CHAPTER III

EMBEDDING THEOREMS

In [4], we have already studied the embedding of a semiring
in a ratio semiring, a semiring in a semifield of type I, a ratio
semiring in a field and a semifield of type I in a field. We will

develop some further embedding theorems in this chapter.

Theorem 3.1 Let K be a semifield of type I, then K can be embedded
into a field iff K is additively cancellative and satisfies : for all

X, Yy €EK, 14xy = x4y * x = 1 or y = 1.
Proof See [4], page 43-44. +

Remark 3.2 Let K = {a,e} with structure

and

Then K is a semifield of type II w.r.t.a. Define @ : K~ Z
by ®(a) = 1 and ®(e) = 0. Then ® is an isomorphism. .Hence K &

So we have K is a semifield of type II which can be embedded into a

field.

Theorem 3.3 Let K be a semifield of type II. Then K can be embedded

into a field iff K 27-2.

Proof Assume that K can be embedded into a field F. Then up to -

isomorphism we can consider that K& F. Let a € K be such that
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(K\ {a},*) is a group, let e be the identity of (K\ {a},*), let 0 be
the additive identity of F and let 1 be the multiplicative identity F.
Since K is a type II semifield, we get that a and e are the only multi-
plicative dempotents of K. Since 0 and 1 are the only multiplicative
idempotents of F, 'we obtain that {a,e} = {0,1}. Assume that a = O.
Let x e K\{a}. Then x = ax = ox = 0 = a, a contradiction. Hence
a#0. Thus a =1, so e = 0. Suppose that |K| > 2. Let'x'e KNdajel:
Then X = xe = X0 = 0 = e, a contradiction. Hence |K| = 2. Then

K= {a,e} = {0,1}. If 1+1 = 1, then 141 = 140. Since F is additively
cancellative, we get that 1 = 0, a contradiction. Thus 1+1 = 0.

Therefore K = {0,1} is a field of order 2. Hence K ’é“.zz.

Conversely assume that K ’;Zz. Then K is isomorphic to a field.

Therefore K can be embedded into a field. "

Theorem 3.4 Let K be a semifield of type III. Then K cannot be

embedded into any field.

Proof Let a € K be such that (k\{a}l,*) is a group and e the identity
of (K\{a}l,*). sSuppose that K can be embedded into a field F. Then

up to isomorphism we can consider K & F. Let 0 be the additive identity
of F and 1 the multiplicative identity of F. Then 0 and 1 are the only
idempotents of F. Since K is a type III semifield, we get that e is

the only multiplicative idempotent of K. Then a # 0 and e = 0 or e = 1.
If e = 1, then ae = al = a, a contradiction. Hence e = 0. Then a2= .

2 2

ae=a0=0. Thus a2= 0 which is a contradiction because a is a non-

zero element in F. #

The next two theorems will show that every ratio semiring can

be embedded into a semifield of zero type and a semifield of infinity
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type.

Theorem 3.5 Every ratio semiring can be embedded into a semifield

of zero type.

Proof Let D be a ratio semiring. Let a be a symbol not representing
any element of D. Extend + and * from D to D v {a} by ax = xa = a for
all x € D v {a} and a+x = x+a = x for all x € D v {a}. To show D v {a}
is a semifield, we must show that (a) (xy)z = x(yzi for: akl x,¥,

z € D v {a}, (b) (x+y)+z = x+(y+z) for all x,y,z € D v {a} and (c)
(x+y)z = xz yz for all x,y,z € D v {a}. To show (a), we will consider

the following cases. If one of x,y,z is a, then (xy)z = a = x(yz).

If all of x,y,z are not a, then x,y,z € D. Thus (xy)z = x(yz).

To show (b), we will consider the following cases

Case 1 X =Yy =2 = a.

(x+y)+z = (a+a)+a a+a = a+(a+a) = x+(y+z) since a+a = a.

Case 2 X =y =a, z #[8l

(x+y)+z = (a+a)+z = a+z = a+(a+z) = x+(y+z).

Cage Fi.ox =2 = A, Y Fade

(x+y)+z = (aty)+a = y+a = a+(y+a) = x+(y+z).

