CHAPER III

COMPUTATION METHOD

OF FACTORIZATION OF RAIIONAL INTEGERSIN $Q(\sqrt{d})$

This chapter concern with factorization of elements of \mathbb{Z} in to irreducible factors in all possible ways．

We shall consider the following theorem．

Theorem 3．1．Let a, b belong to I_{d} ．Then

$$
a I_{d}=b I_{d} \text { if and anly if aNb. }
$$

Proof．Let a, b be any elements of I_{d} ．If a or b is a zero element in I_{d} ，then the theorem is true．So we assume that a and b are nonzero elements in I_{d} ．

First，we suppose that $a I_{d}=b I_{d}$ ．Since $1 \in I_{d}$ ，it
follows that $a \in b X_{d}$ and $b \in a I_{d}$ ．Then $a=b c_{1}$ and $b=a c_{2}$ for some $c_{1}, c_{2} \in I_{d}$ ．Thus，$a=a c_{1} c_{2}$ ．Therefore $c_{1} c_{2}=1$ ． So c_{1} is a unit of I_{d} ．Hence，aNb。
－To prove the converse，we suppose that a～bo Then $a=b u$ for some a unit u of I_{d} ．Let $x \in a I_{d}$ ．So $x=a c_{1}$ for some $c_{1} \in I_{d}$ ．Then $x=$ buc $_{1}$ ．Since $u c_{1} \in I_{d}$ ，it follows that $x \in b I_{d}$ Therefore，$a I_{d} \subseteq b I_{d}$ 。By the same argrument we have $b I_{d} \subseteq a I_{d}$ ．Hence，$a I_{d}=b I_{d}$ 。 \＃

Using the fact that a is a unit of I_{d} if and only if aN1．We have a corollary．

Corollary 3．2．Let a be any element of I_{d} ．Then

$$
a I_{d}=I_{d} \text { if and only if a is a unit of } I_{d}
$$

We base our method on the following remark, which follows immediatly from theorem.

Remark 3.3. Let $a, a_{1}, a_{2}, \ldots, a_{n}$ belong to I_{d}. If

$$
a I_{d}=\left(a_{1} I_{d}\right)\left(a_{2} I_{d}\right) \cdots\left(a_{n} I_{d}\right), \ldots \ldots(I)
$$

then $a=u a_{1} a_{2} \ldots a_{n}$, where u is a unit of I_{d}.
We make use of this result as follows.
Let a be a nonzero nonunit of I_{d}. To find all the factorizations of a into irreducible factors, it suffices to find all factorizations of $a I_{d}$ into the form (I) in which a_{i} is irreducible in I_{d}.

We can obtain all factorizations(I) with each a_{i} being irreducible by using the fact that each integral module, which is not I_{d}, can be factored into prime modules in a unique way. So we can write

$$
\begin{equation*}
a I_{d}=p_{1} \ldots P_{r} \tag{II}
\end{equation*}
$$

where each P_{i} is prime.
Note that where each factor $a_{i} I_{d}$ on the right hand side of (I) is factored into prime modules, we must get the factorization (II). Hence each $a_{i} I_{d}$ is a product of a combination of $P_{j}^{\prime} s$ on the right hand side of (II). Therefore any factorization of aI_{d} of the form (I) can be obtained by grouping the $P_{j}{ }^{s}$ in the factorization (II) in a suitable way. So we can find all factorizationsof the form (I) by inspecting all possible groupings of the P_{j}^{\prime} s in (II).
The following results will be useful in deciding whether a module is of the form $a_{i} I_{d}$ where a_{i} isirreducible in I_{d}.

Theorem 3.4. Let $M_{1}, M_{2}, \ldots, M_{n} P_{1}, P_{2}, \ldots, P_{n}$ be integral modules such that

> (i) each $M_{i} \neq I_{d}$,
> (ii) each P_{i} is prime

If $p_{1} \ldots p_{n}=M_{1} \ldots M_{n}$, then there exists a permutation i_{1}, i_{2}, \ldots, i_{n} of $1,2, \ldots, n$ such that $P_{j}=M_{i_{j}}$ for $j=1, \ldots, n$.

Proof. Suppose that $P_{1} \ldots P_{n}=M_{1} \ldots M_{n}$. for each $1 \leqslant i \leqslant n, M_{i} \neq I_{d}$. By Theorem 2.4.11.

$$
M_{i}=M_{1}^{i} \cdots M_{b}^{i},
$$

where $M_{1}^{i}, \ldots, M_{r_{i}}^{i}$ are prime modules. So

$$
P_{1} \ldots p_{n}=M_{1}^{1} \ldots M_{r_{1}}^{1} M_{1}^{2} \ldots \ldots M_{r_{n}}^{n}
$$

By Theorem 2.4.11. we have $n=r_{1}+\cdots+r_{n}$, which implies
that each $r_{i}=1$. Therefore, each M_{i} is; a prime module.
Then $M_{1} \ldots M_{n}$ is a prime factorization of $P_{1} \ldots P_{n}$. Hence, there exists a permutation $\dot{i}_{1}, \ldots, i_{n}$ of $1, \ldots, n$ such that

$$
P_{j}=M_{i} \text { for } j=1,2, \ldots, n_{0}
$$

\#
Theorem 3.5. Let $a \in \mathbb{Q}(\sqrt{d})$. If $a I_{d}$ can be written in the form

$$
a I_{d}=M_{1} \ldots M_{n},
$$

where M_{1}, \ldots, M_{n} are prime modules such that $\mathbb{X}_{i \in I} M_{i}$ is not principal for any nonempty proper subset I of $\{1,2, \ldots, n\}$. Then a is irreducible in I_{d}

$$
\text { Proof. Assume that } \mathrm{aI}_{\mathrm{d}}=M_{1} \ldots M_{\mathrm{n}} \text {, where } M_{1}, \ldots, M_{n}
$$ are prime modules such that $\prod_{i \in I_{i}}$ is not principal for any

nonempty proper subset I of $\{1,2, \ldots, n\}$. Hence $a I_{d}$ is a principal module, so that $a \neq 0$. Since M_{1}, \ldots, M_{n} are integral modules, then aI_{d} is an integral module. i.e. $a I_{d} \subseteq I_{d}$. So $a \in I_{d}$. Since $N\left(a I_{d}\right)=N\left(M_{1}\right) \ldots N\left(M_{n}\right) \neq 1$, hence by Theorem 2.5.6. $\mathrm{aI}_{\mathrm{d}} \neq \mathrm{I}_{\mathrm{d}}$. Therefore, by Corollary 3.2. a is a nonunit of I_{d}.

$$
\text { Suppose that } a=b c \text {, where } b, c \text { are nonunits of } I_{d} \text {. }
$$

So $b I_{d} \neq I_{d}$ and $\mathrm{cI}_{\mathrm{d}} \neq \mathrm{I}_{\mathrm{d}}$. Then by Theorem 2.4.11, we get that
and

$$
b I_{d}=P_{1} \cdots \cdots P_{r}
$$

$$
c I_{d}=Q_{1} \cdots Q_{s} \text {, }
$$

where $P_{1}, \ldots, P_{r}, Q_{1}, \ldots, Q_{S}$ are prime modules. Since

$$
\begin{aligned}
a I_{d}=\left(b I_{d}\right)\left(c I_{d}\right) & \text {, so } \\
M_{1} \ldots M_{n} & =P_{1} \ldots P_{r} Q_{1} \ldots Q_{S} .
\end{aligned}
$$

By Theorem 2.4.11. We see that the product

$$
P_{1} \ldots P_{r}=\prod_{i \in I} M_{i}
$$

for some nonempty proper subset I of $\{1,2, \ldots, n\}$. This is a contradiction. Therefore, a is irreducible in I_{d}.

