## CHAPTER I



## PRELIMINARIES

In this chapter we shall give some notations, definitions and theorems used in this thesis. Our notations are

 $\mathbb{Z}$  is the set of all integers,

 $\mathbb{Z}^+$  is the set of all positive integers,

o is the set of all rational numbers,

R is the set of all real numbers,

R<sup>+</sup> is the set of all positive real numbers,

 $\mathbb{Z}_n$ , n  $\epsilon \mathbb{Z}^+$ , is the set of congruence classes modulo n in  $\mathbb{Z}$  ,

 $\mathbb{Z}_{0}^{+} = \mathbb{Z}^{+} \upsilon \{0\},$ 

 $Q_0^+ = Q^+ \upsilon \{0\},$ 

 $\mathbb{R}_{0}^{+} = \mathbb{R}^{+} \cup \{0\},$ 

[x], x  $\varepsilon \mathbb{R}$ , is the largest integer such that  $\leqslant$  x.

Note that for  $x \in \mathbb{R}$  we can write x = [x] + r, where  $0 \le r < 1$ .

<u>Definition 1.1</u> A triple (S,+,\*) is said to be a <u>semiring</u> iff S is a set and + (addition) and \* (multiplication) are binary operations on S such that,

- (a) (S,+) and (S,\*) are commutative semigroups,
- (b) for all x, y, z  $\varepsilon$  S,  $(x+y) \cdot z = x \cdot z + y \cdot z$ .

Example 1.2  $\mathbb{Z}$ ,  $\mathbb{Z}^+$ ,  $\mathbb{Z}^+_0$  and  $\mathbb{Q}^+$  with the usual addition and multiplication are semirings.

Example 1.3  $\mathbb{Z}$ ,  $\mathbb{Z}^+$ ,  $\mathbb{Z}^+$  and  $\mathbb{Q}^+$  with the usual multiplication and + defined by x+y = max  $\{x,y\}$  for all elements x,y in these sets are semirings. Also, we can define x+y = min  $\{x,y\}$  for all elements x,y and still obtain semirings.

Definition 1.4 A semiring  $(K,+,\cdot)$  is said to be a <u>ratio semiring</u> iff  $(K,\cdot)$  is a group. (In P.Sinutoke's thesis [4], a ratio semiring is called a positive rational domain, P.R.D.).

Example 1.5  $\mathbb{Q}^+$  and  $\mathbb{Q}^+_0$  with the usual addition and multiplication are ratio semirings.

Example 1.6  $\mathbb{Q}^+$  with the usual multiplication and + defined by  $x+y = \min \{x,y\} \quad \forall x,y \in \mathbb{Q}^+$  is a ratio semiring. Also we can define  $x+y = \max \{x,y\} \quad \forall x,y \in \mathbb{Q}^+$  and still obtain a ratio semiring.

Example 1.7 Let  $D = \{1\}$  with  $1 \cdot 1 = 1$  and 1+1 = 1. Then D is a ratio semiring.

<u>Definition 1.8</u> Let  $(S,+,\bullet)$  be a semiring and  $T \subseteq S$ , then T is said to be a <u>subsemiring</u> of S iff  $(T,+,\bullet)$  is a semiring. And T is said to be a <u>ratio subsemiring</u> iff  $(T,+,\bullet)$  is a ratio semiring.

Definition 1.9 Let S be a semiring. Then  $x \in S$  is said to be additively cancellative (A.C.) iff for all y,  $z \in S$  (x+y = x+z  $\rightarrow$  y = z) And S is said to be additively cancellative (A.C.) iff for all x,y,  $z \in S$  (x+y = x+z  $\rightarrow$  y = z).

Definition 1.10 Let S be a semiring. Then  $x \in S$  is said to be

multiplicatively cancellative (M.C.) iff for all y, z  $\epsilon$  S (xy = xz imply y = z). And S is said to be multiplicative cancellative (M.C.) iff for all x,y,z  $\epsilon$  S (xy = xz imply y = z)

Example 1.11  $\mathbb{Z}^+$  and  $\mathbb{Q}^+$  with the usual addition and multiplication are additively cancellative and multiplicatively cancellative.

Definition 1.12 Let S be a semigroup. S is said to be a band iff  $x^2 = x$  for all  $x \in S$ .

Note that  $(\mathbb{Z},+)$ , where + defined as in example 1.3 is a band.

Theorem 1.13 There is no finite ratio semiring of order > 1.

See [4], page 5-11.

