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CHAPTER I  

INTRODUCTION 

 

1.1 Statement of the problems 

 Airborne particulate matter concentrations have increased in many developing 

countries, whereas the levels have decreased among some of the developed countries. 

Several studies related to airborne particulate matter and its implications on public 

health show that the pollutants have adverse health effects on those exposed to them 

(WHO, 2016).  In addition, many studies have confirmed that fine airborne particulate 

matter, with an aerodynamic diameter of less than 2.5 µm (PM2.5), should be 

considered more hazardous than suspended particulate matter (SPM) and PM10. The 

smaller size particulate matter has the potential to penetrate the thoracic region of the 

respiratory system. The ambient guidelines set by the World Health Organization 

(WHO) for PM2.5 are 10 µg/m3, annually, and 25 µg/m3, within a 24-hour period. The 

respective guidelines for PM10 are 20 µg/m3 and 50 µg/m3 (WHO, 2018). The WHO 

reports that more than 80% of people living in urban areas are exposed to air quality 

levels that exceed the WHO standard. People who are exposed to fine particulate 

matter over both short (hours or days) and long periods (months or years) have higher 

risks of respiratory and cardiovascular morbidity as well as mortality from lung 

cancer. Southeast Asian countries are one of the countries of concern, where PM2.5 

levels exceed the WHO air quality guidelines (AQGs) and the trend of PM2.5 in these 

countries has been increasing for over five years (2011-2016). Therefore, this is a 

very serious issue that the government should be concerned about and thus protect 

their citizens from exposure to small particulate matter (WHO, 2016). However, the 

WHO also recommended that government authorities in Southeast Asian countries 

should launch and promote policies to control ambient small particulate matter so that 

it does not exceed the safety standard. Many studies have pointed out that the main 

source of small particulate matter emission in urban areas comes from the traffic and 

industrial manufacturing processes (Wimolwattanapun et al., 2011). Thus, many 

policies and regulations to control PM in urban areas regulate source control 

emissions, the quality of vehicle fuel, and the quality of engine lubricant. There are 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

also laws that enforce or encourage the use of unleaded petrol and vehicle checkups. 

However, while these regulations have been effectively regulating some of the 

suspended particulate matter, they have not been with the small particulate matter 

(PM10 and PM2.5) still present in ambient air. The particle sizes of the small 

particulate matter are difficult to eliminate (Wang et al., 2010). These existing 

particles are the main cause of urban pollution. 

 In the case of Bangkok, Thailand, annual average ambient particulate matter 

concentrations of PM2.5 exceeded the WHO AQGs. The excess fine particulate matter 

concentrations may pose a potential risk to human health. Apart from the excess PM 

levels, there are few air monitoring stations that can monitor PM2.5. These monitoring 

stations are insufficient to monitor PM2.5 in the whole central business district area of 

Bangkok. Excess PM2.5 normally occurs between the rainy and winter seasons, from 

November to April (PCD, 2018a). However, there are 16 air monitoring stations that 

can monitor air pollutants and meteorological conditions such as NO2, SO2, CO, 

PM10, ambient temperature, and relative humidity. Therefore, the existing air 

monitoring data is sufficient to evaluate PM2.5 by using a forecasting method such as 

the statistical distribution technique or a statistical model.      

 The statistical distribution technique has been used to quantify air pollutant 

concentrations in a non-detected area. One of the techniques is multiple linear 

regression (MLR). MLR was applied in the urban areas of several studies for 

forecasting concentrations of particulate matter (both PM10 and PM2.5) by using 

meteorological parameters and co-pollutants as the predictors or the input data 

(Abdullah et al., 2017; Nazif et al., 2018; Ul-Saufie et al., 2011). The MLR technique 

has two main advantages: its simple computation and easy implementation. MLR 

equations have been developed in order to forecast particulate matter in urban areas in 

different cities such as Finland, Greece, Malaysia, China and Iran (Eldrandaly 

andAbu-Zaid, 2011; Li andWang, 2017; Ul-Saufie et al., 2012; Vlachogianni et al., 

2011). The researchers used the measured ambient air pollutants and meteorological 

data such as NO2, SO2, CO, PM10, ambient temperature, and relative humidity to 

compute and develop their MLR equations. Their equations have shown to predict air 

pollutant concentrations with remarkable success. In addition, the development of a 

model (which includes meteorological factors) can be very useful in predicting 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

pollutant concentrations and the conventional air pollutants such as NOx, O3 and SO2. 

Thus, the MLR technique was selected to develop equations for forecasting the PM2.5 

concentrations in this study. Then, the measured PM2.5 concentrations in the 

monitored areas and predicted PM2.5 concentrations in the non-monitored areas were 

applied to quantify a Health Risk Assessment (HRA). The HRA method was adopted 

from the regulatory protocol of the USEPA and quantified as the hazard quotient 

(HQ) for non-carcinogenic substance exposure (US.EPA., 2016a). 

 Therefore, the aim of this study is to develop MLR equations for estimating 

PM2.5 concentrations and performing a quantitative health risk assessment for 

Bangkok.  MLR was used as a statistical distribution technique to forecast the PM2.5 

concentrations in the city. The equations utilized the existing air pollution and 

meteorological values as the predictors. The equations were applied to the air 

monitoring stations, with non-detected PM2.5 data. The PM2.5 concentrations were then 

used to quantify the HRA, and the HRA results were illustrated in PM2.5 hazard risk 

maps of the city. 

 

1.2 Research objectives 

1.2.1 The first objective aims to study the ambient PM10 and PM2.5 

concentration trends in Bangkok over 10 years and develop a mathematical equation 

model to forecast fine particulate matter (PM2.5) concentrations by using particulate 

matter concentrations, conventional air pollutants and meteorological factors as the 

predictor variables. 

1.2.2 The second objective aims to complete a health risk assessment of 

human exposure to particulate matter in Bangkok and create GIS-based maps of the 

variability of hazard areas in the Central Business District (CBD) of Bangkok.  

 

1.3 Research hypotheses 

 PM2.5 concentration in Bangkok would be possibly developed with multiple 

regression analysis technique by using PM10, O3 and ambient humidity as the 

predicted variables.  
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1.4 Scope of the study 

 The air monitoring data used in this study came from January 2008 to April 

2018 data records. This allowed the particulate matter concentration trends in 

Bangkok to be investigated. Air monitoring data from 2015 to 2017 were used to 

develop the MLR equations because the PM2.5 has been monitored since 2015. All of 

the selected monitoring stations are located in the CBD of Bangkok (made up of 31 

districts). The air monitoring and meteorological data were collected by the 

Environment Department of the Bangkok Metropolitan Administration (BMA) and by 

the Pollution Control Department (PCD) of Thailand. Events and regulations in 

Thailand were used to discuss the trends of the particulate matter. The measured and 

predicted particulate matter were then used to quantify the health risk assessment 

results. 

 

1.5 Expected outcomes 

 1.5.1 Trends of particulate matter can be identified and discussed over a ten-

year period.  

 1.5.2 The developed equations can be used to forecast PM2.5 concentrations in 

both ambient air and roadside air.  

 1.5.2 GIS-based maps of the PM10 and PM2.5 concentration distributions and 

the variability of the hazard area can be used for precautionary purposes in bringing 

awareness of the human health impacts on the citizens exposed to particulate matter. 
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1.6 Conceptual Framework 

 

  

Data Collection

• Ambient air pollution data

• Meteorological data

• The number of vehicles

• Event/Regulations

Data Treatment

• Linear interpolation

Data Analysis and Model Development

• Correlation Analysis

• Multiple Regression Analysis

Model Validation

• Statistical methods

• Reliability test

Health Risk Assessment of Human Exposure

• PM10

• PM2.5

GIS-based Map Interpolation

• IDW interpolation technique

• Hazard variability of PM10 and PM2.5
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CHAPTER II  

LITERATURE REVIEWS 

 

2.1 Bangkok, Thailand 

 Bangkok is located in central Thailand with a latitude of 13˚44’ North and 

longitude of 100˚34’ East. The city area is 1,568.737 km2, and there are 5,682,415 

registered people in the city, as reported by Department of Provincial Administration 

Thailand (2017). Though there are 50 districts in the city this study evaluated only the 

districts in with central business district (CBD) consists of commercial, industrial, and 

residential areas. Moreover, Thailand has a tropical savanna climate under the 

Köppen climate classification, which is influenced by the South Asian monsoon 

system. This region is controlled by a tropical climate zone of three seasons: the rainy 

season (June–October), winter (November–February) and summer (March–May) 

(TMD, 2015).  

Two major monsoons have a strong influence: from late May to late October, 

the weather is influenced by the southwest monsoon or East Asian monsoon, and from 

December till the end of February, the weather is influenced by the northeast 

monsoon or the East Asian Winter Monsoon. The two different monsoons have 

influenced the seasonal variation in Thailand, in which atmospheric condition could 

be affected air pollution. The southwest monsoon from the Indian Ocean generally 

indicates that it is the wet season, with high rainfall and high ambient relative 

humidity. This large-scale circulation strengthens the southwest flow when the inter-

tropical convergence zone (ITCZ) moves poleward, across the north of Thailand to 

China in the summer. During the winter, the ITCZ changes into monsoon winds and 

move into the Southern Hemisphere across Thailand: north-easterly winds bring in air 

mass that has largely been defined over Southern China. Relative to the rainy season, 

this air mass has a low humidity and temperature. Rainfall in Bangkok is unusual 

during the winter monsoon, as any excess moisture would be lost when passing over 

the mountains to the north and east of the city. Relatively short transition periods exist 

between the monsoon seasons. In the summer (April and May), there is a transition 

episode characterized by periods of intense sporadic convection, strong incoming 

solar radiation and a regional low-pressure regime (Jinsart et al., 2010). The tropical 
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storms in the summer have affected the precipitation level in the region and decreased 

the suspended particulate matter in the atmosphere. During this transition episode of 

the southwest monsoon, the heavy convection of the ITCZ may pass directly over 

Bangkok. In November and early December, the transition to the winter monsoon 

takes place, but since the period of strong solar radiation has already passed over 

Thailand, the winter season does not have as high temperatures or heavy convection 

(Tran et al., 2006). Therefore, this study takes into account influence of the monsoons 

and evaluates the particulate matter variations following the seasons and transitional 

periods in Thailand. 

 

2.2 Introduction of Air Pollution 

 Households, industries, and vehicles release complicated mixtures of air 

pollutants, many of which are adverse human health and the environment. All of the 

air pollutants, small particulate matter with a dimeter less than 10 micron and fine 

particulate matter with a diameter less than 2.5 micron have extreme impact on human 

health. Most fine particulate matter is emitted from fuel combustion, in both point 

sources such as power plants, industry, households or biomass burning and mobile 

sources such as vehicles. 

 Atmospheric pollution is a main environmental health problem in both 

developing and developed countries. Air pollution causes both acute and chronic 

diseases, for instance lung cancer, chronic obstructive pulmonary disease (COPD) and 

cardiovascular diseases. In 2016, the WHO reported that 4.2 million people died from 

exposure to ambient air pollution. Worldwide, outdoor air pollution is evaluated to 

cause about 16% of the lung cancer deaths, 25% of COPD deaths, about 17% of 

deaths due to coronary heart disease or strokes, and about 26% of respiratory infection 

deaths. 

 The citizens in developing and underdeveloped countries excessively 

occurrence the burden of outdoor air pollution with it being the cause of 88% of the 

4.2 million premature deaths that occur in the world each year, and the highest 

number of deaths are in the Southeast Asia and the Western Pacific countries. The 

latest burden of its estimation reflected the strong significant role of air pollution is 
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cardiovascular illness and premature deaths. The estimates are very serious issue and 

much superior than the scientific proof and understanding.  

 Several sources of outdoor air pollution are difficult to control with the current 

technology of its individual. Thus, policy actions and development of the 

policymakers from cities, national and international are required to resolve the air 

pollution problems in the areas of transportation, waste management, energy, 

agriculture and buildings (WHO, 2016). 

 

2.3 Sources of Air Pollution 

 2.3.1 Stationary sources or point sources 

 Stack emissions or Point source emissions are from industrial boilers, power 

plants, surface coatings industrial, petroleum refineries, and chemical manufacturing 

processes. 

  

 2.3.2 Mobile sources or line sources 

 Mobile sources are characterized for on-road sources as well as off-road 

sources. The on-road sources are from transportation including passenger cars, buses, 

trucks and other vehicles traveling on the roads either local or highway. The gases 

emissions from the on-road sources represent 33 percent of the VOCs and 40 percent 

of the oxides of nitrogen gases (NOx) emissions. Off-road sources are attributed to 

mobile combustion such as marine industrial, a marine vessel, farming, off-road 

motorcycles, railroads, and construction) (David andBela, 2000).  

 

 2.3.3 Area sources 

 Area sources include small pollution sources such as gas stations, dry cleaners, 

and automobile painting shop. Area sources are definite as the sources that release 

less than 10,000 kg of hazardous air pollutants or less than 25,000 kg of a 

combination of pollutants in a year. This source also is generally active in commercial 

buildings such as in the cooling and heating units, and in surface coatings. The 

residential buildings i.e. fire places, surface coating, and fuel combustion systems in 

non-road machinery, boats, and railways are also classified as the area sources. Waste 

disposal in the usage of landfills, open burning and wastewater treatment process are 

strongly significant area sources (David andBela, 2000). 
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2.4 Particulate Matters 

 Particulate matter is the term for a mixture of solid particles and liquid droplets found 

in the air (e.g., black carbon, sodium chloride, nitrates, ammonia, dust and water). Some 

particles, soot, dust, dirt or smoke, are large enough to be seen with the naked eye (US.EPA., 

2016b). 

 

 
Figure 2. 1 Rough of exposure to particulate matter 

(US.EPA., 2016b) 

  

 PM10 is an inhalable particle. This particle is generally 10 microns or less. 

PM2.5 can be referred to as fine inhalable particles, with diameters that are generally 

2.5 microns or less.  PM10 and PM2.5 are come from the combustion of fossil fuels. 

Some are emitted directly from their sources, such as construction sites, unpaved 

roads, fields, smokestacks or fires. Most particles can be formed in the atmosphere 

because they chemically react with the atmospheric chemicals such as sulfur dioxide 

and nitrogen oxide that are emitted from industries, automobiles and power plants. 

 The large particles have a short atmospheric existence, tending to gravitate 

down quickly under gravity and wind-driven impaction processes. Therefore, only a 

few particles exceeding 20 microns in diameter can be suspended in the atmosphere, 

especially in an area that is very close to the source of emission.  

 PM10 and PM2.5 have the potential to affect human health and the environment. 

The particles are directly associated with their ability to cause health problems. This is 
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because they can penetrate deep into one’s lungs, and some may even get into one’s 

bloodstream as shown in Figure. 2.1. Exposure to these particles can affect the lungs 

and the hearts. Many scientific studies have traced the effect of particulate matter 

pollution to a variety of problems, which include premature death in people with 

respiratory problems and heart disease (WHO, 2016) (e.g., irregular heartbeat, 

nonfatal heart attacks, decreased lung function, aggravated asthma, and increased 

respiratory symptoms, such as irritation of the airways, coughing or difficulty in 

breathing). Children, older adults or those with heart or lung diseases are also affected 

by exposure to particulate matter. 

 In addition, fine particulate matter (PM2.5) have several impacts on the 

atmospheric environment by reducing visibility. Particles can destroy the environment 

when it is carried over long distances by wind and then settle on the ground or water.  

Depending on the chemical compositions of the fine particulate matter, the effects 

could make lakes and streams acidic, reformation the balance of the nutrient in coastal 

waters and large river basins, reducing the nutrients in soil, destructive sensitive farm 

crops and forests, disturbing ecosystems diversity, and causative to acid rain effects 

(US.EPA., 2016b). 

 

2.5 Multiple Linear Regression (MLR) 

 Multiple Linear Regression (MLR) is applied as the statistical method that 

allows prediction of variability between independent variables and a dependent 

variable (Jobson, 1991). The MLR is used by extending the simple linear regression 

model that there are P explanatory variables X1, X2, ... ,Xp which are to be associated 

to a dependent variable Y. The data matrix is assumed to be derived from a random 

sample of the observation values (Xi1, Xi2,…, Xip, Yi), i = 1,2, ... ,n, or equivalently, 

an n × (p +1) data matrix. The (P+1) random variables are assumed to satisfy the 

linear model as followed:  

           yi = ß0 + ß1xi1+ ß2xi2 + … + ßpxip + ui       i = 1, 2, … , n 

  

Where (1) The ui i = 1, 2, … , n are the values of an unobserved error term U 

  and are mutually independent and identically distributed; E[ui] = 0; 

  V[ui] = σ2
u . 
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  (2) The distribution of the error term U is independent of the joint  

  distribution of X1, X2 , ... ,Xp  and hence the regression function E [Y | 

  X1, X2 , ... ,Xp ] =  ß0 + ß1xi1+ ß2xi2 + … + ßpxip ; and V[Y| X1, X2 , ... 

  ,Xp] = σ2
Y· X1, X2 , ... ,Xp = σ

2
u 

  (3) The unknown parameters ß0, ß1, ß2, …, ßp are constant values.  

 

 Because the observations of y1, y2, … , yn are random samples, they are 

mutually independent and consequently the error terms are also mutually independent. 

Due to assumption (2), the results are conditional on the observed values of X1, X2 ,..., 

and Xp.  

 MLR is able to be simplified to be clearly understood and widely used in 

atmospheric forecasting research. MLR is generally applied to investigate the 

relationship between a response variable and two or more explanatory variables by 

fitting a linear equation to the observed data (Vlachogianni et al., 2011). MLR 

equation assumes that the residuals have normal distribution with zero mean, with 

uncorrelated and constant variance. 

 MLR was applied to this study to forecast PM2.5 as the unknown (dependent) 

variable and the other co-pollutants and meteorological factors as the known 

(independent) variables. The technique normally used in obtaining the model was 

stepwise multiple linear regression (stepwise-MLR). This method involves entering 

independent variables.  