When we take $n=1$ in Theorem 3.5. we get the following corollary.

Corollary 3.6. If aI_{d} is a prime module, then a is irreducible in I_{d}.

Theorem 3.7. Let M be any integral module and $a \in I_{d}$. If $M\left(a I_{d}\right)=b I_{d}$ for some nonzero element b in I_{d}, then M is principal. Furthermore, if $M \neq I_{d}$ and a is nonunit, then b is reducible in I_{d}.

Proof. Let M be any integral module and $a \in I_{d}$ such that $M\left(a I_{d}\right)=b I_{d}$, for some nonzero element b in I_{d}. Here a cannot be zero, otherwise we would have $b=0$. So $M\left(a I_{d}\right)\left(a^{-1} I_{d}\right)=\left(b I_{d}\right)\left(a^{-1} I_{d}\right)$. Therefore, $M=\left(b a^{-1}\right) I_{d}$, i.e. M is principal.

If we further assume that $M \neq I_{d}$ and a is nonunit, then $N(M) \neq 1$ and $N\left(a I_{d}\right) \neq 1$. So $N\left(b I_{d}\right)=N\left(M\left(a I_{d}\right)\right) \neq 1$. Therefore, $b I_{d} \neq I_{d}$. By Corollary 3.2. b is nonunit. Since $M=\left(b a^{-1}\right) I_{d}$, it follows from Corollary 3.2. that ba^{-1} is nonunit in I_{d}. Since a is nonunit, then $b=\left(b a^{-1}\right) a$ is reducible.

Theorem 3.8. Let $M=\left\langle a, b+c \omega_{d}\right\rangle$ be an integral module. If $M=\alpha I_{d}$, then $|N(\alpha)|=|a c|$ and $a c \mid N\left(b+c \omega_{d}\right)$.

Proof. Let $M=\left\langle a, b+c \omega_{d}\right\rangle$ be an integral module such that $M=\alpha I_{d}$. Then by Remark $2.3 .14, N(M)=N\left(\alpha I_{d}\right)$ $=|N(\alpha)|$. By Theorem 2.5.4, $N(M)=|\mathrm{ac}|$. Therefore, $|N(\alpha)|=|a c|$. Since $b+c \omega_{d} \in M$, so $b+c \omega_{d}=\alpha \gamma$ for some $\gamma \in I_{d}$. So $N\left(b+c c_{d}\right)=N(\alpha \gamma)=N(\alpha) N(\gamma)$. Since $b+c \omega_{d}, \alpha$ and $\gamma \in I_{d}$, then $N\left(b+c \omega_{d}\right), N(\alpha)$ and $N(\gamma)$ are rational integers. So $N(\alpha) \mid N\left(b+c \omega_{d}\right)$. Therefore, $\quad a c \mid N\left(b+c \omega_{d}\right)$.

Theorem 3.9。 Let M be any integral module in $\mathbb{Q}(\sqrt{d})$ of norm n. Then M is not principal in the following cases:
(i) $d \equiv 1(\bmod 4)$ and $\left|x^{2}-d y^{2}\right|=4 n$ is not solvable in rational integers.
(ii) $d=2,3(\bmod 4)$ and $\left|x^{2}-d y^{2}\right|=n$ is not solvable in rational integers.

Proof. Let M be any integral module in $\mathbb{Q}(\sqrt{d})$ of norm n. We shall show by contrapositive. Suppose that M is: principal. Then $M=\alpha I_{d}$ for some $\alpha \in I_{d}$. Therefore, $\alpha=a+b \omega_{d}$, for some $a, b \in \mathbb{Z}$. Since $N(M)=n$ and

$$
\begin{aligned}
N(M) & =N\left(\left(a+b \omega_{d}\right) I_{d}\right) \\
& =\left|N\left(a+b \omega_{d}\right)\right| \\
& =\left|a^{2}+a b \omega_{d}+a b \omega_{d}^{\prime}+b^{2} \omega_{d} \omega_{d}^{\prime}\right|
\end{aligned}
$$

so

For the case $d \equiv 1(\bmod 4)$, we have $\hat{\omega}_{d}=\left(\frac{1+\sqrt{d}}{2}\right)$.
Therefore, the left hand side of (I) is

$$
\left|a^{2}+a b \theta_{d}+a b{v_{d}^{\prime}}_{d}^{\prime} b^{2} \operatorname{cod}_{d} c_{d}^{\prime}\right|=\left|a^{2}+a b+\left(\frac{1-d}{4}\right) b^{2}\right|
$$

So that (I) becomes $\left|a^{2}+a b+\left(\frac{1-d}{4}\right) b^{2}\right|=n$. Therefore, there exist $a, b \in \mathbb{Z}$ such that $\left|a^{2}+a b+\left(\frac{1-d}{4}\right) b^{2}\right|=$ n. Let $x=2 a+b$ and $y=b$. Then clear $1 y, x, y \in \mathbb{Z}$ and

$$
\begin{aligned}
\left|x^{2}-d y^{2}\right| & =\left|4 a^{2}+4 a b+b^{2}-d b^{2}\right| \\
& =4\left|a^{2}+a b+\left(\frac{1-d}{4}\right) b^{2}\right| \\
& =4 n
\end{aligned}
$$

Hence, there exis.t $x, y \in \mathbb{Z}$ such that $\left|x^{2}-d y^{2}\right|=4 n$.

For the case $d \equiv 2,3(\bmod 4)$ ，we have $\omega_{d}=\sqrt{d}$ ．So that $\left|a^{2}+a b \omega_{d}+a b \omega_{d}^{\prime}+b^{2} \omega_{d} \omega_{d}^{\prime}\right|=\left|a^{2}-d b^{2}\right|$ ．Let $x=a$ and $y=b$ ． clearly，$\quad x, y \in \mathbb{Z}$ and $\left|x^{2}-d y^{2}\right|=n$ ．

Lemma 3．10．Let $a \in I_{d}$ and M be any principal integral module such that $M \neq I_{d}$ ．If a is irreducible and $M \mid a I_{d}$ ， then $M=a I_{d}$ 。

Proof。 Assume that a is irreducible and $M \mid a I_{d}$ ． Since M isaprincipal integral module such that $M \neq I_{d}$ ，then $M=b I_{d}$ for some nonzero nonunit b in I_{d} ．So $b I_{d} \mid a I_{d}$ ．Then $a I_{d}=\left(b I_{d}\right) M_{1}$ for some integral module M_{1} ．By Theorem 3．7， M_{1} is principal．Then $M_{1}=c I_{d}$ ，for some nonzero element c in I_{d} ．Therefore，$a I_{d}=\left(b I_{d}\right)\left(c I_{d}\right)$ ．By Remark 3．3，$a=u b c$ ， where u is a unit of I_{d} ．Since a is irreducible and b is nonunit，we can conclude that c is a unit．By Corollary $3.2, \mathrm{cI}_{\mathrm{d}}=\mathrm{I}_{\mathrm{d}}$ ．Therefore， $\mathrm{aI} \mathrm{d}_{\mathrm{d}}=\mathrm{M}$ ．

Lemma 3．11．Let a_{1}, \ldots, a_{t} be any irreducible elements in I_{d} and P_{1}, \ldots, P_{r} be any prime modules such that

$$
\left(a_{1} I_{d}\right) \ldots\left(a_{t} I_{d}\right)=p_{1} \ldots P_{r}
$$

If P_{1} is principal，then there exists i_{1} such that $a_{i_{1}} I_{d}=P_{1}$ 。
Proof．Let a_{1}, \ldots, a_{t} be any irreducible elements of I_{d} ．Let P_{1}, \ldots, P_{r} be prime modules such that

$$
\begin{equation*}
\left(a_{1} I_{d}\right) \ldots\left(a_{t} I_{d}\right)=p_{1} \ldots P_{r} \tag{I}
\end{equation*}
$$

Suppose that，P_{1} is principal．From（I），using Corollary 2．4．10，we get $P_{1} \mid a_{i_{1}} I_{d}$ ，for some $1 \leqslant i_{1} \leqslant t$ ．By Lemma 3．10， $a_{i_{i}} I_{d}=P_{1}$.