Case 4 y = 2/ &¥a, Xo¥sa.

(x+y)+z = (x+a)+a = x+a 2 x+(a+a) = x+(y+z).

Case 5 X =a, y#a,z#a.

(x+y)+z = (a+y)+z = y+z = a+(y+z) = x+(y+z).

Case 6 X.# d, VY =igh 2 #£ a.

(x+y)+z = (x+a)+z = x+z = x+(a+z) = x+(y+z).
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Case 7  X# a,y # 8,z = a.

(x+y)+z

(x+y)+a = x4y = x+(y+a) = x+(y+z).

Case 8 x #a,y #a, z# a. Then x,y,z € D. Thus (x+y)+z = x+(y+2z).

To show (c), we will consider the fbllowing cases

Case 1 Z =8

(x+y)z = (x+y)a = a = a+a = Xa+Xa = XzZ+yz.
Case 2 Zz¥a; X'=Tas

(x+y)z = (a+y)z = yz = a+yz = az+yz = Xz+yz.
"Case 3 Z. # a, Y =.a

(x+y)z = (X+a)z = xz = Xz+a = Xz+az = XzZ+yz.

Case 4 z #a, x# a, y #a. Then Xx,y,z € D. Thus (x+y)z = Xz+yz.
Therefore D v {a} is a semifield. Clearly it is a semifield of zero
type. Define f: D = D v {a} by f(x) = x ¥V x € D. Then f is a monomor-

phism. Hence D can be embedded into a semifield of zero type.

#

Theorem 3.6 Every ratio semiring can be embedded into a semifield

of infinity type.

Proof Let D be a ratio semiring. Let a be a symbol not representing
any element of D. Extend + and * from D to D v {al by ax = xa = a for
all x e D u {a} and a+x = x+a = a for all x € D v {a}. To show D v {a}
is a semifield, we must show that (1) (x+y)z = x(yz) for all x,y,

z eDu {a}, (2) (x+y)+z = x+(y+z) for all x,y,z € D v {a}l and (3)
(x+y)z = xz+yz for all x,y,z € D v {a}. The Proof of (1) ié the same

as the proof of (a) in Theorem 3.5.

To show (2), we will consider the following cases. If one of

X,y,z is a, then (x+y)+z = a = x+(y+z). If all of x,y,z are not a,
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then x,y,z € D. Thus (x+y)+z = x+(y+z).

To show (3), we will consider the following cases. If one of

X,y¥,z is a, then (x+y)z a = xz+yz. If all of x,y,z are not a, then

X,¥,2z € D. Thus (x+y)z = xz+yz.

Therefore D v {al is a semifield and clearly it is a semifield of
infinity type. Define f: D> D v {a} by f(x) = x for all x € D. Then
f is a monomorphism. Hence D can be embedded into a semifield of

infinity type. #

Remark 3.7 Since Q+ with the usual addition and multiplication is a
ratio semiring,it follows from theorem 3.6 that @'u {®} can be made
into an infinity semifield by extending + and °* by x°*® = ®¢x = ® and
X+ =w4x = ® for all x € Q+U {®}. Clearly o is an additive zero

and hence we see that Q+ can be embedded into Q+U {=»} which is a semi-

field of infinity type.

Proposition 3.8 Every ratio semiring can be embedded into a semifield

of type II.

Proof Let D be a ratio semiring. Let a be a symbol not representing

any element in D. Extend + and * from D to D v {a} by ax = xa = x for
all x e D u {a} and a+x = x+a = 1+x for all x € D v {a}. By Theorem
2.39, Du {a} is a semifield of type II. Let f: D = D v {a} defined

by f(x) x Vx € D. Clearly f is a monomorphism. Hence we can embed

D into a semifield of type II.

Corollary 3.9 Let S be a semiring. If S is multiplicatively cancel-

lative then S can be embedded into a semifield of type II.
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Proof By Theorem 1.16, S can be embedded into a ratio semiring, say
D. And by Proposition 3.8, D can be embedded into a semifield of

type II. Therefore S can be embedded into a semifield of type II. "

Proposition 3.10 Every ratio semiring can be embedded into a semi-

field of type III.

