

CHAPTER III

THE SPACE OF ALL SEQUENCES AND THE SPACE OF ALL FINITE SEQUENCES

Among sequence spaces, W is the largest one. Most of the standard sequence spaces contain Φ as a subspace. The purpose of this chapter is to characterize any infinite matrix A such that A: X $\longrightarrow \ell_{\infty}$ where X = W or Φ and A posesses one of the properties of convergence preservation, limit preservation, summability preservation and sum preservation.

3.1 THE SPACE OF ALL SEQUENCES

To characterize an infinite matrix A such that A: W $\longrightarrow \ell_{\infty}$ and A preserves convergence, the following lemma is required.

<u>Lemma 3.1.1</u>. For any infinite matrix A, A : W \longrightarrow ℓ_{∞} and A preserves convergence if and only if A : W \longrightarrow c.

<u>Proof</u>: Assume that $A: W \to \ell_{\infty}$ and A preserves convergence. By Theorem 1.10, A is row-bounded. Since $e^{(k)} \in W$ for every $k \in \mathbb{N}$, it follows from Proposition 2.3(i) that $\lim_{n \to \infty} A_{nk}$ exists for every $k \in \mathbb{N}$. Hence we have from Theorem 1.11 that $A: W \to c$.

The converse is trivial. #

The following theorem is directly obtained from Lemma 3.1.1 and Theorem 1.11.

Theorem 3.1.2. For an infinite matrix A, A:W $\to \ell_{\infty}$ and A preserves convergence if and only if

- (i) A is row-bounded and
- (ii) $\lim_{n\to\infty} A_{nk}$ exists for every $k \in \mathbb{N}$.

Suppose that an infinite matrix $A: W \longrightarrow \ell_{\infty}$ and $A(c) \subseteq c$. Then A satisfies the condition (i) and (ii) of Theorem 3.1.2. By (i), there exists $m \in \mathbb{N}$ such that $A_{nk} = o$ for all $n \in \mathbb{N}$ and for all k > m. Thus for every $n \in \mathbb{N}$,

$$(Ae)_n = \sum_{k=1}^m A_{nk} = \sum_{k=1}^m (Ae^{(k)})_n$$

and so

$$\lim_{n \to \infty} (Ae)_n = \sum_{k=1}^m (\lim_{n \to \infty} (Ae^{(k)})_n)$$

which implies that A is not limit preserving since $\lim_{n\to\infty} e_n = 1$ and $\lim_{n\to\infty} e_n^{(k)} = 0$ for every $k \in \mathbb{N}$. Hence we obtain the following theorem.

Theorem 3.1.3. There is no matrix transformation from W into ℓ_{∞} which preserves limits.

Our characterization of a summability preserving matrix transformation from W into ℓ_{∞} is obtained directly from the following two lemmas.

- Lemma 3.1.4. For an infinite matrix A, A: W \longrightarrow cs if and only if
 - (i) A is row-bounded and
 - (ii) $\sum_{n=1}^{\infty} A_{nk}$ converges for every $k \in \mathbb{N}$.

If this is the case, $\sum_{n=1}^{\infty} (Ax)_n = \sum_{k=1}^{\infty} (x_k \sum_{n=1}^{\infty} A_{nk})$ for every sequence $x = (x_k)$.

<u>Proof</u>: If A:W →cs, (i) and (ii) hold respectively by Theorem 1.10 and Corollary 2.4 (iii).

For the converse, assume that (i) and (ii) hold. Then there exists $m \in \mathbb{N}$ such that $A_{nk} = 0$ for all $n \in \mathbb{N}$ and for all k > m. Let $x = (x_k) \in \mathbb{N}$. Then $(Ax)_n = \sum_{k=1}^m A_{nk} x_k$ for all $n \in \mathbb{N}$. Since $\sum_{n=1}^\infty A_{nk}$ converges for every $k \in \mathbb{N}$, we have that $\sum_{k=1}^\infty (x_k \sum_{n=1}^\infty A_{nk}) = \sum_{n=1}^\infty (\sum_{k=1}^\infty A_{nk} x_k) = \sum_{n=1}^\infty (Ax)_n$. Hence $Ax \in cs$. Since $A_{nk} = 0$ for all $n \in \mathbb{N}$ and for all k > m, it follows that $\sum_{n=1}^\infty (Ax)_n = \sum_{k=1}^m (x_k \sum_{n=1}^\infty A_{nk}) = \sum_{k=1}^\infty (x_k \sum_{n=1}^\infty A_{nk})$. #

<u>Lemma 3.1.5</u>. For an infinite matrix A, A: W $\longrightarrow \ell_{\infty}$ and A preserves summability if and only if A: W \longrightarrow cs.

