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การรักษาแบบจ าเพาะเจาะจงต่อเซลล์มะเร็ง หรือ targeted therapy เป็นการรักษามะเร็งแผนใหม่ท่ีมี
ประสิทธิภาพในการรักษามะเร็งไดอ้ยา่งตรงจุด ซ่ึงท าให้เซลล์ปกติจะไดรั้บผลกระทบจากการรักษาน้อย โทโปไอโซเมอร์เรส 

IIα (hTopoIIα) และ Epidermal growth factor receptor (EGFR) เป็นโปรตีนซ่ึงได้รับความสนใจ
มากท่ีสุดกลุ่มหน่ึงในการวิจยัและพฒันายาตา้นมะเร็ง เน่ืองจากเป็นเป้าหมายท่ีมีศกัยภาพสูง ซ่ึงโทโปไอโซเมอร์เรส IIα 

(hTopoIIα) ท าหน้าท่ีเก่ียวขอ้งกบัการคลายเกลียวดีเอ็นเอ ขณะท่ีเกิดการ replication ขณะท่ี EGFR จะมีหน้าที
เก่ียวขอ้งกบัการส่งสัญญาณระดบัเซลล์ สารชาลโคน หรือ 1,3-diphenyl-2-propene-1-one เป็นสารกลุ่มโพลีฟี
นอลชนิดหน่ึงสามารถพบไดใ้นพืชหลายชนิด สามารถสังเคราะห์ข้ึนได้ง่าย  โดยให้มีหมู่แทนท่ีได้ท่ีต  าแหน่งต่างๆ กนัหลาย
ต าแหน่ง ส่งผลให้สามารถสร้างสารอนุพนัธ์ไดห้ลากหลาย  เน่ืองดว้ยความหลากหลายทางโครงสร้างน้ีจึงท าให้สารชาลโคน
สังเคราะห์นั้ นมีความหลากหลายทางฤทธ์ิชีวภาพซ่ึงพบว่าสามารถยบัย ั้งโทโปไอโซเมอร์เรส IIα (hTopoIIα) และ 
Epidermal growth factor receptor tyrosine kinase (EGFR-TK)ได ้สารประกอบอนุพนัธ์ของกลุ่ม
ชาลโคนท่ีมีการดดัแปลงโครงสร้าง 47 สารถูกน ามาทดสอบการโดยใชเ้ทคนิคทางคอมพิวเตอร์ในการค านวณ และการทดสอบ
ในหลอดทดลอง พบวา่สารชาลโคน 3d มีฤทธ์ิฆ่าเซลลม์ะเร็งกระเพาะปัสสาวะ, ปากมดลูกและ เตา้นม ไดดี้ท่ีสุดซ่ึงพบวา่มีค่า 
IC50 10.8, 3.2 and 21.1 µM ตามล าดบั ในขณะท่ีชาลโคน 1c, 2a, 3e, 4e และ 4t สามารถยบัย ั้งเซลลม์ะเร็ง
ผิวหนงั (A431) ดว้ย IC50 values < 10 µM ท าการทดสอบยนืยนัการยบัย ั้งการท างานของสารประกอบชาลโคนกบั
โปรตีนเป้าหมายทั้งสองชนิด พบวา่ชาลโคน 3d สามารถยบัย ั้งโทโปไอโซเมอร์เรส IIα ไดดี้กวา่ salvicine ซ่ึงใช้เป็นสาร
เทียบ นอกจากน้ียงัพบว่าชาลโคน 1c, 2a และ 3e ยบัย ั้งเอนไซม์ EGFR-TK ได้มากกว่า 50% ซ่ึงใกล้เคียงกบัยา 
erlotinib ต่อมาการศึกษาแบบแผนในการเข้าจับกัน  (binding pattern) และสมบัติต่างๆของสารออกฤทธ์ิ
ประสิทธิภาพสูงกบัโปรตีนทั้งสองชนิดโดยระเบียบวิธีทางโมเลคิวลาร์ไดนามิกซิมูเลชนั จากผลการศึกษาพบว่าชาลโคน 3d 

เกิดอนัตรกิริยากบัโทโปไอโซเมอร์เรส IIα ได้ดีกว่า salvicine ขณะท่ี 1c, 2a และ 3e จบัได้ดีกบักรดอะมิโนชนิด
ไฮโดรโฟบิก 7 ตวั ซ่ึง M793 เป็นอะมิโนแอซิดท่ีส าคญัต่อการเขา้จบักบัทั้งสามชาลโคน หลงัจากนั้นจึงน ามาศึกษาเภสัช
จลนศาสตร์ใน 4 ขั้นตอนคือ การดูดซึม การกระจายตวั การเผาผลาญ และการขบัถ่ายของสารชาลโคนทั้ง 6 สาร พบว่าสาร
ชาลโคนทั้ง 6 สารสามารถน าไปพฒันาเป็นยาต่อไปได ้หลงัจากนั้นจึงท าการศึกษาความสัมพนัธ์ระหว่างสารชาลโคนจ านวน 

23 สารกบัฤทธ์ิการยบัย ั้งเซลล์มะเร็งผิวหนงั A431 โดยวิธี 2D-QSAR ซ่ึงสมการท่ีดีท่ีสุดในการอธิบายความสัมพนัธ์
โดยใช้วิธี Multiple linear regression (MLR) ให้ค่า R2 = 0.968 ซ่ึงจากผลการศึกษาท่ีไดน้ั้นเป็นขอ้มูลท่ีมี
ประโยชน์อยา่งมากต่อการออกแบบสารชาลโคลยบัย ั้งเซลลม์ะเร็งท่ีมีประสิทธิสูงต่อไปในอนาคตได ้
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ABST RACT (ENGLISH) # # 5772885023 : MAJOR BIOTECHNOLOGY 

KEYWOR

D: 

Chalcone Human topoisomerase IIα EGFR Anticancer MTT assay 

Enzyme assay Molecular dynamics simulation 
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Targeted cancer therapy has become one of high potential cancer 

treatments. Human topoisomerase IIα (hTopoIIα) and Epidermal growth factor 

receptor tyrosine kinase (EGFR-TK) are proteins that play important roles on cell 

cycle. The hTopoIIα catalyzes the cleavage and rejoining of double-stranded DNA 

while EGFR function on cell signaling. Thus, the two proteins have been suggested 

as molecular target for the development of novel cancer therapeutics. A series of 47 

chalcone derivatives was screened against hTopoIIα and EGFR-TK by in silico and 

in vitro techniques. Chalcone 3d showed a high cytotoxicity with IC50 values of 

10.8, 3.2 and 21.1 µM against the HT-1376, HeLa and MCF-7 cancer cell lines, 

respectively, while 1c, 2a, 3e, 4e and 4t exhibited potent compounds against A431 

with IC50 values < 10 µM. To confirm the result the inhibition of those chalcone on 

enzyme assay was obtained. The 3d showed an inhibitory activity against hTopoIIα 

that was better than the known inhibitor, salvicine. Only three chalcones (1c, 2a and 

3e) had an inhibitory activity against EGFR-TK with relative inhibition percentages 

closed to the approved drug, erlotinib. The binding interaction of potent chalcones 

complex with hTopoIIα and EGFR-TK were studied using molecular dynamics 

simulation. The observed 3d/hTopoIIα interactions affirmed that 3d strongly 

interacts with the ATP binding pocket residues while 1c, 2a and 3e/EGFR-TK were 

well occupied within the ATP binding site and strongly interacted with the 7 

hydrophobic residues including the important hinge region residue M793. From 

ADMET properties, all six chalcones could be served as a lead compounds for 

development of hTopoIIα and EGFR-TK inhibitors. The information of drug 

development can be obtained by quantitative structure-activity relationship (QSAR) 

techniques. A series of chalcone derivatives against A431 were subjected to QSAR 

analyses. The MLR equation indicated a good correlation between observed and 

predicted values with R2 = 0.968. The understanding of the relationship between 

structures and pharmacological effects and the ligand-protein binding pattern leads 

to important information for the design of high potential anti-cancer drugs. 
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INTRODUCTION 

 

1.1  Cancer 

 Cancer is a group of diseases characterized by the uncontrolled growth and 

spread of abnormal cells. Normally, human cells grow and divide to form new cells as 

the body needs them. When cells grow old or damages, they die, and new cells take 

their place. When cancer cells develop, this process breaks down. As cells become 

more and more abnormal, old or damaged cells survive when they should die, and 

new cells form when they are not needed. These cancer cells can divide without 

stopping and may form growths called tumors (Fig. 1). A tumor can be benign or 

malignant. A benign tumor does not spread to other parts of the body so, this type of 

tumor is not cancer. Unlike benign tumors, malignant tumors can make up of 

cancerous cells, which can spread by spread into, or invade, nearby tissues. In 

addition, as these tumors grow, some cancer cells can break off and travel to distant 

places in the body through the blood or the lymph system and form new tumors far 

from the original tumor [1]. 

 

 

Figure  1.  Normal cells become to malignant or invasive cancer. Before cancer cells 

form in tissues of the body, the cells go through abnormal cells and form a 

tumor.  

 

1.2  Cancer Statistics  

  Nowadays, cancer is one of the most serious groups of diseases in the world. 

Cancer is a second leading causes of death worldwide next to heart diseases [2]. The 
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number of deaths attributed to cancers being about 9.6 million in 2018, accounting for 

about 1 in 6 deaths worldwide (World Health Organization, 2017) [3]. In 2018, th e 

m o r ta l i ty  d a t a c o l le c te d  b y  the National Center for Health Statistics counted 

1,735,350 new cancer cases and 609,640 cancer deaths in the United States. [4]. The 

most common causes of cancer death are cancers of the lung, prostate, and colorectal 

in men and the lung, breast, and colorectal in women (Fig. 2). These f ou r  cancers 

types account for 45% of all cancer deaths in United States while 60% of the cancer in 

Thailand is coming from five cancer types; breast, cervical, colorectal, liver and lung 

cancer (see also; Fig. 3)  [5]. In female, incident of all cancer expressed to remain 

constant whereas, incident of all cancers seems to be declined from 2000 to 2012 in 

male because of the decreasing in lung cancer (Fig. 4). Virani S. and co-worker found 

that liver and lung cancers exhibit higher problems in the northeast and north regions, 

respectively. Liver cancers are predictable to increase in the northern and south males 

and females [6].  

 

 

Figure  2. Ten Leading Cancer Types for the Estimated New Cancer Cases and 

Deaths of male and female, United States, 2018. [4]. 
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Figure  3. Breast, cervix, colorectal, liver and lung cancers combined had the highest 

age-standardized rates in 2012 and accounted for more than half of the 

incidence, prevalence and mortality in Thailand. *excluding non-

melanoma skin cancer [6]. 

 

 

 

Figure  4. National and subnational average annual percent change of each cancer 

from 2000-2012 for female and males. [6]. 
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1.3  Cancer treatments  

  Nowadays, there are many treatments for remission or cure cancer, that 

make the signs and symptoms of cancer reduce or disappear. Type of treatment will 

depend on several factors, including: (i) type of cancer, (ii) where the cancer began, 

(iii) whether the cancer has spread to other parts of your body. Several types of cancer 

treatments, such as surgery, radiation therapy, chemotherapy, as well as other 

therapeutic modalities (e.g. immunotherapy, hormone therapy, biological therapy, 

photodynamic therapy) and a combination of these (e.g. radiosurgery). 

 

1.3.1  Surgery 

  Surgery treatment is suitable for the patient who has the cancer in one 

area (localized). It may be used to remove tissue that might contain cancer cells. 

Surgery is most successful when the tumor has not spread to other areas. Surgery 

offers the greatest chance of a cure for many types of cancer. However, this treatment 

has a risk to make some common side effect for example, pain is the common side 

effect of the operation or surgery can become infected and sometime while recovering 

from the surgery the patients are at an increased risk of developing a blood clot. In 

some cases, they may get loss of an organ function [7].  

 

1.3.2  Radiation therapy 

  Radiation therapy uses high dose of radiation to kill cancer cells or 

cause genetic changes resulting in cancer cell death. There are two types of radiation 

therapy, External beam radiation therapy and Internal radiation therapy. For external 

beam radiation therapy, this type of radiation comes from a machine that aims 

radiation at cancer. It sends radiation to a part of body from many directions and treats 

a specific part of body. If the patients have cancer in lung, they will have radiation 

only to chest, not to whole body. This type of treatment is used to treat many types of 

cancer (Table 1). On the other hand, internal radiation therapy is a treatment in which 

a source of radiation is put inside the body. The radiation source can be solid or 

liquid. It is often used to treat cancers of the head and neck, breast, cervix, prostate, 

eye, and certain types of thyroid cancer. High doses of radiation therapy are good to 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046345&version=Patient&language=English
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destroy cancer cells, but radiation not only kills or slows the growth of cancer cells, it 

can also affect nearby healthy cells. Damage to healthy cells can cause side effects 

[8]. 

 

Table  1.  Examples of cancers treated with radiation therapy [8]. 
 

Early cancers curable with radiation 

therapy alone 

Cancers curable with radiation 

therapy in combination with other 

modalities 

▪ Skin cancers (Squamous and 

Basel cell) 
▪ Breast carcinomas 

▪ Prostate carcinomas ▪ Rectal and anal carcinomas 

▪ Lung carcinomas (non-small 

cell) 

▪ Local advanced cervix 

carcinomas 

▪ Cervix carcinomas 
▪ Locally advanced head and 

neck carcinomas 

▪ Lymphomas (Hodgkin's and low 

grade Non-Hodgkin's) 

▪ Locally advanced lung 

carcinomas 

▪ Head and neck carcinomas ▪ Advanced lymphomas 

 ▪ Bladder carcinomas 

 ▪ Endometrial carcinomas 

 ▪ CNS tumors 

 ▪ Soft tissue sarcomas 

 ▪ Pediatric tumors 

 

 

1.3.3  Chemotherapy 

  Chemotherapy is the most effective and widely used treatment in most 

types of malignancies [9]. Chemotherapy is the application of chemicals or drugs to 

kill cancer cells or slow the growth of cancer cells. The chemical is called cytotoxic, 
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which means toxic to cells. There are several different classes of anticancer drugs 

based on their mechanisms of action, and they include the following: a) alkylating 

agents which damage DNA; b) anti-metabolites that replace the normal building 

blocks of RNA and DNA; c) antibiotics that interfere with the enzymes involved in 

DNA replication; d) topoisomerase inhibitors that inhibit either topoisomerase I or II, 

which are the enzymes involved in unwinding DNA during replication and 

transcription; e) mitotic inhibitors that inhibit mitosis and cell division; and f) 

corticosteroids, which are used for the treatment of cancer and to relieve the side 

effects of other drugs [10]. Chemotherapy works like a two-sided sword, because 

chemotherapy works on cells, that are dividing rapidly. Cancer cells divide rapidly, as 

do some healthy cells. These include cells in the blood, mouth, digestive system and 

hair follicles. The effect of the drugs was shown to reduce not only cancer but to 

destroy normal cells resulting in the chemotherapy dose dependent side effects such 

as fatigue, nausea, hair loss, vomiting, etc. and even death may also occur in severe 

cases (Fig. 5). [11-13]. There are 132 cancer chemotherapy drugs approved by the US 

Food and Drug Administration, of which 56 drugs have been reported to cause 

oxidative stress [14]. Table. 2 shows the most common chemotherapy drugs used up 

to now.  

