of the matrix are called designee. The symbol dij 

represents the data point associated with the ith row and jth column of the matrix.  

 

In this research, the absorbance data obeys the Beer’s law; therefore, the factor can be 

interpreted chemically. The two-way data matrix obtained from multivariate 

spectrometric or chromatographic measurements on a set of mixtures of varying 

compositions can be represented by the bilinear model. It is assumed that each point in 

the data matrix must be a linear sum of product terms. The number of terms in the sum, 

n, is called the absorbing components. The dij can be expressed as: 

 

 

 

where εik and ckj are called row factors as absorptivity and column factors as 

concentration of each component, eij is called noise of data matrix respectively. 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ncnr,nr,2nr,1

nc2,2,221

nc1,1,211

d ...  d d
              

d ... d d
d ...  d d

 

designeecolumn 

MMM

(1.1) 

(1.2) ij

n

k
kjikij ecd += ∑

=1
ε



 4

 For bilinear data modeled by equation 1.2, the noises of data matrix are very low 

compared with significant factors. The noises of data matrix can be eliminated by using 

static methods. The data matrix can be decomposed into two matrices. 

          D = A(absorptivity)   .   C(concentration)  

where 

 

 

     A      =                                                                C    =      

 

 

 In this case, the spectral measurements all have non-negative values. It is known 

that if the norm of A and C cannot be uniquely determined, then one can prescribe a 

certain scale constraint for the pure spectral variables or the pure concentration variables.  

 

 The basic principle of SMCR is to seek a bilinear model that gives the best fit, in 

the sense of least squares or weighted least squares, to the two-way data D. In other 

words, SMCR estimates pure variables, C and A that minimize the following error 

criterion : 

E = || D - AC || 2 

 

 The most commonly used error criterion is the squared difference between D and 

AC, though some SMCR methods use weighted [3] or normalized squared errors [4]. 

One notices that minimization of equation (1.4) over A and C can not guarantee a 

unique solution to the pure variables. Fortunately, in chemical practice some generic 

knowledge concerning pure variables is available and the evolving behavior of pure 

variables can be effectively exploited via local rank analysis, which, optimistically, may 

confine the feasible solution to a desirably small region. Under such circumstances, 

SMCR techniques are expected to generate solutions well qualified for practical use. 
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1.3  Objective of this research 

The objective of this research is to develop the SMCR program based on SMCR 

techniques for resolving and applying it to solve the real data to obtain the 

concentrations and pure absorptivity of components in multicomponent mixtures. 

  

1.4  Scope of this research 

In this research, the program, namely SMCR, version 1.0 was developed. The 

program was written in MATLAB language using MATLAB complier program version 

6.5 in personal computer. The efficiency and validation of the program were tested by 

resolving the UV/VIS absorption spectra for the acid-base equilibria and also the 

formation of metal-ligand complex formation. After validation, the program was used in 

the chemical experiments such as UV/VIS spectra of metal-ligand complexation system. 

In addition, the program was also applied to chromatography data to show the generality 

of the technique and our developed program. The program was designed to be 

interactive, easy-to-use, and user-friendly. Thus, Graphic user interface (GUI) was 

implemented and user manual is provided. 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER II 

THEORETICAL CONSIDERATION 

 

 This chapter mentions methodologies of the self-modeling curve resolutions 

(SMCR) techniques with focusing on spectroscopic and chromatographic problems.  

 

2.1 Outline of Self-Modeling Curve resolution 

 In terms of the uniqueness of the solution, two-way resolution techniques for 

SMCR can be classified into two groups; unique resolution methodologies and rational 

resolution methodologies. Evolving factor analysis (EFA) [5], Window factor analysis 

(WFA) [6], Subwindow factor analysis (SFA) [7] belong to the first group. Whereas 

Orthogonal projection analysis (OPA) [8], Simple-to-use interactive self-modeling 

mixture analysis (SIMPLISMA) [9], Alternating least squares (ALS) [10] belong to the 

second group. The unique resolution methodologies try to find a unique resolution in 

which the factors for single species are uniquely defined according to the mathematical 

principles involved. If the mathematical principles are compatible with the chemical or 

physical model for the data, the unique solution is generally consistent with the true 

profiles. A characteristic feature of the unique resolution techniques is the exploitation 

of information in local feature regions such as selective regions or zero-concentration 

regions. These feature regions can generally be identified with the aid of the local rank 

analysis. In principle, the motivation of search for feature regions is always a certain 

theorem concerning the resolution uniqueness. The drawback of the unique resolution 

techniques is the difficulty to find the feature regions which can provided enough 

accuracy with local rank analysis and the solutions obtained turn out to be, to some 

degree, dependent upon the experience of the data analysts. 

 

 The rational resolution methodologies aim at finding a rational resolution in 

which the factors for single species do not violate the generic prior knowledge such as 

non-negativity, unimodality and so on. Rational resolution may produce a set of feasible 

solutions and the accuracy of the solutions depends on the correlation or colinearity 

among the pure profiles underlying the two-way data. Nevertheless, the user-friendly 
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implementation of the rational resolution methods has made it a common practice in 

real-world chemical applications. Actually, in situations where the correlation among the 

pure profiles is not very severe, rational resolution is expected to yield solutions which 

can approximate the true profiles as well. The above approaches for rational resolution 

can be distinguished from each other either in the way to obtain the starting estimate of 

pure variables or in the optimization algorithm to iteratively improve the estimate. A 

good starting estimate can give a refined resolution while an efficient optimization 

algorithm may show fast convergence. The methods described above are grouped as 

given in Figure 2.1  

 

 

Figure 2.1 SMCR techniques for the determination of the number of compounds 

                        presented in the multicomponent system : Orthogonal Projection 

  Approach (OPA),  SIMPLe-to-use Interactive Self-modeling Mixture 

   Analysis approach (SIMPLISMA), Singular Value Evolving Profile 

  (SVEP), Fixed Size Window Evolving Factor Analysis (FSW EFA),  

  Eigenstructure Tracking Analysis (ETA), Heuristic Evolving Latent  

  Projection approach (HELP), Evolving Principled components innovation  

  Analysis (EPCIA), and Iterative Target Transformation Factor Analysis  

  Approach (ITTFA). 
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2.2 Self-modeling curve resolution programming 

 Self-modeling curve resolution (SMCR) techniques involves four main steps; 

preparation, selectivity, optimization and prediction. Figure 2.2 shows the flow chart of 

these steps. Details of each step are provided in the subsection. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Block diagram of the main steps in the SMCR technique. 

 

2.2.1   Preparation   

 The objective of the preparation step is to obtain a data matrix into which yields 

best situation matrix for self-modeling curve resolution analysis. The kinds of 

information sought from a data analysis should carefully be designed before applying 

self-modeling curve resolution analysis. The design of data matrix is the necessary step 

because it makes experimental data easily or suitable to analyte with the program. The 

design matrix may consist of a series of experiments performed under different 

conditions, e.g. a reaction at differing pHs, temperatures, and concentrations.  

Concentration and Absorptivity profiles

Optimization with  
Least-squares method 

Number of components 

Data matrix

Data

Preparation 

Selectivity or Estimation of chemical ranks 

Optimization 

Prediction 
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A data matrix D with the rank (nr x nc) where the nr refers to number of row 

elements, and nc refers to number of column element. This matrix could be represent as  

 

 
 
                                         D      =                                                                         
 
 
 

Where dij is the element of data matrix. In many cases, the dij is spectroscopic 

signal such as absorbance where row designee are different wavelength and column 

designees are other variables such as pH, time, etc. To be able to resolve the data matrix, 

it must possess the bilinear property, which means that it can be decomposed into the 

product of the concentration profiles (C) and pure component spectra (A). The two-way 

data matrix obtained from multivariate spectroscopic measurements on a set of mixtures 

of compositions can be represented by the bilinear model and thus can be resolved. 

 

2.2.2 Estimation of chemical rank 

 Estimation of chemical rank is a key term in quantitative analysis. The measured 

intensity or level of a selective variable/measurement is due to one single analytical 

variable. The variable represents the reliable information on the analyze. In traditional 

chemistry, multicomponent samples are often purified chemically prior to further 

quantitative or qualitative analysis and selective measurements that provide reliable 

results for each analyze would then be obtained. Here, we attempt to show how selective 

information of an analyze can be recognized without the need of purification in certain 

instrument profiles using the following methods: 

- Orthogonal Projection Approach (OPA) [11] 

- SIMPLe-to-use Interactive Self-modeling Mixture Analysis approach 

(SIMPLISMA) [11] 

- Evolving Factor Analysis (EFA) [12] 
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2.2.2.1 Orthogonal Projection Approach (OPA)  

 OPA is based on Gram-Schmidt orthogonalisation, and on assumption that the 

purest spectra in the data matrix are commonly more dissimilar than the corresponding 

mixture spectra. The objective of OPA method is to determine the number of 

components present in the mixture and their corresponding spectra. The dissimilarity, Xij, 

is defined as the determinant of the dispersion matrix Yj. Each Yj contains spectrum dj 

plus reference spectra. Initially, the mean spectrum of D is considered as the reference 

spectrum in Yj referred to as dref. Therefore, initially Yj is a matrix (2 x n) containing 

dref and dj.  

 

              Mean spectrum (d ref )    =                                     i  =  1,…,nr                   
 
 

 Dispersion matrix (Yj)     =          [ dref   dj ]            j  =  1,…,nc 

 

The dissimilarity, Xj, between dj and dref is given by  

 

Xj  =    det (YjYj
T)  =   ( ||dref|| . ||dj|| sin αj)2  for j = 1, …, nc 

 

where αj is the angle determined between dj and dref. T denoted transpose, and the 

double bars represent the Euclidean norm. 

 For simplification, the mean spectrum, and in general all reference spectra in Yj, 

are normalized to length equal to 1. The spectra dj could be also normalized to constant 

length, but it has been shown that the method is more sensitive [13] if both factors, i.e., 

the angle αj and length of the spectra, are considered in the dissimilarity measurement. 

The determinant of the matrix of YjYj
T in eq. 2.4 measures the area of the parallelogram 

determined by each spectrum dj and the mean spectrum dref. The higher the area, the 

higher the dissimilarity. The first spectrum selected, ds1, is the one most dissimilar with 

respect to the mean spectrum.  

nc

d
nc

j
ij∑

= 1 (2.2) 

(2.3) 

(2.4) 
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 In the next step, the spectrum selected, ds1, is taken as reference in Yj. Thus Yj is 

a matrix containing ds1 and dj. 

Dispersion matrix (Yj)     =          [ ds1   dj ]            j  =  1,…,nc 

 

 As before, the determinant of the matrix of YjYj
T (Yj is the dispersion matrix in 

eq. 2.5) is calculated, and the spectrum that yields the highest determinant, i.e., the most 

dissimilar with respect to ds1, is selected. The process is repeated, i.e. including the 

second spectrum selected, ds2 as a reference spectrum in Yj. Thus, Yj now contains three 

spectra, i.e., ds1, ds2, and dj and each dj is compared with respect to ds1 and ds2 by 

determining the determinant of the matrix of YjYj
T.  