Proposition 1.14 If D is an infinite ratio semiring then D cannot contain any additive identity.

See [4], page 12.

Proposition 1.15 If D is an infinite ratio semiring then D cannot contain any additive zero.

See [4], page 12.

Theorem 1.16 If S is a semiring then S can be embedded into a ratio semiring iff S is multiplicatively cancellative.

See [4], page 12-14.

Assume that S is multiplicative cancellative. Define a relation  $\sim$  on SxS by  $(x,y)\sim(x',y')$  iff  $xy'=x'y \ \forall \ x,y,x',y' \in S$ . In theorem 1.16 we obtain that  $\sim$  is an equivalence relation.

Let  $\alpha,\ \beta\ \epsilon\ \frac{S_X\,S}{\sqrt{}}$  . Define + and • on  $\frac{S_X\,S}{\sqrt{}}$  in the following way:

Choose (a,b)  $\epsilon$   $\alpha$  and (c,d)  $\epsilon$   $\beta$ . Define  $\alpha+\beta=\left[(ad+bc,bd)\right]$  and  $\alpha\cdot\beta=\left[(ac,bd)\right]$ . Theorem 1.16 has shown that  $(\frac{S\times S}{\sim},+,\cdot)$  is a ratio semiring and S can be embedded into  $\frac{S\times S}{\sim}$ .

Theorem 1.17 If S is a semiring with multiplicative cancellation then  $\frac{S \times S}{\sqrt{}}$  is the smallest ratio semiring containing S up to isomorphism. See [4], page 14-15.

Theorem 1.18 If D is an infinite ratio semiring, then the smallest ratio subsemiring of D (called the prime ratio semiring of D) is either isomorphic to  $\mathbb{Q}^+$  with the usual addition and multiplication or {1} See [4], page 15-17

Proposition 1.19 Every finite cancellative semigroup is a group.

See [2], page 8.

Theorem 1.20 If K is a semifield then either 0 is the additive identity or 0 is the additive zero.

See [4], page 21.

Theorem 1.20 indicates that there are two types of semifields We call a semifield with 0 as its additive identity a <u>semifield of zero type</u> (0-semifield) and a semifield with 0 as its additive zero a semifield of infinity type ( $\infty$ -semifield).

There are four possible commutative binary operations on K such that K is a semifield :

Note that Table 1 makes {0,1} into a field, Table 2 makes {0,1} into trivial semifield and Table 4 makes {0,1} into almost trivial semifield.

Theorem 1.22 If K is a semifield of zero type, then the prime semifield of K is either isomorphic to  $\varrho_0^+$  with the usual addition and multiplication or  $\mathbb{Z}_p$  where p is a prime number or the semifield in Table 3.

See [4], page 30-33.

Remark 1.23 Since  $\mathbb{Q}^+$  with the usual addition and multiplication, is a ratio semiring, we have  $\mathbb{Q}^+_0$  by extending + and · by x+0 = 0+x = 0 and x•0 = 0•x = 0  $\forall$  x  $\in$   $\mathbb{Q}^+_0$ , is a semifield having 0 as its additive zero.

Theorem 1.24 If K is a semifield of infinity type, then the prime semifield of K is either isomorphic to  $\mathbb{Q}_0$  as in remark 1.23 or the trivial semifield of order 2 or the almost trivial semifield of order 2.

See [4], page 33-35.

Proposition 1.25 Let S be a semiring. Define  $B = \{x \in S \mid x \text{ is A.C.}\}$  and  $M = \{x \in S \mid x \text{ is M.C.}\}$ . Then

- 1)  $B = \Phi$  or B is an additive subsemigroup of S,
- 2)  $M = \Phi$  or M is a multiplicative subsemigroup of S.

- Proof 1) Assume that  $B \neq \Phi$ . Let x, y  $\epsilon$  B and  $z_1, z_2 \epsilon$  S be such that  $(x+y)+z_1=(x+y)+z_2$ . Then  $x+(y+z_1)=x+(y+z_2)$ . Thus  $y+z_1=y+z_2$  because x  $\epsilon$  B. Since y  $\epsilon$  B, so  $z_1=z_2$ . Hence  $x+y \epsilon$  B. Thus B is an additive subsemigroup of S. Therefore  $B=\Phi$  or B is an additive subsemigroup of S.
- 2) Assume that M  $\neq \Phi$ . Let x,y  $\epsilon$  M and  $z_1, z_2 \epsilon$  S be such that  $(xy)z_1 = (xy)z_2$ . Then  $x(yz_1) = x(yz_2)$ . Thus  $yz_1 = yz_2$  because  $x \epsilon$  M. Since y  $\epsilon$  M, so  $z_1 = z_2$ . Thus  $xy \epsilon$  M. Hence M is a multiplicative subsemigroup of S. Therefore M =  $\Phi$  or M is a multiplicative subsemigroup of S. #

Definition 1.26 Let S be a semiring and d  $\epsilon$  S. Then x  $\epsilon$  S is said to be an additive identity of d in S iff x+d = d. The set of all additive identity of d in S denoted by  $I_S(d)$ .