 

2.6 Health Risk Assessment (HRA) 

 Human health risk assessment is the process that can be used to estimate the 

probability and nature of adverse human health effects. The health risk assessment is 

used in case of people may potentially be exposed to chemicals in contaminated 

environmental media, in present or in the future. The methodology for the health risk 

assessment (HRA) was applied from the publications of the United States 

Environmental Protection Agency (USEPA) and involved four standard steps, which 

are shown in Figure 2. 
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Figure 2. 2 Health Risk Assessment (HRA) approach 

 
 

2.6.1 Hazard identification  

 Hazard identification is the process of determining whether exposure to a 

contaminated chemical or a stressor could cause and increase the occurrence of 

specific adverse human health effects such as birth defects or cancer. It also has to do 

with the likelihood of occurrence of the adverse health effects in humans. In the case 

of chemical stressors, the hazard identification procedure examines the available 

scientific data for a given chemical or group of chemicals and develops a weight of 

evidence to characterize the association between the adverse effects and the chemical 

agents. Exposure to a hazardous stressor or contaminated chemical agent could 

generate several different adverse human health impacts such as diseases, tumors 

formation, reproductive development imperfections, fatality, or other effects. 

 

2.6.2 Dose–response assessment 

 Dose-response assessment for estimating exposure by inhalation is used 

Reference Concentrations (RfC). The RfC is used as benchmark to evaluate dose-

response assessment of non-carcinogenic harmfulness for each vapored and inhaled 

chemical. Toxicity of non-cancer refers to adverse human health impacts as gene or 

DNA mutation causing cancer. The RfC was developed from the determination of 

scientific toxicology and calculation of Acceptable Daily Intake (ADI) values. The 

RfC is described toxicity for non-carcinogenic substances as the standard 

concentrations for deriving controlling and safe levels in order to protect populations 

exposed hazard agents. The methodology of RfC is expanded to interpretation for the 
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dynamics of the respiratory system as the entry portal and includes dosimetric 

adjustments to interpretation for the species-specific relationships of exposure 

concentrations to deposited/delivered doses. The physicochemical characteristics of 

the inhaled agent are considered as key determinants to its interaction with the 

respiratory tract and ultimate disposition. Also, the gases and suspended particles are 

treated separately, and the type of toxicity observed from respiratory tract or toxicity 

remote to the portal-of-entry influences the dosimetric adjustment applied.  

 An inhalation reference concentration (RfC) is assessed with a continuous 

inhalation exposure to the population of human which are included high-sensitive 

subgroups as children and elder-adults. The RfC development is concerned 

appreciable risk of non-carcinogenic health effects during the human lifetime.  

 In addition, the RfC development starts with the identification of a lowest-

observed-adverse-effect level (LOAEL) and a no-observed-adverse-effect level 

(NOAEL). The RfC development is evaluated for the specified adverse human effect 

from the exposure levels of a given individual study on the several species 

examination based on toxicology and epidemiology. The NOAEL investigation is the 

highest level tested at which the specified adverse effect is not occurrence that could 

be called a “subthreshold level” and the LOAEL is the lowest level tested at which the 

specified adverse effect is begun occurance. Therefore, The RfC development 

methodology needs adaptation and conversion by dosimetric modification or 

adjustment of the LOAELs and NOAELs examination or observed in laboratory with 

animal experiments, in human epidemiological or occupational studies. The LOAELs 

and NOAELs were used to calculate human equivalent concentrations (HECs) for 

ambient exposure conditions. These conditions are presently assumed to be 24 hours 

per day for a lifetime of 70 years. Therefore, the study of ambient particulate matter 

affecting human health is used RfC.  

 Although the dose-response assessment is desirable to use from the study of 

human experiment, sufficient human data are often unavailable. Thus, the experiment 

information or data from animal testing is normally used from several animal 

experiments. The risk evaluator try to develop the animal model which is the most 

related to human physiology and based on biological effects comparability such as 

pharmacokinetic, metabolic, and pharmacodynamic data. the most sensitive species is 
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chosen as the species that displayed the serious negative effect at an exposure level 

that results in the lowest HEC when dosimetrically adjusted.  

 The serious toxic effect used in the dose-response assessment step is normally 

described by the lowest levels of the NOAEL
[HEC] which can be the representative of 

the threshold region (the region where toxicity is apparent from the available data) for 

the data array. The aim is to choose a prominent toxic effect that is pertinent to the 

chemical's key mechanism of action. This method assumes that if the serious toxic 

effect is prevented, then every toxic effect is also prevented. The purpose of the 

serious toxic effect from all effects in the data array would be necessary to toxicologic 

judgment because one chemical might produce and express more than a single toxic 

effect (endpoint) in set of tests in the same or different exposure duration, even in one 

test species. Furthermore, the NOAEL and LOAEL achieved from experimental 

studies regarding to the number of subjects or animals examined and on the spacing of 

the exposure levels. The NOAEL
[HEC] value obtained from a single study or several 

studies that are representative of the threshold region for the overall data array, is the 

key datum synthesized from an evaluation of the dose- response data. Evaluation of 

the serious effect characterizes the first scientific determination obligatory by the 

reference concentrations in the dose-response assessment 

 The RfC is originated from the NOAEL
[HEC] for the critical effect by 

consistent application of uncertainty factors (UFs). The UFs are applied to account for 

recognized uncertainties in the extrapolations from the experimental data conditions 

to an estimate appropriate to the assumed human scenario. Determination of which 

UFs to apply and the magnitude of each represents the second scientific evaluation 

required by an RfC dose-response assessment. The standard UFs applied are those for 

the following extrapolations: (1) effects in average healthy humans to sensitive 

humans, (2) laboratory animal data to humans, (3) studies of subchronic to chronic 

duration, (4) a LOAEL
[HEC] to a NOAEL

[HEC]
, and (5) an incomplete to complete data 

base. The UFs are generally an order of magnitude, although incorporation of 

dosimetry adjustments or other mechanistic data has routinely resulted in the use of 

reduced UFs for RfCs. The typical reduced UF is three or one-half log10. The 

composite UF applied to an RfC will alter in magnitude regarding to the number of 
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extrapolations obligatory. The composite UF when four factors are used is generally 

reduced from 10,000 to 3,000 in recognition of the lack of independence of these 

factors. An additional modifying factor (MF) would be applied when scientific 

uncertainties in the study chosen for operational derivation are not explicitly 

addressed by the standard UFs. For example, an MF might be applied to account for a 

statistically minimal or inadequate sample size or for poor exposure characterization. 

The RfC calculation fron NOAEL were shown in equation 2.1 as follows:  

 

RfC  =  
NOAEL[HEC]

UF × MF
    eq. 2.1 

 

 Where  NOAEL[HEC]  =  The NOAEL or analogous effect level obtained from 

         the dosimertrically adjusted to a human equivalent 

         concentration (HEC).  

   UF =   Uncertainty factor applied to use for the   

         extrapolations required from characteristics of the 

         experimental regime. 

MF =   Modifying factor for scientific uncertainty in the     

                 study chosen as the basis for the operational  

                 derivation.  

 

 Confidence levels of high, medium, or low are assigned to the study used in 

the operational derivation, to the overall data base, and to the RfC itself. Confidence 

ascribed to the RfC estimate is a function of both the confidence in the quality of the 

study and confidence in the completeness of the supporting data base together, with 

the data base confidence taking precedence over that assigned to the study.  

 High confidence in the RfC is an indication that the data base included 

investigation of a comprehensive array of noncancer toxicity endpoints established 

from studies of chronic duration in various mammalian species and that the study (or 

studies) established an unequivocal NOAEL. Therefore, a high confidence RfC is not 

likely to change substantially as more data become available, with the exception of 

additional mechanistic data or sophisticated tests that may change the perspective of 

the evaluation.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 16 

 Low confidence in an RfC is usually applied to a derivation that is based on 

several extrapolations and indicates an estimate that may be especially vulnerable to 

change if additional data become available. For some chemicals, the data base is so 

weak that the derivation of a low confidence RfC is not possible. The data base 

supporting an RfC for a chemical is designated as not-verifiable. Upon the availability 

of new data, this not-verifiable status would be reexamined.  It must be highlighted 

that the RfC as a quantitative dose-response assessment is not numeric alone. As risk 

assessments have become a more prevalent basis for decision-making, their scientific 

quality and clarity of presentation have gained unprecedented importance. Any dose-

response assessment, such as the RfC, has inherent uncertainty and imprecision 

because the process requires some subjective scientific judgment, use of default 

assumptions, and data extrapolations. A complete dose-response evaluation should 

include communication of the rationale for data selection, the strengths and 

weaknesses of the data base, key assumptions, and resultant uncertainties. The 

rationale for the choice of the data from which the RfC is derived, a discussion of data 

gaps, and the resultant confidence in the RfC are all outlined in the summary of the 

RfC entered on the EPA's Integrated Risk Information System (IRIS). A discussion 

and rationale for the UFs used in the RfC derivation are also provided. This 

information is an important part of the RfC and must be considered when evaluating 

the RfC as a dose-response estimate, in addition to assumptions and resultant 

uncertainties inherent in an exposure assessment, when attempting to integrate the 

assessments into a risk characterization. 

 In conclusion, the RfC methods are developed from NOAELs and LOAELs 

for dosimetric adjustments of particle or gas exposures. The methods represent the 

currently available science. Uncertainty factors are utilized that allow for RfC 

derivation in the absence of some data, but the UF and confidence statements 

explicitly call out prescribed areas of extrapolation in order to communicate data 

gaps. For example, a UF is used to account for intraindividual variability, an area 

identified by the NAS as one requiring additional data to more accurately characterize 

susceptibility of subpopulations. (US.EPA., 1994). 

 For the study of health risk assessment of PM10 and PM2.5 exposure, the RfC 

was obtained from the air quality standard from WHO and Thailand NAAQS by PCD. 
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The two standard values were compared and quantify health risk in risk 

characterization step. 

 

2.6.3 Exposure assessment  

 Exposure assessment is the process of measuring or estimating the magnitude, 

frequency, and duration of human exposure to an agent in the environment or 

estimating future exposures to an agent that has not yet been released. An exposure 

assessment includes some discussion of the size, nature, and types of human 

populations exposed to the agent, as well as discussion of the uncertainties in the 

above information.  

 Exposure can be measured directly but more commonly is estimated indirectly 

through consideration of measured concentrations in the environment, consideration 

of models of chemical transport and fate in the environment in order to estimate of 

human intake over time. Depending on the type of chemical agents, it can be divided 

into two different equations for assessment of both non-carcinogens as shown in Eq. 

2.2 and carcinogens as shown in Eq. 2.3.  

 

 Exposure assessment for non-carcinogenic substances 

   EC(μg m3⁄ ) = 
C × ET × EF × ED

AT
     Eq. 2.2 

 Exposure assessment for carcinogenic substances 

   CDI(μg m3⁄ ) = 
C × ET × EF × ED

AT
     Eq. 2.3 

 Where,   EC = substance exposure concentration per day (µg/m3)  

   CDI = average carcinogen exposure per day (µg/m3) 

   C = toxicity concentration in air  

   ET = exposure time (24 hours/day) 

   EF = exposure frequency (350 days/year) 

ED = exposure duration (30 years for non-carcinogenic 

substance exposure and 70 years for carcinogenic exposure) 

   AT = averaging time (For non-carcinogen used ED x 365 x 24 

   hour/day and for carcinogen used 70 x 365 x 24 hour/day) 
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2.6.4 Risk Characterization  

 A risk characterization suggests the risk assessor's decision regarding the 

nature and presence or absence of risks, along with information about how the risk 

was assessed (where assumptions and uncertainties still exist). Risk characterization 

takes place in both human health risk assessments and ecological risk assessments. 

Risk is normally characterized separately for non-carcinogenic and carcinogenic 

health risk. For non-carcinogenic health risk due to inhalation, risk characterization is 

performed by quantifying the hazard using the Hazard Quotient (HQ), which is 

defined in Eq. 2.4, as follows: 

 

    HQ = 
EC
RfC

     Eq. 2.4 

 

 Where;  HQ = Hazard Quotient 

EC = inhalation exposure air concentration (µg/m3) 

   RfC = reference concentration (µg/m3)  

 An HQ of less than one (HQ < 1) indicates that the pollutant concentration is 

below the reference concentration (RfC) value (which means the potential risk is 

acceptable) with no action required to reduce the pollutant’s level. Hence, HQ < 1 is 

considered safe. However, it can be noted that HQ > 1 does not necessarily suggest a 

likelihood of adverse effects. It is more suitable to be used as an indication that a 

potential risk exists for adverse health effects. 

 For the carcinogenic health effect due to inhalation, the lifetime cancer risk 

(LCR) is estimated as follows: 

 

    LCR = EC × URF     Eq. 2.5 

  

 where;  LCR = Lifetime cancer risk 

EC = exposure air concentration (µg/m3) 

   URF = unit risk factor (µg/m3)-1 

 

 Some research shows the threshold of cancer risk “acceptability” varies among 

countries, states, and different cities of the same state. The cancer risk of 10−6 (1 in a 

million) is commonly identified as an “acceptable risk.” It is also known as minimal 
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risk, which is described as being very small and negligible, whereas levels of 10−6 to 

10−4 are deemed as the range of “generally acceptable risk,” where 10−4 may be 

exceeded in some circumstances, especially when there is a need to balance the costs 

and benefits of remedial actions (US.EPA., 2016a). This study was applied to the 

health risk assessment approach to study the hazard exposure to PM10 and PM2.5 

concentrations in Bangkok. The particulate matter exposure assessment used the non-

carcinogenic substance approach of the USEPA. The selection of non-carcinogenic 

health risk assessment was based on the risk characterization of PM10 and PM2.5 which 

were not included the other chemicals bound with the particles. 

 

2.7 Geographic Information System (GIS) 

 The geographic information system (GIS) is widely used to work with maps 

and geographic information. It is used for creating and using maps; compiling 

geographic data; analyzing mapped information; sharing and discovering geographic 

information; using maps and geographic information in a range of applications; and 

managing geographic information in a database. The program that applied the GIS 

process is called ArcGIS. The main component of ArcGIS that is used to create maps 

with the raster technique is called ArcMap. This program was applied in this study to 

evaluate particulate matter distribution.  

 ArcMap is one of the main interfaces for conducting analyses and creating 

maps. Here, feature classes and shape files can be populated, data can be edited, 

calculations can be performed, and finally, maps can be created for displaying the 

results of the GIS analysis. ArcMap projects are stored as map documents (*.mxd), 

which save all of the layers added to the map as well as the results of any of the geo-

processing tools that were used. It is important to note that *.mxd does not store the 

actual data, but only references them and user-defined layer organization and 

symbols. In addition, the important module in ArcMap is ArcToolBox, which is 

where all of the geo-processing and spatial analysis tools are located. There are 

hundreds of tools available and they range from basic to advanced. The ArcMap and 

ArcToolbox interface are shown in Figure 2.3 and Figure 2.4, respectively.  
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Figure 2. 3 An overview of the ArcMap interface 

 

 
 

Figure 2. 4 An overview of the toolboxes in ArcToolbox 
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The interpolation methods in GIS are used to create a surface grid in this 

program and predict the values of the cells at locations that lack sample collection 

points. It is based on the principle of spatial autocorrelation or spatial dependence, 

which measures the degree of relationship/dependence between near and distant 

objects 

 Spatial autocorrelation determines if values are interrelated in a spatial pattern. 

This correlation is used to measure the following: 

 - The similarity of objects within an area. 

 - The degree to which a spatial phenomenon is correlated to itself in space. 

 - The level of independence between the variables.  

 - The nature and strength of the interdependence.  

 Different interpolation methods will produce different results. There are 

various methods of the interpolation such as the inverse distance weighted (IDW) 

tool, spline, and ordinary kriging.  

The IDW technique is a method of interpolation that estimates cell values by 

averaging the values of sample data points in the neighborhood of each processing 

cell. The closer a point is to the center of the cell being estimated, the more 

significance it has in the averaging process. 

Kriging is an advanced geostatistical procedure that generates an estimated 

surface from a scattered set of points with z-values. A thorough investigation of the 

spatial behavior of the phenomenon represented by the z-values should be done before 

the selection of the best estimation method for generating the output surface. 

The Spline tool uses an interpolation method that estimates values using a 

mathematical function that minimizes overall surface curvature, resulting in a smooth 

surface that passes exactly through the input points (ESRI, 2016). 
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2.8 Related Research 

2.8.1 Ambient particulate matter research 

 There was a study of drivers’ exposure to particulate matter in Bangkok 

(Jinsart et al., 2012). Exposure to fine particulate matter (PM2.5) in public 

transportation vehicles could have harmful health effects on both drivers and 

commuters in Bangkok, Thailand, where air pollution from vehicle exhaust is a 

serious problem. Exposure to fine particulate matter from moving vehicles has not 

been sufficiently investigated. Thus, the authors measured the levels of PM2.5 within 

various types of vehicles in Bangkok. Their results were the first to demonstrate that 

the drivers and commuters in Bangkok are exposed to a high level of PM2.5, which 

cannot be detected by current roadside monitoring devices. They suggested the need 

for further pollution control measures.  

 The study of decreasing trends of suspended particulate matter and PM2.5 

concentrations in Tokyo, from 1990 to 2010. The authors reported that, in Tokyo, the 

annual average SPM concentration declined by 62.6% from 59.4 µg/m3 in 1994 to 

22.2 µg/m3 in 2010, and the concentration of PM2.5 declined by 49.8% from 29.3 

µg/m3 in 2001 to 14.7 µg/m3 in 2010. Significant positive correlations were found 

between traffic volumes and SPM or PM2.5, but the average concentrations of SPM 

and PM2.5 concentration per traffic volume have also decreased over the decade 

studied. These results suggest that reductions in traffic volumes as well as 

improvements in engine design and the installation of exhaust gas treatment systems 

might have improved the air quality (Hara et al., 2013).  