Dispersion matrix (Yj)     =          [ ds1  ds2  dj ]            j  =  1,…,nc 

 

 At each iteration, the dissimilarity from determinant of the matrix YjYj
T is 

plotted as a function of variable. The procedure continues adding new reference spectra 

to Yj, until the dissimilarity plot represents only noise, see Figure 2.3.  

 

Figure 2.3  Dissimilarity plot of each spectrum with respect to (a) the mean spectrum,  

        (b) the spectrum at variable 46, and (c) the spectra at variables 46 and 63  

                   , this dissimilarity plot in (c) represents only noise. 

 
 A random profile of the dissimilarity plot indicates that the number of component 

and corresponding spectra have been selected in the iteration before. In the ideal 

(2.5) 

(2.6) 
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situation, the number of spectra selected is equal to the number of components 

presenting in the mixture.  

 
2.2.2.2 SIMPLe-to-use Interaction Self-modeling Mixture Analysis 

approach (SIMPLISMA)  

 SIMPLISMA is based on the selection of what are called pure variables or 

objects. A pure variable is a wave-length at which only one of the components in the 

system is absorbing. When the spectra of both minor and main compounds are very 

similar, normally pure wavelengths or pure variable could not be established. However 

in most cases, one can always find, at least the main or region belong to any pure 

components. SIMPLISMA consists of the following steps.  

In the first step, the standard deviation (σj) and mean (µj) of each spectrum are 

determined. The ratio between deviation and mean of each spectrum (p0j) is calculated 

as correlation factor. 

 

                                    σj    =                                           j = 1,…,nc 

 

and 

                                          µj    =                                     j = 1,…,nc 

 

when        

                                                                             j = 1,…,nc               

 

In the second step, spectrum dj (for j = 1,…, nc) is normalized by dividing each 

row element  (dij) in data matrix by the length of the row || dj ||.  

 

                                                                         i = 1, …, nr ; j = 1,…,nc         

 

( )
NR

ud
NR

i
jij∑

=

−
1

2

NR

d
NR

i
ij∑

=1

j

j

u
jp

σ
=0

j

ij
ij d

d
z =

(2.7) 

(2.8) 

(2.9) 

(2.10)
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where                                                                                    j = 1,…, nc       

 

and zij is the element of the normalized data matrix. 

 

The third step is the determination of the weight of each spectrum, Wj. The 

weight is defined as the determinant of the matrix of Yj
TYj containing the normalized 

spectra and each individual normalized spectrum zj.  

Wj            =      det (Yj
T.Yj)                j  = 1,…,nc 

 

 Initially, when no spectrum has been selected, each Yj contains only 

one column, zj, and the weight of each spectrum is equal to the square of the length of 

the normalized spectrum: 

Wj    =    det (Yj
T.Yj)    =    || zj

2 ||   j = 1, …, nc 

 

 When the first spectrum has been selected, zs1, each matrix Yj consists of two 

columns: zs1 and each individual spectrum zj, and the weight are equal to: 

Wj    =    det (Yj
T.Yj)    =    (|| zs1 || . || zj || . sinαj) 2   j = 1, …, nc 

 

 When two spectra have been selected, zs1 and zs2, each Yj consists of those two 

selected spectra and each individual spectrum zj, and so on. The determination of the 

weight is very similar to the determination of the dissimilarity in OPA. 

 At the last step, the purity pj of each spectrum is determined and plotted as a 

function of variable: 

                               pj = p0j. Wj                             j = 1,…,nc      

 

 SIMPLISMA is an interactive approach, i.e. the user can decide whether a 

spectrum ought to be selected or not. If the spectrum with the highest purity value 

corresponds to noise, which can be seen by looking at the standard deviation, then the 

( )22

1

2
jj

NR

i
ijj u.NRdd +== ∑

=

σ (2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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offset should be used in the denominator of eq. (2.16) and the procedure is repeated from 

the first step.  

                                                                                j = 1, …, nc           

 

           with      ju′     =    uj      +   (offset/100) * max(uj)                  j = 1, …,nc                            

                  

Otherwise, the spectrum with the highest purity value is selected and steps 3 and 4 are 

repeated. At each iteration, the weight (Wj) from determinant of the dispersion matrix is 

plotted as a function of variable shown in Figure 2.4. 

 

 

      Figure 2.4 Purity plot when (a) no spectrum has been selected, (b) the spectrum at 

             variable 63 has been selected, and (c) the spectra at variables 63 and 45  

                        have been selected. The purity plot in (c) represent only noises. 

 

A random profile of the purity plot and significantly decreasing of purity value indicate 

the number of component and corresponding spectra. The initial estimation in this 

algorithm is a number of components in the system and corresponding spectra. 

 

j

j

u
jp

′
=

σ
0 (2.16)
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2.2.2.3 Evolving Factor Analysis (EFA) 

 The core of EFA method is the determination of the chemical ranks of the system 

matrix under investigation. The analysis is performed in the forward that is the size of 

sub-matrices (Dj) linearly increases from the start (the first column of D) to the end (the 

last column of D) and backward that is the size of sub-matrices linearly increases from 

the end to the start. In general, the series of chemical rank analyses are performed using 

singular value decomposition (SVD): 

  

D      =     U     .      S     .     V                                  

         (nr x nc)         (nr x n)      (n x n)     (n x nc) 

 Where              U is formed by the significant eigenvectors of DDT. 

   V  is formed by the significant eigenvectors of DTD. 

   S  is a diagonal matrix, its element are the positive  

                                         square root of significant eigenvalue of  DDT or DTD. 

   n  is the number of components. 

The number of component is investigated by the change or the evolution of the 

rank of sub matrices Dj, formed by the first 1,2,…j,…,nc spectra of data matrix D. The 

appearance of each new component is associated with the increase of the rank by one. 

When a new absorbing species begins to appear, an eigenvalue evolves from the pool of 

error eigenvalues, increasing in value in relation to its contribution to the enlarged data 

set. This procedure is called “forward evolving factor analysis”. The increasing of the 

rank is detected by plotting between the log of the singular values (Sj) of the 

submatrices Dj and the variable (pH or time).  

 dj     =   [dj  …  dj+1] ,       j  =  1, 2, … , nc-1   (forward direction) 

 

 Here, Dj is the jth column of data matrix D. The EFA forward plots between a 

series of diagonal matrices Sj  and the retention time corresponding to the end rows of 

the sub-matrix Dj., where the appearance of every new factor is easily detected and thus 

(2.17)

(2.18)
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the total number of components is an obvious result of such an analysis is shown in 

Figure 2.5 

 
 

Figure 2.5  Upper part : the model concentration profiles used to generate the data. 

             Lower part : the EFA forward plot indicating the elution of a new   

                                             component around the variables 6, 12, 19 and 26. 

 

It is straightforward to carry out the backward calculation by repeating the EFA 

calculation from the opposite end. The backward calculation is performing a rank 

analysis of the sub matrices Dj formed by the last 1,2,…,j,…nc spectra. In this way, the 

information about the disappearance of the component is obtained. The procedure is 

called “Backward evolving factor analysis” The disappearance of the component is 

detected by plotting between the log of the singular values (Sj) of the sub matrices Di 

and the variable (pH or time).  

 Dj  = [Dnc  …  Dnc - j] ,  j  =  1, 2, … , nc-1   (backward direction) 

 Here, Di is the jth column of data matrix D 

 

 After the decomposition of all the sub-matrices in both the forward and backward 

directions, a rank map is obtained by plotting the logarithms of the singular values, 

contained in a series of diagonal matrices Sj, versus the retention time corresponding to 

(2.19)
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the end rows of the sub-matrix Di. The number of significant components is selected 

from the shape of plotting by increasing of logarithms of singular values in forward 

direction and decreasing of logarithms of singular values in backward direction when the 

dimension of Dj increase, whereas the noise level is not changing. The noise level plot is 

located in the baseline region. For example, this EFA plot is shown in Figure 2.4. This 

plot is expressed that there are four significant components in this system. 

 

 

Figure 2.4 Concentration window (-) for the jth component is defined by the rise of the 

jth eigenvalue in the forward EFA plot (-) and the (nc+1 – j)th eigenvalue in the 

backward EFA plot (…) . The noise level is plotted in the baseline region (a) 

  

 In the next part a noniterative calculation of the concentration profiles is 

proposed.   D can be decomposed either according to eq. 1.3 or according to the singular 

value decomposition eq 2.16 Combination of eq 1.3 and 2.16 ( AC = USV ) and 

multiplication from the right with the nonsingular matrix VT(AVT)-1 gives 

C  = U S (AVT)-1 = UR 

 R = S(AV) -1 is a nonorthogonal rotation or projection matrix using the 

zero – concentration region for the nth component to transform U matrix into initial 

concentration. 

(2.20)

(a) 
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2.2.3 Optimization 

 After the selection of the pure components and their corresponding spectra, the 

optimization method called Multivariate Curve resolution is performed. The multivariate 

curve resolution is an effective tool in self-modeling technique. The task of multivariate 

curve resolution is to determine the matrices of absorptivity (A) and concentration (C). 

Let’s begin with the selective pure spectra in the selection parts. Then A can be 

approximated by these row matrix and pure concentration of components can be 

obtained by the iterative procedure. 

     C   =  A+. D 

 

where A+ is the pseudoinverse of  A matrix. Then the new estimation of absorptivity is 

obtained by calculation as  

     A   =  D . C+ 

where C+ is the pseudoinverse of C matrix.  

 

 These procedures are repeated iteratively until the relative difference in the lack 

of fit values of two consecutive iterations is lower than a pre-defined convergence limit. 

To reduce the ambiguity of optimization three constraints are applied during 

optimization : (1) non-negativity- all concentration and absorptivity values must be 

positive, and (2) constant total concentration (closure) – the total concentrations of each 

solution must be equal or normalized, and (3) unimodality – the concentration of some 

species would be unimodality (have one maximum peak).  

                                         Lack of fit     =     

( )
( )∑∑

∑∑ −

i j
j,i

i j
j,ij,i

d

d̂d

2

2

  

 
       d i,j           the data point in the experiment data 
 
      j.id̂         the data point in the calculated data 
  

 

(2.21)

(2.22)

(2.23)
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2.2.4 Prediction 

 At the end of the algorithm, concentration profiles (C) and pure spectra (A) are 

stable, and the data matrix was resolved. The prediction provides the number of 

significant species in the system and corresponding concentration and absorptivity of 

each species. 

2.3  Fundamental Concept of Chemical Equilibria 

This section concerned the fundamental concept of chemical equilibria that 

underlying the problem of complex formation and acid-dissociation system. There are 

two particular equilibrium constants that are commonly given special names. When the 

Lewis acid is a proton ionization, the equilibrium constant for the reaction is known as 

the acid dissociation constant ( θ
aK  ) of the acid HA. 