 

 

 

Figure  5. Comparison of the two genders on the basis of different side effects 

associated with chemotherapeutic drugs. 
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Table  2. Common class of cancer chemotherapy 

Class of 

Chemotherapy 
Mechanism of Action Examples of Specific Drugs 

Alkylating agents 

Put chemical groups on 

DNA causing DNA 

break, pair abnormally, 

or cross link, so the cell 

cannot divide. 

Busulfan [15], Cisplatin [16, 

17] Cyclophosphamide [18], 

Melphalan [19] 

Inhibition of DNA 

replication 

Disrupt DNA 

replication, the cells 

cannot perform the 

functions. 

Fluorouracil [20], 

Gemcitabine [21] 

Methotrexate [22, 23] 

Mitotic inhibitor 

Binding to proteins that 

is essential for cell 

division. 

Docetaxel [24], Paclitaxel 

[25], Vinblastine [26], 

Vincristine [27] 

Antitumor antibiotics 

Prevent cell division by 

binding to DNA or 

inhibiting RNA 

Doxorubicin [28], Epirubicin 

[29], Mitoxantrone [30], 

Bleomycin [17] 

Topoisomerase 

inhibitors 

Inhibit topoisomerase 

causing the cell stop 

division. 

Topotecan [31-33], Irinotecan 

[31, 34-36], Salvicine [37-41], 

Etoposide [42, 43], 

novobiocin [44, 45] 

EGFR tyrosine kinase 

Inhibit cell proliferation 

which overexpresses 

EGFR by targeting the 

epidermal growth factor 

receptor tyrosine kinase. 

Erlotinib [46-48], Cetuximab 

[49], Gefitinib [50, 51] 

 

1.3.4  Immunotherapy  

  Normally, the immune system produces specialized disease-fighting 

cells that circulate throughout the body, continually seeking out and destroying 

“foreign” agents. Some cancer cells mutate and then escape the detection from the 

immune response because of their similarities to healthy tissues. Therefore, cancer 

immunotherapies override cancer’s evasive strategies to confirm that powerful, 

precise and adaptable immune attack is focuses on tumors anywhere in the body. 

They are various types of immunotherapy, including; a) cancer vaccines b) 

monoclonal antibodies (MABs) c) non-specific immunotherapies d) immune 
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checkpoint inhibitors e) cytokines (immune hormones) [52]. Immunotherapy is not 

widely used as surgery, chemotherapy and radiotherapy. Cancer immunotherapy is 

likely to benefit some people with some types of cancer. It can cause side effects such 

as inflammation in any of the organs in the body and common side effects include 

fatigue, skin rash and diarrhea because it acts on the immune system [53, 54].  

 

1.3.5  Targeted therapy 

  Targeted cancer therapy, in which the drugs are used to specifically 

block cancer cell proliferation, promotes cell cycle regulation or induces apoptosis or 

autophagy and targeted delivery of toxic substances specifically to cancer cells to 

destroy them. This technique has become one of the high potent cancer treatments 

because they are delivering drugs to genes or proteins that are specific to cancer cells 

and less damage to normal cells [55]. A potent target for the targeted cancer therapy is 

required. Proteins that are present in cancer cells but not in normal cells or that are 

more abundant in cancer cells would be potential targets, especially if they are known 

to be involved in cell growth or survival [56-58]. For example, topoisomerase IIα 

(hTopoIIα), epidermal growth factor receptor (EGFR) have been focused as good 

targets because they are playing an important role in cell cycle process. There are two 

types of targeted therapy; monoclonal antibodies (mAbs) and small molecule 

inhibitors (SMIs). mAbs block a specific target on the outside of cancer cells or in the 

tissue surrounding it while small molecule can penetrate the cell membrane to interact 

with targets inside a cell. Small molecules are usually designed to interfere with the 

enzymatic activity of the target protein [59]. During the recent years, several mAbs 

and SMIs (Table 3 and 4) have been approved by authorities for cancer treatment. 
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Table  3. Therapeutic antibodies approved by the US FDA for cancer treatment 

Monoclonal 

antibody 
Target indication year references 

Rituximab  CD20 

Low-grade B-cell 

non-Hodgkin 

lymphoma 

1997 [60-62] 

Trastuzyumab HER2/neu 
Metastatic breast 

cancer 
1998 [63, 64] 

Gemtuzumab-

ozogamicin 
CD33 

Acute myeiold 

leukemia 
2000 [65, 66] 

Alemtuzumab CD52 

Chronic 

lymphocytic 

leukemia 

2001 [67, 68] 

Ibritumomab-

tiuxetan 
CD20 

Non-Hodgkin 

lymphoma 
2002 [69] 

Tositumomab CD20 
Non-Hodgkin 

lymphoma 
2003 [70-72] 

Cetuximab EGFR 

Metastatic 

colorectal cancer, 

head and neck 

cancer 

2004 [73-75] 

Bevacizumab VEGF 

Metastatic 

colorectal cancer, 

NSCLC 

2004 [76] 
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Table 4. Small molecules inhibitors approved by the US FDA for cancer treatment 

[56] 

Monoclonal 

antibody 
Target FDA-approved indication 

Afatinib EGFR and HER2 

• Non-small cell lung 

cancer (with EGFR exon 

19 deletions or exon 21 

substitution (L858R) 

mutations) 

Alectinib ALK • Non-small cell lung 

cancer (with ALK fusion) 

Erlotinib  EGFR (HER1) 

• Non-small cell lung 

cancer (with EGFR exon 

19 deletions or exon 21 

substitution (L858R) 

mutations) 

• Pancreatic cancer 

Gefitinib  EGFR (HER1) 

• Non-small cell lung 

cancer (with EGFR exon 

19 deletions or exon 21 

substitution (L858R) 

mutations) 

Imatinib  KIT, PDGFR, ABL  
• GI stromal tumor (KIT+) 

• Dermatofibrosarcoma 

protuberans 

Pazopanib (Votrient) VEGFR, PDGFR, KIT Renal cell carcinoma 

Sorafenib (Nexavar) 
VEGFR, PDGFR, KIT, 

RAF 

Hepatocellular carcinoma 

Renal cell carcinoma 

Ruxolitinib (Jakafi) JAK1/2 Myelofibrosis 

Rucaparib (Rubraca) PARP 
Ovarian cancer (with BRCA 

mutation) 

Vemurafenib 

(Zelboraf) 
BRAF 

Melanoma (with BRAF 

V600 mutation) 

 

 

https://www.mc.vanderbilt.edu/km/gl/pearls/mutation.html
https://www.mc.vanderbilt.edu/km/gl/pearls/mutation.html
https://www.mc.vanderbilt.edu/km/gl/pearls/mutation.html
https://www.mc.vanderbilt.edu/km/gl/pearls/mutation.html
https://www.mc.vanderbilt.edu/km/gl/pearls/mutation.html
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1.4  Topoisomerase 

   To maintain DNA compaction during the cell process, enzymes capable of 

managing superhelices tension and knots are necessarily required. Topoisomerases are 

enzymes that solve DNA topological problem that result from strand separation 

during replication and transcription [77-79]. They are classified into two categories by 

the number of DNA strands that they transiently break. Type I topoisomerases cause 

transient single-strand breaks during DNA replication, while type II removes knots 

and tangles by generating transient double-strand breaks in double helix (Fig. 6). Type 

I and type II act on both negative and positive supercoil DNA.  

 

 
Figure  6. Topoisomerase I (TopoI, left) and II (TopoII, right). Noncovalent binding 

of (A) TopoI and (D) TopoII to DNA. The arrow indicates the reversible 

ligation and cleavage reaction under normal condition (A, B for TopoI and 

D, E for TopoII). (C) Trapping the cleavage complexes of DNA 

topoisomerases by TopoI inhibitors and (F) TopoII inhibitors promotes 

DNA damages [77].  
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Human topoisomerase II (hTopoII) (Fig. 7) is an enzyme which catalyzes the 

cleavage and rejoining the double-stranded DNA and so it is essential in several vital 

cell processes, such as replication, transcription, chromosome separation and 

segregation [32]. All known type II topoisomerases are adenosine triphosphate 

(ATP)-dependent. ATP binding and hydrolysis modulate conformational changes in a 

DNA-bound type II topoisomerase. These changes are involved in coupling the DNA-

dependent ATPase activity of the enzyme to its transport of one duplex DNA 

segment, termed the T-segment, through the topoisomerase-mediated gate in another 

DNA segment, termed the G-segment (Fig. 8) [80]. Generally, hTopoII exists in two 

homologous structures but in different isoforms, hTopoIIα and hTopoIIβ. The 

hTopoIIα isoform shows a low expression level in the G cell cycle phase but an 

increased concentration in the S and G2/M phases compared to normal cells, whilst 

hTopoIIβ does not change its concentration during the cell cycle [81]. Since hTopoIIα 

is highly overexpressed in proliferating cancer cells [82], it has gained attention from 

many researchers who are developing new anti-cancer drugs. There are two important 

motifs for drugs targeting hTopoIIα, namely the ATPase domain (Fig. 9A) and the 

DNA-binding core (Fig. 9B) [83]. The hTopoIIα inhibitors can be divided into two 

categories, hTopoIIα poisons and hTopoIIα catalytic inhibitors [32]. For hTopoIIα 

poisons (etoposide, doxorubicin, anthracyclines and mitoxantrone), they are clinically 

active agents that generate a high level of hTopoII-DNA covalent complexes by 

stimulating cleavage of the G-segment and blocking relegation of DNA [84]. On the 

other hand, hTopoIIα catalytic agents (ICRF-187, novobiocin, merbarone and 

salvicine) affect the catalytic cycle of hTopoIIα by elimination of the enzymatic 

activity [85-87]. Although these different catalytic agents share the same effect, they 

interact with hTopoIIα at different binding sites. For example, the ICRF-187 binding 

pocket is located in the middle of the primary dimer interface [85], while merbarone 

acts by blocking the DNA cleavage reaction of hTopoIIα. The merbarone binding site 

possesses an interaction domain overlapping with that of etoposide [88-90]. Salvicine, 

a derivative of diterpenoid quinones isolated from the traditional Chinese medicinal 

plant Salvia prionitis [87, 91], targets the ATPase domain [92-94].  
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Figure  7. Structure of eukaryotic topoisomerase IIα a) Domain arrangement of 

TopoIIα. Functional regions are colored and labeled. CTR, C-terminal 

region. (b) Model of the ternary complex. [95] 
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Figure  8. The mechanism of topoisomerase II [96] 
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Figure  9. The hTopoIIα structures used in the docking study. (A) The ATPase 

domain of hTopoIIα with the 5’-adenylyl-β,γ-imidodiphosphate, AMP-PNP 

(space filling model), in the ATP binding pocket, where the GHKL and 

transducer domains are shown in green and pink (PDB code: 1ZXM). (B) 

The hTopoIIα/DNA/etoposide ternary complex (PDB code: 3QX3) [41]. 

 

Table  5. Current topoisomerase inhibitors  

Topoisomerase I inhibitors 

inhibitors mechanism toxicity cancer 

Topotecan [97-99] 

It is forming a 

stable covalent 

complex with the 

DNA/topo I 

aggregate. 

Hematological, 

granulocytopenia 

and 

thrombocytopenia 

ovarian cancer 

[100], breast cancer 

[101] 

Irinotecan [102, 

103] 

It interacts with 

cellular Topo I 

DNA complexes 

and has S-phase-

specific 

cytotoxicity 

Myelosuppression 

and diarrhea 

colorectal cancer 

[104], small cell 

lung cancer [105] 
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Topoisomerase II inhibitors 

inhibitors mechanism toxicity cancer 

Etoposide [81, 

106, 107] 

Non-

intercalating 

TopoII poison 

Bone marrow 

suppression, 

nausea, vomiting 

and alopecia 

skin cancers, Small 

cell lung [108], 

Non-lymphocytic 

leukemia [109], 

breast cancer [110] 

Teniposide [81, 

111] 

Non-

intercalating 

TopoII poison 

Like those of 

etoposide 

non-lymphocytic 

leukaemia [112] 

Anthracyclines 

[81] 

DNA 

intercalation 

Myelosuppression, 

nausea, vomiting, 

alopecia and 

mucositis 

breast cancer [113] 

Mitoxantrone [81] 
DNA 

intercalation 

Myelosuppression, 

nausea, vomiting, 

alopecia and 

cardiotoxicity 

breast cancer, acute 

promyelocytic or 

myelogenous 

leukemias, and 

androgen-

independent prostate 

cancer [114]. 

Doxorubicin [115] 
DNA 

intercalation 

Nausea or 

vomiting and loss 

of appetite 

non‐Hodgkin's 

lymphoma, bladder 

cancer [116] 

Salvicine [38, 39, 

91] 

Binding to 

ATPase domain 

and inhibiting 

topo-mediated 

DNA relegation 

and ATP 

hydrolysis. 