Proposition 1.27 Let S be a semiring and d  $\epsilon$  S. Then

- (1)  $I_S(d) = \Phi$  or  $I_S(d)$  is a additive subsemigroup of S.
- (2) If S is a ratio semiring, then
  - (2.1)  $I_S(1) = \Phi$  or  $I_S(1)$  is a subsemiring of S
  - (2.2)  $I_S(d) = I_S(1) \cdot d$  and  $I_S(1) \cdot I_S(d) \subseteq I_S(d)$
- Proof (1) Assume  $I_S(d) \neq \Phi$ . Let  $x,y \in I_S(d)$ . (x+y)+d = x+(y+d) = x+d = d since  $x,y \in I_S(d)$ . Thus (x+y)+d = d. Hence  $x+y \in I_S(d)$ . Therefore  $I_S(d)$  is an additive subsemigroup of S.
  - (2) Assume that S is a ratio semiring.
- (2.1) Suppose that  $I_S(1) \neq \Phi$ . Then by (1) we get that  $I_S(1)$  is an additive subsemigroup of S. To show  $I_S(1)$  is a subsemiring of S we only show that  $I_S(1)$  is a multiplicative subsemigroup of S. Let x,y  $\epsilon$   $I_S(1)$ . xy+1 = xy+(y+1) = (xy+y)+1 = (xy+1y)+1 =

(x+1)y+1=1y+1=y+1=1 since x, y  $\in$   $I_S(1)$ . Thus xy+1=1. Hence  $xy \in I_S(1)$ . Thus  $I_S(1)$  is a multiplicative subsemigroup of S. Therefore  $I_S(1)$  is a subsemiring of S. So we get that  $I_S(1)=\Phi$  or  $I_S(1)$  is a subsemiring of S.

(2.2) We want to show that  $I_S(1) = I_S(1) \cdot d$ .

Case 1  $I_S(d) = \Phi$ . Claim that  $I_S(1) = \Phi$ . To prove this suppose not, then  $\exists x \in I_S(1)$ . Thus x+1 = 1. Hence xd+d = d. Thus  $xd \in I_S(d)$ , a contradiction. Therefore  $I_S(1) = \Phi$ . So we have the claim. Thus  $I_S(1) \cdot d = \Phi$  Therefore  $I_S(d) = I_S(1) \cdot d$ .

Case 2  $I_S(d) \neq \Phi$ . Let  $x \in I_S(d)$ , then x+d=d. Since  $(S, \bullet)$  is a group,  $xd^{-1}+1=1$ . Thus  $xd^{-1} \in I_S(1)$ . Since  $x=(xd^{-1})d$ ,  $x \in I_S(1) \cdot d$ . Therefore  $I_S(d) \subseteq I_S(1) \cdot d$ . Conversely, Let  $y \in I_S(1) \cdot d$ , then  $\exists z \in I_S(1)$  such that y=zd. Then y+d=zd+d=(z+1)d=1d=d. Thus  $y \in I_S(d)$ . Therefore  $I_S(1) \cdot d \subseteq I_S(d)$ 

Now we shall show that  $I_S(1) \cdot I_S(d) \subseteq I_S(d)$ . If  $I_S(1) = \Phi$ , then  $I_S(1) \cdot I_S(d) = \Phi \subseteq I_S(d)$ . Suppose that  $I_S(1) \neq \Phi$ . By case 2.1, we have that  $I_S(1)$  is a subsemiring of S, so  $I_S(1) \cdot I_S(1) \subseteq I_S(1)$ . Then  $I_S(1) \cdot I_S(d) = I_S(1) \cdot (I_S(1) \cdot d) = (I_S(1) \cdot I_S(1)) \cdot d \subseteq I_S(1) \cdot d = I_S(d)$ . Thus  $I_S(1) \cdot I_S(d) \subseteq I_S(d)$ .