                                    HA H+ + A-
Ka

 

                                      θ
aK       =      

]HA[f
]A[f]H[f

HA

AH
−

−
+

+   

 

The second special case is when the Lewis acid is a metal ion (M) and the Lewis base is 

a ligand (L).  

                                          M+   + L- ML
KML

 

                                      θ
MLK       =      

]L[f]M[f
]ML[f

LM

ML
−+   

 

The equilibrium constant ( θ
MLK ) is known as the formation constant of the complex 

(ML). The activity coefficient, if  , is general dreary and difficult to measure. They also 

depend very significantly on the nature and concentrations of the other species that 

present in solution. To avoid this problem, the background of ionic strength in 

electrolyte is used to maintain the activity coefficients effectively constant. It can 

incorporate the if  terms into  θ
aK   or  θ

MLK   and obtain the general forms as 

 

(2.24)

(2.25)
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                                                 aK       =      
]HA[

]A][H[ −+

 

                                               MLK       =      
]L][M[

]ML[
−+   

Where K is known as stoichiometric equilibrium constants whereas   θK    is known as 

thermodynamic equilibrium constants. 

 

2.3.1 Acid-Base equilibria 

 Consider a system of k step acid dissociation denoted as HkA, the equilibria are 

established as follow. 

 

   

 

                                                                                                      
 

  

 

To express the distribution of each component, we introduce the concept of 

degree of formation, α, the mole ratio of one component with respect to all components. 

The mole ratio of component is expressed in the general form as 

]A[...]AH[]AH[
]A[

k
kk

k

k −−
−

−

+ +++
=

1
1α  

 

Substituting in equation (2.29)  with (2.28)  and then  rearranging it, we obtain 

the new general form of the mole ratio of component. 

1

1

32

1

21

1

++++
= +−+++

kk

k

k

kk

Ka
]H[...

Ka...KaKa
]H[

Ka...KaKa
]H[

α  

HkA Hk-1A-    +      H+ ; ]AH[
]AH][H[Ka

k

k
−

−
+

= 1
1

Hk-1A Hk-2A2-    +      H+    ;
]AH[

]AH][H[
Ka

k

k

1

2
2

2
−

−
−

+

=

HA(k-1)- Ak-    +      H+        ; ]HA[
]A][H[Ka )k(

k

k −−

−+

= 1

M M
(2.28)

(2.29)

(2.30)

(2.26)

(2.27)
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 Concentrations of all species can be determined in terms of αk, degree of 

dissociation of order k.  

[HA(k-1)-]   =   CO . α k+1 

where CO is the initial concentration of acid  
 
 

2.3.2 Metal-Ligand Complex Equilibria 

Equilibria of a system of p step formation of metal (M) and protonated ligand 

(HL) can be expressed by the equation 

 

 

                               

 

 

In many literatures, the concept of overall or cumulative stability constants, 

usually denoted by βi is employed. This is expressed by   

 

 

 

 

 

The general form of cumulative stability constants from equation (2.32) and (2.33) is 

             ypxp

zp)p(

p

p

i
ip ]HL[]M[

]H][ML[K...KKK
+

=

=== ∏ 21
1

β  

By the principle of mass balance and the assumption of mononuclear complex, we 

obtain 

]HL][M[
]H][ML[K +

+

=1

]HL][ML[
]H][ML[

K
+

= 2
2

M+     +      HL ML     +     H+

ML     +      HL ML2     +     H+

M M
MLp-1     +      HL MLp     +     H+

]HL][ML[
]H][ML[

K
p

p
p

1−

+

=

M

(x1) M     +     (y1) HL

(x2) M     +     (y2) HL

β1

β2

 ML(1)     +     (z1) H+

 ML(2)     +     (z2) H+

(xp) M     +     (yp) HL
βp

 ML(p)     +     (zp) H
+

(2.32)

(2.33)

(2.34)

(2.31)



 22

           ]ML[...]ML[]ML[]M[Mtot )p()()( ++++= 21  

zp
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pz

y

z

y
tot

]H[
]HL[...

]H[
]HL[

]H[
]HL[

M
]M[

+++ ++++
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βββ 2

2

21

1
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where Mtot is the total concentration of metal (M). The protonated ligand may exist in 

dynamic equilibrium with its conjugated acid and/or base. 

 

 

 

 

Thus, the mass balance of the ligand can be expressed as 
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p
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where Ltot is the total concentration of ligand. Substitute (2.35)  into (2.36), and applying 

the binary search for determining the concentration of HL. Consequently, evaluate the 

concentration of M, and substitute successively into (2.34) then obtain the general form 

of the mole ratio, α, of ML(p) 

]ML[...]ML[]ML[]M[
]ML[

)p()()(

)p(

p ++++
=+ 211α  

       
1

1

2

2
2

1

1
1 ++++

=

−+

−−

−−

−+

−

+

...
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]HL[
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]H[
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]H[

zzp
p

yyp

yyp
p
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β
β

β
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]LH[
]H][HL[Ka

2
1

+−

=H2L HL-     +      H+

HL- L2-     +      H+

]HL[
]H][L[Ka −

+−

=
2

2

(2.35)

(2.36)

(2.37)
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Concentration of all species can be determined in terms of α , degree of 

complexation of order p. 

[ML(p) ]    =     Mtot . αp+1 

where Mtot is the initial concentration of metal solution. 

(2.38)



CHAPTER III 

PROGRAM IMPLEMENTATION 

 

The SMCR program was developed with the MATLAB language. The main 

application of the program is to resolve absorbance spectra of multi-component mixtures 

into pure spectra and concentration profiles of each component. In addition, the program 

can also be further adapted to resolve data from the other applications. The program 

manual and example were given in the appendix. 

The program can be separated into four parts: 

3.1 Main routine 

3.2 Chemical rank analysis and spectral resolution 

3.3 Optimization.  

3.4 Summary of the requirements for input and default values. 

3.5 Summary of the output 

 

 The SMCR program contains 16 subroutines for calculation and 10 subroutines 

for performing graphical user interface (GUI). They are listed in Table 3.1 and 3.2 

respectively. The main routine controls the program flow. All subroutines in the SMCR 

program were newly implemented except the nnls.m subroutine for non-negative 

constraint which was taken from the built-in source code of MATLAB. and ALS.m 

subroutine for alternating least square optimization which was modified from the 

original codes of Prof. Dr. Roma Tauler.  

 

3.1 Main routine 

 The main subroutine controls program flows and input-output of the program. It 

was designed to display input and output in the graphical user interface (GUI) manner. 

Following items are required for the input of the program. 
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- Spectra filename  (*.txt)  

- Range of variables (pH or monitoring time) 

- The chemical rank and corresponding initial guess using EFA, OPA and 

SIMPLISMA subroutines 

- Convergence criteria 

- Output direction 

 

Table 3.1 List of all subroutine files of the program SMCR version 1.0 

 

File Function 

Main subroutine 

SMCR.m 

Mprint_SMCR.m 

 

Main subroutine 

Subroutine for saving the results 

Chemical rank analysis 

OPA.m 

 - OPAnumber.m 

 - OPAconc.m 

 

Subroutine of OPA method  

Subroutine for determining the chemical rank based on OPA  method 

Subroutine for finding corresponding spectra of each components 

SIMPLISMA.m 

 - pure.m 

- SIMnumber.m 

- SIMconc.m 

Subroutine of SIMPLISMA method  

Subroutine for calculating purity value 

Subroutine for determining the chemical rank based on SIMPLISMA 

Subroutine for finding corresponding spectra of  

each components 

EFA.m Subprogram for determining the chemical rank and initial guess of 

concentration of each component based on EFA method. 
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Table 3.1 (continue) 

Optimization 

ALS.m 

 

  - nonneg.m 

  - nnls.m 

 - unimodal.m 

 - clos.m 

 

Subroutine for optimization based on multivariate curve 

resolution (MCR) 

Subroutine for nonnegative constraint 

Build-in subroutine for non-negative least square constraint 

Subroutine for unimodal constraint 

Subroutine for closure constraint 

Statistic testing 

res.m 

rms.m 

nrms.m 

 

Subroutine for calculating the norm of error 

Subroutine for calculating the root-mean square error 

Subroutine for calculating the normalized root-mean 

square error 

 

Table 3.2 List of all subroutine files of graphical user interface (GUI) of program 

SMCR version 1.0 

File Function 

GUI 

GUI_SMCR101 

GUI_SMCR_01 

GUI_SMCR_02 

GUI_SMCR_03 

GUI_SMCR_04 

GUI_SMCR_05 

 

Main GUI 

Subroutine for performing GUI of preparing data part 

Subroutine for performing GUI of chemical rank analysis  

Subroutine for performing GUI of convergence criteria 

Subroutine for performing GUI of optimization results 

Subroutine for performing GUI of saving results  
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The sequence step of input in main subroutine was shown in Figure 3.1.  

 

Figure 3.1 Flowchart of the main program of SMCR version 1.0. 

 

BEGIN 

Performing SMCR.m main subroutine 

- Input Spectral filename (*.txt) 

- Specify range of variables

Selection methods for determining chemical rank

OPA method 

OPA.m subroutine 

- OPAnumber.m 

- OPAconc.m 

SIMPLISMA method 

SIMPLISMA.m subroutine

- SIMnumber.m 

- SIMconc.m 

EFA method 

EFA.m subroutine 

Performing ALS.m subroutine 

- Input convergence criteria 

Constrained criteria 

- nnls.m  or  nonneg.m 

- unimod.m 

- closure.m 

Optimization 

Saving the results 

Mprint_SMCR.m subroutine 

Ending of SMCR.m main subroutine 
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3.2 Chemical rank analysis and spectral resolution 

 The part of chemical rank analysis was designed to perform the Evolving Factor 

Analysis (EFA), Orthogonal Projection Approach (OPA) and SIMPLe-to-use Interactive 

Self-modeling Mixture Analysis approach (SIMPLISMA) as describe in the section 

2.1.2. 

 For performing the SMCR program calls OPA.m. This subroutine further call 

OPAnumber.m and OPAconc.m subroutines to calculate dissimilarity value and select 

the number of components and corresponding spectra. The flowchart that shows 

algorithm for OPA.m subroutine is given in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Flowchart of the OPA.m subroutine 

YES

BEGIN

Performing OPA.m subroutine 

Performing OPAnumber.m subroutine 
      -  Calculate the dissimilarity (eq. 2.4) 

-  Selected the spectrum that give   
    highest dissimilarity value  

Dissimilarity plot is 
the noise plot 

Performing OPAconc.m subroutine 
      -    Selected number of components 

- Selected corresponding spectra as 
initial guess

Ending of OPA.m subroutine 

NO 
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Ending of SIMPLISMA.m subroutine

  For performing the SIMPLISMA, the SMCR program calls SIMPLISMA.m 

routine which further calls pure.m, SIMnumber.m and SIMconc.m subroutines to 

calculate purity value and select the number of components and corresponding spectra. 