Leukopenia, 

neutropenia, 

elevation of 

transminases, 

nausea, vomiting, 

mucositis [117] 

Breast cancer [117], 

Non-small cell lung 

[118] and gastric 

cancer, leukemia 

cell lines, stomach 

cancer cells [119] 

 

 

 

https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0609.1999.tb01734.x
https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0609.1999.tb01734.x
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1.5  Epidermal Growth Factor Receptor (EGFR) 

    Epidermal growth factor receptor, EGFR or Erb1/HER-1 (Fig. 10) is one of 

four transmembrane proteins in a family of transforming growth factor (TGF) 

receptors. The other members of this group include ErbB2/HER-2, ErbB3/HER-3, 

and ErbB4/HER-4 [120]. EGFR consists of an extracellular receptor domain, a single 

hydrophobic transmembrane region and an intracellular domain with tyrosine kinase 

function [121]. It plays an important role in cell signaling, enhanced cell survival, 

proliferation and resistance to anti-cancer therapeutics. The binding of EGF to the 

extracellular receptor domain of EGFR leads to the phosphorylation of tyrosine 

residues on TK domain, resulting in the recruitment of many intracellular signaling 

molecules (see also Fig. 11 and 12). Accordingly, targeting EGFR proteins have been 

suggested as a high-powered strategy for targeted cancer therapy [122, 123]. EGFR is 

overexpressed in many human cancers, including non-small cell lung, breast, head 

and neck, bladder, and ovarian carcinoma [124]. Thus, EGFR is promising as a 

molecular target for cancer drug discovery [125], especially,  in human epidermoid 

carcinoma A431 cells and human non-small lung cancer (NSCLC) [126-129]. Many 

therapeutic agents were developed for inhibiting EGFR including monoclonal 

antibody (mAbs) and small-molecule tyrosine kinase inhibitors (TKIs) [130].  mAbs 

acts directly against the extracellular receptor domain, while TKIs interrupt the 

intracellular EGFR tyrosine kinase activity. Both of these therapeutic agents inhibit 

cellular proliferation, facilitate apoptosis, and reduce survival signals, tumor 

metastasis, and angiogenesis [131]. Several tyrosine kinase inhibitors have been used 

in recent years are shown in Table 5. Gefitinib (IressaTM, AstraZeneca), an oral 

administration EGFR tyrosine kinase inhibitor was approved by the FDA for non-

small-cell lung cancer (NSCLC) in 2003 [132] [133]. The mechanism of gefitinib is to 

compete with adenosine triphosphate at the binding site on the tyrosine kinase domain 

to prevent autophosphorylation of EGFR in human cancer cell lines. Erlotinib 

(TarcevaTM, OSI-Pharma/Genentech/Roche) works in the same way as Gefitinib. It 

has been used in a treatment for NSCLC and pancreatic cancer. [134], and lapatinib 

[135] and irreversible inhibitors afatinib [136] and dacomitinib [137].  
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Figure  10. Structural of EGFR in three domains including; extracellular receptor 

domain, membrane domain and intracellular domain with tyrosine kinase 

function. A. The extracellular region comprises 4 domains, the N-lobe of 

the kinase domain is in light blue and the C-lobe in darker blue. B. 

Representative cartoons of the domains of EGFR. Domains I and III 

adopt a β-helix fold. Domains II and IV adopt extended structures 

comprising a series of disulfide-bonded modules [138].  
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Figure  11. The scheme shows the mechanism of EGFR activation. The monomer to 

dimer transition in EGFR that is triggered by ligand binding.  [138]. 

 

 

Figure  12. Epidermal growth factor receptor (EGFR) and its downstream signaling 

proteins. Arrows and perpendicular lines indicate activation/induction and 

inhibition/suppression, respectively [139]. 

 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2745238_nihms119126f6.jpg
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Table  6. Current specific/selective tyrosine kinase inhibitors (TKIs) targeting 

receptor tyrosine kinases (RTKs) [10, 59]. 

Name Selective Target 
FDA 

Approved 
Cancer 

Afatinib HER2, EGFR + 
NSCLC, head and 

neck, breast cancer  

Canertinib EGFR, HER2 - 

NSCLC, head and 

neck, breast, ovarian 

cancer 

Cediranib VEGFRs - 
NSCLC, kidney and 

colorectal cancer  

CP-673451 PDGFRs - 

NSCLC, colon 

carcinoma, 

glioblastoma 

Crizotinib MET + 
NSCLC, 

neuroblastoma 

Crenolanib 
MET, ALK, FLT3, 

PDGFR 
- 

AML, gastrointestinal 

stromal tumor, glioma 

Dacomitinib EGFR - 

NSCLC, gastric, head 

and neck cancer, 

glioma 

Erlotinib EGFR + 
NSCLC, pancreatic 

cancer 

EMD1214063 MET - NSCLC 

EMD1204831 MET - NSCLC 

Gefitinib EGFR + NSCLC, AML 

Icotinib EGFR + NSCLC 

KW-2449 FLT3 - AML 

Lapatinib HER2, EGFR + Breast cancer 

Lenvatinib VEGFR2,2 + 
Approved for thyroid 

cancer in Japan 
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Name Selective Target 
FDA 

Approved 
Cancer 

LY2801653 Met, RON - NSCLC 

Neratinib DGFR, HER2 - NSCLC, breast cancer  

PD-173074 FGFRs - 
NSCLC, gastric 

carcinoma 

Quizartinib FLT3 - AML 

R428 AXL - 
AML, NSCLC, breast 

cancer 

Tandutinib FLT3 - RCC, CML 

Tivantinib MET - RCC, breast cancer 

Tivozanib VEGFR1,2,3 - RCC, breast cancer 

Vatalanib VEGFR2 - 

NSCLC, DLBCL, 

colorectal 

adenocarcinoma 

*HER; human epidermal growth factor receptor, EGFR; epidermal growth factor receptor; 
NSCLC; non-small cell lung cancer, VEGFR; vascular endothelial growth factor receptor, 
PDGFR: platelet-derived growth factor receptor, ALK; anaplatic lymphoma receptor ty rosine 
kinase, FLT3: Fms-like tyrosine kinase 3, AML: acute myeloid leukemia, CML: chronic myeloid 
leukemia, RCC: renal cell carcinma, DLBCL: Diffused large B-cell lymphoma.  
 

1.6  Chalcones 

    The polyphenolic compounds, chalcones or 1,3-diphenyl-2-propene-1-ones 

(Fig. 13), are precursors for flavonoids and isoflavonoids. They consist of two 

aromatic rings connected by an α,β-unsaturated carbon atom chain. Chalcones are 

naturally found in several plants, such as Piper methysticum [140] and members of the 

Glycyrrhiza [141] and Angelica [142]. Natural and synthetic derivatives of chalcones 

have been reported to exert several biological activities, including anti-fungal, anti-

microbial, anti-protozoal, anti-viral, anti-malarial, anti-inflammatory and antioxidant 

effects [143-146]. In addition, they have been shown to have cytotoxic activities 

against various cancer cell lines, including breast (MCF7) [147-149], ovary (A2780) 
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[150], lung (A549) [149, 151], colon (SW480) [152], liver (HepG2) [153, 154] and 

cervical (HeLa) [155] cancer-derived cell lines. Chalcones have attracted attention 

because of their promising therapeutic effects, since they are able to target multiple 

cellular molecules, such as MDM2/p53, tubulin, proteasome, NF-kappa B, 

TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, 

STAT3, AP-1, NRF2, AR, ER, PPAR-γ, β-catenin/Wnt [156] and especially 

hTopoIIα [146, 157-159]. Moreover, epipodophyllotoxin-chalcone hybrids exhibited 

an enhanced in vitro cytotoxicity and higher topoisomerase II inhibitory efficiency 

than etoposide [160]. A series of chalcone-triazole derivatives presented a promising 

anticancer activity against the A-549 cell line and showed high binding affinities 

towards DNA topoisomerase IIα and α-glucosidase targets [161]. Moreover, the novel 

bis-fluoroquinolone chalcone-like derivatives were found to inhibit both hTopoIIα 

and tyrosine kinase [162]. Recently, a series of 2’- and 4’-aminochalcones were found 

to inhibit the growth of a canine malignant histiocytic cell line (DH82) and the 

transcription of the hTopoIIα and TP53 genes [163]. 

 

Figure  13. Chemical structure of chalcone 
 

1.7  Objective of the present work 

i) To search for potent chalcones against target cancer cells 

ii) To study the interaction of chalcones with cancer protein target 

iii) To design new compounds that with high potential. 
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CHAPTER II 

THEORY AND BACKGROUND  

2.1  Molecular docking 

  Molecular docking is a technique which predicts the binding mode of a ligand 

bound into a macromolecular target to form a stable complex. Information of the 

preferred orientation in turn may be used to predict how well the ligand can bind into 

the receptor. A variety of molecular docking software is available (Table 7). Docking 

methods have many algorithms, but in this study, we have employed CDOCKER 

algorithm in Accelrys Discovery Studio 3.0 (Accelrys, Inc.) program. A CDOCKER 

algorithm is a grid-based molecular docking method that generates randomly ligand 

conformations using CHARMm [164]. CDOCKER has been shown to give highly 

accurate docked poses [165]. The receptor is held fixed while the ligands are flexible 

during the refinement process. Ligand conformations are randomly generated from 

the initial ligand structure through high temperature molecular dynamics, followed by 

random rotations. The random conformations are refined by grid-based (GRID 1) 

simulated annealing and a final grid-based or full force field minimization. 

 

Table  7. Molecular docking software [166] 

Name URL 

Autodock http://autodock.scripps.edu/ 

DOCK http://dock.compbio.ucsf.edu/ 

FlexX https://www.biosolveit.de/FlexX/ 

FITTED http://fitted.ca/ 

FlipDock http://flipdock.scripps.edu/ 

GOLD http://www.ccdc.cam.ac.uk/solutions/csd-discovery/ 

components/gold/ 

Glide https://www.schrodinger.com/glide 

ICM http://www.molsoft.com/ 
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2.2 Molecular dynamics simulation 

  Molecular dynamic (MD) simulation is defined as a computer simulation 

technique used to describe the time-dependent behavior of a biological system by 

integrating the Newton’s laws of motion. Computer simulations act as a bridge 

between experiment and theory. This technique is widely used to calculate changes in 

the binding free energy of a drug candidate, or to observe the energies and the 

mechanism of the conformation change of a biological system such as protein in 

solution, membrane embedded protein, or large macromolecular complexes. The 

molecular dynamics simulation method is based on Newton’s law equation (eq.1) 

Newton’s equation of motion is given by  

 

𝐹𝑖  = 𝑚𝑖𝑎𝑖 = 𝑚𝑖 
𝑑𝑣𝑖

𝑑𝑡
= 𝑚𝑖

𝑑𝑟𝑖
2

𝑑𝑡2             (eq. 1) 

 

where 𝐹𝑖  is the force extent on particle i, 𝑚𝑖 is the mass of particle i and 𝑎𝑖 is the 

acceleration of particle i, 𝑣𝑖 is the velocity of particle i.  

The force 𝐹𝑖   can also be expressed as the gradient of the potential energy (V) 

 

𝐹𝑖  = −𝛻𝑉𝑖(𝑅) = 
𝑑𝑉𝑖

𝑑𝑟𝑖
          (eq. 2) 

 Combining these two equations (eq. 1 and eq. 2) lead to 

   

𝐹𝑖  =𝑚𝑖
𝑑𝑟𝑖

2

𝑑𝑡2
 = −

𝑑𝑉𝑖

𝑑𝑟𝑖
                     (eq. 3) 

 

 The total potential energy of system is defined by intramolecular and 

intermolecular interactions (eq. 4).  

  𝑉 =  𝐸𝑏𝑜𝑛𝑑𝑒𝑑 +  𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑           (eq. 4) 
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where;      𝐸𝑏𝑜𝑛𝑑𝑒𝑑 =  𝐸𝑏𝑜𝑛𝑑−𝑠𝑡𝑟𝑒𝑡𝑐ℎ +  𝐸𝑎𝑛𝑔𝑙𝑒𝑠−𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛−𝑎𝑛𝑔𝑙𝑒         (eq. 5) 

 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 =  ∑ 𝐾𝑏𝑏𝑜𝑛𝑑𝑠 (𝑟 − 𝑟0)2 + ∑ 𝐾𝜃𝑎𝑛𝑔𝑙𝑒𝑠 (𝜃 − 𝜃0)2 + ∑ 𝐾𝜙𝑡𝑜𝑟𝑠𝑖𝑜𝑛 (𝜙 − 𝛿)2      (eq. 6) 

 

 

Figure  14. Typical intramolecular interactions 

 

 The potential energy derived from bonded and non-bonded term where the 

bonded term consists of three terms of atomic motion (i) the bond interaction between 

two atomic (𝐸𝑏𝑜𝑛𝑑−𝑠𝑡𝑟𝑒𝑡𝑐ℎ), (ii) the angle between two connected bonds 

(𝐸𝑎𝑛𝑔𝑙𝑒𝑠−𝑏𝑒𝑛𝑑) and (iii) the torsion angle (𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛−𝑎𝑛𝑔𝑙𝑒) (Fig. 14). For the non-bonded 

term, it can be contributed by two functions (see also eq. 7) (i) the van der Waals 

interaction is obtained from Lennard-Jones potential in eq. 8 while (ii) Coulomb 

potential is applied for electrostatic interaction (eq. 9).  

𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 =  𝐸𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 +  𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐  (eq. 7) 

 

where;    𝑉𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 =  ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 )        (eq. 8) 

 

   𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =  ∑
𝑞𝑖𝑞𝑗

4𝜋
                (eq. 9) 
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Binding free energy 

 The total free energy (𝛥𝐺) of a system is calculated from its enthalpy term (ΔH) and 

the entropy term with constant temperature (TΔS) (eq. 10). 

     

𝛥𝐺 =  𝛥𝐻 − 𝑇𝛥𝑆               (eq. 10) 

 In 𝛥𝐻 term is sum of molecular mechanics energy of complex (Δ𝐸𝑀𝑀) in the gas 

phase and term of solvation free energy (Δ𝐺𝑠𝑜𝑙). (Eq. 11) can be rewritten as:  

 

                                         𝛥𝐻 = (𝛥𝐸𝑀𝑀 + 𝛥𝐺𝑠𝑜𝑙) − 𝑇𝛥𝑆                           (eq. 11) 

   

 𝛥𝐸𝑀𝑀 is derived from the summation of bonded and non-bonded interactions while 

𝛥𝐺𝑠𝑜𝑙 is calculated from both polar and non-polar terms (eq. 12). The Poisson 

Boltzmann (PB) equation in (eq. 13) or the generalized Born (GB) in (eq. 14) are 

presumed as a polar term while the non-polar term is assumed to the surface 

accessible surface area (SASA) in eq. 15. 

 

𝛥𝐺𝑠𝑜𝑙 = 𝛥𝐺𝑃𝐵(𝐺𝐵) + 𝛥𝐺𝑆𝐴𝑆𝐴                (eq. 12) 

 

 𝛻{ ԑ(𝑟)𝛻𝜙(𝑟)} − ԑ(𝑟)𝐾(𝑟2) sinh[𝜙(𝑟)] = −4𝜋𝜌(𝑟)                (eq. 13) 

 

𝐺𝑒𝑙𝑒𝑐 =  ∑
𝑞𝑖𝑞𝑗

4𝜋ԑ0𝑟
−

1

2
(1 −

1

ԑ
) ∑ ∑

𝑞𝑖𝑞𝑗

√𝑟2+ 𝑎𝑖𝑎𝑗exp (−
𝑟2

4𝑎𝑖𝑎𝑗
)

𝑗𝑖      𝑎𝑖 ; 𝐵𝑜𝑟𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 (eq. 14) 

 

   𝛥𝐺𝑆𝐴𝑆𝐴 =  𝛾𝑆𝐴𝑆𝐴 +  𝛽 γ = 0.00542 kcal mol1 Å2 (eq. 15) 

    β = 0.92 kcal mol-1  
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2.3 Quantitative structure-activity relationship (QSAR) 

  QSAR is a method that attempts to correlate structural, chemical and 

pharmacological activities in a quantitative manner for a series of compounds. The 

activities and properties are connected by mathematical functions, f:  

Biological activity = f (physiochemical and/or structural properties) 

the biological activity can express the experiment values; IC50, ED50, % inhibition 

  QSAR is a mathematical method being widely applied in drug discovery and 

design. There are several publications of chalcones as anticancer using QSAR 

techniques [167-169]. The understanding of the relationship between chemical 

structures and pharmacological effects leads to some important information about the 

molecular mechanisms of the inhibition activities [170]. 