Theorem 3.12. Let a_{1}, \ldots, a_{t} be any irreducible elements of I_{d}. Let P_{1}, \ldots, P_{r} be prime modules such that

$$
\left(a_{1} I_{d}\right) \ldots\left(a_{t} I_{d}\right)=P_{1} \ldots P_{r}
$$

If $P_{1}, \ldots, P_{s}, s \leqslant r, s \leqslant t$, are principal, then there exist i_{1}, \ldots, i_{s} such that $\quad a_{i}{ }_{j} I_{d}=p_{j} \quad(j=1,2, \ldots, s)$.

Proof 。 Since P_{1} is principal, hence by Lemma 3.11 , there is i_{1} such that

$$
a_{i_{1}} I_{d}=P_{1}
$$

Assume that we have found $i_{1}, \ldots, i_{k}, k<s$ such that

$$
a_{i} I_{d}=p_{j}, \quad(j=1,2, \ldots, k)
$$

Then we have

$$
\prod_{i=1}^{t} a_{i} I_{d}=p_{1} \ldots p_{k} P_{k+1} \ldots P_{r}
$$

$$
\left(\prod_{j=1}^{k} a_{i} I_{d}\right)\left(\prod_{\substack{i=1 \\ i \neq i}}^{t} a_{i} I_{d}\right)=\left(\prod_{i=1}^{k} P_{i}\right) P_{k+1} \cdots P_{r}
$$

Since

$$
\prod_{j=1}^{k} a_{i} I_{j}=\prod_{j=1}^{k} P_{j},
$$

hence, we have

$$
\prod_{\substack{i=1 \\ i \neq i_{1}, \ldots, i_{k}}}^{t} a_{i} I_{d}=P_{k+1} \ldots P_{r}
$$

Since P_{k+1} is principal, hence by Lemma 3.11. there exists $i_{k+1} \neq i_{1}, \ldots, i_{k}$ such that

$$
a_{i_{k+1}} I_{d}=P_{k+1}
$$

Hence we can choose i_{1}, \ldots, i_{s} such that $a_{i}{ }_{j} I_{d}=P_{j}, j=1, \ldots, s$

Theorem 3.13. Let $a \in I_{d}$. If $a I_{d}$ can be factored into

$$
a I_{d}=\left(a_{1} I_{d}\right)\left(a_{2} I_{d}\right) \cdots\left(a_{n} I_{d}\right)
$$

where $a_{1} I_{d}, \ldots, a_{n} I_{d}$ are prime modules, then

$$
a=u a_{1} \ldots a_{n},
$$

where u is a unit and a_{i} is irreducible. When this is the case, the factorization of a into irreducible elements is unique.

Proof. Let $a \in I_{d}$ such that $a I_{d}=\left(a_{1} I_{d}\right) \ldots\left(a_{n} I_{d}\right)$, where $a_{1} I_{d}, \ldots, a_{n} I_{d}$ are prime modules. By corollary 3.6 , a_{1}, \ldots, a_{n} are irreducible in I_{d}. By Remark $3.3, a=u a_{1} \ldots a_{n}$, where u is a unit of I_{d}.

Let b_{1}, \ldots, b_{m} be any irreducible elements of I_{d} such that $a=b_{1} \ldots b_{m} \cdot$ So $a I_{d}=\left(b_{1} I_{d}\right) \ldots\left(b_{m} I_{d}\right)$. Therefore,

$$
\left(b_{1} I_{d}\right) \ldots\left(b_{m} I_{d}\right)=\left(a_{1} I_{d}\right) \ldots\left(a_{n} I_{d}\right) \ldots(I)
$$

For each $1 \leqslant k \leqslant n, 1 \leqslant 1 \leqslant m, a_{k}$ and b_{1} are irreducible. Then a_{k} and b_{1} are not associate to 1. By Corollary 3.2, $a_{k} I_{d} \neq I_{d}$ and $b_{1} I_{d} \neq I_{d}$. By corollary 2.5 .6 , we have

$$
\begin{equation*}
N\left(a_{k} I_{d}\right) \neq 1 \text { and } N\left(b_{1} I_{d}\right) \neq 1 \tag{II}
\end{equation*}
$$

Suppose that, $m\langle n$. Then by Theorem 3.12, there exist i_{1}, \ldots, i_{m} such that $b_{i_{j}} I_{d}=a_{j} I_{d},(j=1,2, \ldots, m)$: So we cance1 $b_{i} I_{d}=a_{j} I_{d}$, for $j=1,2, \ldots, m$ in (I). We get

$$
I_{d}=\left(a_{m+1} I_{d}\right) \ldots\left(a_{n} I_{d}\right)
$$

So

$$
1=N\left(I_{d}\right)=N\left(a_{m+1} I_{d}\right) \ldots \ldots N\left(a_{n} I_{d}\right)
$$

It contradictsto (II)。

Suppose that, $m>n$. Then by Theorem 3.12, there exist i_{1}, \ldots, i_{n} such that $b_{i_{j}} I_{d}=a_{j} I_{d}, j=1,2, \ldots, n$. So we cancel $b_{i_{j}} I_{d}=a_{j} I_{d}$ for $j=1,2, \ldots, n$. in (I). We get $\left(b_{n+1} I_{d}\right) \ldots\left(b_{m} I_{d}\right)=I_{d}$.
So

$$
N\left(b_{n+1} I_{d}\right) \ldots N\left(b_{m} I_{d}\right)=N\left(I_{d}\right)=1
$$

It contradictsto (II).
Thus, we can conclude that $m=n$. By Theorem 3.12, there exist i_{1}, \ldots, i_{n} such that $b_{i_{j}} I_{d}=a_{j} I_{d}$ for $j=1, \ldots, n$. By Theorem 3.1, $b_{i}{ }_{j} \sim a_{j}$ for $j=1,2, \ldots, n_{0}$

Theorem 3.14. In any quadratic fields $\mathbb{Q}(\sqrt{d})$. If p is a rational prime, then the factorization of p into irreducible elements of I_{d} is unique。

Proof. Let $Q(\sqrt{d})$ be any quadratic field and p be rational prime.

Case I. Assume that p is inert. Then $p I_{d}$ is a prime module. By Corollary $3.6, p$ is an irreducible element of I_{d}.

Case II. Assume that p is not inert. Then p is ramified or decomposed. So $p I_{d}=P P^{\prime}$, where P and P^{\prime} are prime modules. If P is principal, then by Theorem $3.7, P^{\prime}$ is principal. Hence, by Theorem 3.13, the factorization of p into irreducible elements of I_{d} is unique. If p is not principal, then by Theorem 3.7, P^{\prime} is not principal. By Theorem 3.5, p is irreducible.