The flowchart that shows algorithm for SIMPLISMA.m subroutine is given in figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Flowchart of the SIMPLISMA.m subroutine 

 

BEGIN

Performing SIMPLISMA.m subroutine 

Performing SIMnumber.m subroutine 
      -  Calculate the weight (eq. 2.12) 

Performing pure.m subroutine 
      -  Calculate the purity value (eq. 2.15) 

NO
Purity plot is  
the noise plot 

Performing SIMconc.m subroutine 
      -    Selected number of components 

- Selected corresponding spectra as 
initial guess

YES
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 For performing EFA, the SMCR program calls EFA.m routine to calculate 

eigenvalue by using singular value decomposition (SVD). The chemical rank is 

determined by plotting “forward evolving factor analysis plot” and “backward evolving 

factor analysis plot”. The flowchart that shows algorithm for EFA.m subroutine is given 

in figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Flowchart of the EFA.m subroutine. 

 

BEGIN

Ending of EFA.m subroutine 
3 S l fil (* )

-  Determine the number of 
component from eigenvalue plotting  
 
-  Use projection matrix to determine 
the initial guess eq.(2.20) 

Perform “forward evolving factor analysis” 

following eq. (2.18) 

DO 
j = 1 : nc 

loop Exit

Performing EFA.m subroutine 

Perform “backward evolving factor analysis”

following eq. (2.19) 
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3.3 Optimization with Multivariate Curve Resolution  

 The subprogram for optimization was designed to determine exact concentration 

profiles (C) and absorptivity profiles (A). The procedure of this part and the algorithm of 

ALS.m subroutine were shown in Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Flowchart of the ALS.m subroutine. 

 

BEGIN

Perform ALS.m subroutine and pre-check convergence criteria 

Calculate C = A+. D 

Apply non-negativity constraint  (nonneg.m or nnls.m) 
Apply unimodality constraint  (unimod.m) 
Apply closure constraint  (clos.m) 

(for concentration profile if request)

Calculate A = D . C+ 

Identify the  
termination 

criteria 

Apply non-negativity constraint (noneng.m or nnls.m) 
Apply unimodality constraint (unimod.m) 
Apply closure constraint (clos.m) 

(for absorptivity profile if request)

END

YES

NO
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3.4 Summary of Input Requirements and Default Values 

The following are input requirements and default values. 

i) Prepare the spectra as a textfile (*.txt) with ASCII format. The example of 

spectra shown in Appendix part. 

ii) Specify the range of variables ( Time and pH ) 

iii) Select an option include OPA, SIMPLISMA and EFA subroutines for setting 

the automatic or manual for initial guess. 

iv) Set convergence criteria for ALS subroutine. The default values are: 

maximum cycle = 150 and tolerance = 0.01  

v) Input the non-negativity, unimodality and closure constraint parameters  

vi)  Select an option for saving the results.  

 

3.5 Summary of output 

The following are output resolved from the SMCR program. 

i)   Elementary data were shown as spectra filename, dimension of spectra matrix,  

range of variables, and total concentration value. 

 ii)  Chemical rank analysis were shown as method for estimating chemical rank, 

and number of significant components. 

 iii)  Resolved concentration and absorptivity profiles would be an ASCEII format. 

  



CHAPTER IV 

VALIDATION OF PROGRAM 

 

 The mission of this chapter is to validate the SMCR program using spectral 

simulated data and experimental data. The program validation is an important part of the 

program development. The purposes of the validation are to test the confident of the 

program and to determine the efficiency and accuracy of the program. We applied two 

approaches for the program validation. The first approach is testing with the simulated 

system where all measured properties are known and the program is applied to find and 

desired properties. The second approach is testing with known experimental data and 

results from curve resolution are compared with previous study. If results are in good 

agreement or correspond to the presetting properties or reference under an acceptable 

error, then the program is validated. 

 

4.1 Validation Approach 

 In the program validation, there are two features to be examined, i.e. 

 (i) validation of program sensible logic. 

(ii) validation of the whole program.  

 

The first feature involves the calculations of matrix operation, the orthogonal 

projection, and the error indicators. Calculations and logic of all subprograms mentioned 

above were verified and tested individually.  

 

 For the second feature, simulated systems and experimental systems were used 

for the validation. Only whole program testing was reported here. Three simulated 

chemical application i.e. acid-base equilibria, metal-ligand complex equilibria and 

chromatographic separation system and two experimental data were used in the 

validation of the whole program. The detail of which was given in the section 4.2. 

 



 34

4.2 The simulated spectra 

The data matrix of simulated spectra for acid-base equilibria, metal-ligand 

complex equilibria and chromatographic separation system were generate by the 

multiplication of molar absorptivity matrix, denoted by A, and concentration matrix, 

denoted by C. 

                  D  =  AC 

Profiles of the simulated absorptivity were generated based on the Guassian distribution 

function, following equation was used: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= ∑

=

2

21

0

1
0 24

j,/

j,
n

j
j, W

xx
)ln(.exphε  

where n is the number of peak and h0,j , x0,j and W1/2,j are the intensity, position and 

width at half height of peak j respectively. Since we were interested in acid-base 

equilibria, metal-ligand complex equilibria and chromatographic separation systems, the 

simulated concentration profiles were generated separately for each problem.  

 

4.2.1) Simulated system of acid-base equilibria.  

In this case, a triprotic acid namely H3A is dissociated as 

H3A H2A-    +     H+

H2A- HA2-    +     H+

HA2- A3- + H+

Ka1 = 3.35 x 10-4

Ka2 = 2.20 x 10-6

Ka3 = 1.35 x 10-7

 

 

 where Ka1, Ka2 and Ka3 are the dissociation constants of the three step 

dissociation. Four components, represented as H3A, H2A-, HA2- and A3-, were formed as 

the dissociative species. The concentration matrix, C, was formulated by the equation 

2.29 and 2.30, where k = 3 i.e. 

 

 

(4.1) 

(4.2) 
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where [H3A], [H2A-], [HA2-], and  [A3-] are row vectors of the matrix C. 

  

 For the acid-base equilibria, twenty solutions of acid (H3A) with the constant 

total concentration of 0.1000 M and pH varying from 2 to 12 at intervals of 0.5 were 

simulated. The twenty solutions of H3A were recorded from 200 to 600 nm at intervals 

of 1 nm. The dimension of matrix is shown in Table 4.1. 

 

Table 4.1 Dimensions of each matrix for acid-base equilibria 

Cases of Equilibria  

Data matrix (D) 

 

Dimensions 

Matrix of  

Absorptivities (A) 

Dimensions 

Matrix of  

Concentration (C) 

Acid-base 

equilibria 

(400 x 21) (400 x 4) (4 x 21) 

 

 The molar absorptivity profiles, A, and the concentration profiles, C, were 

shown in Figure 4.1 and Figure 4.2, respectively.  

(4.3) 



 36

 

 

200 300 400 500 600
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8  H3A

 H2A
-

 HA2-

 A3-

M
ol

ar
 A

bs
or

pt
iv

ity

Wavelength (nm)

 

Figure 4.1 Simulated molar absorptivity spectra of 4 components for the acid-base 

             equilibria 
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Figure 4.2 Simulated concentration profiles of 4 components computed by equation 4.3 
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 It is well-known that experiment uncertainly does exist and blends into the pure 

data. Therefore, the error matrix (E) was added to the equation (4.1). Thus, 

D   =   AC   +   E 

 The elements in error matrix (Eij) are generated using the pseudo-random 

number. Since the standard deviation in absorbance was estimated to vary at 0.0005 

absorbance unit (approximately 5% of relative noise level of the mean absorbance value). 

Therefore, level of error of ±0.0005 was introduced and added to the simulated spectra. 

The simulated spectra of the acid-base system were shown in Figure 4.3. 
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Figure 4.3 Twenty simulated spectra of H3A dissociation with added ±0.0005 errors. 

 

 

 

 

 

(4.4)
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4.2.2) Simulated spectra of metal-ligand complex formation system.  

 For the simulated system, a metal (M2+) and protonated ligand (HL-) are in the 

equilibria as shown below. 

H2L HL- L2-

Ka1 = 4.467 x 10-4 Ka2 = 1.667 x 10-10

 

M2+    +     HL- M(HL)+
β1  = 7.59

M2+    +     HL- ML    +     H+β2  =  5.39 x 10-2

M2+    +   2 HL- ML2
2-    +    2 H+β3  =  3.37 x 10-5

 

 

Ka1 and Ka2 are the acid dissociation constants of the ligand, and β1, β2, and β3 are the 

overall stability constants of complexation. This chemical equilibria can be  

                                                           

expressed in matrix form                         M HL- H+ 

    
⎥
⎥
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⎢
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111
011
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The columns of the matrix represent M, HL- and H+ species which are Xp, Yp and Zp in 

eq. 2.36 respectively,  p refers to the step of metal ligand complexation. Here, we assign 

p = 3, and 4 components; M2+, M(HL)+, ML and ML2
2- were formed. The concentration 

matrix, C, were formulated by the equation 2.36 and 2.37. 
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where c1, c2, c3 and c4 are row vectors of the concentration matrix C. 

 For the metal-ligand complex, twenty solutions of metal (M2+) and ligand (HL-) 

with the constant total concentration of metal of 0.0020 M and ligand of 0.1000 M, and 

pH varying from 1 to 12 at 0.5 intervals were simulated. The spectra of the twenty 

solutions were generated from 200 to 600 nm at 1 nm intervals. The dimension of matrix 

is shown in Table 4.2. 

 

Table 4.2 Dimensions of each matrix for metal-ligand equilibria 

Cases of Equilibria  

Data matrix (D) 

 

Dimensions 

Matrix of  

Absorptivities (A) 

Dimensions 

Matrix of  

Concentration (C) 

Metal – ligand 

complexation 

(400 x 23) (400 x 4) (4 x 23) 

 

The molar absorptivity profiles, A, and the concentration profiles, C, were shown in 

Figure 4.4 and Figure 4.5, respectively.  

  

 

 

 

(4.5)



 40

 

200 300 400 500 600
-10

0

10

20

30

40

50

60

70

80

M
ol

ar
 A

bs
or

pt
iv

ity

Wavelength (nm)

 M2+

 M(HL)+

 ML
 ML2

2-

 
Figure 4.4 Simulated molar absorptivity spectra of 4 components for the metal-ligand 

        complexation equilibria 
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Figure 4.5 Simulated concentration profiles of 4 components of metal-ligand  

                            complexation system computed by equation 4.5 
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 According to equation (4.4), the elements of error matrix (Eij) are generated 

using the pseudo-random number. Similarly, the standard deviation in absorbance was 

estimated to vary at 0.0005 absorbance unit. Thus, level of error of ±0.0005 was 

introduced in the simulated spectrum. The simulated spectra of the metal-ligand 

complexation were shown in Figure 4.6. 
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Figure 4.6  Twenty simulated spectra of metal-ligand complexation with added ±0.0005  

                   errors 
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4.2.3) Simulated system of chromatographic separation.  