 

2.3.1  Molecular descriptor [171] 

    Molecular descriptors are at the core of QSAR modeling and there are 

many different types of descriptors depending on the dimensionality of the used 

QSAR. For example, in 1D-QSAR, the molecule can be considered as a one-

dimensional molecular representation (e.g. functional groups, rings, bonds, 

substituents etc.). 2D molecular descriptor are defined to be numerical properties that 

can be calculated from the connection table representation of a molecule (e.g., 

elements, formal charges and bonds, but not atomic coordinates). For the 3D-

descriptor, the properties that could calculated from the 3D structure of the molecules.   

2.3.2  Regression Analysis for QSAR studies 

  There are many statistical model-building methods. The most 

commonly used regression-based approaches follow; 

 

2.3.2.1 Multiple Linear Regression (MLR) 

  MLR is a statistical technique that uses several explanatory 

variables to predict the relationship between the dependent variable and multiple 

independent variables. This method is a very popular technique used in QSAR 
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because of its simplicity, transparency, reproducibility, and easy interpretability [172]. 

The MLR equation is as follows;  

 

  Y = a + b1X1 + b2X2 + b3X3 + … + bNXN  (eq. 16) 

 

where Y is dependent variable, X1, X2, X3, …, XN are descriptes dependent variables 

with their regression coefficients b1, b2, b3, …, bN, and a is a constant term of the 

model.   

  For a statistically reliable model, the number of observations (number of 

molecules) and number of descriptors should have a ratio of at least 1:5 [173]. This 

method uses a stepping multiple linear algorithm to generate a model that may be 

carried out with either a fixed number of steps or an automatically determined end 

point. The stepping algorithms may give regression equations that use different 

variables. The statistical significance of the models should to be checked carefully. 

2.3.2.2 Partial Least Squares (PLS) 

  PLS investigation is an extension of the multiple linear regression 

method also widely used in QSAR. PLS has many advantages, including the ability to 

robustly handle more descriptor variables than compounds, nonorthogonal descriptors 

and multiple biological results, while providing more predictive accuracy and a much 

lower risk of chance correlation [174]. Predictions from PLS models tend to be more 

accurate than from MLR because PLS can construct predictive models when factors 

are many and highly collinear by employed cross validation technique [175].  

 

2.3.3  Evaluation of the Models [176] 

A developed QSAR model can be accepted by following this criterion.  

   2.3.3.1 Coefficient of determination (r2) (≥ 0.7) can define as follows:  
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r2 = 1- ∑
(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2

(𝑌𝑜𝑏𝑠 − 𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2              (eq. 17) 

 where; 𝑌𝑜𝑏𝑠  stands for the observed response value 

   𝑌𝑐𝑎𝑙   is a model-derived calculated response.  

   𝑌𝑜𝑏𝑠
̅̅ ̅̅ ̅   is the average of the observe response values. 

  

 2.3.3.2 Standard error of estimate (SEE) For a good model, this value 

should be smaller, and this is defined as follows:  

SEE = √
(𝑌𝑜𝑏𝑠−𝑌𝑐𝑎𝑙)2

𝑁−𝑝−1
         (eq. 18) 

  

 where; N is number of molecules 

   𝑝  is number of predictor variable used in the model 

  

 2.3.3.3 Variance ratio (F) for statistical significance of the model 

should be high. The variance ratio can be defined as follows: 

 

F = 

∑(𝑌𝑐𝑎𝑙−�̅�)2

𝑝

∑(𝑌𝑜𝑏𝑠−𝑌𝑐𝑎𝑙)2

𝑁−𝑝−1

                        (eq. 19) 

 

2.4  ADMET properties of a drug molecule 

     The success of a drug is determined not only by good efficacy, but also 

acceptable ADME and toxicity [177].  Pharmacokinetics is the way that body acts on 

the drug once it is administered. It is the measure of the rate (kinetics) of Absorption, 

Distribution, Metabolism, Excretion (ADME) and Toxicity. The prediction of the 

ADMET properties has become one of the most important issues to assess the effects 
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or risks of these compounds on the human body [178]. When a drug is administered, 

it should cross the membranes of cells to reach its target. The lipophilicity of the 

molecule is a measure of the ability of a compound to dissolve in fats, oils, lipids, and 

non-polar solvents. The lipophilicity is measured from the partition coefficient that is 

calculated by the following equation 20. The value of log P is generally in the range 

1-5 [166]. 

 

 P = 
[𝐷𝑟𝑢𝑔]𝑜𝑐𝑡𝑎𝑛𝑜𝑙

[𝐷𝑟𝑢𝑔]𝑎𝑞𝑢𝑒𝑜𝑢𝑠
     (eq. 20) 

 

  Another parameter for the prediction of absorption is the polar surface area 

(PSA) defined as the sum of the surfaces of polar atoms in a molecule. It has been 

used for predicting intestinal absorption [179] and blood-brain barrier [180]. After the 

drug absorption, the drug distribution have to be considered.  Normally, distribution 

of drugs is often measured as a volume of distribution. Volume of distribution (VD) 

means how extensively drug is distributed to the rest of the body compared to the 

plasma. It is defined by the ratio of the amount of drug in total body to the 

concentration of drug in plasma following the equation 21.   

 

    VD = 
𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑏𝑜𝑑𝑦

𝐶𝑜𝑛𝑐.𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑝𝑙𝑎𝑠𝑚𝑎
               (eq. 21) 

  There are many physicochemical factors influencing drug distribution not only 

the volume of distribution, but also physicochemical properties, protein binding and 

physiologic barriers. 

   The metabolism of drugs play an important role in both of pharmacodynamic 

and pharmacokinetic properties [181]. As metabolism occurs, the initial compound is 

converted to new compounds called metabolites. The metabolism is carried out in the 

liver by e.g. redox enzymes, termed cytochrome P450 enzymes. Drug metabolism can 

be divided into two phases; phase I and II metabolism [182]. For phase I, the drug will 

change the chemical structure by the oxidation, reduction and hydrolysis reaction, 
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while in phase II drug conversion involves the conjugation reaction between drug and 

substances in the body such as glucuronic acid, sulfate and glycine.  After metabolism 

process, the drug and their metabolite were eliminated from the body through the 

kidney. There are three sites are drug excretion occurs (Fig. 15). Firstly, the kidney is 

the important sites where metabolites are excreted through urine. Second, some of the 

metabolites are eliminated by the liver in the bile and passes through to the gut until 

they are finally excreted along with waste products or feces. The last way of excretion 

is through the lungs (e.g. anesthetic gases) [183].  

 

 

Figure  15. The drug excretion’s routes [183] 

 

  The toxicity of the drug is also a very important descriptor for the drug 

prediction. Computational chemists try to predict the ADME-Tox qualities of 

compounds through methods like QSPR or QSAR. Normally, drug-likeness of a 

compound is a combination of molecular properties and structure features which 

determines whether a molecule is similar to available known drugs. In addition, the 

Lipinski’s rule-of-five [184] helps to evaluate drug likeness of any chemical 

compound with certain pharmacological and biological activity that would likely to be 

considered as orally active drug. Note that, the properties, such as molecular mass < 
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500 Da, ClogP < 5, number of hydrogen bond donors < 5, the sum of nitrogen and 

oxygen atoms < 10 together constitutes the rule of five. 

 

2.5  ADP-Glo Kinase assay 

  The ADP-Glo™ Kinase Assay is a luminescent ADP detection assay which 

measures kinase activity by monitoring ADP producing during kinase reaction. The 

ADP-Glo™ Kinase Assay is a universal assay that can be used to monitor the activity 

of virtually any ADP-generating enzymes (e.g., kinase or ATPase). Because of it is 

high sensitivity, it is suitable for monitoring enzyme activities at very early substrate 

conversions requiring very low amount of enzymes [185].  The assay is performed in 

two steps; first, the ADP Glo reagent is added into reaction to terminate the kinase 

reaction and deplete the remaining ATP. The Kinase Detection Reagent is added to 

convert ADP to ATP and then the newly synthesized ATP is measured using a 

luciferase/luciferin reaction in second step (Fig. 16). The luminescent signal generated 

is proportional to ADP concentration produced and is correlated with the kinase 

reaction.  
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Figure  16. Principle of the ADP-Glo™ Kinase Assay. 
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CHAPTER III 

MATERIALS AND METHODS 

3.1  Equipment  

Analytical balance PB303-S, Mettler Toledo, Switzerland. 

Autopipette Gilson, Germany 

Centrifuge Hermle refrigerate centrifuge model 

Z383K, Hermle Labortechmik GmbH, 

Germany. 

Heat box D1100, Labnet, USA 

Incubator Accuplus, Thailand 

Microplate reader TECAN, Austria 

Nano drop UV/visible 

spectrophotometer ND-1000 

Nanodrop Technologies, USA 

pH meter Seven Easy pH meter, Mettler Toledo, 

USA 

 

SDS-PAGE electrophotoresis Bio-RAD CA, USA 

UV detector ECONO UV monitor, Bio-Rad, USA 

Vortex Model G-560E, Scientific Industries 

USA. 

 

3.2  Chemicals 

Acrylamide Bio Basic, Canada 

Agar Merck, Germany 

ADP-GloTM Kinase Assay kit Promega (Madison, USA) 
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Adenosine triphosphate (ATP)          Fermentus, USA 

Bovine serum albumin (BSA)            Sigma, USA 

Chalcone 

Synthesis from Center of Excellence in 

Natural Products Chemistry, 

Department of Chemistry, Faculty of 

Science, Chulalongkorn University. 

Coomassic brilliant blue R-250         Bio Basic, Canada 

Dimethyl sulfoxide (DMSO) Merck, Germany 

Dulbecco’s modified eagle’s medium 

(DMEM)  
Life Technologies (CA, USA) 

Ethylenediaminetetraacetic acid 

(EDTA)  
Merck, Germany 

fetal bovine serum (FBS) Life Technologies (CA, USA) 

Isopropyl β-D-1-thiogalactopyranoside 

(IPTG)  
Fermentus, USA 

Magnesium chloride (MgCl2)               Ajax Finechem, Australia  

Methanol                                        Ajax Finechem, Australia  

penicillin- streptomycin (Pen-Strep)    Life Technologies (CA, USA) 

phosphate buffered saline (PBS) Sigma-Aldrich (Darmstadt, Germany) 

Plasmid pET28b-hTopoIIα-ATPase      Gifted from Dr. Nonlawat Boonyalai 

Salvicine                                          Chemfaces (Wuhan, P.R. China) 

Sodium chloride                               J.T. Baker, Malaysia 

Sodium dodecyl sulfate (SDS)      Sigma-Aldrich (Darmstadt, Germany) 

Thiazolyl blue (MTT) Sigma-Aldrich (Darmstadt, Germany) 
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Trypsin Life Technologies (CA, USA) 

Tris (hydroxymethyl) aminomethane              Research organic, USA 

Triton X-100 USB,USA 

Tween 20  USB, USA 

Yeast extract powder Himedia, India 

 

3.3  Cancer cell lines, Enzyme and Bacterial strains 

  Epidermoid carcinoma cell lines (A431; CRL-1555), Human lung 

adenocarcinoma cell lines (A549; CCL-185), Homo sapiens cervix adenocarcinoma 

cell lines (HeLa; CCL-2), urinary bladder carcinoma cell lines, (HT1376; CRL-1472), 

Human breast adenocarcinoma cell lines (MCF-7; HTB-22): American Type Cell 

Culture Collection (ATCC) 

E. coli BL21 (DE3) Novagen, Germany 

Plasmid pET28b-hTopoIIα-ATPase  Gifted from Dr. Nonlawat Boonyalai 

EGFR expression plasmid pcDNA6A-

EGFR ICD (645-1186) 

Gifted from Mien-Chie Hung (Addgene 

plasmid # 42667) 
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Part I Computational approach  

3.4 Topoisomerase II (hTopoIIα) 

3.4.1  Molecular docking of hTopoIIα 

 Due to the possibility of the inhibition of two motifs of the hTopoIIα 

(ATP binding site in the ATPase domain and the etoposide binding pocket in the 

hTopoIIα/DNA complex), the predicting mode of the inhibitory activity of chalcones 

on both sites was studied by molecular docking using the CDOCKER module of 

Accelrys Discovery Studio 3.0 (Accelrys, Inc.) as previously reported [186]. The 

starting structures of the 47 designed chalcone derivatives (A1; Appendix) were built 

by the GaussView program [187], while those of salvicine and etoposide were taken 

from the ZINC database [188]. To validate the docking method, the co-crystallized 

ligands were initially docked into the binding pocket with 100 independent runs, i.e., 

docking of AMP-PNP into the ATP binding site of the hTopoIIα ATPase domain 

(1ZXM.pdb), and etoposide into its binding pocket of the hTopoIIα/DNA complex 

(3QX3.pdb). The position of docked ligands did not differ significantly from the 

crystallized conformation ligands (RMSD = 0.80 Å for AMP-PNP and 0.44 Å for 

etoposide) and so the 47 chalcones were then separately docked into both sites, while 

salvicine (used as the reference compound at the ATPase domain) was only docked 

into the ATP binding site. The chalcones with predicted interaction energies towards 

hTopoIIα that were more favorable than those of the known inhibitors were 

synthesized and their in vitro cytotoxicity against the three cancer cell lines was tested 

(section 3.6.3). 

 

3.4.2  MD simulation of hTopoIIα                                                                                     

          All-atom MD simulations under a periodic boundary condition were 

performed on the most potent chalcone selected from the in vitro cytotoxicity study 

(section 3.6.3) in complex with hTopoIIα in aqueous solution, following the 

previously reported MD study on the binding of mansonone G to hTopoIIα [186]. The 

partial charges of the ligand were prepared according to standard procedures [189-

191]. The ligand was optimized with ab initio calculation using the HF/6-31G* 

method in the Gaussian09 program[192]. The electrostatic potential (ESP) charges of 
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the ligand were calculated using the same level of theory, and then the restrained ESP 

(RESP) charges were obtained by the charge fitting procedure using the antechamber 

module in the AMBER 14 package program [193]. The general AMBER force field 

(GAFF) [194] and AMBER ff03 force field [195] were applied for the ligand and 

protein, respectively. The protonation states of all ionizable amino acids were 

determined using PROPKA 3.1 [196]. The complex was solvated by TIP3P water 

molecules [197] within 12 Å around the system surface. Chloride ions were 

introduced to neutralize the total positive charge of the chalcone/hTopoIIα complex.  