Hence, the factorization of p into irreducible elements of I_{d} is unique。

Example 3.15. We shall find all factorizations of 55 in $\mathbb{Q}(\sqrt{-6})$. Since $-6 \equiv 2(\bmod 4)$, it follows from Remark 2.1 .9 and Remark 2.2.8 that $I_{-6}=\langle 1, \sqrt{-6}\rangle$ and $\triangle_{6}=-24$. Observe that $\quad 55 I_{-6}=\left(5 I_{-6}\right)\left(11 I_{-6}\right)$.
Using theorem 2.4 .17 (ii) and Definition 2.4 .15 , it can be verified that 5 is decomposed and we have

$$
\begin{equation*}
5 I_{-6}=P_{1} P_{1}^{\prime} \tag{1}
\end{equation*}
$$

where $P_{1}=\langle 5,2+\sqrt{-6}\rangle$ and $P_{1}^{\prime}=\langle 5,3+\sqrt{-6}\rangle$ are distinct prime modules such that $N\left(P_{1}\right)=N\left(P_{1}^{\prime}\right)=5$ (See Example 2.4.18.) By the same argument wave
(2)

$$
1^{11}-6=P_{2} P_{2}^{\prime}
$$

where $P_{2}=\langle 11,4+\sqrt{-6}\rangle$ and $p_{2}^{\prime}=\langle 11,7+\sqrt{-6}\rangle$ are distinct prime modules such that $N\left(P_{2}\right)=N\left(P_{2}^{\prime}\right)=11$. Therefore,

$$
\begin{equation*}
55 I-6=p_{1} P_{1}^{\prime} P_{2} P_{2}^{\prime} \tag{3}
\end{equation*}
$$

Now our problem is to group the products of $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$ to form principal modules generated by irreducible elements。 We claim that $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$ are not principal. Observe that each of the equations
and $\quad \left\lvert\, \begin{aligned} & x^{2}+6 y^{2} \mid=5 \\ & x^{2}+6 y^{2} \mid=11\end{aligned}\right.$
does not have any solution in \mathbb{Z}. Hence, by Theorem 3.9, any integral modules of norm 5 or 11 is not principal.
Hence $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$ are not principal.
Therefore, there are 3 cases to be considered:

$$
\begin{align*}
& 55 I_{-6}=\left(P_{1} P_{1}^{\prime}\right)\left(P_{2} P_{2}^{\prime}\right) \tag{I}\\
& 55 I_{-6}=\left(P_{1} P_{2}\right)\left(P_{1}^{\prime} P_{2}^{\prime}\right) \\
& 55 I_{-6}=\left(P_{1} P_{2}^{\prime}\right)\left(P_{1}^{\prime} P_{2}\right)
\end{align*}
$$

Clearly, case (I) gives

$$
\begin{equation*}
55 I_{-6}=\left(5 I_{-6}\right)\left(11 I_{-6}\right) \tag{If}
\end{equation*}
$$

For case (II), we first determine the product $P_{1} P_{2}$. From Example 2.5 .10 , we have

$$
\begin{aligned}
P_{1} p_{2} & =\langle 5,2+\sqrt{-6}\rangle\langle 11,4+\sqrt{-6}\rangle \\
& =\langle 55,37+\sqrt{-6}\rangle
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P_{1} p_{2} & =(1+3 \sqrt{-6})\langle 1-3 \sqrt{-6}, 1-2 \sqrt{-6}\rangle \\
& =(1+3 \sqrt{-6})\langle-\sqrt{-6}, 1-2 \sqrt{-6}\rangle \\
& =(1+3 \sqrt{-6})\langle-\sqrt{-6}, 1\rangle \\
& =(1+3 \sqrt{-6}) 1-6
\end{aligned}
$$

Since $P_{1}^{\prime} P_{2}^{\prime}=\left(P_{1} P_{2}\right)^{\prime}$, it follows that $P_{1}^{\prime} P_{2}^{\prime}=\left((1+3 \sqrt{-6}) I_{-6}\right)^{\prime}$
$=(1-3 \sqrt{-6}) I_{-6}$. Then from (II) we get
(II' $\quad 55 I_{-6}=(1+3 \sqrt{-6}) I_{-6}(1-3 \sqrt{-6}) I_{-6}{ }^{\circ}$
Finally, we consider case (III). By the same argument as in this case (II), we have $P_{1} P_{2}^{\prime}=(7+\sqrt{-6}) I_{-6}$ and

$$
\begin{aligned}
& p_{1}^{\prime} P_{2}=(7-\sqrt{-6}) I_{-6} \text {. So in this case we get } \\
& (I I I) \quad 55 I_{-6}=(7+\sqrt{-6}) I_{-6}(7-\sqrt{-6}) I_{-6}
\end{aligned}
$$

By theorem 3.5 , we can verify that $5,11,1+3 \sqrt{-6}, 7+\sqrt{-6}$, $7-\sqrt{-6}$ are irreducible elements of I_{-6}. So using Remark 3.3 to (Í), (II), (III), we see that the only factorizationsof 55 into a product of irreducible are
(II) $\quad 55=u_{2}(1+3 \sqrt{-6})(1-3 \sqrt{-6})$
(III) $\quad 55=\mathrm{u}_{3}(7+\sqrt{-6})(7-\sqrt{-6})$,
where u_{1}, u_{2}, u_{3} are units. In this cases we have $u_{1}=u_{2}=$ $u_{3}=1$.

Example 3.16. We shall find all factorizations of 42 in $\mathbb{Q}(\sqrt{-5})$. Since $-5 \equiv 3(\bmod 4)$, it follows from Remark2.1.9. and Remark 2.2 .8 that $I_{-5}=\langle 1, \sqrt{-5}\rangle$ and $\triangle_{5}=-20$.

Observe that, $\quad 42 I_{-5}=\left(2 I_{-5}\right)\left(3 I_{-5}\right)\left(7 I_{-5}\right)$. Using Theorem 2.4.17(i) and Definition 2.4.15, we can verify that 2 is ramified. i.e. we have

$$
\begin{equation*}
2 I_{-5}=P_{1}^{2} \tag{1}
\end{equation*}
$$

where $P_{1}=P_{1}^{\prime}=\langle 2,1+\sqrt{-5}\rangle$ is a prime module and $N\left(P_{1}\right)=2$. (See Example 2.4.19) By theorem 2.4.17(ii) and Definition 2.4 .15 , we can verify that 3,7 are decomposed, and we have

$$
\begin{equation*}
31_{-5}=P_{2} P_{2}^{\prime} \tag{2}
\end{equation*}
$$

where $P_{2}=\langle 3,1+\sqrt{-5}\rangle$ and $P_{2}^{\prime}=\langle 3,2+\sqrt{-5}\rangle$ are distinct prime modules such that $N\left(P_{2}\right)=N\left(P_{2}^{\prime}\right)=3$. And

$$
\begin{equation*}
7 I_{-5}=P_{3} P_{3}^{\prime} \tag{3}
\end{equation*}
$$

where $P_{3}=\langle 7,3+\sqrt{-5}\rangle$ and $P_{3}^{\prime}=\langle 7,4+\sqrt{-5}\rangle$ are distinct prime modules such that $N\left(P_{3}\right)=N\left(P_{3}^{\prime}\right)=7$. Therefore,

$$
\begin{equation*}
42 I_{-5}=P_{1}^{2} P_{2} P_{2}^{\prime} P_{3} P_{3}^{\prime} \tag{4}
\end{equation*}
$$

Now we consider all possible groupingsof the products of $P_{1}, P_{1}, P_{2}, P_{2}^{\prime}, P_{3}, P_{3}^{\prime}$ to form principal modules generated by irreducible elements.