  

2.8.2 Multiple linear regression (MLR) analysis with air pollution research 

 The study on statistical analysis on air pollution using principal component 

analysis (PCA) and multiple regression analysis in modelling ground-level ozone and 

factors affecting the air pollution concentrations (Abdul-wahab et al., 2005). Air 

pollutants including methane (CH4), carbonmonoxide (CO), carbondioxide (CO2), 

nirogenoxide (NO), nitrogendioxide (NO2) and sulphurdioxide (SO2) and 

meteorological variables (wind speed and direction, air temperature, relative humidity 

and solar radiation) were used as parameters for multiple linear and principal 

component regression techniques analysis. The simulation outcome was applied to 
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ozone (O3) prediction.  For both day and night time, the pollutants were positively 

correlated; however, they were all negatively correlated with ozone. Multiple 

regression analysis was applied to fit the ozone data using the conventional pollutants 

and meteorological factors as predictors. The authors also found the relationship 

between ozone and the other environmental factors in such a way that the day time 

ozone concentration tended to increase. Due to the high temperature and high solar 

radiation, the pollutants NO and SO2 being emitted to the atmosphere induced the 

secondary ozone concentration. Night time ozone concentrations were affected 

potentially by NO without the influence of meteorological variables. Nevertheless, the 

model was able to better predict ozone concentrations in daytime than at night.  

 In addition, the MLR technique was widely used in air model prediction work. 

There was the study of performance of MLR for forecasting long-term PM10 

concentrations using gaseous and meteorological factors as the predicted variables 

(Ul-Saufie et al., 2012). The study was done in Seberang Perai, Malaysia, to forecast 

the PM10 concentrations. The developed model included NO2, SO2, CO, PM10 and 

meteorological parameters (temperature, relative humidity and wind speed). Five 

statistical validation tools were used as performance indicators: Prediction Accuracy 

(PA), Coefficient of Determination (R2), Index of Agreement (IA), Normalized 

Absolute Error (NAE) and Root Mean Square Error (RMSE). It can be summarized 

that MLR can be used for accurately predicting long-term PM10 concentrations.  

 Abdullah et al. (2017) used MLR to forecast the long-term PM10 

concentrations during different monsoon seasons in Malaysia. Particulate matter is the 

pollutant of greatest concern in Peninsular Malaysia because it has the highest API 

values compared to the other pollutants. Chronic PM10 exposure may reduce life 

expectancy because of an increase in cardiovascular morbidity and lung cancer 

mortality. The researchers aimed to develop the model that could predict ambient 

particulate matter concentrations. The predictions could provide important 

information for taking precautionary measures to avoid exposure to unhealthy 

ambient pollution. Another benefit was to allow the government or relevant 

organizations to implement strategic measurements. The purpose of this study was to 

develop MLR models for different monsoon seasons with meteorological factors as 

predictors. Daily measurement of PM10 concentrations from January 2005 to 
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December 2011 in Kuala Terengganu, Malaysia, was used as inputs for predicting 

PM10 concentration levels. The developed MLR model performance was remarkable 

success. Wind speed, rainfall and relative humidity showed negative relationships, 

whereas temperature and atmospheric pressure were positively correlated with PM10 

concentrations. Therefore, the researchers concluded that the developed MLR models 

were appropriate for predicting PM10 concentrations at the local level for each 

monsoon.  

 Li and Wang (2017) used a regression calculation model to find the 

relationship between PM2.5 and the concentrations of PM10, SO2, NO2, O3, CO, 

temperature and humidity. They used the urban air quality monitoring data as input 

data in order to find the relationship between PM2.5 concentrations and several major 

air pollutant concentrations. The meteorological elements in the same period were 

also analyzed respectively. In the results, they found that there was a significant 

correlation between the concentrations of PM2.5 and the others air pollutants that were 

mentioned before. Therefore, we used these factors as the variables in order to make a 

multiple linear regression analysis about the PM2.5 concentrations and set up the urban 

PM2.5 concentration regression calculation model. For the model validation, two 

results were principally a good fitting effect between the measured and observed 

values, which showed that the regression model had a good performance. 

 Nazif et al. (2017) quantified a health risk assessment of particulate matter 

(PM10) exposure by using mathematical models to assess small particulate matter. 

Meteorological parameters and seasonal variation increase PM10 concentrations, 

especially in the areas that have multiple human activities. Stepwise regression (SR), 

multiple linear regression (MLR) and principal component regression (PCR) analyses 

were applied to investigate daily average PM10 concentrations. The analyses were 

carried out using daily average PM10 concentrations, temperature, humidity, wind 

speed and wind direction data from 2006 to 2010. The input data were obtained from 

an industrial air quality monitoring station in Malaysia. The SR analysis showed that 

meteorological parameters had less influence on PM10 concentrations by having 

coefficient of determination (R2) results from 23 to 29% based on seasoned and 

unseasoned analysis. However, the prediction analysis results showed that PCR 

models had better R2 outcomes than MLR models. The outcomes for the analyses 
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based on both seasoned and unseasoned data showed that MLR models had R2 result 

from 0.50 to 0.60, but PCR models had R2 result from 0.66 to 0.89. Additionally, the 

analysis of model validation using 2016 data also showed that the PCR model 

performed better than the MLR model, with the PCR model for the seasoned analysis 

having the best result.  

 The recent research study has been done in Bahrain. The authors aimed to 

identify the most important air pollutants based on their individual contribution to air 

quality index (AQI) and determined the major air pollution sources (Jassima et al., 

2018). The air data sets were collected from 17 air quality monitoring sites. XLSTAT 

2014 program and Statistical Package for the Social Sciences (SPSS 22) were used to 

analyze the air data set over six-and-half-year from July 2006 to December 2012. 

Hierarchical Agglomerative Cluster Analysis (HACA) classified the monitoring 

stations into three idiosyncratic clusters based on similarities of meteorological 

parameters and air pollutants characteristics. The principal component analysis (PCA) 

technique was used to identify major sources of air pollution in each cluster. The PCA 

analysis established that dust storms, vehicle emissions, manufacturing processes, 

power plants and airport activities were the main air pollutant emissions. The PCA 

analysis showed that wind speed and ambient temperature have positive loading, 

while relative humidity has negative loading. In addition, MLR analysis was applied 

to develop models for prediction of AQI for every cluster based on the concentrations 

of key air pollutants. The MLR outcomes showed PM10 and PM2.5 were closely 

related to the AQI values. The MLR models showed good performance with R2 values 

that were higher than 0.7 in every cluster.  

 

2.8.3 GIS Based map for air pollutant distribution research 

 The evaluation of the spatial variability of the concentrations of ambient air 

pollution in the Mabtaphud district, Thailand was studied in 2011 (Thepanondh 

andToruksa, 2011). The measurement of NO2 concentrations used in their study was 

obtained from 11 ambient monitoring stations in the nearby area. They applied spatial 

interpolation technique to create the variability of ambient pollutants concentrations 

using three interpolating techniques: the ordinary kriging, the inverse distance 

weighted (IDW), and the spline. However, the results showed that the ordinary 
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kriging interpolation technique performed the best, with less error based on a cross-

validation procedure. They also used the ordinary kriging to create a hazard map of 

nitrogen dioxide. The results showed a small variation of its concentration over the 

study domain. Nevertheless, spatial interpolation presented that the hotspots (an area 

with high pollutant concentrations) were located in downwind locations of the 

industrial estate site. The authors also recommended the further study of air pollution 

mapping, where it is compared with various interpolating and integrating techniques 

of secondary data prior to applying the best spatial interpolation technique. In 

addition, the emissions from the line source played a significant role in increasing the 

ambient nitrogen dioxide concentrations in the specific location. 

 In addition, there was a study on GIS performance comparison to find the best 

interpolation scheme of GIS (Eldrandaly andAbu-Zaid, 2011).The authors compared 

six GIS-based spatial interpolation methods in order to determine air temperature in 

Western Saudi Arabia with different interpolation methods. Inverse Distance 

Weighted (IDW), Global Polynomial, Local Polynomial, Radial Basis Function 

(Thin-Plate Spline), Ordinary Kriging, and Universal Kriging were applied to this 

study as interpolation techniques. For the GIS result validation, they used a cross-

validation technique to diagnose the performance of the interpolation. The validation 

showed that Ordinary and Universal Kriging presented the best performance by 

giving the minimum Root Mean Square Error (RMSE) result.  

 In Thailand case, GIS was widely used to study air pollution distribution. 

There was a study of investigation in people living in northern Thailand who were 

exposed to PM10 that was associated with episodes of biomass burning (Mitmark 

andJinsart, 2017). The authors investigated PM10 emissions from natural forest fires 

and agricultural waste burning. PM10 exposures in eight provinces of northern 

Thailand were investigated by GIS interpolation techniques. They also used daily 

average ambient PM10 concentrations from 10 monitoring stations as the input data 

for GIS processing. The best interpolation scheme was IDW. The predicted PM10 

concentrations were validated with the measurement values. GIS-based maps 

illustrated the variability of PM10 distributions and the risk locations that were 

correlated with forest fire frequency and wind direction.  
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CHAPTER III   

METHODOLOGY 

 

3.1 Study Area 

 The study area was the Central Business District (CBD) of Bangkok, which 

contains 31 districts. The district names and the total population of each district in 

2017 (BMA, 2018) are shown in Table 3.1 and the location of CBD are shown in 

Figure 3.1 
Table 3. 1 The number of populations in each district of CBD 

 

No. Districts Population 

1 Bang Sue 125,440 

2 Chatuchak 156,684 

3 Lat Phrao 120,394 

4 Bang Kapi 147,800 

5 Wang Thonglang 112,116 

6 Huai Khwang 81,515 

7 Din Daeng 122,563 

8 Phaya Thai 70,238 

9 Dusit 95,852 

10 Ratchathewi 72,304 

11 Phra Nakhon 51,231 

12 Pom Prap Sattru Phai 46,581 

13 Samphanthawong 24,150 

14 Bang Phlat 92,325 

15 Bangkok Noi 112,046 

16 Bangkok Yai 67,768 

17 Phasi Charoen 126,824 

18 Chom Thong 152,315 

19 Thon Buri 109,482 

20 Khlong San 73,263 

21 Rat Burana 82,545 

22 Bang Kho Laem 89,358 

23 Yan Nawa 78,797 

24 Sathon 79,624 

25 Bang Rak 47,817 

26 Pathum Wan 49,121 

27 Khlong Toei 102,945 

28 Vadhana 84,967 

29 Suan Luang 122,534 

30 Phra Khanong 90,534 

31 Bang Na 90,852 
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Figure 3. 1 The location of CBD 
 

3.2 Data Collection 

 Air pollution and meteorological data in this study were obtained from the 

Bangkok Metropolitan Administration (BMA) and the Pollution Control Department 

(PCD). There are 16 air monitoring stations in the CBD. The locations of these 

monitoring stations were shown in Figure 3.2 and the details of the monitoring 

stations and their Universal Transverse Mercator (UTM) locations were shown in 

Table 3.2. The monitoring stations were divided into two types according to their 

locations: general ambient and roadside monitoring stations. The air pollution and 

meteorological data measured in this study are as follows: PM10, PM2.5, CO, NO, 

NOx, NO2, O3, SO2, wind speed, relative humidity, temperature and rainfall. The data 

from the monitoring stations for both the general ambient and roadside stations were 

used to determine the correlation analysis between the PM2.5 concentrations and 

atmospheric variables in CBD of Bangkok. The monitoring stations at the 

Meteorological Department (5t) and the Public Relations Department (59t) were 
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selected to develop the MLR equation for the ambient stations. The monitoring 

stations at Intarapitak (52t), Dindang housing (54t), and Chokchai police office (53t) 

were selected to develop the MLR equation for the roadside stations. The daily 

average air pollution and meteorological data from 2015 to 2017 were used as the 

predicted variables. The selection criteria were based on the monitoring stations with 

the complete data set and located in a highly polluted area. 

 

Figure 3. 2 Air monitoring stations and their locations 
 

Table 3. 2 Study sites and monitoring stations coordinate X, Y position in UTM 

Monitoring Station UTM ZONE 47N 

Code Name Area type x y 

A_RTW Ratchathewi District Office Roadside 665948 1521627 

B_PKN Phrakhanong District Office Roadside 673253 1515382 

C_RBN Ratburana District Office Roadside 662771 1513062 

D_DIN Dindang District Office  Roadside 667927 1523135 

02t RBS Ratjabhat Bansomdej Ambient 660676 1518679 

03t PBK Prapadang Bangkae Ambient 662848 1511579 

05t MED Meteorological department Ambient 673672 1511579 

10t KCH Khlongchan Housing Ambient 678005 1523487 

11t KHK Huakwang Housing Ambient 669612 1523437 

12t NWS Nonsi wittaya school Ambient 667326 1515973 

50t CLH Chulalongkorn Hospital Roadside  666169 1518468 
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Monitoring Station UTM ZONE 47N 

52t ITP Intarapitak Roadside  660741 1518098 

53t CPO Chokchai Police Office Roadside  672535 1525366 

54t DDH Dindang housing Roadside  667907 1521979 

59t PRD Public Relation Department Ambient 666536 1524275 

61t BDS Bodindecha School Ambient 674574 1522729 

 

3.3 Data Treatment 

The hourly average of PM10, PM2.5, CO, NO, NOx, NO2, O3, SO2, wind speed, 

relative humidity, temperature and rainfall from the PCD and BMA were treated as 

follows: 

The missing data were replaced prior to calculation of the daily average 

concentrations. In case of missing data from one hour, data before and after of the 

missing values were averaged and used to replace the missing data. However, for 2-3 

hours of missing data, treatment of the data was carried out by the linear interpolation 

technique or using data from the previous day as appropriate (Abdullah et al., 2017). 

 

3.4 Data Analysis and Model Development   

 Spearman’s correlation coefficient was selected to calculate the correlation 

coefficient between PM2.5 and the observed variables, including CO, NO, NOx, NO2, 

O3, SO2, wind speed, relative humidity, temperature and rainfall in the ambient air. 

Spearman’s correlation coefficient was selected because the atmospheric variables 

had non-normal distribution (Hara et al., 2013). The calculation procedure of 

Spearman’s correlation coefficient is as follows (Eq. 3.1):  

 

   𝜌 = 1 -
6 ∑ di

2

n(n2 -1)
= 

∑ (Xi−X̅)(y
i
 − y̅)i

√∑ (Xi−X̅)
2

 ∑ (yi − y̅)
2

i  i

  Eq. 3.1  

 Where, ρ is the Spearman rank correlation, di is the difference between the 

ranks of corresponding variables, n is the number of observations, and x and y are the 

variables of the sample size. The significant variables related to PM2.5 and the other 
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observed variables were selected as input data for the MLR analysis to develop the 

mathematical models.  

 The monitoring stations at the Meteorological Department (5t) and the Public 

Relations Department (59t) were selected to develop the mathematic equation for the 

ambient stations. The monitoring stations at Intarapitak (52t), Dindang housing (54t), 

and Chokchai police office (53t) were selected to develop the mathematic equation for 

the roadside stations. The daily average air pollution and meteorological data from 

2015 to 2017 were used as the input to develop the MLR mathematic model. The 

selection criteria of air monitoring stations used in model development were based on 

a complete data set of the monitored data and located in a highly polluted area. 

 A multiple linear regression (MLR) model is used to determine the 

relationship between two or more explanatory variables and a response variable by 

fitting a linear equation to the observed data (Jobson, 1991). This relationship is 

expressed and simplified in a mathematical equation (Vlachogianni et al., 2011). 

Generally, an MLR equation is as follows (Eq. 3.2):  

 

y = b0 + ∑ biXi
n
i=1  + ε   Eq. 3.2 

Where, bi and xi are the regression coefficients and the independent variables 

respectively, bo is a constant value at x, and ε is the stochastic error associated with 

the regression. MLR assumes that the residuals have normal distribution with zero 

mean, are uncorrelated and have constant variance. The method used in obtaining the 

equations was stepwise multiple linear regression (Abdullah et al., 2017). Stepwise 

regression is a method of fitting regression models in which the choice of predicted 

variables is carried out by an automatic procedure. In each approach, a variable is 

considered for addition to or subtraction from the set of explanatory variables based 

on some prespecified criterion. In this study, The MLR equations were constructed by 

the Statistical Package for Social Science (SPSS) version 22.0. 
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3.5 Model Validation 

 To validate the model, measured and predicted PM2.5 values were used in the 

statistical analysis of the Variance Inflation Factor (VIF), Durbin-Watson (D-W) Test, 

Q-Q plots, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

Normalized absolute error (NME), Index of Agreement (IA), Prediction Accuracy 

(PA) and coefficient of determination (R2) (Ul-Saufie et al., 2011; Ul-Saufie et al., 

2012; Jinsart et al., 2010; Vlachogianni et al., 2011). Many of them were used to 

compare and interpret the model performance.   

 The Variance Inflation Factor (VIF) was used to investigate the multi-

collinearity assumption accompanied with the regression output. VIF results can be 

interpreted in such a way that if a VIF value is less than 10, the regression should be 

fine. It means there is no multi-collinearity between the independent variables 

(Abdullah et al., 2017). The VIF calculation is shown in Eq. 3.3.   

    VIFi = 
1

1- Ri
2     Eq. 3.3 

 where VIFi is the variance inflation factor related with the ith predictor and Ri
2 

is the multiple coefficient of determination in a regression of the ith predictor on all 

other predictors. 

 The Durbin-Watson (D-W) Test was used to identify autocorrelation. The 

autocorrelation between the dependent and independent variables essentially reveals 

the ability of the dependent variables to predict the independent variable (PM2.5). 

Autocorrelation is the similarity of a time series over successive time intervals. It can 

lead to an underestimation of the standard error in order to evaluate the statistical 

significance of the predictors’ performance. The test outcome can vary from 0 to 4. A 

value of 2 means that the residual is uncorrelated. The D-W test is described in Eq. 

3.4:  

d  =  
∑ (et−et-1)

2T
t=2

∑ et
2T

t=2

    Eq. 3.4 

 Where T is the number of observations. If one has a lengthy sample, then this 

can be linearly mapped to the Pearson correlation of the time-series data with its lags. 

Since d is approximately equal to 2(1 − r), where r is the sample autocorrelation of the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 33 

residuals, d = 2 indicates no autocorrelation. The value of d always lies between 0 and 

4. If the Durbin–Watson statistic is substantially less than 2, there is evidence of 

positive serial correlation. As a rough rule of thumb, if Durbin–Watson is less than 

1.0, there may be cause for alarm. Small values of d indicate successive error terms 

are positively correlated. If d > 2, successive error terms are negatively correlated 

(Durbin andWatson, 1950). 