To remove the bad contacts and steric hindrance, the added hydrogen atoms 

were minimized with 1000 steps of steepest descents (SD) followed by 2000 steps of 

conjugated gradients (CG) using the SANDER module in AMBER 14. The water 

molecules and ions were then minimized with 500 steps of SD followed by 500 steps 

of CG, while a 500 kcal/mol Å2 force constant was used to restrain hTopoIIα. The 

whole system was then fully minimized with 1000 steps of SD and CG. All covalent 

bonds involving hydrogen atoms were constrained by the SHAKE algorithm [198]. 

The long-range electrostatic interactions were calculated according to the Particle 

Mesh Ewald  (PME) approach [199] with a cutoff distance of 12 Å for non-bonded 

interactions. 

The system was heated to 310 K for 100 ps and then simulated at the same 

temperature for 80 ns in the NPT ensemble using a time step of 2 fs. The MD 

trajectories in the production phase were taken for analysis in terms of the per-residue 

decomposition free energy and intermolecular hydrogen bonds (H-bonds) between the 

ligand and hTopoIIα using the MM/PBSA.py and cpptraj modules, respectively. The 

percentage of H-bond occupation was calculated using the two criteria of: (i) the 

distance between proton donor (HD) and acceptor (HA) atoms ≤ 3.5 Å, and (ii) the 

angle of HD-H…HA > 120°.  

 

3.5  Epidermal Growth factor receptor tyrosine kinase domain (EGFR-TK) 

3.5.1  MD simulation of EGFR-TK 

       We employed the homology modeling to generate the full structure of 

tyrosine kinase from the crystal structure of EGFR-TK domain (pdb code: 1M17) as 

template using swiss model program. From in vitro studies, the screened chalcones 
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were then docked into the ATP binding site of EGFR-TK model using the 

CDOCKER module in according to the standard procedures [200, 201]. The docked 

chalcone/EGFR-TK complex with lowest interaction energy was selected as the initial 

structure for performing MD simulation. The partial charges of each ligand were 

prepared as follows. The geometry of ligand was optimized with ab initio calculation 

using HF/6-31G* method in Gaussian09 program [202]. Its electrostatic potential 

(ESP) charges were evaluated using the same level of theory, and then the restrained 

electrostatic potential (RESP) charges were retrieved by the charge fitting procedure 

using the antechamber module in AMBER 16 [203]. The ligand and protein were 

treated by the general AMBER force field (GAFF) [194] and AMBER ff14SB force 

field [204], respectively. The protonation states of Asp, Glu, Lys, Arg and His were 

assigned using PROPKA 3.0 [205]. The complex was solvated by TIP3P water 

molecules within 12 Å around the system surface and chloride ions were randomly 

added for system neutralization. All missing hydrogen atoms were added and then 

minimized with 1000 steps of steepest descents (SD) and 2000 steps of conjugated 

gradients (CG) using the SANDER module in AMBER 16 to reduce the bad contacts 

and steric hindrance. The water molecules and ions were then minimized with 2500 

steps of SD followed by 2500 steps of CG, while protein backbone was restrained 

with force constant of 10.0, 5.0 and 1.0 kcal/mol·Å, respectively. Finally, the whole 

system was fully minimized with 2500 steps of SD and CG. All covalent bonds 

involving hydrogen atoms were constrained by SHAKE algorithm [206]. The long-

range electrostatic interactions were calculated by the Particle Mesh Ewald (PME) 

approach [199] ,while a cutoff distance of 12 Å was applied for non-bonded 

interactions. Each system was heated to 310 K for 200 ps and equilibrated at the same 

temperature for 200 ps with backbone restraints by force 10 kcal/mol·Å. After that, 1 

ns simulation was performed by decreasing restraint weights on protein from 10.0 to 

5.0 kcal/mol·Å and then the simulation without any restraint was conducted till 500 

ns. The MD trajectories from the last 100-ns simulation were taken for analysis in 

terms of root mean square deviation, per-residue decomposition free energy, number 

of hydrogen bonding between ligand and EGFR-TK, time-dependent distance 

between the centers of mass of the hydrophobic residues L718 and G796 and water 

accessibility as solvent-accessible surface area (SASA). 
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Part II Experimental methods 

3.6  Topoisomerase II (hTopoIIα) 

3.6.1  Synthesis of chalcone derivatives   

 The three selected chalcones (3c, 3d and 3f) were synthesized by 

Claisen-Schmidt condensation with some modifications between selected 

acetophenones and benzaldehydes under a basic condition, according to the 

procedures described by Cabrera [207]. The target products were purified by column 

chromatography and their structures were elucidated by NMR spectroscopy.  

 

3.6.2  Cell culture and sample preparation 

Stock cultures of HT-1376, HeLa and MCF-7 cell lines were grown in 

T-75 flasks in complete medium (CM; DMEM, 10% (v/v) FBS and 1% (v/v) Pen-

Strep) at 37 °C under 5% (v/v) CO2. They were subcultured once a week, for HeLa 

and MCF-7 cells at a 1:100 ratio and for HT-1376 at 1:20 ratio by washing with PBS 

and then the cells were detached with trypsin. The 10-1 M stock solution of each 

respective chalcone derivative was prepared in 100% DMSO. 

 

3.6.3  Cytotoxicity assay   

The cytotoxicity of the chalcones and salvicine was measured 

according to a published method [208] with some modifications. The cell viabilities 

of three cancer cell lines (HT-1376, HeLa and MCF-7) exposed to the screened 

chalcone derivatives were evaluated by the MTT assay. The cell suspension (100 μL) 

was seeded into 96-well plates at a density of 2 × 106 cells/well and then incubated for 

24 h under normal culture conditions before the addition of the respective test 

compound at various concentrations (100, 50, 25, 12.5 and 0 (control) μM) and 

incubated for another 24 h. Then, 10 µL of fresh MTT solution (5 mg/mL) was added 

to each well and incubated at 37 °C for 2 h, before the reaction was stopped by adding 

100 μL of DMSO. The absorbance was measured at 570 nm with correction for 

background at 690 nm using a microplate spectrophotometer system (Infinite M200 

micro-plate reader, Tecan). The amount of the colored product is assumed to be 
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directly proportional to the number of viable cells. Each experiment was performed in 

triplicate and repeated three times. The percentage cell viability in each compound 

was calculated relative to the control, and the IC50 values were determined in 

comparison with untreated controls using the Table Curve 2D program version 5.01.  

 

3.6.4  Expression and enrichment of the recombinant human 

Topoisomerase IIα ATPase domain 

Expression and enrichment of the hTopoIIα ATPase domain was 

modified from that reported [209]. The expression plasmid pET28b-hTopollα-ATPase 

was transformed into Escherichia coli BL21 (DE3) cells and a transformant colony 

was selected for large-scale protein expression and grown at 37 ̊C to an optical density 

at 600 nm of ~0.6 in LB broth (2 L) containing 50 µg/mL kanamycin. Protein 

expression was then induced by adding 0.5 mM IPTG at 30 ̊C for 5 h. The cells were 

harvested by centrifugation at 6000x g, 4 ̊C and resuspended in lysis buffer (50 mM 

Tris-Cl pH.8, 0.5 M NaCl, 5 mM imidazole, 0.5% (v/v) TritonX-100, 1 mM PMSF) 

and lysed by sonication. After clarification by centrifugation (as above) the 

supernatant was harvested, and the rhTopoIIα-ATPase enriched for using HisTrap 

Chelating HP and Resource S column chromatography, eluting in exchange buffer (50 

mM Tris pH.7.5, 50 mM NaCl, 5% (v/v) glycerol, 50 mM KCI, 5 mM MgCl2) from a 

PD-10 desalting column. The enriched protein was analyzed by 12% sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and stained by Coomassie 

blue.  

 

3.6.5  ATPase assay 

The inhibitory activities of salvicine and chalcone 3d were determined 

by measuring the ATPase activity of rhTopoIIα-ATPase using the ADP-Glo™ Kinase 

Assay. Briefly, 8 µL of buffer (40 mM Tris-HCI pH 7.5, 20 mM MgCl2, 0.1 mg/mL 

BSA) was added to each well of a 384-well plate (Promega, solid white) with 5 µL of 

enzymes (10 ng/µL) and 2 µL of the test compound at different concentrations. The 

reaction was initiated by the addition of 5 µL of 12.5 µM ATP, allowed to proceed for 

1 h at room temperature and then stopped by the addition of 5 µL of ADP-Glo™ 

https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjigvWSpK_aAhUGK48KHaPpCWgQFggmMAA&url=https%3A%2F%2Fwww.promega.com%2Fproducts%2Fcell-signaling%2Fkinase-assays-and-kinase-biology%2Fadp-glo-kinase-assay%2F&usg=AOvVaw0jqogtFvwOaQAC19S6aHtZ
https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjigvWSpK_aAhUGK48KHaPpCWgQFggmMAA&url=https%3A%2F%2Fwww.promega.com%2Fproducts%2Fcell-signaling%2Fkinase-assays-and-kinase-biology%2Fadp-glo-kinase-assay%2F&usg=AOvVaw0jqogtFvwOaQAC19S6aHtZ
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Reagent and incubating at room temperature for 40 min. Next, 10 μL of Detection 

Reagent was added and incubated for 30 min prior to the addition of luciferase and 

luciferin to detect the ATP by measuring the luminescence of each well with a 

microplate spectrophotometer system (Synergy HTX Multi-Mode reader, BioTek). 

All assays were performed in triplicate. The percentage relative inhibition of salvicine 

and 3d was calculated as shown in Eq. (1); 

          

          (eq. 22)

    

 

where negative and positive are the luminescence without and with the enzyme 

activity, respectively, and sample is luminescence with the test compounds. Finally, 

the IC50 curve was determined by GraphPad Prism version 6. 

 

3.7  Epidermal Growth Factor Receptor tyrosine kinase domain (EGFR-TK) 

3.7.1  Cell culture and cell viability assay (MTT assay) 

The cytotoxicity activities of the series chalcones derivatives against 

A431 and A549 were evaluated by using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide) reduction assay. The A431, A549, and HEF were 

grown with DMEM supplemented with 10% (v/v) fetal bovine serum, 100 U/mL 

penicillin, and 100 U/mL streptomycin and were routinely cultured at 37 °C in a 5% 

CO2, 95% air humidified incubator. For preliminary screening, the 100 μL of A431 

(5000 cells/well), A549 (5000 cells/well), and HEF (7000 cells/well) were seeded into 

96-well microplates and incubated for 37 ̊C for overnight. After cell attachment, fresh 

complete media containing test compounds and erlotinib (positive control) were 

replaced at equivalent concentration (100µM) and continually incubated for 72 hours. 

At the end of incubation time, the cells were replenished with complete media 

containing 0.5 mg/mL MTT solution and incubated for 3 hours. After formazan 

crystal forming, the 50 µL of DMSO was added for solubilization. The reaction was 

measured at 570 nm measurement wavelength and 630 nm reference wavelength by 

% Relative inhibition  =
[(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)−(𝑠𝑎𝑚𝑝𝑙𝑒−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 )]× 100

 (positive−negative)
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using microplate reader (Infinite M200 micro-plate reader, Tecan). After screening, 

the hits which reduced cell viability lower than 50% were selected for IC50 

determining. Survival rate and IC50 were analyzed by using GraphPad Prism version 

6.0. Each experiment was performed in triplicate and repeated three times. Note that 

the cytotoxicity of 47 chalcone derivatives against human embryonic fibroblast cells 

was also tested by the same method.  

 

3.7.2  Purification of intracellular domain of EGFR transfected Hela cell 

EGFR expression plasmid, pcDNA6A-EGFR ICD (645-1186) was a 

gift from Mien-Chie Hung (Addgene plasmid # 42667) [210]. The plasmid transfected 

using DarmaFECT reagent according to manufacturer’s instruction. HeLa cells were 

used as expression host. After 24h transfection, transfected HeLa cells were selected 

by using BlasticidinS-HCl (Invitrogen) for one month. The cells were cultured in five 

T75 cm2 for protein extraction. After 90% confluence, the cells were harvested and 

extracted by using RIPA buffer. ICD-EGFR was then purified with anion-exchange 

column (GigaCap Q) (Tosoh Bioscience, Japan) using AKTA Primer Plus FPLC with 

buffer A (50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM Mecraptoethanol, 5 mM 

MgCl2, 1 mM EDTA, and 5% Glycerol) for equilibration and buffer B (50 mM Tris-

HCl, pH8.0, 1 M NaCl, 1 mM Mecraptoethanol, 5 mM MgCl2, 1 mM EDTA, and 5% 

Glycerol) for elution fraction. EGFR protein was carried out and determined with 

12% SDS-PAGE. Protein concentration was calculated by absorbance at 280 nm, 

using ε (280) = 52,370 M−1 cm−1 for EGFR. 

 

3.7.3  Tyrosine kinase inhibition assay 

 Screening the inhibitory activities of erlotinib and potent chalcones (% 

cell viability less than 10 μM) from cytotoxicity values (1c, 2a, 3e, 4e, and 4t) were 

determined by measuring tyrosine kinase activity using ADP-Glo™ Kinase Assay. 

The 8 µl of buffer (40 mM Tris-HCI pH 7.5, 20 mM MgCl2, 0.1 mg/ml BSA) was 

added to 384-well plate (Promega, solid white). The 5 µl of 2 ng/µl of enzymes and 1 

µM of inhibitors and erlotinib were then added to each well. Then, 10 µl of mixture of 
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5 µM ATP and 2.5 μM poly(glu·tyr) was added into the reaction mixture and 

incubated 1 hours at room temperature prior to the addition of the 5 μl of ADP-Glo 

reagent and then incubated further for 40 min. Then, 10 µl kinase detection reagent 

was used to converse ADP to ATP and incubated at room temperature for 30 min 

before measuring. The ATP was detected by measuring luminescence using a 

microplate spectrophotometer system (Synergy HTX Multi-Mode reader, BioTek). 

All assays were performed in triplicate. The percentage relative inhibition of erlotinib 

and chalcones was calculated.   