Using Theorem 3.9 , we can verify that $P_{1}, P_{2}, P_{2}^{\prime}, P_{3}$ P_{3}^{\prime} are not principal

First, we consider the groupingsof the P_{i}, P_{i}^{\prime} in the factorization (4) in which each group contains two modules.

There are 15 cases:

$$
\begin{aligned}
\text { (I) } & 42 I-5=\left(P_{1}^{2}\right)\left(P_{2} P_{2}^{\prime}\right)\left(P_{3} P_{3}^{\prime}\right) \\
\text { (II) } & 42 I_{-5}=\left(P_{1}^{2}\right)\left(P_{2} P_{3}\right)\left(P_{2}^{\prime} P_{3}^{\prime}\right) \\
\text { (III) } & 42 I I_{-5}=\left(P_{1}^{2}\right)\left(P_{2} P_{3}^{\prime}\right)\left(P_{2}^{\prime} P_{3}\right) \\
\text { (IV) } & 42 I-5=\left(P_{1} P_{2}\right)\left(P_{1} P_{2}^{\prime}\right)\left(P_{3} P_{3}^{\prime}\right) \\
\text { (V) } & 42 I_{-5}=\left(P_{1} P_{2}\right)\left(P_{1} P_{3}\right)\left(P_{2}^{\prime} P_{3}^{\prime}\right) \\
\text { (VI) } & 42 I-5=\left(P_{1} P_{2}\right)\left(P_{1} P_{3}^{\prime}\right)\left(P_{2}^{\prime} P_{3}\right) \\
\text { (VII) } & 42 I-5=\left(P_{1} P_{2}^{\prime}\right)\left(P_{1} P_{2}\right)\left(P_{3}^{\prime} P_{3}^{\prime}\right) \\
\text { (VIII) } & 42 I-5=\left(P_{1} P_{2}^{\prime}\right)\left(P_{1} P_{3}\right)\left(P_{2} P_{3}^{\prime}\right) \\
\text { (IX) } & 42 I-5=\left(P_{1} P_{2}^{\prime}\right)\left(P_{1} P_{3}^{\prime}\right)\left(P_{2} P_{3}\right) \\
\text { (X) } & 42 I I_{-5}=\left(P_{1} P_{3}\right)\left(P_{1} P_{2}\right)\left(P_{2}^{\prime} P_{3}^{\prime}\right) \\
\text { (XI) } & 42 I-5=\left(P_{1} P_{3}\right)\left(P_{1} P_{2}^{\prime}\right)\left(P_{2}^{\prime} P_{3}^{\prime}\right) \\
\text { (XII) } & 42 I-5=\left(P_{1} P_{3}\right)\left(P_{1} P_{3}^{\prime}\right)\left(P_{2}^{\prime} P_{2}^{\prime}\right) \\
\text { (XIII) } & 42 I-5=\left(P_{1} P_{3}^{\prime}\right)\left(P_{1} P_{2}\right)\left(P_{2}^{\prime} P_{3}\right) \\
\text { (XIV) } & 42 I-5=\left(P_{1} P_{3}^{\prime}\right)\left(P_{1} P_{2}^{\prime}\right)\left(P_{2} P_{3}\right) \\
\text { (XV) } & 42 I-5=\left(P_{1} P_{3}^{\prime}\right)\left(P_{1} P_{3}\right)\left(P_{2} P_{2}^{\prime}\right)
\end{aligned}
$$

Note that we have
(i)

$$
P_{1}=2 I_{-5}, \quad P_{2} P_{2}^{\prime}=3 I_{-5}, \quad P_{3} P_{3}^{\prime}=7 I_{-5}
$$

By using Theorem 2.5.8, we have

$$
\begin{aligned}
\text { (ii) } & P_{1} P_{2}=\langle 2,1+\sqrt{-5}\rangle\langle 3,1+\sqrt{-5}\rangle=\langle 6,1+\sqrt{-5}\rangle=(1+\sqrt{-5}) I_{-5} \\
\text { (iii) } & P_{1} P_{3}=\langle 2,1+\sqrt{-5}\rangle\langle 7,3+\sqrt{-5}\rangle=\langle 14,3+\sqrt{-5}\rangle=(3+\sqrt{-5}) I_{-5} \\
\text { (iv) } & P_{2} P_{3}=\langle 3,1+\sqrt{-5}\rangle\langle 7,3+\sqrt{-5}\rangle=\langle 21,10+\sqrt{-5}\rangle=(1-2 \sqrt{-5}) I_{-5} \\
\text { (v) } & P_{2}^{\prime} P_{3}=\langle 3,2+\sqrt{-5}\rangle\langle 7,3+\sqrt{-5}\rangle=\langle 21,-4+\sqrt{-5}\rangle=(4-\sqrt{-5}) I_{-5}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\text { (vi) } P_{1}^{\prime} P_{2}^{\prime} & =\left(P_{1} P_{2}\right)^{\prime}=(1-\sqrt{-5}) I_{-5} \\
\text { (vii) } P_{1}^{\prime} P_{3}^{\prime} & =\left(P_{1} P_{3}\right)^{\prime}=(3-\sqrt{-5}) I_{-5} \\
\text { (viiii) } P_{2}^{\prime} P_{3}^{\prime} & =\left(P_{2} P_{3}\right)^{\prime}=(1+2 \sqrt{-5}) I_{-5}
\end{aligned}
$$

(ix) $\quad P_{2} P_{3}^{\prime}=\left(P_{2}^{\prime} P_{3}\right)^{\prime}=(4+\sqrt{-5}) I_{-5}$.

So we can see that any product of two modules from P_{i}, P_{i}^{\prime}, $i=1,2,3$, is principal with irreducible generator. The fact that the generator is irreducible follows from theorem 3.5.

From the above results, we see that every product of any four modules from $P_{i}, P_{i}^{\prime}, i=1,2,3$, is also principal. However, its generator will not be an irreducible element. We now consider the productsof three or five modules from $P_{i}, P_{i}^{\prime}, i=1,2,3$. Suppose that there exists a product of three of these modules which is principal. For example, suppose that $P_{1} P_{2}^{\prime} P_{3}$ is principal. Since $P_{2}^{\prime} P_{3}=(4-\sqrt{-5}) I_{-5}$, it follows that $P_{1}(4-\sqrt{-5}) I_{5}=P_{1} P_{2}^{\prime} P_{3}$ is principal. So by Theorem 3.7 , it follows that p_{1} must be principal. This is a contradiction. So that the product $P_{1} P_{2}^{\prime} P_{3}$ is not principal. By the same argument we see that any productsof three or five of $\mathrm{P}_{1}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{2}^{\prime}, \mathrm{P}_{3}, \mathrm{P}_{3}^{\prime}$ cannot be principal.