The chromatograms and spectra were generated with simulated three-component 

mixtures with overlapping chromatography peaks. In order to simulate the overlapping 

chromatograms, the following equation was adopted. 
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 Where h and t are, respectively, the intensity and the retention time of the 

simulated chromatogram. n is the component number and h0,j, t0,j and W1/2,j are the 

intensity, position and width at half height of component j, respectively. The resolution 

of the adjacent peaks is evaluated by  
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 The denominator in equation (4.7) is the average of the baseline widths, and the 

numerator is the separation of the peaks. The parameter Rs provides a quantitative 

measure of how much mixing of materials between two adjacent bands. At Rs = 0.5, the 

bands are quite mixed. At Rs = 1.0, the points of two triangles that approximate the 

peaks just touch where they meet at the baseline. At Rs = 1.5, the overlap between the 

actual peak is about 0.1% [14].  

 

 The chromatogram profile was generated at a chromatographic resolution of 0.40 

and equal peak heights for all three peaks at the elution time 23, 32, and 41 min., 

respectively. Elution time is varying from 1 to 61 min. at the intervals 1 min. These 

peaks were recorded form 220 to 320 nm at 1 nm intervals. The dimension of matrix is 

shown in Table 4.3 

(4.6)

(4.7)
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Table 4.3 Dimensions of each matrix for chromatographic separation system 

Cases   

Data matrix (D) 

 

Dimensions 

Matrix of  

Absorptivities (A) 

Dimensions 

Matrix of  

Concentration (C) 

Chromatography (101 x 60) (101 x 3) (3 x 60) 

 

The molar absorptivity profiles, A, and the concentration profiles, C, were shown in 

Figure 4.7 and Figure 4.8, respectively.  

 

220 240 260 280 300 320
0.00

0.02

0.04

0.06

0.08

0.10

 Component 1
 Component 2
 Component 3

M
oa

lr 
ab

so
rp

tiv
ity

Wavelength (nm)

 
Figure 4.7  Simulated molar absorptivity spectra of 3 components 
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     Figure 4.8 Simulated chromatogram of 3 components from chromatographic   

                       separation computed by equation (4.6) and (4.7). 

 

 According to equation (4.4), the elements of error matrix (Eij) are generated 

using the pseudo-random number. The standard deviation in absorbance was estimated 

to vary at 0.0005 absorbance unit. Thus, level of error of ±0.0005 was introduced in the 

simulated spectra. The simulated spectra of the chromatographic separation system were 

shown in Figure 4.9. 
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    Figure 4.9  The simulated spectra of chromatographic separation  with added ±0.0005  

                       errors 
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4.3 Experimental spectra 

 The SMCR program was tested with 2 UV-visible measurements. 

1. UV-vis spectra of a two-step reaction.  

2. UV-vis spectra of Copper-Glycine and Copper-Alanine Complexation.  

 

4.3.1 Spectra of two-step reaction [15] 

 The UV-visible spectra of the two-step consecutive reaction of 3-chlorophenyl-

hydarzonopropane dinitril (A), an uncouple of oxidative phosphorylation in cells, with 

2-meracaptoethanol (B) described by Bijlsma, Louwerse and Smilde [15] was used. The 

two chemicals form an intermediate adduct (C) which is then hydrolysed to                    

3-chlorophenyl hydrazonocyanoacetamide (D) and ethylene sulphide (E) as by product. 

A proposed reaction mechanism is given below. 

 

Reaction I  

 

                 

              

                     (A)                                                  (B) 

 

Reaction II 

 

   

 

                                                                    (D)                                                     (E) 

 

 

+ Intermediate 
(C) 

 +Intermediate 
(C) 
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 The spectra at several time intervals of spectroscopic active species A, C and D 

are monitored. The most important experimental conditions are given in Table 4.1. The 

3-chlorophenyl-hydarzonopropane dinitril (A) is the determinate reactant with the initial 

concentration of  51.71 µmol/L. 

 

Table 4.1 The important experimental conditions for two-step reaction system 

Reaction Temperature                                            25 0C 

Integration Time                                                    1 second   

Sampling Time                                                      10 seconds 

Total run time                                                        2700 seconds 

Wavelength range                                                 250 – 500 nm 

                                                                              200 – 600 nm 

Wavelength interval                                              1 nm 

Number of recorded spectra                                  271 

 

 The UV-vis spectra of this system were recorded using a Hewlett Packard 8453 

UV-vis spectrophotometer with diode array detection. A quartz cuvette with 1.00 cm. 

path length was used for obtaining spectra of the reaction mixture. A Pt-100 and a 

constant-temperature bath (Neslab) were used for the temperature control. The study was 

performed at two ranges of wavelength. i.e.250 – 500 nm., and 200 – 600 nm. The 

spectra were illustrated in the figure 4.10 and 4.11 respectively. 
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Figure 4.10 The UV-VIS spectra of the two-step reaction in wavelength 250 – 500 nm 

    at  intervals 1 nm and time varying from 0 to 2710 seconds at intervals         

    10 seconds. 
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Figure 4.11 The UV-VIS spectra of the two-step reaction in wavelength 200 – 600 nm 

    at  intervals 1 nm and time varying from 0 to 2710 seconds at intervals      

   10 seconds. 
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4.3.2 Spectra of Copper-Glycine and Copper-Alanine Complexation [16] 

 Glycine, H2NCH2COOH, and Alanine, H2NCH(CH3)COOH, are amino acids. 

Thus, they are a zwitter-ions molecules, containing an amino group and a carboxylic 

acid group, and exhibit properties of both acid and base. Both glycine and alanine are 

known to complex with copper (II) forming different species. The UV-visible spectra of 

the copper-glycine and copper-alanine complexation in the different pHs described by 

Arunchai Tungcharoenbumrungsuk [16] was used. In the literature, Darj and 

Malinowski [17] used the window factor analysis (WFA) to evaluate the visible spectra 

of Cu(II) and glycine complexes, and expressed the complex formation as; 

Cu2+    +      GlyH Cu(GlyH)2+

Cu2+    +      GlyH

Cu2+    +      2 (GlyH)

Cu(GlyH)+    +    H+

Cu(Gly)2
    +    2H+

 

From the experiment, 18 solutions of copper-glycine were prepared with pHs varying 

from 1 to 7. Each solution contained 0.002 M. copper (II) and 0.10 M glycine. The 

visible spectra solutions were recorded from 450 to 850 nm at 3-nm interval and shown 

in Figure 4.12, yielding (134 x 18) absorbance matrix.  
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Figure 4.12 Visible spectra of 18 copper-glycine solutions with pH ranging from 1 to 7. 
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 Analogous to the system of glycine, the complexe formation of Cu(II) and 

alanine ought to be; 

Cu2+    +      AlaH Cu(AlaH)2+

Cu2+    +      AlaH

Cu2+    +      2 (AlaH)

Cu(AlaH)+    +    H+

Cu(Ala)2
    +    2H+

 

 

  From the experiment, 13 solutions of copper-alanine were prepared with pHs 

varying from 1 to 7.  Each solution contained 0.002 M copper(II) and 0.10 M alanine 

The visible spectra solutions were recorded from 450 to 850 nm at 2-nm interval and 

shown in Figure 4.13, yielding (201 x 13) absorbance matrix.  
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Figure 4.13 Visible spectra of 13 copper-alanine solutions with pH ranging from 1 to 7. 

 

 



CHAPTER V 

RESULTS AND DISCUSSION 

 

5.1 Error estimation 

 The performance of the program and SMCR algorithm can be assessed by the 

error estimation. Followings are the error estimations used in the SMCR program. 
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where ijd  and ijd̂  are the respective experimental or simulated and predicted data. The r 

and c are the number of row and column of the data matrix, respectively.  

 

 Norm of error expresses the whole error of data. The rms error expresses the 

average error of the data. The nrms expresses the percentage of relative rms error. 

 

 
 
 
 
 

(5.1)

(5.2)

(5.3)
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5.2 H3A simulated spectra. 
 The simulated absorbance matrix of acid-base equilibria was prepared in text 

format (*.txt), and then they were input to the program SMCR. The absorbance data was 

resolving using different chemical rank analysis methods (OPA, SIMPLISMA and EFA) 

and their error estimation were given in Table 5.1, 5.2, and 5.3, respectively. 

Comparison between simulated and calculation spectra were illustrated in Figure 5.1. 

Furthermore, comparison between presetting and resolved of acid dissociation constant 

(pKa) was given in Table 5.4. 

 

 
Table 5.1 Prediction of number of components and error estimation in concentration 

profiles of H3A dissociation resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Concentration profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 4 0.0083 9.127 x 10-4 2.07 
SIMPLISMA 4 0.0083 9.118 x 10-4 2.07 

EFA 4 0.0083 9.117 x 10-4 2.06 
 

 

 

Table 5.2 Prediction of number of components and error estimation in absorptivity 

profiles of H3A dissociation resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

absorptivity profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 4 0.6035 0.0151 3.29 
SIMPLISMA 4 0.6029 0.0151 3.29 

EFA 4 0.6028 0.0151 3.29 
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Table 5.3 Prediction of number of components and error estimation in spectra of H3A 

dissociation resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Spectra profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 4 0.0110 1.206 x 10-4 0.27 
SIMPLISMA 4 0.0110 1.205 x 10-4 0.27 

EFA 4 0.0110 1.205 x 10-4 0.27 

 

 

Table 5.4 Comparison between presetting pKa and resolved pKa of triprotic acid (H3A) 

 

Method Acid dissociation 

constant 

Presetting 

value OPA SIMPLISMA EFA 

pKa1 3.47 3.38 3.38 3.38 

pKa2 5.65 5.62 5.62 5.62 

pKa3 6.89 6.98 6.98 6.98 
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 Figure 5.1 Comparison between simulated (solid lines) and predicted (open circles) 

concentration and absorptivity profiles of a 4 component mixture of H3A dissociation 

system using different methods for chemical rank analysis :(a) OPA, (b) SIMPLISMA 

and (c) EFA methods. 
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 From Table 5.1, 5.2, 5.3 and Figure 5.1, it can be seen that four components were 

explicitly resolved from the spectra which is consistent to the presetting condition. The 

simulated spectra were resolved into pure component spectra. It appears that there exists 

areas where no overlapping between component spectra. From Table 5.4, the resolved 

pKa from 3 methods is not different. In accordance with this observation, this is 

concerned that there is no difference in the efficiency of all 3 methods for resolving the 

spectra. The absorptivity profiles, concentration profiles and also resolve pKa agree very 

well with the preset values. The percentage of relative rms error (nrms) is 2.06% and 

3.29% for concentration and absorptivity profiles, respectively. The program can 

resolved the simulated four component acid dissociation with high accuracy. 