 Mean Absolute Error (MAE), Normalized absolute error (NME) and Root 

Mean Square Error (RMSE) range from zero (for the ideal model) to positive infinity 

(worst model). These statistics are biased toward peak flows. The calculations were 

shown in Eqs 3.5, 3.6 and 3.7, respectively.  

 

    MAE  = 
∑ |Pi−Oi|n

i=1
n

    Eq. 3.5 

    NME  = 
∑ |Pi−Oi|n

i=1
∑ Oi

n
i=1

    Eq. 3.6  

    MSE  = √
∑ (Pi- Oi)

2n
i=1

n
   Eq. 3.7 

 The Index of Agreement (IA) was developed by Willmott as a standardized 

measure of the degree of model prediction error and varies from 0 to 1. A computed 

value of 1 indicates a perfect agreement between the measured and predicted values, 

and 0 indicates no agreement at all.  IA determines the degree to which magnitudes 

and signs of the observed values (about mean observed value) are related to the 

predicted deviation about mean predicted values and allows for sensitivity toward 

difference in the observed and predicted values as well as proportionality changes 

(Ul-Saufie et al., 2012). The computation of IA is shown in Eq. 3.8.  

 

   IA = 1 − [
∑ (Pi- Oi)

2n
i=1

∑ (|Pi−O|+|Oi−O|n
i=1 )

2]   Eq. 3.8  

 

Prediction Accuracy (PA) was used to evaluate the forecasting performance of 

the model. It has also been used in evaluating the regression and multivariate models 

for predicting particulate matter concentrations (Nazif et al., 2018). A PA value that is 
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close to 1 indicates a perfect prediction result. The PA computation is shown in Eq. 

3.9. 

     PA =  
∑ (Pi- O)

2
n
i=1

∑ (Oi- O)
2

n
i=1

     Eq. 3.9 

With regard to the coefficient of determination (R2), a correlation value that is 

close to 1 indicates that the correlation between the observed and the predicted values 

is perfect. This shows how good the model performance is (Ul-Saufie et al., 2012). 

The equation is shown as follows (Eq. 3.10):  

   R2 = (
∑ (Pi- P)(Oi- O)n

i=1

nSprdSObs
)
2

   Eq. 3.10 

 where Oi is the observed value (measured value), Pi is the predicted values, 𝑃̅ 

is the predicted value mean, 𝑂̅ is the observed value mean, Sprd is the standard 

deviation of the predicted values, Sobs is the standard deviation of the observed values, 

and n is the number of sample groups. 

 A statistical analysis for model validation was conducted again and the 

methods are shown in Table 3.3.  

Table 3. 3 Statistical methods for model validation 
Indicators Equation Description 

MAE MAE = 
∑ |Pi − Oi|

n
i=1

n
 

MAE value closer to zero 

indicates good performance. 

RMSE RMSE = √
∑ (Pi- Oi)

2n
i=1

n
 

RMSE value ranges from zero 

(for the ideal model) to positive 

infinity (worst model). 

NME NME = 
∑ |Pi − Oi|

n
i=1

∑ Oi
n
i=1

 
NME value closer to zero 

indicates good performance. 

IA IA = 1- [
∑ (Pi −  Oi)

2n
i=1

∑ (|Pi − O|+|Oi − O|n
i=1 )

2
] 

IA value closer to one indicates 

good performance. 

PA PA =  
∑ (Pi- O)

2
n
i=1

∑ (Oi- O)
2

n
i=1

 
PA value closer to one indicates 

good performance. 

R2 
R2 = (

∑ (Pi- P)(Oi- O)n
i=1

nSprdSObs

)

2

 
R2 value closer to one indicates 

good performance. 
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3.6 Health Risk Assessment of Particulate Matters Exposure 

 A health risk assessment (HRA) associated with particulate matter exposure 

both PM10 and PM2.5 was performed. The HRA was evaluated based on the ambient 

particulate matter concentrations for non-cancer endpoints (USEPA, 2009). The 

assessment approach was adopted from a USEPA method using the hazard quotient 

(HQ). The calculations of inhalation exposure concentration (ECinh) were calculated 

from the average ambient particulate matter concentrations (Eq. 11) divided into 4 

periods: Inter-monsoon (March 2017 to May 2017), South-west (June 2017 to August 

2017), Inter-monsoon (September 2017 to November 2017), and North-east 

monsoons (December 2017 to February 2018). The evaluated HQs (Eq. 12) of PM2.5 

were used to create hazard maps with ArcGIS. These maps were compared and 

divided by following the seasonal variations in Thailand. The reference 

concentrations of PM10 and PM2.5 are shown in Table 3.4.  

 The inhalation exposure concentration (ECinh) was quantified as described in  

Eq. 3.11.  

 

   ECihn(μg m3⁄ ) =  
C × ET × EF × ED

AT
   Eq. 3.11 

 

  Where, C is ambient PM2.5 concentrations are from the measured and the 

predicted values; ET is the exposure time as 24 hours/day; EF is the exposure 

frequency as 350 days/year; ED is the exposure duration at 30 years for non-

carcinogenic substances; AT is the average time (for non-carcinogen; AT = ED (in 

year) × 365 days × 24 hours/day) (Mokhtar et al., 2014).   

 Risk characterization of a non-carcinogenic risk was performed by quantifying 

the hazard quotient (HQ). The calculation of the HQ is shown in Eq. 3.12. 

 

    HQ = 
EC
RfC

     Eq. 3.12 

 

 The HQ were calculated by the daily average RfC and interpret as the daily 

HQ. Then the daily HQs were average as 3-months average HQ values for 

interpretation of health risk assessment from PM exposure in each period. A risk 
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analysis from the HQ values can be identified as follows: if the HQs are greater than 1 

(HQs >1), there would be adverse health effects, and if the HQs are less than 1 (HQs 

< 1), no significant adverse health effects are predicted. 

 

Table 3. 4 The reference concentration (RfC) of particulate matter 

Pollutants 

RfC (µg/m3) 

Hourly average Annual average 

(WHO, 2018) (PCD, 2018b) (WHO, 2018) (PCD, 2018b) 

PM10 50 120 20 50 

PM2.5 25 50 10 25 

  

 In this study, the HQ values were calculated from WHO for human health risk 

assessment for sensitive citizen group such as unhealthy people, children and elder 

people. In addition, the HQs values calculated from Thailand National Air Ambient 

Quality Standard (NAAQS) developed by PCD were used to quantify health risk for 

normal citizen group as adults.  

 

3.7 GIS-Based Map of PM distribution and Hazard map 

 PM10 and PM2.5 concentration distribution and hazard maps (HQ distribution 

maps) were created by the inverse distance weighted (IDW) technique in the ArcMap 

program, version 10.4.1. The selection of the interpolation technique was based on the 

best performance interpolation method for the air pollutants’ distribution when 

compared with those of the Ordinary Kriging and Spline (Mitmark andJinsart, 2017). 

The IDW interpolating method determines cell values using a linearly weighted 

combination of a set of sample points. The weight is the functional inverse distance, 

and the variables being mapped decreases in influence with distance from its sample 

location. The significant know-point on the interpolated values was based on their 

distance output point (ESRI, 2016). A general IDW equation is shown in Eq. 3.13.  

    Zj= 
∑ (

Zi

d
i
p)n

i=1

∑ (
1

di
p)n

i=1

    eq. 3.13 
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 where p is the speed reducer weight control rate obtained from the distance, 

which is equal to 2; di is the distance from an unknown point to a known point; and zi 

is the height of the point (ESRI, 2016). The IDW technique was selected for this study 

to create the GIS-based map for evaluating particulate matter distribution and the 

health impacts from particulate matter exposure.  

 For the GIS-based maps of HQ distribution, the input parameters relied on the 

HQs of particulate matter both PM10 and PM2.5 divided into four types following 

different seasonal monsoons: March to May 2017, June to August 2017, September to 

November 2017 and December 2017 to February 2018. The HQ distribution Maps 

were illustrated based on the different seasonal variation in Thailand: summer, winter 

and rainy season. These maps were interpreted trends and distribution of particulate 

matter risk based on seasonal variation and monsoon difference. 
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CHAPTER IV  

RESULTS AND DISCUSSION 

 

 This chapter described results and discussion of trend of particulate matter 

concentration in Bangkok from data collection, data treatment, data analysis and MLR 

model development. Data used in this study were collected from January 2008 to 

April 2018; on the other hand, MLR equation for predicting PM2.5 concentration were 

used data from year 2015 to year 2017. The health risk assessment for PM10 and PM2.5 

exposure was quantified and described as the Hazard Quotient (HQ). 

 

4.1 Trend of PM10 and PM2.5 in Bangkok 

In Bangkok Thailand, the PM10 and PM2.5 are not exceed than Thailand 

National Air Ambient Quality Standard (NAAQS) (PCD, 2018). However, the serious 

public health issue is the ambient particulate matter concentrations both PM10 and 

PM2.5 exceeded than WHO AQGs. The ambient particulate matter standards were 

shown in Table 3.4.  Trend of annual average PM10 concentrations from year 2008 to 

2017 were displayed in Figure 4.1. The data referred to ambient air monitoring station 

(AM) and roadside air monitoring station (RS). Events and regulations in Thailand 

that may be affected the trend of annual particulate matter concentration were shown 

in Table 4.1 Trend of annual average PM10 concentrations were potentially decreased 

from 2008 to 2012. The decreasing trend during this time was reflected from 

implementation of new emission standard for new registered vehicles. The 

implementation of EURO III emission standards of vehicles for heavy-duty diesel 

vehicles and motorcycles. However, the total number of vehicles still increased from 

year 2008 to 2011 but the average ambient particulate matter was shown inversed 

trends due to implementation of Thailand vehicle emission standard regulations as 

shown in Figure 4.2. Additionally, at the same periods, the trend was dramatically 

dropped in some areas nearby air quality monitoring stations e.g. 52t, 54t and 59t 

stations between 2011 to 2012 because of big flooding in Bangkok. This natural 

disaster directly reflected to the activities that potentially generated fine particulate 

matter such as driving, manufacturing and construction. Then the trend of PM10 
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slightly had increased again in the next year after flooding event. One of the most 

conceivable effect came from Thailand’s first-car buyer incentive scheme. The 

incentives offered to those who bought the first car would receive the refund of excise 

tax. This promotion induced people bought the new car in that year which was 

reflected to the huge increase of the number of vehicles. The social behavior on the 

first car buyer scheme reflected to the number of new registered vehicles in Bangkok 

as shown in Figure 4.3.  However, the trends of particulate matter levels had still 

decreased from 2012 to 2015 because the pollutant exhausting regulation was 

implemented new vehicle emission standard for new light duty gasoline vehicles and 

light duty diesel vehicles (EURO 4). This new implementation directly affected the 

large proportion of vehicles in Bangkok street as passenger cars (sedan), passenger 

van, pick up, and taxi. This can be seen in Figure 4.2 and Figure 4.3. For the PM10 

concentration trend after 2014, it has intensely increased since 2015 in several 

locations as shown in Figure 4.1. The increasing trend were affected from the new and 

extended construction lines of metro trains in Bangkok. The metro trains projects 

have begun since 2015 and expected to finish in 2021. This causes high traffic 

congestion under and nearby constriction sites. The high traffic congestion cause from 

construction site would be potentially sources of small and fine particulate matter 

(PM10 and PM2.5) emissions. The trend of ambient particulate matter would be 

expected to decrease after the construction being finished.  

 

Figure 4. 1 Trend of annual average PM10 in Bangkok 
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Figure 4. 2 Annual average PM10 concentrations trend and the accumulation number 

of vehicles in Bangkok between 2008 and 2017 

 

 

Figure 4. 3 Annual average PM10 concentrations trend and the new registered of 

vehicles in Bangkok between 2008 and 2017   

 

The trends of monthly average PM2.5 concentrations from May 2016 to April 

2018 were shown in Figure 4.4. This trend was indicated season variation of PM2.5 
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levels. According to Thailand climatology, rainy season during May to September 

was shown the lowest PM2.5 concentration because of atmospheric wet deposition 

reaction. After that, the trends of PM2.5 level have been increasing in winter with dry 

season between September and February. During this season, the atmospheric 

environment in an area and occasionally the temperature inversion occurred which 

affected the trapped under the inversion layer with accumulating the high 

concentration of the particulate matter. The PM2.5 concentration trends have been 

intensely declined from February to May because, during this season, the atmospheric 

condition is unstable due to the tropical storms and seasonal monsoons occurrences. 

These caused the decreasing of PM2.5 concentration in the ambient atmosphere.    

 In addition, the measurement of PM2.5 concentration at Intarapitak (52t) 

station was shown the highest concentration comparing with the other stations. The 

52t monitoring station is roadside monitoring purpose which may be directly affected 

from traffic emission in order to induce PM2.5 emission from non-point sources to 

ambient atmosphere.  However, there are only 7 PM2.5 air monitoring stations 

operated by PCD and BMA in the Central Business District. These monitoring 

stations are insufficient to cover whole air environment to monitor PM2.5 

concentration. The author would like to generate PM2.5 mathematic equations to 

forecast PM2.5 in the non-detected locations by using co-pollutants and meteorological 

conditions as the predicted variables.  

 

Figure 4. 4 Trend of monthly average PM2.5 in Bangkok from May 2016 to April 2018   
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Table 4. 1 Events and regulations in Thailand.  

Year Event / Regulation Implementation 

2007 • Implementation of emission standards for new Heavy-Duty Diesel 

Vehicles (EURO 3)1  

2008 • Implementation of emission standards for new Motorcycles 

(EURO 3) 1  

2011 • Thailand’s first-car buyer incentive scheme from government 

policy.2   

• Thailand huge flooding event. The flooding event occurred during 

rainy season in Thailand. The event began at the end of July 

triggered by the landfall of Tropical Storm Nock-ten. These floods 

soon spread through the provinces from northern, northeastern, to 

central Thailand along the Mekong and Chao Phraya river 

basins. Flooding persisted until mid-January 2012 in some areas 

of Bangkok and central Thailand.3 

2012 • Implementation of emission standards for new Light Duty 

Gasoline Vehicles and Light Duty Diesel Vehicles (EURO 4) 1 

2015 • The beginning of new construction of Bangkok Metro Train. 

There are four lines including green, blue, red and purple that has 

been constructed and these projects are expected to be done in 

2019.4 

2016 • The beginning of new construction of Bangkok Metro Train. 

There are three lines including yellow, pink and green that has 

been constructed and these projects are expected to be done in 

2021.4 

2018 • Implementation of emission standards for new Motorcycles 

(EURO IV) 1 

1. (PCD, 2018a) 

2. (National Legislative Assembly, 2014) 

3. (Promchote et al., 2015) 

4. (Realist Solution Company, 2015) 

https://en.wikipedia.org/wiki/Thailand
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4.2 Correlation analysis between particulate matter and other observed 

elements. 

 Spearman correlation analysis between PM2.5 and other observed elements 

was shown in Table 4.2. For the ambient stations, PM2.5 has positive correlated with 

PM10, CO, NO2, NOX, O3, SO2 and windspeed whereas it has negative corelated with 

temperature, relative humidity and rainfall amount. For the roadside monitoring 

stations, PM2.5 has positive correlated with PM10, CO, NO2, NOX, SO2 and O3 whereas 

it has negative corelated with wind speed, relative humidity and rainfall amount. 

However, NO and windspeed for ambient monitoring stations and temperature for 

roadside monitoring stations have no correlated with PM2.5. The statistic was analyzed 

at the 0.01 level P<0.01 (2-tailed). The variables that has correlated with PM2.5 would 

be used as the input variables for model construction by using stepwise multiple 

regression analysis.   

Table 4. 2 Spearman correlation analysis results of PM2.5 and other observed 

variables 

PM2.5 & Variables 

Ambient monitoring station Roadside monitoring station 

Correlation 

coefficient 

Significant 

level 

Sample 

Size 

Correlation 

coefficient 

Significant 

level 

Sample 

Size 

PM10 0.874 0.000 1469 0.853 0.000 1222 

CO 0.219 0.000 1469 0.422 0.000 1079 

NO** -0.061 0.020 1465 0.082 0.090 1010 

NO2 0.476 0.000 1467 0.731 0.000 1010 

NOX 0.344 0.000 1465 0.418 0.000 1010 

O3 0.537 0.000 1494 0.339 0.000 930 

SO2 0.369 0.000 525 0.292 0.000 843 

Wind speed*** -0.047 0.084 1378 -0.367 0.000 1167 

Temperature**** -0.188 0.000 1491 -0.031 0.277 1220 

Relative Humidity -0.323 0.000 1491 -0.376 0.000 1220 

Rainfall amount -0.300 0.000 1491 -0.337 0.000 1220 

* Correlation is significant at the 0.01 level (P<0.01) (2-tailed) 

** No significant correlation with PM2.5 for ambient and roadside monitoring data 

*** No significant correlation with PM2.5 for ambient monitoring data 

**** No significant correlation with PM2.5 for roadside monitoring data 
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 The analysis of NO and windspeed are no significant correlation with PM2.5 at 

P<0.01 for ambient monitoring station and Temperature is no significant correlation 

with PM2.5 at P<0.01 for roadside monitoring station. 

4.3 MLR Analysis to formulate an equation for predicting PM2.5  

4.3.1 MLR equation for ambient area 

 The analysis of the air quality data and meteorological data sets for 

formulating an PM2.5 predicting equation in general ambient area were used Multiple 

Linear Regression (MLR) with stepwise input data technique. The model summary 

was shown in Table 4.3 and the regression of PM2.5 and the predicted variables for 

general ambient air was shown in Table 4.4. It was found that the parameters included 

PM10 (µg/m3), CO (ppm), NO2 (ppb), O3 (ppb) SO2 (ppb), temperature (ºC) and 

relative humidity (%RH) could provide the best performance of the regression 

equation. The rest of parameters such as solar radiation was not play significant role 

to provide better model performance. 