Therefore, all possible groupingsof the productsof $P_{1}, P_{1}, P_{2}, P_{2}^{\prime}, P_{3}, P_{3}^{\prime}$ to form principal modules generated by irreducible elements are as listed in cases(I) through (XV). By substituting (i), (ii), (iiii), (iv), (v), (vi), (vii), (viii) in the case(I) through (XV), we get that

$$
\begin{align*}
\text { (I) } & 42 I_{-5}=\left(2 I_{-5}\right)\left(3 I_{-5}\right)\left(7 I_{-5}\right) \tag{I}\\
\text { (II) } & 42 I_{-5}=\left(2 I_{-5}\right)(1-2 \sqrt{-5}) I_{-5}(1+2 \sqrt{-5}) I_{-5} \\
\text { (III) } & 42 I_{-5}=\left(2 I_{-5}\right)(4+\sqrt{-5}) I_{-5}(4-\sqrt{-5}) I_{-5} \\
\text { (IV') } & 42 I_{-5}=(1+\sqrt{-5}) I_{-5}(1-\sqrt{-5}) I_{-5}\left(7 I_{-5}\right)
\end{align*}
$$

(v)
(VI) $\quad 42 I_{-5}=(1+\sqrt{-5}) I_{-5}(3-\sqrt{-5}) I_{-5}(4-\sqrt{-5}) I_{-5}$
(VII) $\quad 42 I_{-5}=(1-\sqrt{-5}) I_{-5}(1+\sqrt{-5}) I_{-5}\left(7 I_{-5}\right)$
(VIII) $\quad 42 I_{-5}=(1-\sqrt{-5}) I_{-5}(3+\sqrt{-5}) I_{-5}(4+\sqrt{-5}) I_{-5}$
(IX' $\quad 42 I_{-5}=(1-\sqrt{-5}) I_{-5}(3-\sqrt{-5}) I_{-5}(1-2 \sqrt{-5}) I_{-5}$
(X) $\quad 42 I_{-5}=(3+\sqrt{-5}) I_{-5}(1+\sqrt{-5}) I_{-5}(1+2 \sqrt{-5}) I_{-5}$
(XI) $\quad 42 I_{-5}=(3+\sqrt{-5}) I_{-5}(1-\sqrt{-5}) I_{-5}(4+\sqrt{-5}) I_{-5}$
(XII) $\quad 42 I_{-5}=(3+\sqrt{-5}) I_{-5}(3-\sqrt{-5}) I_{-5}\left(3 I_{-5}\right)$
(XIII) $\quad 42 I_{-5}=(3-\sqrt{-5}) I_{-5}(1+\sqrt{-5}) I_{-5}(4-\sqrt{-5}) I_{-5}$
(XIV' $\quad 42 I_{-5}=(3-\sqrt{-5}) I_{-5}(1-\sqrt{-5}) I_{-5}(1-2 \sqrt{-5}) I_{-5}$
(XV') $\quad 42 I_{-5}=(3-\sqrt{-5}) I_{-5}(3+\sqrt{-5}) I_{-5}\left(3 I_{-5}\right)$.

Observe that some of these factorizationsare the same, for example (IV) and (VII). The only distinct factorizations are (I'), (II), (III), (IV'), (V'), (VI), (VIII), (IX'), (XII). From these distinct factorizations, using Remark 3.3, we obtain all the distinct factorizations of 42 into irreducible factors as follows:

| (I') | 42 | $=u_{1} \cdot 2 \cdot 3.7$ |
| ---: | :--- | ---: | :--- |
| (II) | 42 | $=u_{2} 2(1-2 \sqrt{-5})(1+2 /-5)$ |
| (III) | 42 | $=u_{3} 2(4+\sqrt{-5})(4-\sqrt{-5})$ |
| (IV) | 42 | $=u_{4}(1+\sqrt{-5})(1-\sqrt{-5}) \cdot 7$ |
| (V) | 42 | $=u_{5}(1+\sqrt{-5})(3+\sqrt{-5})(1+2 \sqrt{-5})$ |
| (VI') | 42 | $=u_{6}(1+\sqrt{-5})(3-\sqrt{-5})(4-\sqrt{-5})$ |
| (VIII) | 42 | $=u_{8}(1-\sqrt{-5})(3+\sqrt{-5})(4+\sqrt{-5})$ |
| (IX) | 42 | $=u_{9}(1-\sqrt{-5})(3-\sqrt{-5})(1-2 \sqrt{-5})$ |
| (XII) | 42 | $=u_{12}(3+\sqrt{-5})(3-\sqrt{-5}) \cdot 3$, |

where $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{8}, u_{9}, u_{12}$ are units. In these case we have $u_{1}=u_{2}=u_{3}=u_{4}=u_{6}=u_{8}=u_{12}=1$ and $u_{5}=u_{9}=-1$.

Theorem 3.17. Let M_{1} and M_{2} be any spg-modules. Then $M_{1} \sim M_{2}$ if and only if $M_{1} M_{2}^{\prime}$ is a principal module。

Proof. Using Remark 2.3.22, we have

$$
\begin{aligned}
M_{1} \sim M_{2} & \Leftrightarrow\left[M_{1}\right]=\left[M_{2}\right] \\
& \Leftrightarrow\left[M_{1} M_{2}^{\prime}\right]=\left[M_{1}\right]\left[M_{2}^{\prime}\right]=\left[M_{2}\right]\left[M_{2}^{\prime}\right]=\left[M_{2} M_{2}^{\prime}\right]=\left[I_{d}\right] \\
& \Leftrightarrow M_{1} M_{2}^{\prime} \text { is principal }
\end{aligned}
$$

Therefore, $M_{1} \sim M_{2}$ if and ondy if $M_{1} M_{2}$ is a principal module. Theorem 3.18. Let $Q(\sqrt{d})$ be any quadratic field with $h_{d}=$ 2. Then the product of any two spg-modules, which are not principal, is principal.

Proof. Let M_{1} and M_{2} be any spg-modules which are not principal. So that $\left[M_{1}\right] \neq\left[I_{d}\right],\left[M_{2}\right] \neq\left[I_{d}\right]$. Since $h_{d}=2$, hence $\left[M_{1}\right]=\left[M_{2}\right]$. Therefore, $M_{1} M_{2} \in\left[M_{1}\right]\left[M_{2}\right]=\left[M_{1}\right]^{2}=\left[I_{d}\right]$ i.g. $M_{1} M_{2}$ is principal。

Example 3.19. We shall find all factorizations of 6510 in $\mathbb{Q}(\sqrt{-31})$. Since $-31 \equiv 1(\bmod 4)$, it follows from Remark 2.1.9. and Remark 2.2.8, that $I_{-31}=\left\langle 1, \frac{1+\sqrt{-31}}{2}\right\rangle$ and $\Delta_{-31}=-31$. In the Table 3 of $[1]$, we see that $h_{31}=3$.

$$
\text { Observe that } \begin{aligned}
6510 I_{-31}= & \left(3 I_{-31}\right)\left(31 I_{-31}\right)\left(2 I_{-31}\right)\left(5 I_{-31}\right) \\
& \left(7 I_{-31}\right)
\end{aligned}
$$

Using theorem 2.4.17(ii) and Definition 2.4.15, we can verify that 3 is inert, (See Example 2.4.19), i.e. we have

$$
3_{-31}
$$

is a prime module. By Theorem 2.4.17(i) and Definition 2.4.15, we can see that 31 is ramified, i.e. we have

$$
31 I_{-31}=\mathrm{P}^{2}
$$

where $P=\left\langle 31, \frac{-31+\sqrt{-31}}{2}\right\rangle$ is a prime module. By Theorem 2.4.17(ii) and Definition 2.4 .15 , we can verify that $2,5,7$ are decomposed. i.e. We have
(i)

$$
2 I_{-31}=P_{1} P_{1},
$$

where $P_{1}=\left\langle 2,1+\omega_{31}\right\rangle, P_{1}^{\prime}=\left\langle 2, \omega_{31}\right\rangle$ are distinct prime modules such that $N\left(P_{1}\right)=N\left(P_{1}^{\prime}\right)=2$ 。

$$
\begin{equation*}
{ }^{5 I_{-31}}=P_{2} P_{2}^{\prime}, \tag{iii}
\end{equation*}
$$

where $P_{\overline{2}}\left\langle 5,3+\omega_{-31}\right\rangle, \mathrm{P}_{2}^{\prime}=\left\langle 5,1+\underline{\omega}_{31}\right\rangle$ are distinct prime modules such that $N\left(P_{2}\right)=N\left(P_{2}^{\prime}\right)=5$.