 

Part III QSAR and ADMET 

3.8  Quantitative structure–activity relationship  

The data set of 22 molecules used to predict the relationship between the 

structure of compounds and their antiproliferation activity on A431 cancer cell lines 

was extracted from the testing cytotoxicity part [211]. The activity data has been 

given as IC50 values, the all data were converted to negative logarithmic concentration 

in moles (pIC50) as dependent variables. (Table11). The Chemical structures of the 

dataset were sketched and optimized by using the Gaussian09 program with M06-

2X/6-31G (d,p) method. In an effort to the relationship between the activity and 

structural feature of chalcone was explained by using QSAR. The chosen of 

descriptors in QSAR studies are the important step to achieve the model with high 

correlation and prediction ability [212]. There are many parameters were used in field 

of QSAR study. They can be classified into three classes: hydrophobic, steric and 

electronic properties. In this study, the 9 parameters were calculated by Material 

studio 7.0 package for each molecule. The hydrophobic parameter of drug is widely 

presented by partition coefficient (AlogP and AlogP98) while the Molecular 

refractivity, Molecular flexibility and rotatable bond were used as steric parameters. 

The electronic properties of molecules may effect to receptor-ligand binding. The 

HOMO, LUMO, hydrogen-bonding were the parameter used to describe electronic 

effects. 

Multiple linear regression (MLR) is one of the best linear statistic methods 

used in QSAR investigations in which the investigated property is represented as a 
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linear function of calculated descriptors [213]. The MLR models were built and the 

QSAR equations with stepwise selection and removal of variables were established to 

select the set of descriptors that were most related to the anticancer activity (pIC50) 

[214]. The leave-one out cross-validation procedure was used to validate the model. 

 In term of the statistic value used in this study is regression coefficient (R), 

square correlation coefficient (R2), Fischer’s value (F) and significance level 

(p) < 0.005 for select the best regression performance.  

 

3.9  ADME and toxicity prediction 

The physicochemical and pharmacokinetic properties as well as the toxicity of 

the screened chalcones were investigated by ADMET prediction (Absorption, 

distribution, metabolism, excretion, and toxicity) using the online SwissADME web 

program (www.swissadme.ch/) [215],  Molinspiration cheminformatics 

(http://www.molinspiration.com/) web program [216] and Osiris prediction tool on 

DataWarrior program [217]. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Part I Computational screening of chalcones acting against topoisomerase IIα 

and their cytotoxicity towards cancer cell lines 

4.1 Molecular docking studies 

To investigate the most favorable binding site of the 47 designed chalcones, 

each compound was separately docked into the ATP binding site in the ATPase 

domain of hTopoIIα and the etoposide binding pocket in the hTopoIIα/DNA complex. 

The predicted interaction energies of all chalcones at both sites were plotted and 

compared with those of salvicine and etoposide (Fig. 17). The interaction energies of 

the chalcones ranged from -45.6 to -32.4 kcal/mol in the etoposide binding pocket and 

from -60.0 to -37.5 kcal/mol in the ATP binding site. This suggested that all the 

chalcone derivatives specifically interacted with the ATPase domain rather than with 

the hTopoIIα/DNA complex.  

Among all 47 chalcones, the group 3 compounds (3c, 3d and 3f) showed high 

interaction energies with the hTopoIIα ATPase domain (-61.1, -60.7 and -59.3 

kcal/mol), which were better than that of salvicine (-58.7 kcal/mol) at the hTopoIIα 

ATPase domain. However, none of the tested chalcones were stronger than etoposide 

binding in the hTopoIIα/DNA complex (-72.4 kcal/mol). Additionally, the mode of 

action of these three compounds was likely comparable with salvicine in the ATP 

binding pocket (Fig. 18). The important residues that contributed to ligand 

stabilization via van der Waals (vdW) and H-bond interactions are summarized in 

Table 8. There are at least four conserved residues between each chalcone and 

salvicine. The obtained results were similar to the docking study of 4-

ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazidehydrochloride, 

and napthoquinone-containing compounds, which specifically targeted the ATPase 

domain. Since 3c, 3d and 3f may be effective as ATP competitors at the ATP binding 

site of the hTopoIIα ATPase domain, these three compounds were synthesized and 

their in vitro cytotoxicity towards three cancer cell lines was then tested. 
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Figure  17. CDOCKER interaction energies (kcal/mol) of the designed chalcone 

derivatives binding at two different sites relative to the known hTopoIIα 

inhibitors, salvicine and etoposide. 

 

 

Figure  18. Superimposed structures of the three most active chalcones 3c (green), 3d 

(cyan) and 3f (blue) from the docking study with that of salvicine in the 

ATP-binding pocket of the hTopoIIα ATPase domain. Figure created by 

NGL viewer (http://nglviewer.org/ngl/).  
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Table 8 Contact residues of the hTopoIIα ATPase domain for the binding of salvicine 

and three chalcones (3c, 3d and 3f). The residues in bold format stabilize the 

ligand binding via H-bond interaction, while the conserved residues between 

each chalcone and salvicine are shown in underlined format. 
 

Compound Structure Contact residues 

Salvicine 

     

N91, S148, S149, R162, G164, 

A167 and K168 

 

3c 

 

N91, R98, G164, G166 A167 and 

K168 

 

3d 

 

N91, D94, T147, S148, S149, 

N150, G164, G166 and K168  

 

3f 

 

 

N91, R98, S148, S149, N150, 

G164, A167 and K168  

 

4.2 Cytotoxicity towards cancer cell lines 

After screening the potent chalcones for inhibition of hTopoIIα by molecular 

docking, the three compounds that exhibited better interaction energies than salvicine 

(3c, 3d and 3f) were selected for synthesis to test their cytotoxicity on the HT-1376, 

HeLa and MCF-7 cancer-derived cell lines using the MTT assay. The derived IC50 

values of the three chalcone derivatives and salvicine on the three cancer cell lines are 
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summarized in Table 9. All three screened chalcones showed a higher cytotoxicity to 

all three cell lines than salvicine, with 3d being the most cytotoxic with an IC50 value 

of 10.8  1.1, 3.2  2.2 and 21.1  6.3 µM against the HT-1376, HeLa and MCF-7 

cell lines, respectively. The IC50 of salvicine in a lung cancer cell line (A549) was 

previously reported to be 18.66 µM [218]. The diversity of the cytotoxicity of these 

three chalcones could suggest that the position of the methoxy group on the B ring of 

the chalcones affected the cytotoxicity. The methoxy groups substituted at the R2, R3 

and R4 positions were found to be most important in terms of anti-cancer activities. 

Moreover, the different IC50 values of the chalcone derivatives in each cancer cell line 

may reflect the different expression levels of hTopoIIα and proliferation rates between 

those cell lines [219-222]. Cells containing a high concentration of hTopoIIα are more 

sensitive to hTopoIIα-inhibiting drugs than cells containing a lower concentration of 

hTopoIIα. Thus, these chalcones might inhibit HeLa cells better than MCF-7 and HT-

1376 cells because of the higher hTopoIIα levels typically expressed in cervical 

cancer cells than in breast and urinary bladder cancer cells [223]. Considering the data 

from the in silico molecular docking and the in vitro cytotoxicity against cancer cell 

lines, it is possible that 3d tends to inhibit the hTopoIIα ATPase domain in a 

somewhat similar manner as salvicine. However, to gain additional information about 

the inhibition of hTopoIIα at the ATPase domain by salvicine and 3d, their in vitro 

inhibitory activity against the ATPase activity of rhTopoIIα was evaluated.  
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Table  9. In vitro IC50 values of the three chalcone compounds and salvicine against 

the HT-1376, HeLa and MCF-7 cancer-derived cell lines and the rhTopoIIα 

ATPase domain. 

Compound 

IC50 value (µM) against: 
 

IC50 against 

rhTopoIIα ATPase 

domain (nM) 
HT-1376 HeLa MCF-7 

3c 46.1 ± 4.2 30.9 ± 1.3 38.6 ± 1.4 N/T 

3d 10.8 ± 1.1 3.2 ± 2.2 21.1 ± 6.3 7.5 ± 4.2 

3f 92.0 ± 1.8 21.2 ± 8.7 72.1 ± 3.8 N/T 

Salvicine 106.5 ± 4.7 70.1 ± 4.5 > 200 326.5 ± 6.6 

* N/T: non-tested  

 

4.3 Inhibition of the hTopoIIα ATPase domain 

 In order to assess the inhibition of ATPase activity by salvicine and 3d, the 

rhTopoIIα ATPase domain was expressed from the pET28b-expression vector and 

enriched by following a previously reported protocol [209] for use in the ATPase 

enzymatic activity assay. The rhTopoIIα ATPase domain was enriched to apparent 

homogeneity, with the 45 kDa ATPase domain evident as a single band following 

SDS-PAGE resolution and Coomassie blue staining (Fig. 19A). The ATPase 

inhibitory activity of different concentrations of salvicine and 3d was then 

comparatively studied using a commercial kit (ADP-Glo™ Kinase Assay, see also in 

material). The obtained IC50 curves of salvicine and 3d are shown in Fig. 19B and 

19C, respectively, and listed in Table 9. The chalcone 3d showed an ATPase 

inhibitory activity with an IC50 value (7.5 nM) that was some 43.5-fold lower than 

that for salvicine (326.5 nM). To investigate the binding and interaction of 3d against 

hTopoIIα at the ATPase domain a detailed investigation of the 3d/hTopoIIα complex 

in aqueous solution was then performed in silico using MD simulations. 
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Figure  19. (A) SDS-PAGE gel analysis of the enriched rhTopoIIα ATPase domain. 

Lane M: molecular weight marker of standard protein; Lane 1: enriched 

rhTopoIIα ATPase domain (45 kDa). (B, C) The IC50 curves of (B) 

salvicine and (C) 3d against the ATPase activity of rhTopoIIα. Data are 

shown as the mean ± 1 SD, derived from three independent experiments. 

4.4 MD simulations  

All-atom MD simulations were performed on the docked 3d/hTopoIIα 

complex with three different velocities for 80 ns to understand the structure and 

dynamics of 3d at the ATP binding site of the hTopoIIα ATPase domain. Since the 3d 

binding patterns and interactions with hTopoIIα obtained from three different 

simulations were similar, the results presented here are taken from one representative 

simulation. The root mean square displacement (RMSD) plot in Fig. A2 showed that 

the 3d/hTopoIIα complexes had reached equilibrium by 50 ns. Herein, the snapshots 

taken from the last 10-ns were extracted for analysis in terms of the binding pattern 

and ligand-protein interactions as follows. 

In order to elucidate the hTopoIIα ATPase residues important for 3d inhibition 

at the ATP binding site, the per-residue decomposition free energy (ΔGresidue) was 
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evaluated by the MM/PBSA approach using the 100 snapshots over the last 10-ns 

simulation. The results are given in Fig. 20A, where the binding orientation of 3d 

inside the ATP-binding pocket with the contour energy of residue contribution is 

drawn in Fig. 20B. The fingerprint in Fig. 20A showed only residues 50–250 in chain 

A, while the rest of protein (chain A residues 29–49 and 251–405 plus all chain B 

residues) had no interaction with the ligand. The negative and positive ΔGresidue values 

represented the degrees of stabilization and destabilization for ligand binding, 

respectively.  

From Fig. 21A, 10 residues preferentially stabilized 3d with an energy 

contribution lower than −1.0 kcal/mol: E87, D94, R98, I125, I141, S148, S149, G164, 

Y165 and K168. This implies that these residues probably play a crucial role in 3d 

binding to the ATPase domain. The free energy contributions of each key residue, 

decomposed to backbone and side chain as well as electrostatic (Eele + Gpolar) and 

vdW (EvdW + Gnonpolar) terms, are plotted in Fig. 21. Most of the important residues 

support the 3d binding via the vdW energy contribution, while E87, D94 and K168 

residues likely presented the electrostatic contribution. The strongest energy 

stabilization for 3d (-3.8 kcal/mol) came from the K168 residue. In contrast, it has 

been reported that the K168 was not interfere with salvicine binding and even 

destabilized some mansonone G compounds in the ATP binding pocket [186]. 

However, the observed binding patterns of 3d in this work are somewhat similar with 

salvicine (E87, I125 and I141) and mansonone G (D94, I125, I141 and G164) in our 

previous work [186].   

The results also demonstrated that the 3d binding energy is mainly contributed 

from the side chains of the key residues (E87, D94, R98, I125, I141, S148, S149, 

G164, Y165 and K168), except for the S148, S149, G164 and Y165 residues where 

the ligand-protein interactions substantially come from their backbone contributions. 

The information was well supported by the formation of two strong H-bonds between 

the carbonyl group of 3d and the backbone nitrogen of S149 (92%) as well as the 3-

methoxy group on its A-ring and the backbone nitrogen of G164 (80%), (see 

intermolecular H-bonds between 3d and hTopoIIα residues in Fig. 22).  
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Figure  20. (A) Per-residue decomposition free energy of 3d/hTopoIIα complex and 

(B) the binding orientation of 3d inside the ATP-binding pocket of 

ATPase domain, drawn from the last MD snapshot.  

 

 

Figure  21. (Top) Per-residue decomposition free energy of the 10 key residues 

(black) and their contribution from backbone (dark grey) and side chain 

(light grey). (Bottom) The vdW (EvdW + Gnonpolar) and electrostatic 
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(Eele + Gpolar) energy contributions are given in black and grey lines, 

respectively. 

 

Figure  22. Hydrogen bond formation between chalcone 3d and the two residues in 

the ATP binding pocket of hTopoIIα ATPase domain, where the 

percentage of H-bond occupation is also given. 