Table 4. 3 The summarization of MLR model for ambient area 

Model R R Square 
Adjusted R 

Square 

Std. Error of 

the Estimate 

Durbin-

Watson 

1 .891a .794 .793 6.76243  

2 .901b .812 .811 6.46765  

3 .904c .817 .816 6.38077  

4 .908d .824 .822 6.27276  

5 .913e .833 .831 6.11238  

6 .915f .837 .835 6.05085  

7 .916g .839 .836 6.01794 .323 

a. Predictors: β, PM10 

b. Predictors: β, PM10, O3 

c. Predictors: β, PM10, O3, SO2 

d. Predictors: β, PM10, O3, SO2, CO 

e. Predictors: β, PM10, O3, SO2, CO, HUM 

f. Predictors: β, PM10, O3, SO2, CO, HUM, NO2 

g. Predictors: β, PM10, O3, SO2, CO, HUM, NO2, TEMP 

    β=constant value 
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Table 4. 4 Regression of PM2.5 and the predicted variables for ambient area 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

Collinearity 

Statistics 

B 
Std. 

Error 
Beta Tolerance VIF 

1 
β -4.619 .757  -6.105 .000   

PM10 .775 .018 .891 43.135 .000 1.000 1.000 

2 

β -5.808 .745  -7.801 .000   

PM10 .679 .022 .780 30.481 .000 .595 1.680 

O3 .304 .045 .174 6.785 .000 .595 1.680 

3 

β -6.992 .799  -8.752 .000   

PM10 .629 .026 .724 24.632 .000 .440 2.273 

O3 .349 .046 .199 7.613 .000 .556 1.798 

SO2 1.375 .365 .086 3.770 .000 .727 1.375 

4 

β -4.884 .932  -5.242 .000   

PM10 .661 .026 .760 25.217 .000 .404 2.474 

O3 .322 .045 .184 7.092 .000 .546 1.832 

SO2 1.548 .361 .097 4.288 .000 .718 1.393 

CO -6.403 1.522 -.088 -4.208 .000 .835 1.197 

5 

β -21.300 3.314  -6.426 .000   

PM10 .694 .026 .798 26.352 .000 .380 2.632 

O3 .426 .049 .243 8.760 .000 .451 2.215 

SO2 1.821 .356 .114 5.120 .000 .702 1.425 

CO -8.426 1.534 -.116 -5.493 .000 .780 1.281 

HUM .194 .038 .133 5.150 .000 .523 1.912 

6 

β -23.267 3.335  -6.976 .000   

PM10 .768 .034 .883 22.294 .000 .218 4.594 

O3 .389 .049 .222 7.862 .000 .428 2.337 

SO2 1.767 .352 .111 5.012 .000 .700 1.428 

CO -7.785 1.531 -.107 -5.085 .000 .768 1.302 

HUM .222 .038 .152 5.806 .000 .497 2.013 

NO2 -.171 .052 -.092 -3.285 .001 .434 2.302 
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Model 
Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

Collinearity 

Statistics 

7 

β -7.524 7.121  -1.057 .291   

PM10 .748 .035 .860 21.254 .000 .206 4.847 

O3 .394 .049 .225 7.996 .000 .427 2.341 

SO2 1.902 .355 .119 5.361 .000 .684 1.462 

CO -8.168 1.530 -.113 -5.338 .000 .760 1.316 

HUM .208 .038 .143 5.420 .000 .487 2.055 

NO2 -.178 .052 -.096 -3.428 .001 .433 2.308 

TEMP -.494 .198 -.051 -2.498 .013 .819 1.221 

*Dependent variable is PM2.5 

The MLR equation predicting PM2.5 for ambient monitoring stations can be 

described as PM2.5 (µg/m3) = -7.524 + 0.75PM10 (µg/m3) + 0.39 O3 (ppb) +1.90 SO2 

(ppb) – 8.17 CO (ppm) - 0.21Relative Humidity (% RH) - 0.49 Temperature (ºC). 

This equation was shown well performance with R2 is 0.84. The VIF values was 1.22 

(less than 10) meaning no multi-collinearity between the independent variables. The 

Durbin-Watson analysis can be interpreted that this equation has no any first 

autocorrelation problem. Q-Q plots of observed and predicted PM2.5 concentration 

during January to April 2018 illustrated in Figure 4.5 was perform well agreement 

with R2 = 0.88.  

 

Figure 4. 5 Q-Q plot validation for ambient area equation 
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4.3.2 MLR equation for roadside area 

 The analysis of the air quality data and meteorological data sets for 

formulating an PM2.5 predicting equation in roadside area were used MLR with 

stepwise independent data technique. The model summary was shown in Table 4.5 

and the regression of PM2.5 and the predicted variables for general ambient air was 

shown in Table 4.6. It was found that the parameters included PM10 (µg/m3), NO2 

(ppb), O3 (ppb), CO (ppm), Relative Humidity (%RH) and Windspeed (m/s) could 

provide the best performance of the regression equation. The rest of parameters such 

as SO2, solar radiation or ambient temperature was not play significant role to provide 

better model performance. 

Table 4. 5 The summarization of MLR model for roadside area 

Model R R Square 
Adjusted R 

Square 

Std. Error of 

the Estimate 

Durbin-

Watson 

1 .939a .882 .882 5.73219  

2 .945b .894 .893 5.45390  

3 .950c .903 .902 5.22139  

4 .951d .905 .904 5.17249  

5 .952e .906 .905 5.15384  

6 .952f .906 .905 5.14107 1.106 

a. Predictors: β, PM10 

b. Predictors: β, PM10, NO2 

c. Predictors: β, PM10, NO2, O3 

d. Predictors: β, PM10, NO2, O3, CO 

e. Predictors: β, PM10, NO2, O3, CO, HUM 

f. Predictors: β, PM10, NO2, O3, CO, HUM, WS 

g. Dependent Variable: PM2.5 

β = Constant value 
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Table 4. 6 Regression of PM2.5 and the predicted variables for roadside area 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

Collinearity 

Statistics 

B 
Std. 

Error 
Beta Tolerance VIF 

1 β -2.768 .541  -5.119 .000   

PM10 .768 .011 .939 71.622 .000 1.000 1.000 

2 β -3.057 .516  -5.929 .000   

PM10 .672 .015 .822 44.265 .000 .451 2.216 

NO2 .194 .023 .158 8.513 .000 .451 2.216 

3 β -4.367 .520  -8.391 .000   

PM10 .604 .017 .738 35.661 .000 .333 3.002 

NO2 .244 .023 .199 10.757 .000 .416 2.403 

O3 .222 .028 .112 7.943 .000 .712 1.405 

4 β -5.660 .621  -9.113 .000   

PM10 .589 .017 .721 34.252 .000 .317 3.159 

NO2 .224 .023 .182 9.660 .000 .393 2.547 

O3 .250 .029 .126 8.707 .000 .665 1.504 

CO 2.553 .684 .053 3.733 .000 .685 1.460 

5 β -10.490 2.077  -5.049 .000   

PM10 .597 .017 .730 34.275 .000 .307 3.258 

NO2 .235 .024 .191 9.983 .000 .378 2.645 

O3 .276 .031 .140 9.033 .000 .581 1.722 

CO 2.183 .698 .046 3.127 .002 .653 1.532 

HUM .063 .026 .037 2.435 .015 .595 1.681 

6 β -12.846 2.359  -5.446 .000   

PM10 .597 .017 .730 34.368 .000 .307 3.258 

NO2 .249 .024 .204 10.185 .000 .346 2.886 

O3 .292 .031 .148 9.294 .000 .549 1.823 

CO 2.685 .737 .056 3.645 .000 .583 1.714 

HUM .070 .026 .041 2.686 .007 .585 1.708 

WS 1.126 .538 .032 2.092 .037 .588 1.700 

*Dependent variable is PM2.5 
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The MLR equation for predicting PM2.5 in ambient area can be described as 

PM2.5 = -12.85 + 0.597 PM10 (µg/m3) + 0.25 NO2 (ppb) + 0.29 O3 (ppb) + 2.68 CO 

(ppm) + 0.07 Relative Humidity (% RH) + 1.13 Windspeed (m/s). This equation was 

shown well performance with R2 is 0.91. The VIF values range 1.70-3.26 (less than 

10) meaning no multi-collinearity between the independent variables. The Durbin-

Watson analysis can be interpreted that this equation has no any first autocorrelation 

problem. Q-Q plots of observed and predicted PM2.5 concentration during January to 

April 2018 illustrated in Figure 4.6 was perform well agreement with R2 = 0.96.  

 

Figure 4. 6 Q-Q plot validation for roadside equation 
 

 The summary equations for PM2.5 forecasting in ambient and roadside areas 

were described in Table 4.7. Overall, PM10 and gases air pollutants have positive 

influence on PM2.5 concentrations. PM2.5 in urban area mostly comes from traffic 

emission. PM10 and gases air pollution including NOx, NO2, O3, and CO come from 

vehicle emission in urban area (Watson et al., 1998). These co-pollutants were also 

confirmed with the correlation analysis between PM2.5 and the conventional air 

pollutants in Tokyo. The results indicated that were statistically significant positive 

correlations between the annual average suspended particulate matter concentrations 

and NOx, SO2, and CO at air monitoring stations and traffic volume (Hara et al., 

2013). These variables related to PM2.5 concentration because of the same pollutant 
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have inverted relationship with PM2.5 concentrations in the atmosphere as shown in 
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Table 4.2. The meteorological factors were ascertained that decreasing wind speed as 

well as increasing temperature and humidity can support the accumulation of ambient 

particulate matter. Temperature has negative influence correlation with PM2.5 because 

when the atmospheric temperature is high, the air convection at the surface area will 

increase, which lead beneficial the upward transport of the particulate matter (Li 

andWang, 2017).  Wind speed also showed an invert influence on PM2.5 which means 

the concentration of PM2.5 tend to be lower in high wind speed area than calm area 

because the pollutants are diluted by dispersion (Turalıoğlu et al., 2005). It can be 

quantified that the numerous meteorological parameters have peculiar influence on 

PM2.5 concentration levels. 

Table 4. 7 The summary MLR equations 

Area type Model R2 VIF D-W 

Ambient PM2.5 (µg/m3) = -7.524 + 0.75PM10 (µg/m3) 

+ 0.39 O3 (ppb) +1.90 SO2 (ppb) – 8.17 CO 

(ppm) - 0.21Relative Humidity (%RH) - 0.49 

Temperature (ºC) 

0.84 1.22- 4.85 .323 

Roadside PM2.5 (µg/m3) = -12.85 + 0.597 PM10 

(µg/m3) + 0.25 NO2 (ppb) + 0.29 O3 (ppb) + 

2.68 CO (ppm) + 0.07 Relative Humidity 

(%RH) + 1.13 Windspeed (m/s) 

0.91 1.70-3.26 1.106 

 

4.4 Model Validation 

 4.4.1 Statistical Validation 

 Model performance statistical validation for PM2.5 prediction was shown in 

Table 4.8 with MAE, RMSE, NME, IA, PA and R2. Differences between observed 

and predicted values were also acceptable with IA, PA and R2. Generally, it was 

found that the error between the observed and predicted values also perform well 

according to MAE, RMSE and MAE results are not exceeded than their standard 

deviation of observed and predicted values. This model can perform well in predicting 

of overall concentration of PM2.5 for ambient area and roadside area as determined by 

R2 = 0.88 and 0.96, respectively. Index of agreement (IA) can be acceptable as the 

results were over than 0.5 and very close to 1 (IA > 0.5). 
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Table 4. 8 Performance indicators for model validation 

Performance indicators 
Model 

Ambient station Roadside station 

Observed Mean (Oi) 30.67 39.36 

Predicted Mean (Pi) 38.46 45.93 

Observed Standard Deviation (Ostd) 18.58 19.59 

Predicted Standard Deviation (Pstd) 19.50 22.30 

Mean Absolute Error (MAE) 8.38 21.57 

Root Mean Square Error (RMSE) 10.19 8.04 

Normalized absolute error (NME) 0.27 0.17 

Index of Agreement (IA) 0.93 0.96 

Prediction Accuracy (PA) 1.28 1.19 

Coefficient of determination (R2) 0.88 0.96 

 

 4.4.2 Reliability Validation 

 From January 1st, 2018 to April 30th, 2018, the observed data were evaluated 

the reliability of predicting results. The reliability was divided into 2 types: the 

reliability of PM2.5 at the selected monitoring stations and the reliability of PM2.5 test 

against with the other monitoring stations. Reliability results at the selected 

monitoring stations were validated with the observed data from the monitoring 

stations at Meteorological Department (5t) and the Department of Public Relation 

(59t) for ambiebt area representatives as shown in Figure 4.7, and the monitoring 

stations Intarapitak (52t) and Chokchai police office (53t) for the roadside area 

representatives as shown in Figure 4.8.  The outcomes performed well agreement 

between the observed and predicted values. The interpretation can be described that 

the model can achieve a good fitting effect. In addition, this study investigated model 

performance by testing reliability by cross-validation technique. The MLR equations 

that would be developed from the selected station were tested with the other 

monitoring stations. The monitoring station at Bodindecha School (61t) was tested 

with the MLR equation for ambient areas and the monitoring station at Ratchathewi 

Office District (A_RTW) was tested with the MLR equation for roadside areas. The 
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cross against reliability validation results were shown in Figure 4.9. The validating 

results of cross-validation performed well agreement between the observed and 

predicted values.  

 

 

 

Figure 4. 7 PM2.5 of ambient monitoring data at (A) Meteorological Department (5t) 

and (B) at The Department of Public Relations (59t)  

from January 1st - April 30th 2018 
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Figure 4. 8 PM2.5 of roadside monitoring data at (A) Intarapitak (52t) and (B) 

Chokchai Police station from January 1st - April 30th 2018 
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Figure 4. 9 Test against reliability of PM2.5 with developed MLR equtions for ambient 

area and roadside area, respectively from January 1st - April 30th 2018  

(A) Ambient monitoring station at Bodindecha School (61t)  

(B) Roadside monitoring station at Ratchathewi District Office (A_RTW) 
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 Focusing on the extreme PM2.5 events that are indicative of health concerns, 

Figure 4.10 displays the match between both sets of simulations and the observations 

for all four measurement sites. In general, the simulations showed skill at the 90th and 

95th percentiles but have some difficulty in capturing the frequency of the extreme 

events at or above the 99th percentile. The predicted results were greatly 

overestimated the PM2.5 concentration and show little skill with the observations. The 

predicted results at Intarapitak (52t) was underestimated average PM2.5 concentration 

levels because there are other potential sources of PM2.5 emission. Three crematories 

are surrounded and temples with crematories located within 1 km radius from the 

monitoring station. Therefore, the emission from these crematories may potentially 

affect PM2.5 concentration in the atmosphere. Despite the PM2.5 was high level, the 

composition of PM from cremation can be harmful to residents and workers in the 

area. For example, the study in China and Thailand reported that the process of corpse 

cremation produces several dangerous air pollutants and greenhouse gases, including 

fine particulate matter, sulfur dioxide (SO2), carbon dioxide (CO2), carbon monoxide 

(CO) nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals 

which could have affected surrounded environment and human health (Achawangkul 

et al., 2016; Xue et al., 2018). Moreover, the predicted results at the public relation 

department was underestimated only in predicting the extreme PM2.5 concentration 

but the average predicted PM2.5 was close with the measured results. This can be 

suggested that there were the extreme atmospheric inversion phenomena occur in the 

day of February 2018, in which the particulate matter was accumulated and suspended 

in the atmosphere; therefore, the high concentrations of particulate matter were 

detected with exceeded the Thailand NAAQS over Bangkok area (Lefevre, 2018). 

The unusual atmospheric phenomena would affect the predicted result inaccurately. 

Normally the atmospheric inversion phenomena occur in February and March in 

every year in Thailand because of the gap between seasonal monsoons changing. The 

northeastern monsoon has been calming down and the southern monsoon has become 

strong and taken replacement. The effect of the monsoon changing led the atmosphere 

stable condition. This stable condition induced the strong atmospheric inversion.   
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Figure 4. 10 Comparison of PM2.5 concentration from 3 ambient monitoring stations 

between observation data against the model predicted data 

 from January to April 2018 
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Figure 4. 11  Comparison of PM2.5 concentration from 3 roadside monitoring stations 

between observation data against the model predicted data  

from January to April 2018 
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4.5 Health Risk Assessment of Particulate Matter Exposure  

 4.5.1 Health Risk Assessment of PM10 Exposure 

 The ambient monthly average PM10 concentrations from the measurement as 

were shown in Table 4.9. PM10 average concentrations less than 120 µg/m3 meaning 

acceptable concentration levels for daily average concentration and less than 50 µg/m3 

meaning acceptable concentration levels for annual average concentration. The PM10 

concentrations almost all areas of CBD were acceptable concentrations whereas the 

PM10 levels nearby 03t PBK, B_PKN, C_RB and D_DIN stations as marked with 

yellow label were exceeded than Thailand NAAQS. Also, the exceeding 

concentration levels occur during December to February as the gap between regional 

monsoon change.  

 The HQs values of PM10 were calculated to investigate health risk assessment 

of PM10 exposure. The RfC used in HQ calculation were obtained from WHO 

standard for sensitive citizens case e.g. children, elders, those with respiratory 

problems; and obtained from Thailand NAAQS for the normal citizens case e.g. adult. 