$$
\begin{equation*}
7 I_{-31}=P_{3} P_{3} \tag{iii}
\end{equation*}
$$

where $P_{3}=\left\langle 7,2+\underline{\omega}_{31}\right\rangle, P_{3}^{\prime}=\left\langle 7,4+\underline{\omega}_{31}\right\rangle$ are distinct prime modules such that $N\left(P_{3}\right)=N\left(P_{3}^{\prime}\right)=7$. Therefore,

$$
\begin{equation*}
6510 I_{-31}=\left(3 I_{-31}\right) P^{2} P_{1} P_{1}^{\prime} P_{2} P_{2}^{\prime} P_{3} P_{3}^{\prime} \tag{iv}
\end{equation*}
$$

Now we consider all possible groupingsof the products of $\left(3 I_{-31}\right), P, P, P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}, P_{3}, P_{3}^{\prime}$ to form principal modules with irreducible generator. Clearly, $3 I_{-31}$ is principal and its generator 3 is irreducible. So we consider
(v)

$$
\begin{aligned}
p & =\left\langle 31, \frac{-31+\sqrt{-31}}{2}\right\rangle \\
& =(\sqrt{-31})\left\langle-\sqrt{-31}, \frac{\sqrt{-31}+1}{2}\right\rangle \\
& =(\sqrt{-31})\left\langle 1, \frac{\sqrt{-31}+1}{2}\right\rangle \\
& =(\sqrt{-31}) I_{-31}
\end{aligned}
$$

Therefore, P is a principal module with irreducible generator. Using Theorem 3.9, we can verify that $P_{1}, P_{1}^{\prime}, P_{2}$, $\mathbf{p}_{2}^{\prime}, \mathbf{P}_{3}, \mathbf{P}_{3}^{\prime}$ are not principal.

Next we consider the groupings of the prime modules on the right hand side of (iv). By Theorem 3.7, each of the prime module $3 I_{-31}$, P cannot be grouped among themself or with any other modules $P_{i}, P_{i}^{\prime}, i=1,2,3$, to form a principal module with irreducible generator. So, we need to consider only the groupings of $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}, P_{3}, P_{3}^{\prime}$. So we know that $h_{-31}=3$. So we may assume that the class group of I_{-31} is $\left\{\left[I_{-31}\right],\left[P_{1}\right],\left[P_{1}^{\prime}\right]\right\}$. So that each of $P_{2}, P_{2}^{\prime}, P_{3}, P_{3}^{\prime}$ must belong to $\left[P_{1}\right]$ or $\left[P_{1}^{\prime}\right]$. By using Theorem 2.5 .7 , it can be verified that

$$
\begin{align*}
\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} & =\left\langle 2, \omega_{31}\right\rangle\left\langle 5,3+\omega_{31}\right\rangle \tag{vi}\\
& =\left\langle 10,-2+\underline{\omega}_{31}\right\rangle \\
& =\left(-2+\underline{\omega}_{31}\right)\left\langle-2+\underline{\omega}_{31}^{\prime}, 1\right\rangle \\
& =\left(-2+\underline{\omega}_{31}\right) I_{-31}
\end{align*}
$$

The detail calculation of this result is shown in Example 2.5.9. By the same method we have
(vii)

$$
\begin{aligned}
P_{1}^{\prime} P_{3} & =\left\langle 2, \underline{\omega}_{31}\right\rangle\left\langle 7,2+\underline{\omega}_{31}\right\rangle \\
& =\left\langle 14,2+\underline{\omega}_{31}\right\rangle \\
& =\left\langle 2+\underline{\omega}_{31}\right)\left\langle 2+\underline{\omega}_{31}^{\prime}, 1\right\rangle \\
& =\left(2+\underline{\omega}_{31}\right) I_{-31}
\end{aligned}
$$

By Theorem 3.17, we conclude that $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are similar. So $\mathrm{P}_{2}^{\prime}, \mathrm{P}_{3}^{\prime} \in\left[\mathrm{P}_{1}^{\prime}\right]$. Then $\mathrm{P}_{2}, \mathrm{P}_{3} \in\left[\mathrm{P}_{1}\right]$. Then we see that the product of two modules from $P_{i}, P_{i}^{\prime},(i=1,2,3)$ is principal if and only if each module is in the distinct class. This can happen in the following 6 cases:
(I) $\quad\left(P_{1} P_{1}^{\prime}\right)\left(P_{2} P_{2}^{\prime}\right)\left(P_{3} P_{3}^{\prime}\right)$
(II) $\quad\left(P_{1} P_{1}^{\prime}\right)\left(P_{2} P_{3}^{\prime}\right)\left(P_{2}^{\prime} P_{3}\right)$
(III) $\quad\left(P_{1} P_{2}^{\prime}\right)\left(P_{1}^{\prime} P_{2}\right)\left(P_{3}^{\prime} P_{3}^{\prime}\right)$
(IV) $\quad\left(P_{1} P_{2}^{\prime}\right)\left(P_{1}^{\prime} P_{3}\right)\left(P_{2} P_{3}^{\prime}\right)$
(v)
(VI) $\quad\left(P_{1} P_{3}^{\prime}\right)\left(P_{1}^{\prime} P_{3}\right)\left(P_{2} P_{2}^{\prime}\right)$

Observe that the grouping in to a group of three:
(VII)

$$
\left(P_{1} P_{2} P_{3}\right)\left(P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}\right)
$$

also gives principal modules, It can be verified that every other grouping of three modules does not give principal factors.

Next, observe that any grouping of the product of at least four modules from $p_{i}, P_{i}(i=1,2,3)$ must contain a product of two modules from different classes. It follows from Theorem 3.7 that if the product of such a grouping is principal, then its generator will not be irreducible. So only cases(I) through (VII) are possible. Thus all possible groupings of the products of $3 I_{-31}, P, P, P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$, P_{3}, P_{3}^{\prime} which give principal modules with irreducible generators are the following 7 possibilities:

$$
\begin{array}{rlrl}
\text { (I) } & & 6510 I_{-31} & =\left(3 I_{-31}\right)(P)(P)\left(P_{1} P_{1}^{\prime}\right)\left(P_{1} P_{2}^{\prime}\right)\left(P_{3} P_{3}^{\prime}\right) \\
\text { (II) } & 6510 I_{-31} & =\left(3 I_{-31}\right)(P)(P)\left(P_{1} P_{1}^{\prime}\right)\left(P_{2} P_{3}^{\prime}\right)\left(P_{2}^{\prime} P_{3}\right) \\
\text { (III) } & 6510 I_{-31} & =\left(3 I_{-31}\right)(P)(P)\left(P_{1} P_{2}^{\prime}\right)\left(P_{1}^{\prime} P_{2}\right)\left(P_{3} P_{3}^{\prime}\right) \\
\text { (IV' } & 6510 I_{-31} & =\left(3 I_{-31}\right)(P)(P)\left(P_{1} P_{2}^{\prime}\right)\left(P_{1}^{\prime} P_{3}\right)\left(P_{2} P_{3}^{\prime}\right) \\
\text { (V') } & 6510 I_{-31} & =\left(3 I_{-31}\right)(P)(P)\left(P_{1} P_{3}^{\prime}\right)\left(P_{1}^{\prime} P_{2}\right)\left(P_{2}^{\prime} P_{3}\right) \\
\text { (VI' } & 6510 I_{-31} & =\left(3 I_{-31}\right)(P)(P)\left(P_{1} P_{3}^{\prime}\right)\left(P_{1}^{\prime} P_{3}\right)\left(P_{2} P_{2}^{\prime}\right) \\
\text { (VII) } & 6510 I_{-31} & =\left(3 I_{-31}\right)(P)(P)\left(P_{1} P_{2} P_{3}\right)\left(P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}\right)
\end{array}
$$