Proof Let D be a ratio semiring, d € D and a a symbol not represent-
ing any element of D. Extend + and ¢« from D to D v {a} by ax = xa = dx
for all x e Du {a} and a+x = x+a = d+x for all x e Dvu {a}. By
Theorem 2.51, Du {a} is a semifield of type III. Let f: D~ Dvu {al
defined by f(x) = x for all x ¢ D. Clearly f is a monomorphism. Hence

we can embed D into a semifield of type III.

Corollary 3.11 Let S be a semiring. If S is multiplicatively cancel-

lative then S can be embedded into a semifield of type III.

Proof By Theorem 1.16, S can be embedded into a ratio semiring, say
D. And by Proposition 3.10, D can be embedded into a semifield of

type III. Therefore S can be embedded into a semifield of type IIT. "

Proposition 3.12 Let K be a semifield. Then K cannot be embedded

into a ratio semiring.

Proof Let a e K be such that (K\{a}l,*) is a group and e the identity

of K \{a}l,+).

Suppose that K can be embedded into a ratio semiring, say D.
Then up to isomorphism we can consider that K € D. Let 1 be the multi-
plicative identity of D. Then 1 is the only multiplicative idempotent
of D. If K is a semifield of type I or type II, then K contains two

multiplicative idempotents. Thus K cannot be embedded into D. Suppose
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that K is a semifield of type III. Then e is the only multiplicative
idempotent of K, so e = 1. Thus ae = al = a, a contradiction. There-

fore K cannot be embedded into a ratio semiring. "

Remark 3.13 Let K = {a,e} be a semifield of type I. Then K must

have one of the structures given below :

1) . a e and + a e or
a | a a a | a a
e a e e a a

(2) . a e and + a e or
al| a a a | a e
e a e e e e

(3) . a e and + a e or
a a a a a
e a e e a e

(4) . a e and + a e
a a 'a a a e
e a ' e e | e a 5

Let L = {b,f} be a semifield of type II. Then L must have one

of the structures given below

(i) « | b f and 4 b f or
b T b f ) 2
£ £ f f f f

(ii) . f and + b f or
b f b b b

f f b

(id4) e 2 o and + | b f
b £ b b f
3 5 £ f
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(iv) 4 88 N and +iib
b £ b b
£ £ b .

Define ¢: K-+ L by ¢(a) = f and g¢(e) = b. Then we can show
that (1) &~ (i), (2) = (ii), (3) ¥ (iii) and (4) = (iv). Thus K can be
embedded into a semifield of type II and L can be embedded into a

semifield of type I.

Theorem 3.14 Let K be a semifield of type I. Then K can be embedded

into a semifield of type II iff |K| = 2.

Proof  Assume that K can be embedded into a semifield of type II, say
L. Then up to isomorphism, we can consider that K €& L. Suppose that
|K| > 2. Let a e K be such that (k\{a},*) is a group, let e be the
identity of (K\ {a},+), let b € L be such that (L\ {b},*) is a group
and let f be the identity of (L \ {b},*). Since K is a semifield of
type I and L a semifield of type II, we get that a and e are the only
multiplicative idempotents of K and b and f are the.only multiplicative

idempotents of L. Thus {a,e} = {b,f}. If a = b, then e f. Thus

b =a =ae = bf = £, a contradiction. Hence a = f, so e b. Let
x ¢ K\ {a,e}. Then a = ax = fx = x, a contradiction. Therefore

|K| = 2.

Conversely, assume that |K| = 2. Then K is a semifield of type
I of order 2. Then we get that K is (1) or (2) or (3) or (4) given in
remark 3.13. By Remark 3.13 we also get that K can be embedded into

a semifield of type II. #

Theorem 3.15 Let K be a semifield of type II. Then K can be embedded

into a semifield of type I iff |K| = 2.
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Proof Assume that K can be embedded into a semifield of type I, say
L. Then up to isomorphism, we can consider that K © L. Suppose that
|K| > 2. Let a e K be such that (K\ {a},*) is a group, let e be the
identity of (K\ {a},*), let b € L be such that (L\ {b},*) is a group
and let f be the identity of (L\ {b},*). Since K is a semifield of
type II and L a semifield of type I, we get that a and e are the only
multiplicative idempotents of K and b and f are the only multiplicative
idempotents of L. Thus {a,e} = {b,f}. If a = b, then e = f. Thus
a=Db=Dbf = ae = e, a contradiction. Thus a = f, so e = b. Let

e, a contradiction. Hence

x € K\ {a,e}. Then x = xe =xb =b

k| = 2.