The HQs of PM10 exposure were divided into 4 episodes regarding to seasonal 

variation: from March to May 2017, from June to August 2017, from September to 

November 2017 and from December 2017 to February 2018. The HQs of PM10 

exposure based on the HQs of PM10 exposure based on Thailand NAAQS were shown 

in Table 4.10.  and based on WHO air quality standard were shown in Table 4.11.  
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Table 4. 9 PM10 Ambient concentrations based on seasonal variations 

Stations 
PM10 Ambient Concentrations (µg/m3) 

Mar 17 – May 17 Jun 17 - Aug 17 Sep 17 – Nov 17 Dec 17 – Feb 18 Annual 2017 

02t RBS 34.51 21.86 26.18 50.91 35.88 

03t PBK 51.98 64.2 63.13 73.48 60.92 

05t MED 31.6 27.36 38.17 60.91 38.29 

10t KCH 32.84 22.27 33.53 56.76 34.93 

11t KHK 17.37 26.89 37.14 49.37 27.32 

12t NWS 44.88 30.84 37.24 61.16 43.63 

50t CLH N/D 42.66 53.11 68.72 N/D 

52t ITP 38.6 32.01 43.51 68.74 44.21 

53t CPO N/D 30.2 48.76 69.92 N/D 

59t PRD 34.52 26.22 31.38 53.75 36.32 

61t BDS 33.11 22.43 34.27 57.54 35.43 

A_RTW 42.85 33.5 43.69 61.39 43.64 

B_PKN 76.85 58.79 77.14 108.49 79.67 

C_RB 83.57 73.41 67.76 90.61 79.75 

D_DIN 91.53 62.59 81.45 90.09 80.48 

N/D mean non-detected data.  

 The average PM10 concentrations shown in Table 4.9 can be described that the 

monthly average ambient PM10 concentrations were acceptable level at all area of 

Central Business District (CBD) of Bangkok. However, the annual average ambient 

PM10 concentration can be acceptable almost all areas but there are a few areas at 

03t_PBK, B_PKN, C_RB and D_DIN was discovered the average concentrations 

were exceeded than Thailand NAAQs. These four areas are located at southern CBD 

of Bangkok. This area should be marked as the high-risk areas and greater precaution.  

 Quantitative health risk assessment of PM10 exposure were shown in Table 

4.10 and Table 4.11. The average HQs values based on Thailand NAAQS for 

quantifying health risk in the normal citizens case could be interpreted that those 

living in CBD of Bangkok were acceptable risk from exposure to PM10 in all seasons. 

The HQs values were less than 1 (HQs < 1) at all four episodes meaning that normal 

people would be safe all year round. In addition, the average HQs values based on 

WHO standard for quantifying health risk in the sensitive citizens case could be 
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described that almost areas of CBD were acceptable risk of people exposure to PM10 

for those in sensitive groups as the average HQs values less than 1 (HQs <1). 

Nevertheless, the areas nearby 03t_PBK, B_PKN, C_RB and D_DIN monitoring 

stations were discovered the average HQ values exceeding than 1 (HQs >1) meaning 

that the sensitive people in these areas could be adversely affected by exposure to 

PM10. According to seasonal variation, during December 2017 to February 2018 

described as winter with dry season, The average HQs values exceeded than 1 almost 

all areas of CBD of Bangkok.  

This can be explained that, during winter and dry season, those in sensitive 

groups could be risk from exposure to PM10. This could be suggested that, during 

winter with dry season, sensitive unhealthy people should be cautioned to protect 

themselves and stay away from high concentration of particulate matter. However, the 

average HQ values during September to November displayed the lowest levels 

comparing with the other periods because of high levels of precipitation in rainy 

season. 

Table 4. 10 The average HQs of PM10 Exposure based on Thailand NAAQS 

Stations 
Mar 17 – May 17 Jun 17 - Aug 17 Sep 17 – Nov 17 Dec 17 – Feb 18 

EC HQ EC HQ EC HQ EC HQ 

02t RBS 33.09 0.28 20.96 0.17 25.10 0.21 48.82 0.41 

03t PBK* 49.84 0.42 61.56 0.51 60.54 0.50 70.46 0.59 

05t MED 30.30 0.25 26.24 0.22 36.60 0.31 58.41 0.49 

10t KCH 31.49 0.26 21.35 0.18 32.15 0.27 54.43 0.45 

11t KHK 16.66 0.14 25.78 0.21 35.61 0.30 47.34 0.39 

12t NWS 43.04 0.36 29.57 0.25 35.71 0.30 58.65 0.49 

50t CLH N/D N/D 40.91 0.34 50.93 0.42 65.90 0.55 

52t ITP 37.01 0.31 30.69 0.26 41.72 0.35 65.92 0.55 

53t CPO N/D N/D 28.96 0.24 46.76 0.39 67.05 0.56 

59t PRD 33.10 0.28 25.14 0.21 30.09 0.25 51.54 0.43 

61t BDS 31.75 0.26 21.51 0.18 32.86 0.27 55.18 0.46 

A_RTW 41.09 0.34 32.12 0.27 41.89 0.35 58.87 0.49 

B_PKN* 73.69 0.61 56.37 0.47 73.97 0.62 104.03 0.87 

C_RBN* 80.14 0.67 70.39 0.59 64.98 0.54 86.89 0.72 

D_DIN* 87.77 0.73 60.02 0.50 78.10 0.65 86.39 0.72 
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Table 4. 11 The average HQs of PM10 Exposure based on WHO air quality standard 

Stations 
Mar 17 – May 17 Jun 17 - Aug 17 Sep 17 – Nov 17 Dec 17 – Feb 18 

EC HQ EC HQ EC HQ EC HQ 

02t RBS 33.09 0.66 20.96 0.42 25.10 0.50 48.82 0.98 

03t PBK* 49.84 1.00 61.56 1.23 60.54 1.21 70.46 1.41 

05t MED 30.30 0.61 26.24 0.52 36.60 0.73 58.41 1.17 

10t KCH 31.49 0.63 21.35 0.43 32.15 0.64 54.43 1.09 

11t KHK 16.66 0.33 25.78 0.52 35.61 0.71 47.34 0.95 

12t NWS 43.04 0.86 29.57 0.59 35.71 0.71 58.65 1.17 

50t CLH N/D N/D 40.91 0.82 50.93 1.02 65.90 1.32 

52t ITP 37.01 0.74 30.69 0.61 41.72 0.83 65.92 1.32 

53t CPO N/D N/D 28.96 0.58 46.76 0.94 67.05 1.34 

59t PRD 33.10 0.66 25.14 0.50 30.09 0.60 51.54 1.03 

61t BDS 31.75 0.63 21.51 0.43 32.86 0.66 55.18 1.10 

A_RTW 41.09 0.82 32.12 0.64 41.89 0.84 58.87 1.18 

B_PKN* 73.69 1.47 56.37 1.13 73.97 1.48 104.03 2.08 

C_RBN* 80.14 1.60 70.39 1.41 64.98 1.30 86.89 1.74 

D_DIN* 87.77 1.76 60.02 1.20 78.10 1.56 86.39 1.73 

N/D mean non-detected data. 

 4.5.2 Health Risk Assessment of PM2.5 Exposure 

 The ambient PM2.5 from the measured and predicted concentrations were 

shown in Table 4.12. The Thailand NAAQS were compared with the average fine 

particulate matter concentrations. PM2.5 average concentrations less than 50 µg/m3 

meaning acceptable concentration levels for daily average concentration and less than 

25 µg/m3 meaning acceptable concentration levels for annual average concentration.  

Nevertheless, a few areas as marked with yellow highlight in Table 4.12 were 

discovered PM2.5 concentrations exceeding than air quality standard. The average 

PM2.5 were normally higher during December through February than the other periods 

because of the climatographic condition.   
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Table 4. 12 PM2.5 Ambient concentrations based on seasonal variations 

Stations 
PM2.5 Ambient Concentrations (µg/m3) 

Mar 17 – May 17 Jun 17 - Aug 17 Sep 17 – Nov 17 Dec 17 – Feb 18 Annual 2017 

02t RBS* 22.23 12.33 15.67 34.83 23.19 

03t PBK* 31.55 38.62 39.91 48.73 37.94 

05t MED 25.33 11.34 17.42 33.69 23.27 

10t KCH* 24.14 14.48 24.08 42.91 25.15 

11t KHK* 14.53 16.93 24.42 37.93 22.52 

12t NWS* 30.16 19.28 24.24 42.78 29.2 

50t CLH N/D 17.90 26.88 41.8 N/D 

52t ITP 26.88 20.6 31.38 50.28 31.14 

53t CPO N/D 14.38 19.96 31.67 N/D 

59t PRD 25.44 18.53 20.51 36.95 24.77 

61t BDS 23.58 14.81 23.99 41.99 25.44 

A_RTW 21.36 19.61 28.38 38.21 25.05 

B_PKN* 57.54 40.82 56.68 79.09 58.02 

C_RBN* 58.36 51.67 48.99 64.96 56.50 

D_DIN* 64.15 44.45 59.46 64.78 57.63 

N/D mean non-detected data 

* Meaning used the predicted PM2.5 concentrations from developed MLR equations.  

*The yellow highlight means the average concentrations exceeded than Thailand NAAQS. 

 

 The average HQs of PM2.5 exposure was shown in Table 4.13 and Table 4.14. 

The average HQs values based on Thailand NAAQS for quantifying health risk for 

the normal citizens case and based on WHO air quality standard for quantifying 

health risk for sensitive citizen case.  

 For health risk assessment for normal citizen case as shown in Table 4.13, the 

average HQ values almost all areas in CBD were acceptable as the HQs less than 1 

(HQs < 1). However, the areas near by the air monitoring stations of B_PKN, C_RBN 

and D_DIN were displayed the average HQs exceeded than 1 (HQs >1). These could 

be described that these locations have adversely potential risk to the people living 

nearby.  

 For health risk assessment for sensitive citizen case as shown in Table 4.14, 

Almost all areas of CBD were acceptable risk but the areas nearby 03t PBK, 12t 
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NWS, 52t IPT, A_RTW B_PKN, C_RBN and D_DIN were displayed the average 

HQs exceeded than 1 (HQs >1) in some seasons.  In addition, during December 2017 

through February 2018, the average HQs values exceeded than 1 (HQs > 1) all 

stations meaning that all area in CBD of Bangkok were potentially adverse health 

effect by exposure to PM2.5. During this period, the climatology induced particulate 

matter extreme accumulating in the atmosphere. However, the average HQ values 

during September to November displayed the lowest levels comparing with the other 

periods. Hence, during winter with dry season, the sensitive people including 

children, elders, and unhealthy people would be at risk from fine particulate matter 

exposure. They should wear personal protected equipment during the high PM2.5 

concentration occurrence or they should stay away from the high-risk areas.  

 

Table 4. 13 The average HQs of PM2.5 Exposure based on Thailand NAAQS 

Stations 
Mar 17 – May 17 Jun 17 - Aug 17 Sep 17 – Nov 17 Dec 17 – Feb 18 

EC HQ EC HQ EC HQ EC HQ 

02t RBS 21.32 0.43 11.82 0.24 15.03 0.30 33.40 0.67 

03t PBK* 30.25 0.61 37.03 0.74 38.27 0.77 46.73 0.93 

05t MED 24.29 0.49 10.87 0.22 16.70 0.33 32.31 0.65 

10t KCH 23.15 0.46 13.88 0.28 23.09 0.46 41.15 0.82 

11t KHK 13.93 0.28 16.23 0.32 23.42 0.47 36.37 0.73 

12t NWS 28.92 0.58 18.49 0.37 23.24 0.46 41.02 0.82 

50t CLH N/D N/D 17.16 0.34 25.78 0.52 40.08 0.80 

52t ITP 25.78 0.52 19.75 0.40 30.09 0.60 48.21 0.96 

53t CPO N/D N/D 13.79 0.28 19.14 0.38 30.37 0.61 

59t PRD 24.39 0.49 17.77 0.36 19.67 0.39 35.43 0.71 

61t BDS 22.61 0.45 14.20 0.28 23.00 0.46 40.26 0.81 

A_RTW 20.48 0.41 18.80 0.38 27.21 0.54 36.64 0.73 

B_PKN 55.18 1.10 39.14 0.78 54.35 1.09 75.84 1.52 

C_RBN 55.96 1.12 49.55 0.99 46.98 0.94 62.29 1.25 

D_DIN 61.51 1.23 42.62 0.85 57.02 1.14 62.12 1.24 
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Table 4. 14 The average HQs of PM2.5 Exposure based on WHO air quality standard 

Stations 
Mar 17 – May 17 Jun 17 - Aug 17 Sep 17 – Nov 17 Dec 17 – Feb 18 

EC HQ EC HQ EC HQ EC HQ 

02t RBS 21.32 0.85 11.82 0.47 15.03 0.60 33.40 1.34 

03t PBK* 30.25 1.21 37.03 1.48 38.27 1.53 46.73 1.87 

05t MED 24.29 0.97 10.87 0.43 16.70 0.67 32.31 1.29 

10t KCH 23.15 0.93 13.88 0.56 23.09 0.92 41.15 1.65 

11t KHK 13.93 0.56 16.23 0.65 23.42 0.94 36.37 1.45 

12t NWS 28.92 1.16 18.49 0.74 23.24 0.93 41.02 1.64 

50t CLH N/D N/D 17.16 0.69 25.78 1.03 40.08 1.60 

52t ITP 25.78 1.03 19.75 0.79 30.09 1.20 48.21 1.93 

53t CPO N/D N/D 13.79 0.55 19.14 0.77 30.37 1.21 

59t PRD 24.39 0.98 17.77 0.71 19.67 0.79 35.43 1.42 

61t BDS 22.61 0.90 14.20 0.57 23.00 0.92 40.26 1.61 

A_RTW 20.48 0.82 18.80 0.75 27.21 1.09 36.64 1.47 

B_PKN* 55.18 2.21 39.14 1.57 54.35 2.17 75.84 3.03 

C_RBN* 55.96 2.24 49.55 1.98 46.98 1.88 62.29 2.49 

D_DIN* 61.51 2.46 42.62 1.70 57.02 2.28 62.12 2.48 

* The monitoring stations presented the HQs levels exceed than 1 (HQs > 1) all episodes. 

 Overall, the ecological risk assessment of PM10 and PM2.5 exposure was 

gradually acceptable risk in almost areas of CBD. There were a few areas in southern 

CBD discovered high risk to human health. The human health risk for those with 

healthy and normal group as the adulthood citizen were acceptable risk for exposure 

to PM10 and PM2.5 almost all area of Bangkok.  However, the human health risk for 

those with unhealthy or sensitive groups would be risk from exposure to PM10 and 

PM2.5 in some areas in CBD. In addition, the high-risk duration would be normally 

occurred in the winter with dry season during November through February. During 

the high-risk period, the citizens especially sensitive group should protect themselves 

by using the air personal protective equipment (PPE) or should stay safely in the 

indoor area. After the health risk assessment were evaluated by modelled and 

computed with the US. EPA. equation, the HQs values based on WHO air quality 

standard were used to create GIS-based maps by ArcMap programs to investigate the 
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distribution of HQs and specify the high-risk locations in case of savior scenario 

especially for those with sensitive health condition in CBD of Bangkok.  

4.6 Hazard Map Analysis 

 The average HQs values based on WHO air quality standard computation 

were used to illustrated GIS-based map. The IDW interpolation technique was 

selected to demonstrate HQ distribution. This GIS technique was applied because it 

was the smooth surface of data in the simulation of IDW and the technique was 

discovered the better interpolation scheme comparing with the ordinary kriging and 

spline (Mitmark and Jinsart, 2017). Levels of the average HQ as shown in Figure 

4.12 were classified into 12 classes from HQ < 0.5 to HQ > 3.25 as increasing 0.25 in 

each step.  

 

Figure 4. 12 HQ classification and location of Central Business District 
 

4.6.1 Hazard Map of PM10  

 Mapping HQ values of PM10 from the set of measurement data was performed 

using ArcGIS 10.4. A raster map from spatial interpolation depicting the distribution 

of the average HQ of PM10 distribution in four stages: March to May 2017, from June 

to August 2017, from September to November 2017 and from December 2017 to 

February 2018 was illustrated by performing the IDW method. The GIS-based maps 

of the average HQ of PM10 inhalation exposure as shown in Figure 4.13 to Figure 

4.16 were discovered that the average HQ were higher during December to February 

than the other periods. However, the other periods in the study year were gradually 

Hazard Quotient  
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found acceptable risk. Almost area of CBD was covered with green area as shown in 

the mentioned figures indicating no adverse health effect. Nevertheless, the southern 

CBD covered by three monitoring stations: 03t PBK, C_RBN and B_PKN would be 

indicated high risk location because the color classification was shown the average 

HQ values exceeding than 1 (HQ >1).   

 

Figure 4. 13 GIS-based maps of the HQs of PM10 and wind rose plot 

during March – May 2017 

 

 

Figure 4. 14  GIS-based maps of the HQs of PM10 and wind rose plot 

during June - August 2017 
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Figure 4. 15 GIS-based maps of the HQs of PM10 and wind rose plot 

during September - November 2017 

 

 

Figure 4. 16 GIS-based maps of the HQs of PM10 and wind rose plot 

during December 2017 – February 2018 
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4.6.2 Hazard Map of PM2.5  

 Mapping HQ values of PM2.5 was performed using ArcGIS 10.4. A raster map 

from spatial interpolation depicting the distribution of the average HQ of PM2.5 

distribution following the seasonal variations in four stages: March to May 2017, 

from June to August 2017, from September to November 2017 and from December 

2017 to February 2018 was illustrated by performing the IDW technique.  

 

Figure 4. 17 GIS-based maps of the HQs of PM2.5 and wind rose plot  

during March – May 2017 

 

Figure 4. 18 GIS-based maps of the HQs of PM2.5 and wind rose plot 

during June - August 2017 
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Figure 4. 19 GIS-based maps of the HQs of PM2.5 and wind rose plot  

during September - November 2017 

 

 

Figure 4. 20 GIS-based maps of the HQs of PM2.5 and wind rose plot  

during December 2017 – February 2018 

 

 A raster map from spatial interpolation depicting the distribution of the 

average HQs of PM2.5 concentrations was produced and compared as shown in GIS-

based maps in Figure 4.17 to Figure 4.20. It was found that distribution of the average 

HQs was higher in during December 2017 to February 2018 than during March to 

May 2017, during June to August 2017, and during September to November 2017. 
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The climatology of winter between December and February (Figure 4.20) induces the 

pollutants are trapped in the urban atmosphere because there is temperature inversion 

that is thin layer of the atmosphere where the normal decrease in temperature with 

height switches to the temperature increasing with height. So, the pollutants will be 

trapped under the inversion layer and accumulating with high concentration under the 

layer (Wimolwattanapun et al., 2011). Therefore, during this season, people in 

Bangkok would potentially be adverse highest health risk impact from exposure to 

PM2.5. The tropical storms occurrence in summer during March to May (Figure 4.17) 

and the atmospheric precipitation in rainy season during June to August and 

September to November (Figure 4.18 and Figure 4.19) affect PM2.5 concentration 

levels by wet deposition reaction and leaching the suspended particles. The highest 

HQ value was found over the southern area of central business district of Bangkok. 