By using Theorem 2.5.7, we get

$$
\text { (viii) } \quad \begin{aligned}
P_{2} \mathrm{P}_{3}^{\prime} & =\left\langle 5,3+\omega_{31}\right\rangle\left\langle 7,4+\underline{\omega}_{31}\right\rangle \\
& =\left\langle 35,18+\omega_{31}\right\rangle \\
& =\left(1+2 \underline{\omega}_{31}\right)\left\langle 1+2 \underline{\omega}_{31}^{\prime}, 1+\underline{\omega}_{31}\right\rangle \\
& =\left(1+2 \underline{\omega}_{31}\right) I_{-31}
\end{aligned}
$$

and

$$
\text { (ix) } \begin{aligned}
P_{1} P_{2} P_{3} & =\left\langle 2,1+\omega_{31}\right\rangle\left\langle 5,3+\omega_{31}\right\rangle\left\langle 7,2+\omega_{31}\right\rangle \\
& =\left\langle 10,3+\underline{\omega}_{31}\right\rangle\left\langle 7,2+\omega_{31}\right\rangle \\
& =\left\langle 70,23+\omega_{31}\right\rangle \\
& =\left(-1+3 \underline{\omega}_{31}\right)\left\langle-1+3 \underline{\omega}_{31}^{\prime}, \omega_{31}\right\rangle \\
& =\left(-1+3 \underline{\omega}_{31}\right) I_{-31}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\text { (x) } \quad P_{1} P_{2}^{\prime} & =\left(P_{1}^{\prime} P_{2}\right)^{\prime}=\left(-2+\underline{Q}_{31}^{\prime}\right) I_{-31} \\
\text { (xi) } \quad P_{1} P_{3}^{\prime} & =\left(P_{1}^{\prime} P_{3}\right)^{\prime}=\left(2+\underline{W}_{31}^{\prime}\right) I_{-31} \\
\text { (xii) } \quad P_{2}^{\prime} P_{3} & =\left(P_{2} P_{3}^{\prime}\right)=\left(1+2 \underline{W}_{31}^{\prime}\right) I_{-31} \\
\text { (xiii) } \quad P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} & =\left(P_{1} P_{2} P_{3}\right)^{\prime}=\left(-1+3 \mathcal{W}_{31}^{\prime}\right) I_{-31}
\end{aligned}
$$

By substituting (ii), (iii), (v), (vi), (vii), (viii), (ix), (x), (xi), (xii), (xiii) in case (I) through case (VII), we get that

$$
\begin{aligned}
& \text { (I) } \quad 6510 I_{-31}=\left(3 I_{-31}\right)\left(\sqrt{-31 I_{-31}}\right)^{2}\left(2 I_{-31}\right)\left(5 I_{-31}\right) \\
& \text { (71-31) } \\
& \text { (II) } \quad 6510 I_{-31}=\left(3 I_{-31}\right)\left(\sqrt{-31} I_{-31}\right)^{2}\left(2 I_{-31}\right)\left(1+2 \omega_{31}\right) I_{-31} \\
& \left(1+2 \underline{e}_{31}^{\prime}\right) I
\end{aligned}
$$

$$
\begin{aligned}
& \left(-2+\omega_{31}\right) I_{-31}\left(7 I_{-31}\right) \\
& \text { (IV) } \quad{ }^{6510 I_{-31}}=\left(3 I_{-31}\right)\left(\sqrt{-31 I_{-31}}\right)^{2}\left(-2+\underline{\omega}_{31}^{\prime}\right) I_{-31} \\
& \left(2+\underline{\omega}_{31}\right) I_{-31}\left(1+2 \underline{\omega}_{31}\right) I_{-31} \\
& \text { (v) } \text { (v }^{6510 I_{-31}}=\left(3 I_{-31}\right)\left(\sqrt{-31 I_{-31}}\right)^{2}\left(2+\underline{W}_{31}^{\prime}\right) I_{-31} \\
& \left(-2+\omega_{31}\right) I_{-31}\left(1+2 \omega_{31}^{\prime}\right) I_{-31} \\
& \text { (ví) }{ }^{6510 I_{-31}}=\left(3 I_{-31}\right)(\sqrt{-31 I}-31)^{2}\left(2+\underline{W}_{31}^{\prime}\right) I_{-31} \\
& \left(2+\omega_{31}\right) I_{-31}\left({ }^{5 I}-31\right) \\
& \text { (vII): } \quad 6510 I_{-31}=\left(3 I_{-31}\right)\left(\sqrt{-31 I_{-31}}\right)\left(-1+3 \underline{\omega}_{31}\right) I_{-31} \\
& \left(-1+36_{-31}^{\prime}\right)^{I}{ }_{-31}
\end{aligned}
$$

Using Theorem 3.5 and Corollary 3.6 we can check that the generator of any principal modules in the right hand side of case (I') through case (VII) are irreducible elements Using Remark 3.3 to case (I') through case (VIÍ) we obtain all the factoriztions of 6510. They are as follows:
(II) $6510=u_{1} \cdot 3(\sqrt{-31})^{2} \cdot 2 \cdot 5 \cdot 7$
(II') $\quad 6510=u_{2} \cdot 3(\sqrt{-31})^{2} \cdot 2\left(1+2 \underline{\omega}_{31}\right)\left(1+2 \underline{\omega}_{31}^{\prime}\right)$
(IIII) $6510=u_{3} .3(\sqrt{-31})^{2}\left(-2+\underline{@}_{31}^{\prime}\right)\left(-2+\underline{U}_{32}\right) .7$
(IV) $\quad 6510=u_{4} \cdot 3(\sqrt{-31})^{2}\left(-2+\underline{\omega}_{31}^{\prime}\right)\left(2+\underline{\omega}_{31}\right)\left(1+2 \underline{\omega}_{31}\right)$
(v) $\quad 6510=u_{5} \cdot 3(\sqrt{-31})^{2}\left(2+\omega_{31}^{\prime}\right)\left(-2+\underline{\omega}_{31}\right)\left(1+2 \underline{\omega}_{31}^{\prime}\right)$
(VI) $\quad 6510=u_{6} \cdot 3(\sqrt{-31})^{2}\left(2+\omega_{31}^{\prime}\right)\left(2+\omega_{31}\right) \cdot 5$
(VII) $\quad 6510=u_{7} \cdot 3(\sqrt{-31})^{2}\left(-1+3 \underline{\omega}_{31}\right)\left(-1+3 \underline{\omega}_{31}^{\prime}\right)$,
where $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}$ are units. In this cases, we have $u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=u_{6}=u_{7}=-1$ 。
\#