Conversely, assume that |K| 2. Then K is a semifield of type
II of order 2. Then K is (i) or (ii) or (iii) or (iv) given in remark

3.13. By Remark 3.13 we also get that K can be embedded into a semi-

field of type I.

Theorem 3.16 Let K be a semifield of type I or type II. Then K

cannot be embedded into a semifield of type III.

Proof Suppose that K is a semifield of type I or II. Then K contains
exactly two multiplicative idempotents. Since a type III semifield
contains exactly one multiplicative idempotent, we get that K cannot

be embedded into a semifield of type III.

Corollary 3.17 Let K be a semifield of zero type or infinity type.

Then K cannot be embedded into a semifield of type III.

Proof Follows directly from Theorem 3.16.

Theorem 3.18 Let K be a semifield of type III. Then K cannot be
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embedded into a semifield of type I.

Proof Suppose that K can be embedded into a semifield of type I, say
L. Then up to isomorphism we can consider that K€ L. Let a € K be
such that (K\ {a}l,*) is a group, let e be the identity of (K\ {a},*),
let b € L be such that (L\ {b},*) is a group and let f be the identity
of (L\{b},*). Since K is a type III semifield, we get that e is the
only multiplicative idempotent of K. Since L is a semifield of type I,
we get that'b and f are the only multiplicative idempotents of L.

Thus a # band e = bor e =f.© If e=b, then ae = ab = b. Thus

ae = b. Since a € L\ {b}, Ty e L\ {b} such that ay = f. Then a = af
= a(ay) = a2y. Since K is a semifield of type III, we get that

(ae)2= a2e2= aze = a2. Thus a = (ae)2y & b2y = by = b, a contradiction
Hence e = £f. Then ae = af = a, a contradiction. Therefore K cannot

be embedded into a semifield of type I.

Theorem 3.19 Let K be a semifield of type III. Then K cannot be

embedded into a semifield of type II.

Proof  Suppose that K can be embedded into a semifield of type II,

say L. Then up tcs isomorphism we can consider that K& L. Let a £ K
be such that (K\{al,*) is a group, let e be the identity of (K\ {a},+),
let b € L be such that (L\ {b},*) is a group and let f be the identity
of (L\{b},*). Since K is a semifield of type III, we get that e is
the only multiplicative idempotent of K. Since L is a semifield of

type II, we get that b and f are the only multiplicative idempotents.
Thus a # b and e = b or e = f. Suppose that e = b. Then ae = ab = a,

a contradiction. Thus e = f. Then ae = af = a, a contradiction.

Therefore K cannot be embedded into a semifield of type II.
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Theorem 3.20 Let K be a semifield of type II w.r.t.a and let e be

the identity of (K\ {al}l,*). Then K can be embedded into an ®-semifield

iff K is of the form {a,e} where a+e = e.

Proof  Assume that K can be embedded into an ®-semifield, say K-

Then up to isomorphism, we can consider that KC K - Since K is a
semifield of type I, we get that |K| = 2 (Theorem 3.15). Thus

K = {a,e}. Let 1 be the identity of K,-:  If ate # e, then a+e = a.
Suppose that e = ®. Then a = ate|s/aiP = = e, Thus a = e, a contra-
diction. Hence e # ®. Since e*e = e, e = 1. Then e = a*e = a*1 = a,
so @ = e which is a contradiction. Hence a+e = e. So we obtain that

K is of the form {a,e} with a+e = e.