 

 

5.3 Metal-Ligand simulated spectra. 
 The simulated absorbance matrix of metal-ligand equilibria was prepared in text 

format (*.txt), and then they were input to the program SMCR. The absorbance data 

were resolved using different chemical rank analysis methods (OPA, SIMPLISMA and 

EFA), and the error estimations of this system were given in Table 5.5, 5.6, and 5.7, 

respectively. Comparison between simulated spectra and calculation spectra were 

illustrated in Figure 5.2. Furthermore, comparison between presetting and resolved of 

stability constants of complexation (β) was given in Table 5.8. 

 

 
Table 5.5 Prediction of number of components and error estimation in concentration 

profiles of M-HL complexation resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Concentration profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 4 4.03 x 10-4 4.20 x 10-5 4.50 
SIMPLISMA 4 4.30 x 10-4 4.20 x 10-5 4.50 

EFA 4 1.38 x 10-4 1.45 x 10-5 1.55 
 

 



 55

Table 5.6 Prediction of number of components and error estimation in absorptivity 

profiles of M-HL complexation resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Absorptiviy profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 4 182 4.57 22.54 
SIMPLISMA 4 182 4.57 22.54 

EFA 4 88 2.21 10.90 
 

Table 5.7 Prediction of number of components and error estimation in spectra of M-HL 

complexation resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Spectra profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 4 0.0071 7.48 x 10-5 0.19 
SIMPLISMA 4 0.0071 7.48 x 10-5 0.20 

EFA 4 0.0071 7.48 x 10-5 0.20 

 

Table 5.8 Comparison between presetting and resolved stability constants of 

complexation (β). 

Method Acid dissociation 

constant 

Presetting 

value OPA SIMPLISMA EFA 

β1 7.59 12.26 12.26 9.05 

β2 5.39 x 10-2 3.85 x 10-2 3.85 x 10-2 2.70 x 10-2 

β3 3.37 x 10-5 1.98 x 10-5 1.98 x 10-5 2.41 x 10-5 
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Figure 5.2 Comparison between simulated (solid lines) and predicted (open circles) 

concentration and absorptivity profiles of a 4 component mixture of M-HL complexation 

system using different methods for chemical rank analysis :(a) OPA, (b) SIMPLISMA 

and (c) EFA methods. 
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 From Table 5.5, 5.6, 5.7 and Figure 5.2, it shown that all methods resolved for  

four components. From absorptivity profiles, pure component spectra were illustrated. 

Unlike those of the acid-base equilibria of H3A acid, we could not find non-overlapping 

area for pure component in the simulated spectra. In accordance with the observation, it 

was very difficult to obtain resolute number of components and their corresponding 

absorptivity profile. From the error estimation, that the efficiency of all 3 methods in 

resolving the spectra is different. In absence of non-overlapping pure component spectra, 

the program based on EFA method seems to give the best results of 3 methods. From 

Table 5.8, the resolved stability constants of complexation from EFA method were also 

most closely to the presetting values. From Table 5.5 and 5.6, the percentage of relative 

rms error (nrms) from EFA method is 1.55 and 10.90 for concentration and absorptivity 

profiles, respectively. Interestingly, EFA generates concentration profiles first and then 

absorptivity, while OPA and SIMPLISMA both search for pure component spectra and 

absorptivity profiles first. It would imply that for system in absence of non-overlapping 

pure components the algorithm based on the elucidation of concentration profiles gives 

higher accuracy than there based on the resolution of pure component spectra. 

 

5.4 Chromatographic simulated spectra. 
 The simulated absorbance matrix of the chromatographic system was prepared in 

text format (*.txt), and then they were input to the program SMCR. The spectra were 

resolved using different chemical rank analysis methods (OPA, SIMPLISMA and EFA), 

the testing results of this system were given in Table 5.9, 5.10, and 5.11, respectively 

and fitting results of simulated and calculation spectra were illustrated in Figure 5.3. 

 
Table 5.9 Prediction of number of component and error estimation in concentration 

profiles of chromatographic system resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Concentration profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 3 0.0288 0.0021 5.52 
SIMPLISMA 3 0.1067 0.0079 20.48 

EFA 3 0.0411 0.0031 6.89 
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Table 5.10 Prediction of number of components and error estimation in absorptivity 

profiles of chromatographic system resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Absorptivity profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 3 0.0485 0.0028 6.53 
SIMPLISMA 3 0.2665 0.0153 35.93 

EFA 3 0.0766 0.0044 10.33 
 

 

Table 5.11 Prediction of number of components and error estimation in spectra of 

chromatographic system resolved by OPA, SIMPLISMA and EFA methods. 

 

Error of Prediction 

Spectra profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 3 0.0110 1.477 x 10-5 0.42 
SIMPLISMA 3 0.0110 1.342 x 10-5 0.38 

EFA 3 0.0110 1.444 x 10-5 0.41 
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Figure 5.3 Comparison between simulated (solid lines) and predicted (circles) 

concentration and absorptivity profiles of a 3 component mixture of chromatographic 

separation system using different methods for chemical rank analysis; (a) OPA,             

(b) SIMPLISMA and (c) EFA methods 
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 Figure 5.3 illustrates pure component spectra and concentration profiles and 

three components were explicitly resolved. It can also be seen that there exists where 

non-overlapping region between component spectrums. In this system, their components 

were separated by chromatographic techniques prior to absorbance detection. It differs 

from acid-base and metal-ligand complexation equilibria in which absorbance of all 

components were detected in the same time.  

  From the algorithm, both the OPA and EFA methods resolved component 

independently and therefore are suitable for chromatographic system. The OPA and EFA 

methods predicted the spectra of purest component at the elution time 24, 31, 41 and     

22, 32, 43, respectively, in consistence to the presetting value (23, 31 and 43). The 

SIMPLISMA method is very sensitive to noise, if the noise level is high as it often 

selects component from noise. It predicted profiles of component with using correlation 

factor in the equation 2.9 and 2.15. Thus, this method searches the pure component 

spectra dependently with other components. The elution time of each purest component 

spectra was resolved at 19, 32 and 47, not in agreement with the presetting elution time. 

The effect of noise could be reduced either by reducing the objects dimension or by 

increasing the offset value following eq. 2.16 [20]. 

 In the case of chromatographic separation technique, the program based on OPA 

method seems to yield the best result of the three methods. From Table 5.9 and 5.10, the 

percentages of relative rms errors (nrms) from OPA method are 5.52 and 6.53 for 

concentration and absorptivity profiles, respectively.  
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5.5 Spectra of two-step reaction system 
 

 The SMCR program was applied to the two-step reaction of 3-chlorophenyl-

hydarzonopropane dinitril (A) and with 2-meracaptoethanol (B).  

 

Determination of the number of species  

 For the spectra recorded between 250 – 500 nm and 200 – 600 nm, the output 

results were considered together. The significant components were determined by 

chemical rank analysis methods (OPA, SIMPLISMA and EFA). Three methods resolved 

“3” primary component which corresponding to 3 absorbing species in the system. Thus, 

the absorbance spectra was contributed by 3-chlorophenyl-hydarzonopropane dinitril(A), 

intermediate (C), and 3-chlorophenyl hydrazonocyanoacetamide (D). 

 

 After determining number of significant components, the initial guess of 

concentration and absorptivity profiles were resolved with MCR algorithm. The resolved 

concentration profiles were constrained to be nonnegative and unimodality. The total 

concentration of reactant (set to 51.71 µmol/L) remains constant along the whole two-

step reaction process. The condition of a closed system was also applied as a closure 

constraint in the optimization. In contrast, spectra in absorptivity profiles were 

constrained to be only nonnegative. The spectra recorded between 250 – 500 nm.        

(251 x 271)  and 200 – 600 nm. (401 x 271) for two-step reaction were resolved and 

their error estimation of concentration profiles were given in Table 5.12 and 5.13. The 

resolved concentration and absorptivity profiles from spectra recorded between           

250 – 500 nm and 200 – 600 nm for two-step reaction are shown respectively in      

Figure 5.4 and 5.5.  
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Table 5.12 Prediction of number of components and error estimation in concentration 

profiles of two-step reaction recorded between 250 – 500 nm. resolved by OPA, 

SIMPLISMA and EFA methods. 

 

Error of Prediction 

Concentration profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 3 2.45 x 10-4 8.60 x 10-6 38.64 
SIMPLISMA 3 2.45 x 10-4 8.60 x 10-6 38.64 

EFA 3 2.42 x 10-4 8.56 x 10-6 38.60 
 
 

Table 5.13 Prediction of number of components and error estimation in concentration 

profiles of two-step reaction recorded between 200 – 600 nm. resolved by OPA, 

SIMPLISMA and EFA methods. 

 

Error of Prediction 

Concentration profiles 

 

Method 

 

Number of  

Components Norm rms Nrms 

OPA 3 2.02 x 10-4 7.07 x 10-6 30.78 
SIMPLISMA 3 2.11 x 10-4 7.42 x 10-6 33.37 

EFA 3 1.47 x 10-4 4.89 x 10-6 20.37 
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Figure 5.4 Comparison between literature data (solid line) and calculated data (circles) 

of concentration profiles and the resolved absorptivity profiles of spectra recorded at  

250 – 500 nm were obtained by using different method for chemical rank analysis:         

(a) OPA, (b) SIMPLISMA and (c) EFA. 
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Figure 5.5 Comparison between literature data (solid line) and calculated data (circles) 

of concentration profiles and resolved absorptivity profiles of spectra recorded at 200 – 

600 nm. were obtained by using different method for chemical rank analysis: (a) OPA, 

(b) SIMPLISMA and (c) EFA. 
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 Form Table 5.12 and Figure 5.4, the resolved pure component spectra and 

concentration profile of spectra recorded at 250-500 nm. were illustrated. The error 

estimations in concentration profiles obtained form three methods were almost identical. 

From the observation, we notice that the resolved concentration profile in the terminal 

time (time = 2700 s.) consists only product species which are contradict to the previous 

study that showed both product and intermediate species at the terminal time.  

  

 According to Table 5.13 and Figure 5.5, the pure component spectra and 

concentration profile of spectra recorded 200 – 600 nm. were predicted. They have 

larger data matrix (401 x 271) than the absorbance data recorded from 250 – 500 nm. 

(251 x 271). Interestingly, the error estimation in concentration profiles from three 

methods is different. Only the program based on EFA method can predict the 

concentration profile in good agreement with the previous study. The results consents 

with the results in section 5.2 and 5.3 concluded that the EFA method is the most 

sensitivity method of three methods. The percentage of relative rms error (nrms) from 

EFA method in concentration profile is 20.37.  It can be concluded that the size of data 

matrix is the important factors for resolving by the SMCR program.  
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5.6 Spectra of Copper-Glycine and Copper-Alanine complexation  

We consider the output results of both systems of copper-glycine and copper-

alanine together. The results from both systems possess a similar trend in the properties. 