The high-risk area in southern CBD were found at the areas nearby B_PKN and 

C_RBN monitoring stations. At the C_RBN, there are Rajburana Temple and 

Thailand glass industry located within 2 km nearby the air monitoring station as 

shown in Figure 4.21. The activity in temple such as cremation and industrial process 

would potentially be generated PM10 and PM2.5 emissions. This would affect ambient 

particulate matter concentration levels. In addition, there are refinery petroleum plants 

and the wharf transportation pier located within 5 km radius from the B_PKN 

monitoring station as shown in Figure 4.22. These also would be the potential sources 

of fine particulate matter emission. It could be noted that the high-risks areas of PM2.5 

exposure require greater precaution. 

 In summary, the high-risk location of PM10 and PM2.5 were at the southern 

CBD. People with unhealthy physical living nearby high-risk areas should be 

concerned of the hazardous of particulate matter and avoid outdoor activities in the 

day with high concentration of small particulate matters. Especially, during winter 

with dry season, people should use personal protective equipment such as masks and 

stay in indoors.  
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Figure 4. 21 Possibly potential sources of particulate matter emission nearby C_RBN 
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Figure 4. 22 Possibly potential sources of particulate matter emission nearby B_PKN  
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CHAPTER V  

CONCLUSIONS 

 

 The overall results were findings from this study are summarized in this 

chapter. Conclusions with respect to the objectives of the study were presented. The 

mathematical equation and health risk assessment of PM10 and PM2.5 in the study 

were demonstrated. This chapter also provided recommendation for further study and 

their limitations.  

 

5.1 Conclusions 

 Trends of PM10 were investigated over ten year from 2008 to 2017. Overall, 

the trend of ambient particulate matter concentration levels had decreased from 2008 

to 2015. Then the trends have been rising again since 2017. The increasing trends 

could be reflected from the construction of metro trains over all area of Bangkok and 

vicinity area. The construction of metro could be affected traffic congestion under and 

above construction sites.  

 For the MLR model development for estimating PM2.5, concentrations in 

central business district of Bangkok, daily average air pollution data and 

meteorological factors from 2015 to 2017 were used to develop MLR equations using 

stepwise multiple linear regression. The predicted equations were used to estimate 

PM2.5 concentrations in non-monitored areas. The model result was divided to predict 

PM2.5 into two types: ambient area model and roadside area model.  

 The ambient area model can be written as PM2.5 (µg/m3) = -7.524 + 0.75PM10 

(µg/m3) + 0.39 O3 (ppb) +1.90 SO2 (ppb) – 8.17 CO (ppm) - 0.21Relative 

Humidity (%RH) - 0.49 Temperature (ºC).  

 The roadside area model can be written as PM2.5 (µg/m3) = -12.85 + 0.597 

PM10 (µg/m3) + 0.25 NO2 (ppb) + 0.29 O3 (ppb) + 2.68 CO (ppm) + 0.07 Relative 

Humidity (%RH) + 1.13 Windspeed (m/s).  
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 The model validation by statistical evaluation of MAE, NME, RMSE, IA, PA, 

R2 and Q-Q plots showed the model performance with remarkable results.  

 The measured values of PM10 and PM2.5 as well as the predicted values of 

PM2.5 concentrations were used to investigate health risk assessment of people 

exposure to these particulate matters by using the average HQ. Overall, the average 

HQ values were acceptable risk during summer and rainy season; however, the 

average HQ values of PM10 and PM2.5 in winter could be adversely affected human 

health. During December through February, the particulate matter in atmosphere is 

higher than the other periods according to the atmospheric conditions and seasonal 

monsoons. The average HQ of both PM10 and PM2.5 were illustrated by GIS and 

compared by following the seasonal variation. The highest HQ value in GIS-based 

maps were discovered over the southern area of Central Business District of Bangkok. 

There are a few potential sources of particulate matter emission such as crematory in 

the temple, refinery petroleum plants and wharf transportation pier. These sources are 

located near monitoring stations with 5 km, in which they could be reflected to 

ambient particulate matter. It could be noted that the high-risks areas of PM2.5 

exposure require greater precaution. However, the high-risk area should be installed 

the PM2.5 monitoring stations in order to validated with the predicted values.  

5.2 Recommendations 

 Multiple Linear Regression was applied to this model because of simple and 

remarkable prediction results supported by many studies. However, there are many 

mathematical techniques to do forecasting on atmospheric pollution but they require 

more complex data than the MLR technique. Once the input data could be available, 

the other mathematical techniques could be done. In addition, the MLR equations 

were developed by ambient air pollution and meteorological condition data. It would 

be better to add the other predicted variables if the variables could be the potential 

sources of particulate matter emission and their data are sufficient to develop model; 

for example, if there is the real-time number of vehicles nearby the air monitoring 

stations, model developers can use these data as the predicted variables to develop 

MLR equation.  Moreover, the monitoring site representatives are crucial parameter in 

developing and accessing air pollution situation particularly when health impact is 
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needed to be evaluated. It could be described that whole area of central business 

district of Bangkok should be added more the air monitoring stations to cover the 

area. In addition, the MLR equations would be examined again with the measured 

data when the detected data is available is non-monitored sites. For the GIS based 

maps of health risk assessment, it could be claimed that only southern of Bangkok is 

at risk because they have more monitoring stations. This study could be a preliminary 

study to indicate the high-risk location and government should be greater precaution. 

Also, the health risk assessment should be investigated again when the air pollutant 

measurement data is available.  

5.3 Limitations 

 The limitation of the MLR equation included that it inherently assumes of 

persistence of the both meteorological and air quality situation. This model would be 

not worked to forecast PM2.5 in the location with existing potential serval PM2.5 

sources such as industrial estate or factories. However, there are many kinds of 

mathematic models like Box model, Gaussian plume model are able to forecast air 

pollution from the point sources. The MLR equation were used the environment in 

Bangkok, in which it would be imprecise and inaccurate with the other cities. The 

model is specified to use in the specific location. In addition, the model could be 

inaccurate in case of fluctuating weather conditions, such as those associated with 

meteorological conditions.  
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APPENDICES 

APPENDIX A 

Districts in Bangkok 

Code No. Districts Code No. Districts 

01 Phra Nakhon 26 Din Daeng 

02 Dusit 27 Bueng Kum 

03 Nong Chok 28 Sathon 

04 Bang Rak 29 Bang Sue 

05 Bang Khen 30 Chatuchak 

06 Bang Kapi 31 Bang Kho Laem 

07 Pathum Wan 32 Prawet 

08 Pom Prap Sattru Phai 33 Khlong Toei 

09 Phra Khanong 34 Suan Luang 

10 Min Buri 35 Chom Thong 

11 Lat Krabang 36 Don Mueang 

12 Yan Nawa 37 Ratchathewi 

13 Samphanthawong 38 Lat Phrao 

14 Phaya Thai 39 Watthana 

15 Thon Buri 40 Bang Khae 

16 Bangkok Yai 41 Lak Si 

17 Huai Khwang 42 Sai Mai 

18 Khlong San 43 Khan Na Yao 

19 Taling Chan 44 Saphan Sung 

20 Bangkok Noi 45 Wang Thonglang 

21 Bang Khun Thian 46 Khlong Sam Wa 

22 Phasi Charoen 47 Bang Na 

23 Nong Khaem 48 Thawi Watthana 

24 Rat Burana 49 Thung Khru 

25 Bang Phlat 50 Bang Bon 
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https://en.wikipedia.org/wiki/Din_Daeng_District
https://en.wikipedia.org/wiki/Dusit_District
https://en.wikipedia.org/wiki/Bueng_Kum_District
https://en.wikipedia.org/wiki/Nong_Chok_District
https://en.wikipedia.org/wiki/Sathon_District
https://en.wikipedia.org/wiki/Bang_Rak_District
https://en.wikipedia.org/wiki/Bang_Sue_District
https://en.wikipedia.org/wiki/Bang_Khen_District
https://en.wikipedia.org/wiki/Chatuchak_District
https://en.wikipedia.org/wiki/Bang_Kapi_District
https://en.wikipedia.org/wiki/Bang_Kho_Laem_District
https://en.wikipedia.org/wiki/Pathum_Wan_District
https://en.wikipedia.org/wiki/Prawet_District
https://en.wikipedia.org/wiki/Pom_Prap_Sattru_Phai_District
https://en.wikipedia.org/wiki/Khlong_Toei_District
https://en.wikipedia.org/wiki/Phra_Khanong_District
https://en.wikipedia.org/wiki/Suan_Luang_District
https://en.wikipedia.org/wiki/Min_Buri_District
https://en.wikipedia.org/wiki/Chom_Thong_District,_Bangkok
https://en.wikipedia.org/wiki/Lat_Krabang_District
https://en.wikipedia.org/wiki/Don_Mueang_District
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https://en.wikipedia.org/wiki/Khlong_San_District
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https://en.wikipedia.org/wiki/Thawi_Watthana_District
https://en.wikipedia.org/wiki/Rat_Burana_District
https://en.wikipedia.org/wiki/Thung_Khru_District
https://en.wikipedia.org/wiki/Bang_Phlat_District
https://en.wikipedia.org/wiki/Bang_Bon_District
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APPENDIX B 

 

Ambient Monitoring Data Analysis 

 

Correlations Analysis of ambient monitoring station data 

 CO NO NO2 NOX O3 SO2 PM10 PM2.5 WS TEMP HUM RAIN 

Spearman's 

rho 

CO Correlation 

Coefficient 
1.000 .227** .480** .444** .153** .334** .259** .219** -.633** -.274** .009 .082** 

Sig. (2-tailed) . .000 .000 .000 .000 .000 .000 .000 .000 .000 .720 .002 

N 1503 1487 1489 1487 1497 543 1464 1469 1381 1494 1494 1494 

NO Correlation 

Coefficient 
.227** 1.000 .389** .730** -.567** .334** .031 -.061* -.221** -.334** .488** .409** 

Sig. (2-tailed) .000 . .000 .000 .000 .000 .233 .020 .000 .000 .000 .000 

N 1487 1499 1499 1499 1493 551 1460 1465 1377 1490 1490 1490 

NO2 Correlation 

Coefficient 
.480** .389** 1.000 .893** .140** .304** .581** .476** -.436** -.523** .010 .036 

Sig. (2-tailed) .000 .000 . .000 .000 .000 .000 .000 .000 .000 .700 .161 

N 1489 1499 1503 1499 1495 553 1462 1467 1379 1492 1492 1492 

NOX Correlation 

Coefficient 
.444** .730** .893** 1.000 -.149** .398** .468** .344** -.388** -.555** .215** .204** 

Sig. (2-tailed) .000 .000 .000 . .000 .000 .000 .000 .000 .000 .000 .000 

N 1487 1499 1499 1499 1493 551 1460 1465 1377 1490 1490 1490 

O3 Correlation 

Coefficient 
.153** -.567** .140** -.149** 1.000 .026 .482** .537** -.063* .158** -.633** -.488** 

Sig. (2-tailed) .000 .000 .000 .000 . .550 .000 .000 .019 .000 .000 .000 

N 1497 1493 1495 1493 1528 550 1490 1494 1407 1519 1519 1519 

 

SO2 Correlation 

Coefficient 
.334** .334** .304** .398** .026 1.000 .391** .369** -.336** -.106* -.218** -.080 

Sig. (2-tailed) .000 .000 .000 .000 .550 . .000 .000 .000 .014 .000 .061 

N 543 551 553 551 550 555 534 525 547 547 547 547 

PM10 Correlation 

Coefficient 
.259** .031 .581** .468** .482** .391** 1.000 .874** -.004 -.233** -.365** -.319** 

Sig. (2-tailed) .000 .233 .000 .000 .000 .000 . .000 .889 .000 .000 .000 

N 1464 1460 1462 1460 1490 534 1495 1469 1374 1487 1487 1487 

PM2.5 Correlation 

Coefficient 
.219** -.061* .476** .344** .537** .369** .874** 1.000 -.047 -.188** -.323** -.300** 

Sig. (2-tailed) .000 .020 .000 .000 .000 .000 .000 . .084 .000 .000 .000 

N 1469 1465 1467 1465 1494 525 1469 1500 1378 1491 1491 1491 

WS Correlation 

Coefficient 
-.633** -.221** -.436** -.388** -.063* -.336** -.004 -.047 1.000 .222** -.151** -.40** 

Sig. (2-tailed) .000 .000 .000 .000 .019 .000 .889 .084 . .000 .000 .000 

N 1381 1377 1379 1377 1407 547 1374 1378 1412 1412 1412 1412 

TEMP Correlation 

Coefficient 
-.274** -.334** -.523** -.555** .158** -.106* -.233** -.188** .222** 1.000 -.291** -.311** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .014 .000 .000 .000 . .000 .000 

N 1494 1490 1492 1490 1519 547 1487 1491 1412 1525 1525 1525 

HUM Correlation 

Coefficient 
.009 .488** .010 .215** -.633** -.218** -.365** -.323** -.151** -.291** 1.000 .710** 

Sig. (2-tailed) .720 .000 .700 .000 .000 .000 .000 .000 .000 .000 . .000 

N 1494 1490 1492 1490 1519 547 1487 1491 1412 1525 1525 1525 

RAIN Correlation 

Coefficient 
.082** .409** .036 .204** -.488** -.080 -.319** -.300** -.240** -.311** .710** 1.000 

Sig. (2-tailed) .002 .000 .161 .000 .000 .061 .000 .000 .000 .000 .000 . 

N 1494 1490 1492 1490 1519 547 1487 1491 1412 1525 1525 1525 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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STEPWISE MULTIPLE LINEAR REGRESSION 

 FOR AMBIENT DATA EQUATION 

Descriptive Statistics 

 Mean Std. Deviation N 

PM2.5 25.2076 14.88073 485 

CO .4985 .20503 485 

NO2 14.8139 7.99712 485 

O3 16.0648 8.49505 485 

PM10 38.4940 17.11221 485 

TEMP 28.3596 1.53030 485 

HUM 72.2353 10.20657 485 

SO2 1.7234 .93238 485 

 

 

Correlations 

 PM2.5 CO NO2 O3 PM10 TEMP HUM SO2 

Pearson 

Correlation 

PM2.5 1.000 .232 .530 .670 .891 -.306 -.496 .452 

CO .232 1.000 .396 .106 .359 -.245 .022 .294 

NO2 .530 .396 1.000 .232 .677 -.323 -.150 .343 

O3 .670 .106 .232 1.000 .636 -.127 -.624 .125 

PM10 .891 .359 .677 .636 1.000 -.325 -.557 .471 

TEMP -.306 -.245 -.323 -.127 -.325 1.000 .000 -.048 

HUM -.496 .022 -.150 -.624 -.557 .000 1.000 -.258 

SO2 .452 .294 .343 .125 .471 -.048 -.258 1.000 

Sig. (1-tailed) PM2.5 . .000 .000 .000 .000 .000 .000 .000 

CO .000 . .000 .010 .000 .000 .317 .000 

NO2 .000 .000 . .000 .000 .000 .000 .000 

O3 .000 .010 .000 . .000 .003 .000 .003 

PM10 .000 .000 .000 .000 . .000 .000 .000 

TEMP .000 .000 .000 .003 .000 . .500 .147 

HUM .000 .317 .000 .000 .000 .500 . .000 

SO2 .000 .000 .000 .003 .000 .147 .000 . 

N PM2.5 485 485 485 485 485 485 485 485 

CO 485 485 485 485 485 485 485 485 

NO2 485 485 485 485 485 485 485 485 

O3 485 485 485 485 485 485 485 485 

PM10 485 485 485 485 485 485 485 485 

TEMP 485 485 485 485 485 485 485 485 

HUM 485 485 485 485 485 485 485 485 

SO2 485 485 485 485 485 485 485 485 
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Model Summaryh 

Model R 

R 

Square 

Adjusted 

R 

Square 

Std. 