 

Part II Biological evaluation and molecular dynamics simulation of chalcone 

derivatives as EGFR-tyrosine kinase inhibitors 

4.5 Cytotoxicity effect against A431 and A549 cell lines 

The 47 synthesized chalcone compounds (1a-6e) from our previous study [41] 

and the approved anticancer drug (erlotinib) as EGFR-TK inhibitor were evaluated 

for anticancer activity against human epidermoid carcinoma (A431) and human lung 

adenocarcinoma (A549) cell lines using the (3-(4,5-dimethylthiazole-2-yl)-2,5-

diphenyltetrazolium bromide) tetrazolium (MTT) assay. From the preliminary results, 

100 μM of all chalcone derivatives and erlotinib were tested. The percentage survival 

rate of two cancer cells is shown in Fig. 23. The results revealed that some chalcone 

derivatives exhibited promising cytotoxic effects against both cancer cells with a 

resulting cell viability of less than 50 % (red bar). The series of chalcone derivatives 

seem to inhibit A431 better than A549. The difference in inhibition of the chalcones 

in both cancer cell lines may reflect the different expression levels of EGFR [224, 

225]. A431 has a high level of EGFR expression and is therefore more sensitive to 

EGFR-inhibiting agents than A549 which has a lower level of EGFR expression. 
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Moreover, the KRAS mutation found in A549 cell lines is able to alter the 

downstream signaling pathway of EGFR. Importantly, the KRAS mutation is linked 

to the primary resistance to target EGFR tyrosine kinase inhibitor [226]. Therefore, 

the inhibition of EGFR may not be able to completely inhibit the proliferation of 

cancer cell line. After preliminary screening, the 32 compounds that demonstrated a 

50% reduction in cell viability were selected for evaluating the half maximal 

inhibitory concentration (IC50) values. The derived IC50 values of the focused 

chalcones and erlotinib on two cancer cell lines are summarized in Table 10. All 32 

chalcones showed moderate to good anticancer activity with IC50 in the range of 

5.01−55.02 μM against A431, whereas they displayed moderate to poor activity on 

A549 cell lines. The five compounds which exhibited the highest level of cytotoxicity 

were 4t, 1c, 2a, 4e and 3e with IC50 values of 5.01  3.48, 8.04  1.21, 9.89  4.91, 

10.02  5.76, 10.53  7.39 µM against A431 cell lines, respectively. The IC50 of 

erlotinib on A431 and A549 were 0.62 ± 0.11 and 18.82 ± 2.44 µM. By considering 

the data from the in vitro screening of cytotoxicity against cancer cell lines, it is 

possible that chalcone derivatives tend to inhibit the high level of EGFR expression in 

A431. The obtained result was in good agreement with previous studies in which the 

cytotoxicity of Ec-LDP-hBD1 to EGFR highly expressed A431 cells was more potent 

than that to EGFR low-expressed human lung carcinoma A549 and H460 [129]. It is 

a worth noting that this series of chalcone show non-toxicity on human embryonic 

fibroblast cells (Fig. A3). However, to gain additional information about the 

inhibition of EGFR at the tyrosine kinase domain by the five potent chalcones, their 

in vitro inhibitory activity against the kinase activity of EGFR was evaluated and 

compare with erlotinib.  
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Figure  23. Percent survival rate of the 47 chalcones and erlotinib against (A) human 

lung adenocarcinoma cell lines (A549) and (B) human epidermoid 

carcinoma cell lines (A431) 

 

Table  10. IC50 values of potent chalcones against two cancer cell lines A431 and 

A549 compared to erlotinib 

Compounds 
IC50 (μM) 

A431 A549 

1b 33.98 ± 7.37  50.91 ± 3.83 

1c 8.04 ± 1.21 25.44 ± 1.16 

2a 9.89 ± 4.91 20.18 ± 1.89 

2b 29.46 ± 3.50 69.35 ± 7.58 

2c 24.61 ± 5.98 >100 

2d 26.6 ± 6.89 25.44 ± 1.74 

3c 20.67 ± 9.80 >100 

3e 10.53 ± 7.39 >100 

3f 18.92 ± 11.05 >100 

4a 38.93 ± 5.20  >100 

4b 25.04 ± 8.74 44.12 ± 9.40 

4c 26.85 ± 5.48 20.18 ± 1.89 
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Compounds 
IC50 (μM) 

A431 A549 

4d 25.13 ± 4.30 >100 

4e 10.02 ± 5.76 44.12 ± 5.25 

4f 38.8 ± 1.60 >100 

4g 21.77 ± 5.32 >100 

4h 48.76 ± 3.61 >100 

4j 24.01 ± 2.56 >100 

4k 14.93 ± 7.56 >100 

4l 29.08 ± 4.06 >100 

4m 55.02 ± 6.7 >100 

4n 22.03 ± 5.25 >100 

4o 21.73 ± 6.76 >100 

4p 37.49 ± 4.00 >100 

4q 25.94 ± 3.80 >100 

4s 39.53 ± 7.39 25.44 ± 2.24 

4t 5.01 ± 3.48 >100 

4u >100 >100 

4v >100 >100 

4w 24.18 ± 4.89 >100 

4x 41.53 ± 6.60 >100 

4y 41.53 ± 2.04 49.42 ± 7.90 

4aa >100  74.40 ± 6.54 

5a >100 >100 

6b 33.43 ± 3.09 >100 

6e 39.99 ± 3.94 >100 

Erlotinib 0.62 ± 0.11 18.82 ± 2.44 

 

4.6 Inhibition of rEGFR tyrosine kinase activity by chalcones  

In order to assess the inhibition of EGFR-TK activity by erlotinib the five 

potent chalcones (1c, 2a, 3e, 4e, and 4t), the EGFR-TK was expressed by mammalian 
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expression which retains fully kinase activity [210]. The rEGFR tyrosine kinase 

domain was enhanced to apparent homogeneity, with the 45 kDa kinase domain 

apparent as a main band following SDS-PAGE resolution and Coomassie blue 

staining (Fig. 24A). The kinase inhibitory activity of 1 μM of the five potent 

chalcones and erlotinib was then comparatively studied using a commercial kit (ADP-

Glo™ Kinase Assay, see also in material). Their obtained relative inhibition is plotted 

in Fig. 24B. The three chalcones 1c, 2a and 3e showed a relative inhibition of EGFR-

TK more than 50%, while the other two compounds 4e and 4t seem to be less affected 

to this enzyme. Interestingly, the chalcone 2a being the most kinase inhibitory activity 

with a 76.20 % that was slightly higher than erlotinib (75.10 %). To investigate the 

detailed binding and interaction of these three potent chalcones 1c, 2a and 3e against 

EGFR-TK domain, the ligand-protein complexes were then studied using MD 

simulations in aqueous solution. 

 

Figure  24. (A) Representative SDS-PAGE gel analysis of the enrichment of the 

EGFR-TK ICD, loading 5 µg protein per track. Lane M: molecular 

weight marker of standard protein; Lane 1: supernatant, Lane 2: Flow 

through, Lane 3: 10% of buffer B, Lane 4: 45 kDa of EGFR-TK domain 

(B) The relative EGFR-TKI activity (%) of the five potent chalcone 

derivatives and erlotinib at 1 μM, as assayed using the ADP-glo kinase 

assay.  
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4.7 Molecular binding and interaction of potent chalcones  

The 500-ns MD simulations were performed in triplicate on each complex of 

the focused chalcones (1c, 2a and 3e) binding with EGFR-TK domain at the ATP 

binding site. Since the chalcone binding pattern and intermolecular interactions with 

EGFR-TK obtained from the three independent simulations were relatively similar, 

the results presented here are taken from one representative simulation. To find the 

key residues of EGFR-TK for chalcone binding, the per-residue decomposition free 

energy (ΔGresidue) based on MM/GBSA method was applied on the 100 snapshots over 

the last 100-ns simulation. Among 695-1,018 residues of EGFR-TK, only the results 

of the residues 695-870 are plotted in Fig. 25A, where the ligand binding orientation 

inside the ATP-binding pocket of EGFR-TK with the contour energy of residue 

contribution is illustrated in Fig. 25B. Note that the negative and positive ΔGresidue 

values indicated the stabilization and destabilization energies for ligand binding, 

respectively. In addition, the number of the hydrogen bond profile of three chalcones 

was computed over the simulation period (see also, Fig. 26). From Fig. 25B, all potent 

chalcones 1c, 2a and 3e shared a similar orientation in the EGFR-TK ATP binding 

site, in which the aryl moiety deeply inserted into and the carbonyl oxygen pointed 

toward the binding pocket in a correspondence to the computational study on the 

other chalcone analogs [227]. These three compounds were preferentially stabilized 

by the 7 residues with an energy contribution  −0.5 kcal/mol (Fig. 25A): L718, 

V726, A743, L792, M793, G796, and L844. The residue T854 (−0.78 kcal/mol) 

additionally contributed for the 3e binding in compensation with a destabilization by 

E762 (0.70 kcal/mol). This implies that these residues play a significant role in 1c, 2a 

and 3e binding to the tyrosine kinase domain. Some chalcone binding residues 

observed in this work such as L718, A743, L792, M793, G796 and L844 are also 

found in a major interacting for co-crystallized erlotinib in 1M17 structure [228, 229]. 

Among the three considered chalcones, 2a can form the strongest hydrogen bond 

interactions with enzyme target (as shown in Fig. 27). According to the results, there 

are three to four hydrogen bonds with the residues M793, T790 and T854 detected 

along the simulation time. The two hydrogen bonds formed with the hinge region 

residue M793 was also found in 1c and 3e. The obtained information could explain 

how importance of M793 which provided the relatively high stabilization for our 
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focused chalcones. This hydrogen bond formation with M793 was reported as a main 

interaction in erlotinib analogues and gefitinib in complex with wild type and mutant 

strains [230-232]. Ahmed M. et al., also suggested that M793 plays a significant role 

in interacting with their screened compounds and erlotinib [233]. 

  To identify the structural change of ATP binding pocket affected by a 

complexation with chalcones, the distance between the centers of mass of the two 

hydrophobic residues (L718 and G796, Fig. 27B) was calculated upon simulation 

time. The distance plot in Fig. 27 showed that in comparison to the apo system (~4.0 

to ~14.0 Å) the three complexes resulted in a shorter distance and maintained at a 

lower fluctuation of ~7.0 to ~9.0 Å, indicating the induced-fitted mechanism in 

chalcone binding to EGFR-TK. This result was well supported by the lower water 

accessibility into the ATP binding site (Fig. 28) for all three complexes (1c: ~400-

1200 Å2; 2a: ~800-1500 Å2; and 3e ~700-1500 Å2) relative to that of apo form 

(~1300-2000 Å2). Based on all above data, such three chalcones could be served as 

new candidates for anti-cancer drug development against EGFR.    
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Figure  25. (A) Per-residue decomposition free energy of three chalcone/EGFR-TK 

complexes and (B) their binding orientation inside the ATP-binding 

pocket of tyrosine kinase domain drawn from the last MD snapshot, 

where the energy contour of residue contribution for ligand binding was 

shaded. 
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Figure  26. Time evolution of the number of intermolecular hydrogen bonds formed 

between the EGFR-TK residues and the three screened chalcones. 

 

Figure  27. Time-dependent distance between the centers of mass of the residues 

L718 and G796 for apo and complex forms over the 500 ns of the 

trajectory. 
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Figure  28. Solvent-accessible surface area (SASA, Å2) of apo form and three 

chalcones complexes along the 500-ns simulation where the amino 

acids within a 7-Å sphere of chalcone used for SASA calculations are 

also shown in the right-hand side.  
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Part III Quantitative structure–activity relationship and ADMET 

4.8 Quantitative structure–activity predicted for skin cancer cell lines 

       Classical 2D-QSAR studies require the calculation of molecular descriptors 

and the construction of mathematical models. In this study, the physicochemical 

properties related to anticancer activity were calculated from Material studio program. 

The model was computed by multiple linear regression analysis using stepwise 

procedure. In order to access the predictive ability, the compounds were classified 

into two groups (i) training set (90 %) and (ii) test set (10 %). The 9 parameters from 

Material studio were calculated show in table 11. The correlation matrix of activity 

and all properties based on the correlation coefficients it shows that all properties did 

not complete significantly. Therefore, all properties were used to fit the equation (see 

also, table 12). For the -logIC50 (pIC50), three parameters (LUMO, AlogP and number 

of hydrogen bond acceptor) were presented in the model I as shown in the table 13 

with the r2 of 0.664. This model has r2 lower than 0.8, hence it is not an acceptable 

model. The developing model was done by deleting one outlier (4m).  After removing 

the outlier, model II with improved r2 = 0.75 was founded. However, this is also 

model has not acceptable as seen from the statistic values. After three outliers (4m, 

2d, 3e) were deleted, the model IV (fig. 29) was observed with a good QSAR value of 

r2 = 0.937. The equation of model IV is as follows;  

 

Y = - 0.026 * Hydrogen bond acceptor – 0.105 * AlogP + 0.018 * (Hydrogen bond 

acceptor * AlogP) + 4.842 

 

A residual value of training and test set obtained from Equation (IV) for A431 

cancer cell lines are shown in the table 14. It can be seen that the experimental and the 

predicted pIC50 values show the lowest residual. It indicated that compound in the 

training set is not an outlier for the response fitting. 
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Table  13. Regression Statistic for the QSAR Models I-IV 
 

Model MLR equation R R2        F 

Model I 

Y = 0.087 * (LUMO * AlogP) - 

0.024 * (Hydrogen bond 

acceptor * AlogP) + 4.560 

0.815 0.664 15.845 

Model 

II 

Y = 0.312 *LUMO - 0.061 * 

AlogP + 0.018 * (Hydrogen 

bonds acceptor * AlogP) + 4.856 

0.867 0.752 14.159 

Model 

III 

Y = - 0.126 * AlogP + 0.067 * 

(LUMO*Hydrogen bond 

acceptor) + 0.032 * (Hydrogen 

bond acceptor * AlogP) + 4.862 

0.92 0.84 24.465 

Model 

IV 

Y = - 0.026 * Hydrogen bond 

acceptor – 0.105 * AlogP + 

0.018 * (Hydrogen bond 

acceptor * AlogP) + 4.842 

0.968 0.937 60.145 
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Figure 29. Plot of multiple linear regression analysis which indicates linear 

relationship between experimental and predicted logIC50 with r2 = 0.93 

for human skin cancer cell lines. 
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Table  14. Residual values of training and test set obtained from Equation (IV) for 

A431 cancer cell lines.  

Training set 

Structures Exp. pIC50 Pred. pIC50 residual 

2b 4.530 4.554 -0.024 

2c 4.610 4.600 0.009 

2d 4.580 outlier 

3c 4.680 4.689 -0.009 

3e 4.980 outlier 

3f 4.720 4.706 0.013 

4a 4.410 4.445 -0.035 

4b 4.600 4.548 0.051 

4c 4.570 4.602 -0.032 

4d 4.600 4.629 -0.029 

4g 4.660 4.671 -0.011 

4j 4.620 4.604 0.016 

4l 4.540 4.565 -0.025 

4m 4.359 outlier 

4n 4.660 4.634 0.025 

4o 4.660 4.645 0.014 

4w 4.620 4.599 0.020 

4x 4.380 4.395 -0.015 

4y 4.380 4.346 0.033 

Test set 

4q 4.586 4.564 0.021 

4c 4.571 4.602 -0.031 

1b 4.468 4.550 -0.081 
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4.9 Physicochemical properties of potent chalcones 

The physicochemical and pharmacokinetic properties as well as the toxicity of 

the six focused chalcones were investigated by ADMET prediction (Absorption, 

distribution, metabolism, excretion, and toxicity) using the online SwissADME web 

program (www.swissadme.ch/) [50] Molinspiration cheminformatics 

(http://www.molinspiration.com/) web program [51] and Osiris prediction tool on 

DataWarrior program [52]. Their toxicity risk (mutagenicity, tumorigenicity, irritation 

and reproduction), physicochemical (molecular weight, cLogP, total polar surface 

area, solubility), drug likeness and pharmacokinetic (GI absorption, BBB permeant, 

P-gp substrate and Cytochrome P450 inhibitor) properties are summarized in Table 15 

and 16. From toxicity prediction, all investigated compounds had no risk of 

mutagenicity, tumorgenicity, irritating effects and reproductive effects. For the 

physicochemical properties, they showed a moderate solubility, while erlotinib was 

poorly soluble. Thus, erlotinib requires high doses in order to reach therapeutic 

plasma concentrations after oral administration. The pharmacokinetic profiles 

suggested that all compounds can pass through the blood brain barrier except 3c, 3d 

and 3f. By considering the drug likeness, the six potent chalcones could likely be used 

as an orally active drug for human in near future 
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Table  15. Toxicity, ADME, drug likeness and pharmacokinetics of three potent 

chalcones and salvicine against Topoisomerase II. 
 