 

- Determination of the Number of Copper species. For both systems of copper 

glycine and copper-alanine, three methods, i.e. OPA SIMPLISMA and EFA, for 

determination of chemical ranks were used.  The OPA and SIMPLISMA methods given 

the consensus of “3” primary components while the EFA method predicted “4” primary 

components. From the literature [15], the absorption spectra of copper-glycine system is 

consisted of 4 species; Cu2+, Cu(GlyH)2+, Cu(Gly)+ and Cu(Gly)2 and the absorption 

spectra of copper-alanine system is consisted of 4 species; Cu2+, Cu(AlaH)2+, Cu(Ala)+ 

and Cu(Ala)2. It should be noted that the fourth component has very small amount with 

respect to the first three components in the equilibria. 

From the results, only EFA method can determine the number of primary 

component correctly. It can be concluded that EFA method that generates concentration 

profiles first is the most sensitivity of three methods. The result is in good agreement 

with the results from validation section. 

 

 After determining the number of significant component, the concentration and 

absorptivity profiles were resolved with MCR algorithm. The resolved concentration 

profiles were constrained to be nonnegative by nonnegative least square (nnls) algorithm 

and unimodality. The total concentration of reactant (set to 0.002 mol/L) remains 

constant along the whole two-step reaction process, the condition of a closed system was 

also applied as a closure constraint in the optimization. In contrast, spectra in 

absorptivity profiles were constrained to be only nonnegative. Resolved concentration 

and absorptivity profiles from spectra data for copper-glycine and copper-alanine 

complexation system are shown respectively in Figure 5.6 and 5.7. 
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Figure 5.6 The resolved concentration and corresponding absorptivity profiles of 

copper-glycine complexation equilibria were obtained by using different method for 

chemical rank analysis: (a) OPA, (b) SIMPLISMA and (c) EFA. 

 
 

1 2 3 4 5 6 7

0.0000

0.0005

0.0010

0.0015

0.0020

C
on

ce
nt

ra
tio

n 
(m

ol
/L

)

pH

 Cu2+

 Cu(Gly)+

 Cu(Gly)
2

400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

55

60

M
ol

ar
 a

bs
or

pt
iv

ity

Wavelength (nm)

 Cu2+

 Cu(Gly)+

 Cu(Gly)2

1 2 3 4 5 6 7

0.0000

0.0005

0.0010

0.0015

0.0020

C
on

ce
nt

ra
tio

n 
(m

ol
/L

)

pH

 Cu2+

 Cu(Gly)+

 Cu(Gly)2

400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

55

60
M

ol
ar

 a
bs

or
pt

iv
ity

Wavelength (nm)

 Cu2+

 Cu(Gly)+

 Cu(Gly)2

1 2 3 4 5 6 7

0.0000

0.0005

0.0010

0.0015

0.0020

C
on

ce
nt

ra
tio

n 
(m

ol
/L

)

pH

 Cu2+

 Cu(GlyH)2+

 Cu(Gly)+

 Cu(Gly)2

400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

55

60

M
ol

ar
 a

bs
or

pt
iv

ity

Wavelength (nm)

 Cu2+

 Cu(Gly)2+

 Cu(Gly)+

 Cu(Gly)2

(a) 

(b) 

(c) 



 68

 
 
Figure 5.7 The resolved concentration and corresponding absorptivity profiles of 

copper-alanine complexation equilibria were obtained by using different method for 

chemical rank analysis: (a) OPA, (b) SIMPLISMA and (c) EFA. 
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 From Figure 5.6 and 5.7, concentrations of Cu(GlyH)2+ and Cu(AlaH)2+ are 

smaller than other copper forms and exist in a narrow pH region between pH 2.5 – 3.5.   

It should be noted that the concentration of Cu(GlyH)2+ was overlapped by those of 

Cu(Gly)+, Cu(Gly)2 and Cu2+ . Analogous to the copper-alanine, the concentration of 

Cu(AlaH)2+ was overlapped by those of  Cu(Ala)+, Cu(Ala)2 and Cu2+. The system of 

copper-glycine and copper-alanine is look like the simulated metal-ligand complexation 

system in the section 5.3. It was found that resolution for number of components and 

absorptivity profile was very difficult to obtain accurately. Most of errors were 

accumulated in the molar absorptivity profile especially the species which contained 

small amount such as Cu(GlyH)2+ and Cu(AlaH)2+. Only EFA method can predict the 

number of components correctly while OPA and SIMPLISMA can not predict the 

Cu(GlyH)2+ or  Cu(AlaH)2+ species.  

 In the simulated M-HL complexation system in section 5.3, the spectra data was 

collected in the wide range of wavelength. This makes three methods for chemical rank 

analysis determine the number of component accurately. But for the copper-glycine and 

copper-alanine complexation, the spectra data was collected only from 450 – 850 nm 

thus some important informations of the system were excluded. This is probably a main 

reason for the failure of the program in predicting the results with high accuracy. The 

reason is in good agreement in the two-step reaction system in section 5.5. The more 

size of data matrix would make the program resolve with high accuracy. In the another 

system, we used to apply the program to resolve other spectra of copper-glycine 

complexation produced by Irving and Pettit [22]. The program can resolve the spectra 

with high accuracy. The error of resolve concentration profile is under 5%.  

  

  

 

 

 



CHAPTER 6 

CONCLUSTIONS 

 

 Program SMCR version 1.0 was developed to resolve the UV/VIS spectra and 

chromatogram of multicomponent mixtures using the chemometric methods especially 

self-modeling curve resolution techniques such as Orthogonal Projection Approach 

(OPA), SIMPLe-to-use Interactive Self-Modeling mixture Analysis (SIMPLISMA), 

Evolving Factor Analysis (EFA) and Multivariate Curve Resolution. The obtained results 

are the concentration profiles and absorptivity profiles of each component in the mixture. 

The program works well on the data that obtained by simulation and experimental data.  

  

 The program SMCR version 1.0 contains 16 subroutines for calculation and the 10 

subroutines for building graphical user interface (GUI) as listed in Table 3.1. The 

subroutines OPA.m, SIMPLISMA.m and EFA.m were used to determine the number of 

significant components whiles the subroutines ALS.m was used to optimize the 

concentration and absorptivity profiles from the spectra of multicomponent mixtures.  

 

 According to the theoretical simulations, the SMCR program can be used to 

resolve the spectra of acid-base dissociation, metal-ligand complexation and 

chromatographic separation systems.  

 - For acid-base dissociation equilibria, the system consists areas where no 

overlapping between component spectra. The accuracy of results, number of significant 

component, corresponding concentration and absorptivity profiles of each component 

from OPA, SIMPLISMA and EFA methods were not different and all methods are 

acceptable. 

 -  For metal-ligand complexation, the efficiency of all three methods in resolving 

the spectra is different. It can not be found the region of non-overlapping for pure 

component. Three methods can resolve the concentration profile with high accuracy but 

can not predict the absorptivity profile as accurately. The program based on EFA method 

gives the best results of the three methods because the EFA algorithm based on the 
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elucidation of concentration profiles gives higher accuracy than OPA and SIMPLISMA 

based on the resolution of pure component spectra. 

 . 

 - For chromatographic separation system, the OPA and EFA can resolve the 

concentration profiles and absorptivity profiles with acceptable accuracy. This is not the 

case for SIMPLISMA method. In this system, their components were separated by 

chromatographic technique prior to absorbance detection. The SIMPLISMA method 

which searches the pure component spectra dependently with other components was not 

suitable for this system. 

 

 In the known experimental spectra, the program was employed to resolve the two-

step reaction system and Copper-Glycine and Copper-alanine complexation system. 

 - For two-step reaction system, the spectra recorded between 200 – 600 nm. can 

be resolved by the program SMCR based on all of three methods with high accuracy. The 

program based on EFA method can predict the concentration profile with highest 

accuracy of 3 methods and are good agreement with the previous study. For resolving the 

spectra recorded between 250-500 nm , the results from three methods did not agree with 

the previous study. It can be concluded that the size of absorbance data matrix is the 

important factors for resolving by the program. 

- For Copper-Glycine and Copper-alanine complexation system, the output results 

of the both systems of copper-glycine and copper-alanine were possessed a similar trend 

in the properties. EFA algorithm generates concentration profiles first and then 

absorptivity, while OPA and SIMPLISMA both search for pure component spectra and 

absorptivity profiles first. For this reason, only program based on EFA method can predict 

the number of significant components correctly while the OPA and SIMPLISMA can not.  

 

The applicability of the program depends on several factors such as the size of 

data matrix, degree of spectral overlapping between the components, baseline variation, 

and the formation of unexpected species; signal to noise of spectrum, and so on. The 

effect of these factors causes the error of calculations. 
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APPENDIX I 

 

SMCR version 1.0: Program manual 

 Program SMCR version 1.0 was developed to resolve the spectroscopic spectra of 

multicomponent mixtures using the chemometrics methods based on self-modeling 

techniques such as Orthogonal Projection Appoarch (OPA), SIMPLe to use Interactive 

Self-modeling Mixture Analysis approach (SIMPLISMA), Evolving Factor 

Analysis(EFA) and multivariate curve resolution. The obtained results are the profiles of 

concentration and absorptivity of each component the mixtures. The source codes of the 

program were implemented in MATLAB version 6.5 (Math Works, Inc.). The program is 

running on the graphical user interface (GUI). The compact manual provides step by step 

instruction and demonstration with an example of input and output in an easy 

understanding.  

 

Running the Program 

1)  In MATLAB command window, execute the program by typing SMCR_v1 as: 

 

 

After pressing the ENTER key, the program would clear the screen and start to run as the 

following: 

 

 The Graphical User Interface (GUI) of main program SMCR will display as 

shown in the Figure 1.  The GUI of main program composed 5 subprograms as: 

>> SMCR_v1 

-----------------------------------------------------------------------------------------------
  SMCR v1.01 - Self-modeling multivariate curve resolution program            
  
  Cite this work as: 
  Assoc. Prof. Dr. Vudhichai Parasuk; Kanet Wongravee  
  Department of Chemistry, Faculty of science, Bangkok THAILAND 10330  
---------------------------------------------------------------------------------------------- 
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  -  INPUT DATA 

  -  COMPONENT ANALYSIS 

                        -  MCR-ALS 

  -  PREDICTION 

  -  SAVE RESULTS 

  -  EXIT  

 In the first step, the only button of “INPUT DATA” is active, whereas the other 

buttons are inactive.  

 

Figure 1. Graphical User Interface of main program: SMCR version 1.01 

 

  2) After pressing the button of “INPUT DATA” on the GUI of main program, the 

GUI of input data will display as shown in the Figure 2: 
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Figure 2 The graphical user interface for INPUT DATA 

 

2.1) Load Spectrum 

 Begin to input the spectral filename   :  Use the “Browse button” in the GUI to 

find your data filename and upload to the program as shown in Figure 3.  

  

 

 

 

 

 

 

 

Figure 3 the example for uploading spectra file, namely “acid.txt”, as the input data 
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The format of the spectra file would be an ASCII format which created by a text editor 

such as Notepad or Microsoft editor programs. The structure of the file is correspondent 

to the spectra matrix which each row associated to the ith wavelength, and each column 

associated to the jth mixture except for the first column stands for the column of 

wavelength. The example of spectra file was shown below: 

 

After loading the file, the program would display the dimension of spectra matrix. 