<u>Proof</u>: Assume that $A: W \longrightarrow \ell_{\infty}$ and A preserves summability. Then the conditions (i) and (ii) of Lemma 3.1.4 hold by Theorem 1.11 and Proposition 2.3 (v), respectively. Hence A: $W \longrightarrow cs$ by Lemma 3.1.4.

The converse is trivial. #

Theorem 3.1.6. For an infinite matrix A, A: W $\longrightarrow \ell_{\infty}$ and A preserves summability if and only if

(i) A is row-bounded and

(ii) $\sum_{n=1}^{\infty} A_{nk}$ converges for every $k \in \mathbb{N}$. If this is the case, $\sum_{n=1}^{\infty} (Ax)_n = \sum_{k=1}^{\infty} (x_k \sum_{n=1}^{\infty} A_{nk})$ for every sequence $x = (x_k)$.

Let an infinite matrix $A: W \longrightarrow \ell_{\infty}$ be such that $A(cs) \subseteq cs$. Then A is row-bounded, so there exists $m \in \mathbb{N}$ such that $A_{nm} = 0$ for all $n \in \mathbb{N}$, so $\sum_{n=1}^{\infty} A_{nm} = 0$. It follows from Proposition 2.3 (vi) that A is not sum preserving. Hence we have the following theorem:

Theorem 3.1.7. There is no matrix transformation from W into ℓ_{∞} which preserves sums.

3.2 THE SPACE OF ALL FINITE SEQUENCES

Since $\Phi \subseteq c$, we have that for an infinite matrix A, A: $\Phi \longrightarrow \ell_{\infty}$ and A preserves convergence if and only if A: $\Phi \longrightarrow c$. The following lemma gives necessary and sufficient conditions for an infinite matrix A to map Φ into c.

Lemma 3.2.1. For an infinite matrix A,A: $\Phi \longrightarrow c$ if and only if $\lim_{n\to\infty} A_{nk}$ exists for every $k \in \mathbb{N}$.

If this is the case, $\lim_{n\to\infty} (Ax)_n = \sum_{k=1}^\infty (x_k \lim_{n\to\infty} A_{nk})$ for every $x = (x_k) \in \Phi$.

Proof: The necessity of the condition is obtained from Corollary 2.4 (i)

To prove the condition is sufficient, suppose that $\lim_{n\to\infty} A_{nk}$ exists for all $k \in \mathbb{N}$. Let $x = (x_k) \in \Phi$. Then there exists $m \in \mathbb{N}$ such that $x_k = 0$ for all k > m. Hence $(Ax)_n = \sum_{k=1}^m A_{nk} x_k$ for every $n \in \mathbb{N}$. Since $\lim_{n\to\infty} A_{nk}$ exists for every $k \in \mathbb{N}$, we have that $Ax \in \mathbb{C}$ and $\lim_{n\to\infty} (Ax)_n = \sum_{k=1}^m (x_k \lim_{n\to\infty} A_{nk})$. Hence $\lim_{n\to\infty} (Ax)_n = \sum_{k=1}^\infty (x_k \lim_{n\to\infty} A_{nk})$ since $x_k = 0$ for all k > m. #

Hence we have the following theorem.

Theorem 3.2.2. For an infinite matrix A, A: $\Phi \longrightarrow \ell_{\infty}$ and A preserves convegence if and only if $\lim_{n \to \infty} A_{nk}$ exists for every $k \in \mathbb{N}$.

If this is the case, $\lim_{n\to\infty} (Ax)_n = \sum_{k=1}^{\infty} (x_k \lim_{n\to\infty} A_{nk})$ for every $x = (x_k) \in \Phi$.

From the fact that $\Phi \subseteq c_o$, we have that for an infinite matrix A, $A: \Phi \longrightarrow \ell_o \text{ and A preserves limits if and only if } A: \Phi \longrightarrow c_o.$ The necessary and sufficient conditions for an infinite matrix A to map Φ into c_o are as follows:

Lemma 3.2.3. For an infinite matrix A, A: $\Phi \longrightarrow c_o$ if and only if $\lim_{n\to\infty} A_{nk}$ = 0 for every k \in N.

<u>Proof:</u> The condition is necessary because $e^{(k)} \in \Phi \subseteq c_0$ and $(A_{nk})_{n=1}^{\infty}$ = $Ae^{(k)}$ for every $k \in \mathbb{N}$.