Conversely, assume that K is of the form {a,e} with a+e = e.
Since K is a semifield of type II w.r.t.a, a*a = a, a*e = e*a = e and
e*e = e. By Theorem 2.29, K\ {a} is a ratio semiring. Thus &e\ is
a ratio semiring, so e+e = e, Since K = {a,e}, so a+ta = a or a+a = e.

So K has structure

(1) or (2)

Let K = {®,1} with ®*® = ®, ®¢] = 1e@ = ® and 1¢1 = 1 and +
defined by

(a) or (b)

Then K_'is an »-semifield. Define f: K - K, by f(a) = 1 and

f(e) = ». It is easy to show that (1) & (a) and (2) ~ (b). Thus K

can be embedded into an ®-semifield.
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Theorem 3.21 Let K be an o-semifield. Then K can be embedded into

a semifield of type II iff |K| = 2.
Proof Suppose that K can be embedded into a semifield of type II.
By Theorem 3.14, |K| =l

Conversely, assume that K is an o-semifield of order 2. Then

K =~ {=,1} with the structure;

(1) o ' ® 1 and + = 1 or
o | o ® @ - ®
1 © 1 1 @ 1

(2) and + @ 1
N e e
1 @ @

Let L = {a,e} with structure;

(a) . a e and + a e or
al| a e :;_ a e
e | e e el e e
(b) . a e and + a ‘e
al|la e 7;_- e e
e | e e e le e

Then L is a semifield of type II. Define ¢ : K~ K by
¢(®) = e and ¢(1) = a. It is easy to show that (1) = (a) and (2) Z (b).

Thus K can be embedded into a semifield of type II. "

Remark 3.22 Let K, = {0,1} with the structure
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Then Ko is a semifield of zero type which is not a field.

We shall call KO the Boolean semifield.

Theorem 3.23 Let K be a semifield of type II w.r.t.a and let e be

the identity (K\ {a}, *). Then K can be embedded into a 0-semifield

which is not a field iff K is isomorphic to the Boolean semifield.

Proof Assume that K can be embedded into a semifield of zero type

which is not a field, say K Then up to isomorphism we can consider

0°

that KC KO. Let 1 be the identity of K Claim that a = 1 and e = 0.

0°
Since K is a semifield of type II w.r.t.a, a*a = a and a*e = e*a = e.

If a = 0, then a

0 = 0ee = ace

e, a contradiction. Thus a # 0.

Since a*a = a, a

1. Since e*e = e, we see that if e # 0 then e = 1
so a = e, a contradiction. Thus e = 0 and hence we have the claim.
Since Ky is a semifield of type I, we get that |K| = 2 (Theorem 3.15)
Thus K = {a,e}. Since KO is a O-semifield which is not a field, by
Proposition 2.26,we get that K\ {0} is a ratio semiring. Thus 1+1 # 0.
Since a = 1 and e = 0,_ a+a # e. Thus a+a = a. Since e = 0, a+e = a+0
= a. Thus a+e = a. So we obtain that K is isomorphic to the Boolean
semifield.

Conversely, assume that K is isomorphic to the Boolean semifield.

Therefore K can be embedded into a O-semifield which is not a field.

#

Theorem 3.24 Let KO be a semifield of zero type which is not a field

and 1 the identity of K

0° Then KO can be embedded into a semifield of

type II iff KO is isomorphic to the Boolean semifield.

Proof Assume that K0 can be embedded into a semifield of type II, say

K. Then up to isomorphism we can consider that K&; K. Since KO is a

semifield of type I, by Theorem 3.14 we get that |KO| = 2. Thus
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Ky= {0,1}. Since K, is a O-semifield which is not a field, by Propo-

0

gition 2.26; KO\ {0} is a ratio semiring. Thus 1+1 # 0. Since

Ky= {0,1}, 141 = 1. So we have that K, is isomorphic to the Boolean

semifield.

Conversely, assume that K,  is isomorphic to the Boolean semi-

0

field. Hence K0= {0,1} and the additive and multiplicative structures

of KO are given by :

and

and

Then K is a semifield of type II. Defined @ : KO* K by ®(0)

= e and ®(1) a. It is easy to show that ® is an isomorphism. Hence

KO;;K. Then KO can be embedded into a semifield of type II. #
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