 

2.2) Input variables 

 Specify the range of variables such as Time or pH. Here there are two possible 

ways. The first is to specify with an equally step variables as shown below. 

 

 

The input ‘1:0.3:14’ means that starting at 1 unit pH and stopping at 14 unit pH with the 

equal interval of 0.3 unit pH. The second choice is to specify with a series of typical 

values as shown below. 

 

 

200 0.000372 0.000271 0.000290 0.000170 0.000169 
201 0.000179 0.000450 0.000163 0.000027 0.000197 
202 0.000562 0.000485 0.000217 0.000200 0.000100 
203 0.000621 0.000352 0.000429 0.000053 0.000202 
204 0.000895 0.000834 0.000770 0.000357 0.000129 
205 0.000919 0.000878 0.000730 0.000378 0.000131 
………………………………………………………………………………… 
………………………………………………………………………………… 
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At this step, the spectra that loaded from the input file would be plotted and displayed as 

two, three dimensions and contour plot. For example, the spectra were plotted as two 

dimensions shown in Figure 2. 

2.3) Input initial concentration 

 Specify the initial concentration of the determining component. The initial 

concentration can be input in the mol/L unit as shown below:  

 

 3) In the next step, the program will call the GUI of component analysis. The GUI 

of component analysis is shown in the Figure 4. There are three methods (OPA, 

SIMPLISMA and EFA) to be selected in this step. The chemical rank was determined by 

the plot. Here, there are two possible ways. Firstly, the number of component is to specify 

with the plot of overall component factor as shown in Figure 4.  

 

Figure 4.  The Graphical user interface of component analysis  
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 Another way, the number of component would be specified with the plot of the 

selective component factor as shown below:  

  

Figure 5.  The Graphical user interface of component analysis using selective component   
                 factor  

 

 4) In the next step, assign the convergence criteria for the process of MCR as 

shown in the Figure 5. However, the user also has choice to use either the default values 

of the program: - Maximum cycle = 150; - Tolerance = 0.01 or specify their own values. 

 Then, the user has choice to apply constraint between optimization for avoid 

rotational ambiguity. There are three constraints that the user can use. 

- Non-negativity 

- Unimodality 

- Closure 

 After setting, the user can plot estimated concentration and absorptivity profiles 

from the chemical rank analysis before optimization shown in Figure 6.  
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         Figure 6.  The Graphical user interface of setting parameter for MCR optimization. 

 

4.1) Non-negativity constraint 

 

 

 

 

 

 

 

 

 

 

 

The user has choice to apply the constraint that 

suitable for the system. The constraint forces the 

elements in a profile to be positive. 

Applied Constraint 

- For only concentration 

- For Concentration and absorptivity 

(recommended) 

- For only spectra 

Algorithm for Constraint 

- Fored to zero (set negative value to zero) 

- nnls (change negative value to positive 

value used nonnegative least square 

algorithm) 
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4.2) Unimodality constraint 

 

The user could change the setting that suitable for system. The constraint allows for the 

presence of only one maximum per profiles.  

 

Applied Constraint 

- For only concentration (recommended) 

- For Concentration and absorptivity 

- For only spectra 

Number of species that user would to constraint 

- The number of profiles to be constrained ( The Number of component is default ) 

Unimodal constraint tolerance 

      -   Defines how strictly the constraint should be applied. If the answer is 1.0, no 

departures of the unimodal condition are allowed; if the value is higher than 1.0, slight 

departures from unimodality are allowed. (e.g., 1.05, secondary maxima exceeding in less 

than a 5% the neighbour value are allowed). 

Unimodality implementation 

- Algorithms used in the application of unimodality : Vertical, Horizontal and 

Average (recommended). 
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4.3) Closure constraint 

 

The user could change the setting that suitable for system. The constraint is the fulfillment 

of a mass balance condition. The different profiles (compounds) involved in the closed 

system are simultaneously constrained. 

Closure  

 - For only concentration profiles (recommended) 

 - For only spectra profiles 

Number of closure constraints 

 - Number of closed systems in the same data matrix. One closure for the species 

(Have one maximum values of sum of all species) is default. 

Input closure constraint 

 - Value of the total concentration in the closed system. The initial condition is 

default. If not known, you may enter 1. 

Closure condition 

- Defines the tolerance of the constraint. “Equal condition” forces the sum of the 

concentratins in the closed system to equal exactly the total concentration at each stage of 

the process. “Lower or equal than” allows for some departures of this condition, i.e., 

slight variations of the total concentration in the system may be allowed. 
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 5) After setting the criteria convergence, the program determines the concentration 

and absorptivity profiles of each component in the mixtures. The user should wait until 

the process is complete. During optimization, the program would plot the concentration 

and absorptivity profiles in the each iteration. The GUI of optimized calculation is shown 

in Figure 7. 

 

Figure 7.  The Graphical User Interface of optimized calculation. 

 

Per each iteration n, the following results are shown:  

Iteration:  iteration of optimized calculation. 

 

Sum of squares respect PCA reproduction:  Sum of squares of residuals between the 

MCR-ALS reproduction and the PCA model 

 

Old sigma and New sigma:   Std. deviation of the residuals (MCR-ALS vs. PCA) for 

iteration n-1 (old sigma) and n (new sigma).  

 

(2)

(1) 
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Sigma respect experiment data:  Std. deviation of the residuals (MCR-ALS vs. 

experimental data) for iteration n. 

 

(1):   Diagnostic on the evolution of the fit based on comparison of iteration n and last 

converging iteration.  

 - Fitting is improving:  Std. deviation of the residuals for iteration new sigma is 

less than old sigma.  

 - Fitting is not improving: Std. deviation of the residuals for iteration new sigma is 

higher than old sigma. 

 

Change in relative difference: of sigma change between iteration n and last converging 

iteration 

 

Fitting error (lack of fit) in % (PCA): compares the matrix obtained from the resolution 

results with the matrix obtained by PCA reproduction using the same number of 

components as the raw data set. 

 

Fitting error (lack of fit) in % (exp.):  compares the matrix obtained from the resolution 

results with the raw data set. 

 

Percent of variance explained (r2) : % variance 

 

(2) :  Criteria for optimization  

 -  Convergence is achieved: Change in sigma is less than criteria setting. 

 -  Number of iteration is exceeded the allowed: The optimization would need more 

iteration number for optimization. 

 -  Fit not improves for 20 times consecutively (divergence): New sigma is higher 

than old sigma more than 20 iteration numbers.  
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 6) After optimized calculation, the selection an option for saving the results as 

shown in the Figure 8. 

 

 
 

Figure 8. The Graphical User Interface for saving options. 

 

 The results of summary of Program, concentration and absorptivity profiles would 

be an ASCEII format that can use Notepad or Microsoft Excel to open it.  
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APPENDIX II 
 
 
The example of source code 
 
 This is the main subroutine of SMCR program written with MATLAB language.  

 

%Main program for determination of significant components 
% 
%Method 
%   Orthogonal projection Approach(OPA) 
%   SIMPLe to use interaction self-modeling mutivarite analysis approach 
%   Evolving Factor Analysis(EFA) 
% 
%Estimated pure spectra and concentration 
%   OPA esitmate pure spectra 
%   SIMPLISMA estimate pure spectra 
%   EFA estimate concentration profiles 
% 
%Implemented by Mr Kanet Wongravee 
%Modified 18/10/2004 
% 
% 
disp('***********************************************') 
disp('Self-modeling curve resolution program (SMCR)  ') 
disp('Method OPA,SIMPLISMA,EFA                            ') 
disp('Implemented by Mr. Kanet Wongravee                  ') 
disp('CCUC unit cell Chulalongkorn University             ') 
disp('Bangkok Thailand 10310                                        ') 
disp('Modified 18/10/2547                                               ') 
disp('***********************************************') 
disp('** PLEASE INSERT FILE NAME OF SPECTRA DATA  :  **') 
%Input  
%Pre data set 
global Conc Sref Spec 
clr = ['b' 'r' 'g' 'm' 'k' 'c']; 
Spec = input('Filename that you want to calculate      :'); 
Xph  = input('Input pH/Time in you experiment [. . .]  :'); 
[nrow ncol] = size(Spec); 
 
% 
%Choice of estimated significant components 
disp('Method for determination of significant components') 
disp('OPA (1) ') 
disp('SIMPLISMA (2) ') 
disp('EFA (3) ') 
disp('Enter the Choice ,e.g.[1,2,3] ') 
Choice = input('Enter the Choice that you should  :') 
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%************************************ 
%Orthogonal projection appoarch(OPA) 
%************************************ 
ml = find(Choice==1); 
if ~isempty(ml) 
    [Determinant,MaxDis,Xref,pH]=OPAnumber(Spec); 
    j=0; 
    Terminate = 'y'; 
    while Terminate == 'y' 
    i = j+1; 
    figure(i+4); 
    plot(pH,Determinant(i,:),clr(1,i)); 
    title(['Factor number ' int2str(i)]) 
    Terminate = input('Other num. of factors to be considered:? (y/n)','s'); 
    j = i; 
    end 
     
    n=input('The Number of component from OPA method   :  '); 
     
    Sref = Xref(:,1:n); %Initail estimate of pure spectra from OPA method 
    x0 = Sref'; 
     
end 
 
%*********************************** 
%SIMPLISMA Method  
%*********************************** 
ml = find(Choice==2); 
if ~isempty(ml) 
    [Determinant,MaxDis,Xreff,pH,offset]=SIMnumber(Spec); 
    j=0; 
    Terminate = 'y'; 
    while Terminate == 'y' 
    i = j+1; 
    figure(i+4); 
    plot(pH,Determinant(i,:)); 
    title(['Factor number ' int2str(i)]) 
    Terminate = input('Other num. of factors to be considered:? (y/n)','s'); 
    j = i; 
    end 
    number = input('The Number of component from SIMPLISMA method  : '); 
    [Xref,index] = pure(Spec,number,offset); 
    Sref = Xref(:,1:number); %Initial estimated of pure spectra form SIMPLISMA 
method 
    x0 = Sref'; 
end 
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%******************************** 
% Evolving Factor Analysis (EFA) 
%******************************** 
ml = find(Choice ==3); 
if ~isempty(ml) 
    [e,eforward,ebackward] = efaop(Spec); 
    % e = Conc (etimated conce from efa method) 
    x0 = e; 
end 
d = Spec'; 
isp = input('correspondence among the species in the experiments  : ' ); 
nexp = input('number of data matrices analyzed simultaneously  :  '); 
nit = input('maximum number of iterations (50 is the default ) :  '); 
tolsigma = input('convergence criterion in the difference of sd of residuals between 
iterations (0.1% is the default) :  '); 
 
%************************************* 
% Alternating least square (ALS) optimization 

%************************************* 

[copt,sopt,sdopt,ropt,time]=alsmo(d,x0,nexp,nit,tolsigma,isp); 
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