To show the condition is sufficient, suppose that $\lim_{n\to\infty} A_{nk} = 0$

for every $k \in \mathbb{N}$. By Lemma 3.2.1, we have that $Ax \in c$ and $\lim_{n \to \infty} (Ax)_n$ $= \sum_{k=1}^{\infty} (x_k \lim_{n \to \infty} A_{nk}) \text{ for every } x = (x_k) \in \Phi. \text{ Since } \lim_{n \to \infty} A_{nk} = 0 \text{ for every } k \in \mathbb{N}, \text{ we get that } \lim_{n \to \infty} (Ax)_n = 0 \text{ for every } x \in \Phi. \text{ Therefore } A : \Phi \longrightarrow c_o. \#$

Hence the following theorem is obtained.

Theorem 3.2.4. For an infinite matrix A, A: $\Phi \longrightarrow \ell_{\infty}$ and A presserves limits if and only if $\lim_{n\to\infty} A_{nk} = 0$ for every $k \in \mathbb{N}$.

Since $\Phi \subseteq cs$, we have that for an infinite matrix A, A: $\Phi \longrightarrow \ell_{\infty}$ and A preserves summability if and only if A: $\Phi \longrightarrow cs$. The next lemma gives a characterization of an infinite matrix A such that A: $\Phi \longrightarrow cs$.

Lemma 3.2.5. For an infinite matrix A, A: $\Phi \longrightarrow cs$ if and only if $\sum_{n=1}^{\infty} A_{nk}$ converges for every $k \in \mathbb{N}$.

If this is the case, $\sum_{n=1}^{\infty} (Ax)_n = \sum_{k=1}^{\infty} (x_k \sum_{n=1}^{\infty} A_{nk}).$

<u>Proof</u>: From Corollary 2.4 (iii), we have that $A: \Phi \longrightarrow cs$ implies $\sum_{n=1}^{\infty} A_{nk}$ converges for very $k \in \mathbb{N}$.

For the converse, assume that $\sum\limits_{n=1}^{\infty}A_{nk}$ converges for every $k\in\mathbb{N}$. Let $x=(x_k)\in\Phi$. Then there exists $m\in\mathbb{N}$ such that $x_k=0$ for all k>m. Hence $(Ax)_n=\sum\limits_{k=1}^mA_{nk}x_k$ for every $n\in\mathbb{N}$, which implies that $\sum\limits_{k=1}^m(\sum\limits_{n=1}^\infty A_{nk}x_k)=\sum\limits_{n=1}^\infty(\sum\limits_{k=1}^\infty A_{nk}x_k)=\sum\limits_{n=1}^\infty(Ax)_n.$ But $x_k=0$ for all k>m, so $\sum\limits_{n=1}^\infty(Ax)_n=\sum\limits_{k=1}^\infty(x_k\sum\limits_{n=1}^\infty A_{nk})$. #

Hence we have the following theorem.

Theorem 3.2.6. For an infinite matrix A, A: $\Phi \longrightarrow \ell_{\infty}$ and A preserves summability if and only if $\sum\limits_{n=1}^{\infty}A_{nk}$ converges for every $k \in N$.

If this is the case, $\sum\limits_{n=1}^{\infty}(Ax)_n = \sum\limits_{k=1}^{\infty}(x_k\sum\limits_{n=1}^{\infty}A_{nk})$ for every $k \in \Phi$.

The last theorem of this section shows that the condition $\sum_{n=1}^{\infty}A_{nk}=1 \text{ for every } k \in \mathbb{N} \text{ of an infinite matrix A is necessary and sufficient for A to map Φ into ℓ_{∞} and preserve sums.}$

Theorem 3.2.7. For an infinite matrix A, A: $\Phi \longrightarrow \ell_{\infty}$ and A preserves sums if and only if $\sum_{n=1}^{\infty} A_{nk} = 1$ for every $k \in \mathbb{N}$.

Proof: The condition is necessary by Proposition 2.3 (vi).

To show the condition is sufficient, assume that $\sum_{n=1}^{\infty} A_{nk} = 1$ for every $k \in \mathbb{N}$. By Theorem 3.2.6, $A: \Phi \longrightarrow \ell_{\infty}$ and A preserves summability and also $\sum_{n=1}^{\infty} (Ax)_n = \sum_{k=1}^{\infty} (x_k \sum_{n=1}^{\infty} A_{nk})$ for every $x = (x_k) \in \Phi$. From $\sum_{n=1}^{\infty} A_{nk} = 1$ for every $k \in \mathbb{N}$, we have that $\sum_{n=1}^{\infty} (Ax)_n = \sum_{k=1}^{\infty} x_k$. Hence A is sum preserving. #