  
3c 3d 3f salvicine 

Toxicity risks 

Mutationa +++ +++ +++ +++ 

Tumora +++ +++ +++ +++ 

irritanta +++ +++ +++ +++ 

Reproductio

n effectivea 
+++ +++ +++ 

+++ 

Physicochemi

cal properties 

Molecular 

weight 

(g/mol)b 

374.38 374.38 374.38 

 

330.42 

cLOGPb 3.10 3.10 3.10 2.97 

TPSA (Å2)b 83.45 83.45 83.45 74.60 

Solubility 

classc 

Moderately 

soluble 

Moderately 

soluble 

Moderately 

soluble 

Moderately 

soluble 

Drug likeness 

Lipinski's 

rule of fivec 
Yes Yes Yes Yes 

Ghosec Yes Yes Yes Yes 

Veberc  Yes Yes Yes Yes 

Eganc Yes Yes Yes Yes 

Mueggec Yes Yes Yes Yes 

Pharmaco-

kinetic 

 

 

 

 

 

 

Gastro 

Intestinal 

absorption 

(%)C 

High High High High 

Blood-brain 

barrier 

permeantc 

No No No Yes 

P-gp 

substratec 
No No No No 

CYP1A2 No No No No 
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3c 3d 3f salvicine 

 

 

 

 

 

 

 

 
 

inhibitorc 

 CYP2C19 

inhibitorc 
No No No Yes 

CYP2C9 

inhibitorc 
Yes Yes Yes No 

CYP2D6 

inhibitorc  

No No No 
No 

CYP3A4 

inhibitorc 
Yes Yes Yes No 

aPredicted properties taken from Osiris on Dataworrier program; +++, not toxic; 

++ low toxic; - high toxic. bPredicted properties taken from Molinspiration 

cheminformatics. cDrug likeness and pharmacokinetic obtained from SwissADME. 
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Table  16. Toxicity, ADME, drug likeness and pharmacokinetics of three potent 

chalcones and erlotinib against EGFR. 
 

  

 
1c 2a 3e Erlotinib 

Toxicity risks 

Mutationa +++ +++ +++ +++ 

Tumora +++ +++ +++ +++ 

irritanta +++ +++ +++ +++ 

Reproductio

n effectivea 
+++ +++ +++ 

+++ 

Physicochemi

cal properties 

Molecular 

weight 

(g/mol)b 

224.25 254.28 314.33 

 

393.44 

cLOGPb 2.96 2.88 2.75 2.79 

TPSA (Å2)b 37.30 46.53 65.00 74.73 

Solubility 

classc 
Moderately 

soluble 

Moderately 

soluble 

Moderately 

soluble 

Poorly 

soluble 

Drug likeness 

Lipinski's 

rule of fivec 
Yes Yes Yes Yes 

Ghosec Yes Yes Yes Yes 

Veberc  Yes Yes Yes Yes 

Eganc Yes Yes Yes Yes 

Mueggec Yes Yes Yes Yes 

Pharmaco- 

kinetic 

 

 

 

 

 

 

Gastro 

Intestinal 

absorption 

(%)c 

High High High High 

Blood-brain 

barrier 

permeantc 

Yes Yes Yes  Yes 

P-gp 

substratec 
No No No No 

CYP1A2 No Yes Yes  Yes 
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1c 2a 3e Erlotinib 

 

 

 

 

 

 

 
 

inhibitorc 

 CYP2C19 

inhibitorc 
Yes Yes Yes  Yes 

CYP2C9 

inhibitorc 
Yes Yes Yes  Yes 

CYP2D6 

inhibitorc  

No  No  No 
Yes 

CYP3A4 

inhibitorc 
No Yes Yes  Yes 

aPredicted properties taken from Osiris on Dataworrier program; +++, not toxic; 

++ low toxic; - high toxic. bPredicted properties taken from Molinspiration 

cheminformatics. cDrug likeness and pharmacokinetic obtained from SwissADME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 76 

Part IV Design new compounds for topoisomerase IIα and EGFR-TK inhibitor 

4.10 Topoisomerase  

4.10.1 Design the new compound for topoisomerase IIα inhibitors 

The idea of biostructure-based drug design is to utilize the information 

from the properties of the binding site of the target and the binding pattern of the 

ligand inside the binding pocket from the MD simulation to design compounds. Base 

on the binding pattern and their interaction of 3d into ATPase binding site of 

topoisomerase II, the 16 new analogs of chalcone were designed. Firstly, the 

compound 1 to 11 were changed position of substituted functional group on A ring 

and then docking into ATPase binding site (Table. 17). From the all compounds, 

compound 6 exhibited the lowest interaction energy with -62.65 kcal/mol and show 

good result in drug likeness criteria. Then, the compound 6 was used as a template to 

design the compound 12 to 16 by change the functional group on the position 4, 5 and 

6 of A ring while the position of substitute on B ring are remained. As the binding 

pattern from Docking and MD results, most of the interactions inside binding pocket 

are the positive charges, so then, the negative charge functional group should be 

design on the compounds. Compound 12, the phosphate group is added to the position 

4 on A ring instead the methoxy group. It makes the strong interaction energy (-99.88) 

than compound 6 (-62.65) almost two times. Although, this compound showed the 

strong interaction with this protein but in term of drug-likeness is not pass the criteria 

of Veber, Egan and Muegge. After that, the compound 13 and 14 were designed by 

adding the 2 and 3 phosphates groups, respectively. It was found that they give the 

lowest interaction energy (-121.72 and -126.79) but they could not be a drug due to 

the higher of polarity. To reduce the polarity of the molecule the compound 15 and 16 

were designed and observed the interaction energy and the drug likeness properties. 

Compound 16 exhibited a good both in term of interaction energy and drug likeness.  
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Table  17. Design of new compounds from 3d scaffold with CDOCKER interaction 

energy (kcal/mol) inhibit topoisomerase IIα.   

 

 

Comp. Structure 

CDOCKER 

interaction 

energy 

(kcal/mol) 

Drug 

likeness 

1 

 

-58.47 Yes 

2 

 

-60.45 Yes 

3 

 

-58.74 Yes 

4 

 

-60.87 Yes 

5 

 

-60.38 Yes 

6 

 

-62.65 Yes 
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Comp. Structure 

CDOCKER 

interaction 

energy 

(kcal/mol) 

Drug 

likeness 

7 

 

-60.32 Yes 

8 

 

-59.48 Yes 

9 

 

-62.23 Yes 

10 

 

-60.12 Yes 

11 

 

-60.48 Yes 

12 

 

-99.88 No 
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Comp. Structure 

CDOCKER 

interaction 

energy 

(kcal/mol) 

Drug 

likeness 

13 

 

-121.72 No 

14 

 

-126.79 No 

15 

 

-92.84 Yes 

16 

 

-97.36 Yes 
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4.11 Design the new compound for EGFR-TK inhibitors 

  To develop new therapeutic candidates from the compound 2a, which is 

a potent chalcone showing highest inhibition in EGFR-TK, 9 chalcones analog of 2a 

were designed (Table. 18). Based on the MD simulation results, the most important 

amino acid residues that interact with 2a were non-polar groups, so then we could 

afford some suggestions on the structural modification of the new designed 

compounds to enhance the activities. Firstly, it should contain polar substituents at the 

A ring. The mono-hydroxy group was added to each position on A ring. (compounds 

1 to 4). The addition of a hydroxy group on the A ring influences the binding of 

ligand inside the pocket, it was observed that the interaction energy of compound 1 to 

4 is lower than 2a (-37.20 kcal/mol). Then, the dihydroxy groups were investigated 

with regard to their interaction energy (compound 5-7). We found that compound 5 

showed the lowest interaction energy with substitution of OH groups at 5 and 6 

position on the A ring. After that, compound 5 was used as a template to design 

compounds 8 and 9 by changing the functional groups on the positions 5 and 6 of the 

A ring while the position of substitution on the B ring remained. NH2 was substituted 

at position 4 on the A ring instead of OCH3. It was found that NH2 has an effect on 

ligand binding as documented of the higher interaction energy (-39.48 kcal/mol). The 

aliphatic chain on erlotinib was used to modify our molecule (compound 9) by 

substituting that chain at position 4. This substituent affects the ligand binding, it 

makes the ligand fit well into the binding pocket with an interaction energy of -49. 36 

kcal/mol.   
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Table 18. Design of the new compounds from 2a scaffold with CDOCKER 

interaction energy (kcal/mol) inhibiting EGFR-TK.   
 

 

Comp. Structure 

CDOCKER 

interaction 

energy 

(kcal/mol) 

Predicted 

pIC50 

from 

QSAR 

Drug 

likeness 

1 

 

-40.01 4.668 Yes 

2 

 

-41.37 4.659  Yes 

3 

 

-41.21 4.645 Yes 

4 

 

-41.43 4.703 Yes 

5 

 

-42.04 4.700 Yes 

6 

 

-38.30 4.705 Yes 
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7 

 

-41.49 4.777 Yes 

 

 

8 

 

-39.48 4.763 Yes 

9 

 

-49.36 4.732 Yes 
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CHAPTER V 

CONCLUSION  

5.1 Computational screening of chalcones acting against topoisomerase IIα 

and their cytotoxicity towards cancer cell lines 

A series of 47 designed chalcones were screened in silico as potent anti-cancer 

agents by computational methods. Molecular docking of the chalcone derivatives 

relative to salvicine, a known inhibitor of hTopoII at the ATPase domain, suggested 

that the ATP-binding site of hTopoIIα ATPase domain serves as the target site for the 

considered chalcones. The three most active chalcones (3c, 3d and 3f) had interaction 

energies towards the ATPase domain that were stronger than that of salvicine. 

Compound 3d, containing 2,4-dimethoxy and 6-hydroxy groups on A ring and 

3’,4’,5’-trimethoxy on the B ring, showed the highest in vitro cytotoxicity against the 

HT-1376, HeLa and MCF-7 cancer cell lines. Moreover, 3d inhibited the rhTopoIIα 

ATPase activity in vitro with an IC50 value some 43.5-fold lower than that for 

salvicine. From 80-ns MD simulations of the 3d/hTopoIIα complex, the key residues 

responsible for 3d binding via vdW and electrostatic interactions were E87, D94, 

R98, I125, I141, S148, S149, G164, Y165 and K168. The residue K168 exhibited the 

strongest energy stabilization for 3d, while residues S149 and G164 formed two 

strong H-bond interactions with the carbonyl and 3-methoxy groups of 3d. In 

summary, the in silico and in vitro results suggested that 3d can serve as a lead 

compound for further anti-cancer drug development. 

5.2 Biological evaluation and molecular dynamics simulation of chalcone 

derivatives as EGFR-tyrosine kinase inhibitors 

A series of the 47 synthesized chalcones were in vitro tested for the 

cytotoxicity by MTT assay with the A431 and A549 cancer cell lines compared with 

erlotinib, a known inhibitor of EGFR-TK. All chalcones seemed to be more active to 

A431 over A549 cancer cells. The five most active chalcones (1c, 2a, 3e, 4e and 4t) 

showed the highest in vitro cytotoxicity against the A431 cancer cell lines. Among 

these five chalcones, the 1c, 2a and 3e inhibited the tyrosine kinase activity more than 

50%. Then, the three chalcone derivatives in complex with EGFR-TK were selected 

to study the inhibition mechanism in molecular level by all-atom MD simulations in 
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aqueous solution. From MD results, it was found that the key residues responsible for 

chalcone binding are L718, V276, A743, L972, M973, G976, and L844 while 3e was 

additionally stabilized by T854 in compensation of the E762 destabilization. The 

hinge region residue M793 exhibited the strongest energy stabilization through 

hydrogen bonding as found for the other known EGFR-TK inhibitors. In summary, 

the in silico and in vitro results suggested that three chalcone derivatives (1c, 2a and 

3e) can be served as lead compounds for further anti-cancer drug development. 

5.3  QSAR model 

 The quantitative structure-activity relationships of chalcone derivatives were 

investigated by 2D-QSAR. The inhibition concentration (IC50) of a series synthesized 

chalcones against A431 cancer cell lines were used. The M06-2X/6-31G (d,p) method 

in Gaussian09 program was justified to be a suitable method for structural 

optimization. In comparison among all models, model IV produced a statistically 

coherent model with a good predictive value r2 = 0.968. An analysis of QSAR 

indicated that the AlogP the chalcone structure plays an important role for the A431 

activity. Compounds that shows a low value of AlogP, the IC50 values are high. In 

addition, the H-bond acceptor number resulted in a negative coefficient at the same 

time it participant in a positive coefficient of the combined two properties. Therefore, 

the appropriate number of hydrogen bond acceptor should be 3 to 5. In order to 

improve a better QSAR model, more chalcone compounds with anticancer activity are 

needed. Moreover, the biological activity should be displayed in a good distribution 

because the data analysis works better when the biological activity shows good 

distribution. The compounds should have a broad activity range.  

5.4  Physic properties of potent chalcones 

In silico ADMET evaluation was perform on six potent chalcone derivatives 

that inhibit topoisomerase IIα and EGFR-TK in comparison to known standards. The 

results showed that all compounds presented a good profile for pharmacokinetic and 

low toxicity risk. In this way, it is expected that these compounds may be proper lead 

candidates for development of anticancer drugs. 
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5.5 Design of the new compounds 

Using the information obtained from all investigations in this study, we could 

suggest on the structural modifications of chalcone derivatives to enhance the 

biological activities to inhibit topoisomerase IIα and EGFR-TK as follows.  

For Topoisomerase IIα, the inhibitors should contain negative of charged 

substituents such as phosphate at the C4 on the A ring to improve the strong 

interaction between ligand and protein because the key amino acid residues that play 

an important role to bind with 3d have positive charges. The investigation on binding 

pattern of 1c, 2a and 3e with EGFR-TK found that non-polar amino acid residues are 

crucially playing important roles on ligand-protein interaction. Therefore, the 

designed new compound should be modified by adding the polar group at the C5 and 

C6 on the A ring. Moreover, an additional aliphatic chain (-OCH2CH2OCH3), which is 

a part of erlotinib, at C4 on the A ring showed a strong binding affinity of ligand-

protein interaction.  
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APPENDIX 1: Chemical structure of the 47 designed chalcones from six 

different groups. 
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APPENDIX 2: RMSD plots during 80 ns MD for the simulated systems of 

chalcone 3d/hTopoIIα 
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