Error of 

the 

Estimate 

Change Statistics 

Durbin-

Watson 

R 

Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .891a .794 .793 6.76243 .794 1860.626 1 483 .000  

2 .901b .812 .811 6.46765 .018 46.031 1 482 .000  

3 .904c .817 .816 6.38077 .005 14.214 1 481 .000  

4 .908d .824 .822 6.27276 .007 17.707 1 480 .000  

5 .913e .833 .831 6.11238 .009 26.520 1 479 .000  

6 .915f .837 .835 6.05085 .004 10.792 1 478 .001  

7 .916g .839 .836 6.01794 .002 6.242 1 477 .013 .323 

a. Predictors: (Constant), PM10 

b. Predictors: (Constant), PM10, O3 

c. Predictors: (Constant), PM10, O3, SO2 

d. Predictors: (Constant), PM10, O3, SO2, CO 

e. Predictors: (Constant), PM10, O3, SO2, CO, HUM 

f. Predictors: (Constant), PM10, O3, SO2, CO, HUM, NO2 

g. Predictors: (Constant), PM10, O3, SO2, CO, HUM, NO2, TEMP 

h. Dependent Variable: PM2.5 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 85087.294 1 85087.294 1860.626 .000b 

Residual 22087.812 483 45.730   

Total 107175.106 484    

2 Regression 87012.809 2 43506.404 1040.064 .000c 

Residual 20162.297 482 41.830   

Total 107175.106 484    

3 Regression 87591.537 3 29197.179 717.124 .000d 

Residual 19583.568 481 40.714   

Total 107175.106 484    

4 Regression 88288.276 4 22072.069 560.951 .000e 

Residual 18886.830 480 39.348   

Total 107175.106 484    

5 Regression 89279.110 5 17855.822 477.925 .000f 

Residual 17895.996 479 37.361   

Total 107175.106 484    

6 Regression 89674.221 6 14945.703 408.211 .000g 

Residual 17500.885 478 36.613   

Total 107175.106 484    

7 Regression 89900.276 7 12842.897 354.624 .000h 

Residual 17274.830 477 36.216   

Total 107175.106 484    
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MLR EQUATION CONSTRUTION 

 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B Correlations 

Collinearity 

Statistics 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order Partial Part Tolerance VIF 

1 (Constant) -4.619 .757  -6.105 .000 -6.105 -3.132      

PM10 .775 .018 .891 43.135 .000 .740 .810 .891 .891 .891 1.000 1.000 

2 (Constant) -5.808 .745  -7.801 .000 -7.271 -4.345      

PM10 .679 .022 .780 30.481 .000 .635 .722 .891 .811 .602 .595 1.680 

O3 .304 .045 .174 6.785 .000 .216 .392 .670 .295 .134 .595 1.680 

3 (Constant) -6.992 .799  -8.752 .000 -8.562 -5.423      

PM10 .629 .026 .724 24.632 .000 .579 .680 .891 .747 .480 .440 2.273 

O3 .349 .046 .199 7.613 .000 .259 .438 .670 .328 .148 .556 1.798 

SO2 1.375 .365 .086 3.770 .000 .658 2.092 .452 .169 .073 .727 1.375 

4 (Constant) -4.884 .932  -5.242 .000 -6.714 -3.053      

PM10 .661 .026 .760 25.217 .000 .609 .712 .891 .755 .483 .404 2.474 

O3 .322 .045 .184 7.092 .000 .233 .411 .670 .308 .136 .546 1.832 

SO2 1.548 .361 .097 4.288 .000 .838 2.257 .452 .192 .082 .718 1.393 

CO -6.403 1.522 -.088 -4.208 .000 -9.393 -3.413 .232 -.189 -.08 .835 1.197 

5 (Constant) -21.300 3.314  -6.426 .000 -27.813 -14.787      

PM10 .694 .026 .798 26.352 .000 .642 .746 .891 .769 .492 .380 2.632 

O3 .426 .049 .243 8.760 .000 .331 .522 .670 .372 .164 .451 2.215 

SO2 1.821 .356 .114 5.120 .000 1.122 2.520 .452 .228 .096 .702 1.425 

CO -8.426 1.534 -.116 -5.493 .000 -11.440 -5.412 .232 -.243 -.103 .780 1.281 

HUM .194 .038 .133 5.150 .000 .120 .268 -.496 .229 .096 .523 1.912 

6 (Constant) -23.267 3.335  -6.976 .000 -29.821 -16.714      

PM10 .768 .034 .883 22.294 .000 .700 .836 .891 .714 .412 .218 4.594 

O3 .389 .049 .222 7.862 .000 .292 .486 .670 .338 .145 .428 2.337 

SO2 1.767 .352 .111 5.012 .000 1.074 2.459 .452 .223 .093 .700 1.428 

CO -7.785 1.531 -.107 -5.085 .000 -10.793 -4.777 .232 -.227 -.094 .768 1.302 

HUM .222 .038 .152 5.806 .000 .147 .297 -.496 .257 .107 .497 2.013 

NO2 -.171 .052 -.092 -3.285 .001 -.274 -.069 .530 -.149 -.061 .434 2.302 

7 (Constant) -7.524 7.121  -1.057 .291 -21.517 6.469      

PM10 .748 .035 .860 21.254 .000 .679 .817 .891 .697 .391 .206 4.847 

O3 .394 .049 .225 7.996 .000 .297 .491 .670 .344 .147 .427 2.341 

SO2 1.902 .355 .119 5.361 .000 1.205 2.599 .452 .238 .099 .684 1.462 

CO -8.168 1.530 -.113 -5.338 .000 -11.175 -5.161 .232 -.237 -.098 .760 1.316 

HUM .208 .038 .143 5.420 .000 .133 .284 -.496 .241 .100 .487 2.055 

NO2 -.178 .052 -.096 -3.428 .001 -.280 -.076 .530 -.155 -.063 .433 2.308 

TEMP -.494 .198 -.051 -2.498 .013 -.882 -.105 -.306 -.114 -.046 .819 1.221 
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Excluded Variablesa 

 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity Statistics 

Tolerance VIF 

Minimum 

Tolerance 

1 CO -.100b -4.622 .000 -.206 .871 1.148 .871 

NO2 -.135b -4.934 .000 -.219 .542 1.846 .542 

O3 .174b 6.785 .000 .295 .595 1.680 .595 

TEMP -.018b -.844 .399 -.038 .895 1.118 .895 

HUM .001b .046 .963 .002 .690 1.450 .690 

SO2 .042b 1.782 .075 .081 .778 1.285 .778 

2 CO -.078c -3.679 .000 -.165 .846 1.182 .509 

NO2 -.081c -2.863 .004 -.129 .475 2.104 .299 

TEMP -.034c -1.635 .103 -.074 .884 1.131 .535 

HUM .084c 3.231 .001 .146 .567 1.762 .490 

SO2 .086c 3.770 .000 .169 .727 1.375 .440 

3 CO -.088d -4.208 .000 -.189 .835 1.197 .404 

NO2 -.076d -2.683 .008 -.122 .474 2.111 .246 

TEMP -.048d -2.297 .022 -.104 .861 1.161 .386 

HUM .097d 3.759 .000 .169 .560 1.787 .426 

4 NO2 -.056e -1.971 .049 -.090 .457 2.187 .244 

TEMP -.063e -3.019 .003 -.137 .842 1.188 .367 

HUM .133e 5.150 .000 .229 .523 1.912 .380 

 

5 NO2 -.092f -3.285 .001 -.149 .434 2.302 .218 

TEMP -.047f -2.298 .022 -.105 .821 1.218 .338 

6 TEMP -.051g -2.498 .013 -.114 .819 1.221 .206 

a. Dependent Variable: PM2.5 

b. Predictors in the Model: (Constant), PM10 

c. Predictors in the Model: (Constant), PM10, O3 

d. Predictors in the Model: (Constant), PM10, O3, SO2 

e. Predictors in the Model: (Constant), PM10, O3, SO2, CO 

f. Predictors in the Model: (Constant), PM10, O3, SO2, CO, HUM 

g. Predictors in the Model: (Constant), PM10, O3, SO2, CO, HUM, NO2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 87 

Collinearity Diagnosticsa 

 

Model Dimension Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) PM10 O3 SO2 CO HUM NO2 TEMP 

1 1 1.914 1.000 .04 .04       

2 .086 4.716 .96 .96       

2 1 2.818 1.000 .02 .01 .02      

2 .117 4.904 .78 .01 .44      

3 .065 6.596 .20 .97 .55      

3 1 3.655 1.000 .01 .01 .01 .01     

2 .197 4.307 .00 .01 .27 .46     

3 .099 6.073 .99 .07 .07 .16     

4 .049 8.610 .00 .92 .66 .37     

4 1 4.536 1.000 .00 .00 .01 .01 .01    

2 .206 4.694 .00 .01 .31 .27 .05    

3 .141 5.670 .08 .02 .02 .45 .35    

4 .073 7.866 .75 .15 .00 .01 .38    

5 .044 10.160 .16 .81 .66 .26 .22    

5 1 5.437 1.000 .00 .00 .00 .00 .00 .00   

2 .229 4.874 .00 .04 .22 .01 .04 .01   

3 .184 5.442 .00 .01 .04 .59 .00 .01   

4 .101 7.342 .01 .02 .01 .12 .78 .01   

5 .045 10.981 .00 .87 .51 .24 .15 .00   

6 .004 36.102 .99 .06 .22 .04 .03 .97   

6 1 6.302 1.000 .00 .00 .00 .00 .00 .00 .00  

2 .231 5.219 .00 .02 .15 .01 .04 .01 .01  

3 .195 5.681 .00 .00 .12 .30 .00 .01 .08  

4 .149 6.505 .00 .00 .03 .48 .03 .00 .29  

5 .090 8.353 .01 .00 .01 .00 .90 .01 .11  

6 .028 15.049 .00 .86 .53 .18 .01 .00 .46  

7 .004 39.792 .99 .12 .14 .03 .02 .97 .05  

7 1 7.251 1.000 .00 .00 .00 .00 .00 .00 .00 .00 

2 .262 5.256 .00 .02 .06 .01 .01 .01 .05 .00 

3 .206 5.935 .00 .00 .22 .24 .02 .00 .05 .00 

4 .150 6.956 .00 .00 .03 .52 .05 .00 .25 .00 

5 .095 8.735 .00 .00 .02 .00 .87 .00 .14 .00 

6 .028 16.110 .00 .81 .55 .18 .01 .00 .45 .00 

7 .007 32.477 .02 .06 .12 .04 .05 .77 .06 .11 

8 .001 87.862 .98 .10 .01 .01 .00 .21 .00 .88 

a. Dependent Variable: PM2.5 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 3.7825 73.1499 25.2076 13.62881 485 

Residual -18.33227 14.66118 .00000 5.97426 485 

Std. Predicted Value -1.572 3.518 .000 1.000 485 

Std. Residual -3.046 2.436 .000 .993 485 

a. Dependent Variable: PM2.5 
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Roadside Monitoring Data Analysis 

 

Spearman’s Correlations Analysis of Roadside monitoring station data 

 CO NO NO2 NOX O3 SO2 PM10 PM2.5 WS TEMP HUM RAIN 

Spearman's 

rho 

CO Correlation 

Coefficient 
1.000 .523** .626** .681** -.152** .411** .528** .422** -.467** -.090** -.089** .001 

Sig. (2-tailed) . .000 .000 .000 .000 .000 .000 .000 .000 .001 .001 .969 

N 1281 1124 1124 1124 987 1002 1272 1079 1214 1273 1273 1273 

NO Correlation 

Coefficient 
.523** 1.000 .440** .875** -.598** .355** .364** .082** -.165** -.151** .040 .161** 

Sig. (2-tailed) .000 . .000 .000 .000 .000 .000 .009 .000 .000 .166 .000 

N 1124 1185 1185 1185 923 926 1176 1010 1134 1177 1177 1177 

NO2 Correlation 

Coefficient 
.626** .440** 1.000 .785** .024 .367** .744** .731** -.501** -.026 -.354** -.179** 

Sig. (2-tailed) .000 .000 . .000 .475 .000 .000 .000 .000 .368 .000 .000 

N 1124 1185 1185 1185 923 926 1176 1010 1134 1177 1177 1177 

NOX Correlation 

Coefficient 
.681** .875** .785** 1.000 -.349** .419** .605** .418** -.417** -.128** -.118** .047 

Sig. (2-tailed) .000 .000 .000 . .000 .000 .000 .000 .000 .000 .000 .104 

N 1124 1185 1185 1185 923 926 1176 1010 1134 1177 1177 1177 

 

O3 Correlation 

Coefficient 
-.152** -.598** .024 -.349** 1.000 .069* .154** .339** -.069* -.114** -.296** -.347** 

Sig. (2-tailed) .000 .000 .475 .000 . .034 .000 .000 .025 .000 .000 .000 

N 987 923 923 923 1116 960 1107 930 1064 1108 1108 1108 

SO2 Correlation 

Coefficient 
.411** .355** .367** .419** .069* 1.000 .317** .292** -.146** -.238** -.197** -.042 

Sig. (2-tailed) .000 .000 .000 .000 .034 . .000 .000 .000 .000 .000 .174 

N 1002 926 926 926 960 1054 1045 843 1025 1046 1046 1046 

PM10 Correlation 

Coefficient 
.528** .364** .744** .605** .154** .317** 1.000 .853** -.477** -.028 -.383** -.252** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 . .000 .000 .290 .000 .000 

N 1272 1176 1176 1176 1107 1045 1437 1222 1371 1430 1430 1430 

PM2.5 Correlation 

Coefficient 
.422** .082** .731** .418** .339** .292** .853** 1.000 -.367** -.031 -.376** -.337** 

Sig. (2-tailed) .000 .009 .000 .000 .000 .000 .000 . .000 .277 .000 .000 

N 1079 1010 1010 1010 930 843 1222 1228 1167 1220 1220 1220 

WS Correlation 

Coefficient 
-.467** -.165** -.501** -.417** -.069* -.146** -.477** -.367** 1.000 .178** .052 -.057* 

Sig. (2-tailed) .000 .000 .000 .000 .025 .000 .000 .000 . .000 .056 .036 

N 1214 1134 1134 1134 1064 1025 1371 1167 1379 1379 1379 1379 

 

TEMP Correlation 

Coefficient 
-.090** -.151** -.026 -.128** -.114** -.238** -.028 -.031 .178** 1.000 -.360** -.297** 

Sig. (2-tailed) .001 .000 .368 .000 .000 .000 .290 .277 .000 . .000 .000 

N 1273 1177 1177 1177 1108 1046 1430 1220 1379 1438 1438 1438 

HUM Correlation 

Coefficient 
-.089** .040 -.354** -.118** -.296** -.197** -.383** -.376** .052 -.360** 1.000 .638** 

Sig. (2-tailed) .001 .166 .000 .000 .000 .000 .000 .000 .056 .000 . .000 

N 1273 1177 1177 1177 1108 1046 1430 1220 1379 1438 1438 1438 

RAIN Correlation 

Coefficient 
.001 .161** -.179** .047 -.347** -.042 -.252** -.337** -.057* -.297** .638** 1.000 

Sig. (2-tailed) .969 .000 .000 .104 .000 .174 .000 .000 .036 .000 .000 . 

N 1273 1177 1177 1177 1108 1046 1430 1220 1379 1438 1438 1438 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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STEPWISE MULTIPLE LINEAR REGRESSION FOR ROADSIDE DATA 

EQUATION 

 

Descriptive Statistics 

 Mean Std. Deviation N 

PM2.5 32.6357 16.71023 685 

CO .8034 .34945 685 

NO 31.4608 31.65323 685 

NO2 24.2720 13.63714 685 

NOX 55.3775 41.00363 685 

O3 14.6642 8.45819 685 

SO2 1.6819 .90267 685 

PM10 46.0805 20.43197 685 

WS .8095 .47625 685 

HUM 65.4614 9.86311 685 

RAIN .2225 .58813 685 

 

 PM2.5 CO NO NO2 NOX O3 SO2 PM10 WS HUM RAIN 

Pearson 

Correlation 

PM2.5 1.000 .456 .310 .767 .495 .502 .446 .939 -.486 -.478 -.177 

CO .456 1.000 .284 .509 .388 -.044 .367 .437 -.510 -.005 .046 

NO .310 .284 1.000 .593 .960 -.381 .272 .336 -.065 -.061 .034 

NO2 .767 .509 .593 1.000 .791 .189 .390 .741 -.544 -.384 -.089 

NOX .495 .388 .960 .791 1.000 -.224 .336 .504 -.234 -.179 -.008 

O3 .502 -.044 -.381 .189 -.224 1.000 .106 .477 -.235 -.531 -.193 

SO2 .446 .367 .272 .390 .336 .106 1.000 .482 -.256 -.272 -.065 

PM10 .939 .437 .336 .741 .504 .477 .482 1.000 -.480 -.503 -.190 

WS -.486 -.510 -.065 -.544 -.234 -.235 -.256 -.480 1.000 .151 -.057 

HUM -.478 -.005 -.061 -.384 -.179 -.531 -.272 -.503 .151 1.000 .416 

RAIN -.177 .046 .034 -.089 -.008 -.193 -.065 -.190 -.057 .416 1.000 

Sig. (1-

tailed) 

PM2.5 . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

CO .000 . .000 .000 .000 .125 .000 .000 .000 .445 .113 

NO .000 .000 . .000 .000 .000 .000 .000 .045 .056 .190 

NO2 .000 .000 .000 . .000 .000 .000 .000 .000 .000 .010 

NOX .000 .000 .000 .000 . .000 .000 .000 .000 .000 .420 

O3 .000 .125 .000 .000 .000 . .003 .000 .000 .000 .000 

SO2 .000 .000 .000 .000 .000 .003 . .000 .000 .000 .045 

PM10 .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000 

WS .000 .000 .045 .000 .000 .000 .000 .000 . .000 .068 

HUM .000 .445 .056 .000 .000 .000 .000 .000 .000 . .000 

RAIN .000 .113 .190 .010 .420 .000 .045 .000 .068 .000 . 

N PM2.5 685 685 685 685 685 685 685 685 685 685 685 

CO 685 685 685 685 685 685 685 685 685 685 685 

NO 685 685 685 685 685 685 685 685 685 685 685 

NO2 685 685 685 685 685 685 685 685 685 685 685 

NOX 685 685 685 685 685 685 685 685 685 685 685 

O3 685 685 685 685 685 685 685 685 685 685 685 

SO2 685 685 685 685 685 685 685 685 685 685 685 

PM10 685 685 685 685 685 685 685 685 685 685 685 

WS 685 685 685 685 685 685 685 685 685 685 685 

HUM 685 685 685 685 685 685 685 685 685 685 685 

RAIN 685 685 685 685 685 685 685 685 685 685 685 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 90 

 

Model Summaryg 

Model R 

R 

Square 

Adjusted 

R 

Square 

Std. 

Error of 

the 

Estimate 

Change Statistics 

Durbin-

Watson 

R 

Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .939a .882 .882 5.73219 .882 5129.737 1 683 .000  

2 .945b .894 .893 5.45390 .011 72.479 1 682 .000  

3 .950c .903 .902 5.22139 .009 63.092 1 681 .000  

4 .951d .905 .904 5.17249 .002 13.936 1 680 .000  

5 .952e .906 .905 5.15384 .001 5.931 1 679 .015  

6 .952f .906 .905 5.14107 .001 4.375 1 678 .037 1.106 

a. Predictors: (Constant), PM10 

b. Predictors: (Constant), PM10, NO2 

c. Predictors: (Constant), PM10, NO2, O3 

d. Predictors: (Constant), PM10, NO2, O3, CO 

e. Predictors: (Constant), PM10, NO2, O3, CO, HUM 

f. Predictors: (Constant), PM10, NO2, O3, CO, HUM, WS 

g. Dependent Variable: PM2.5 

 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 168552.621 1 168552.621 5129.737 .000b 

Residual 22441.978 683 32.858   

Total 190994.599 684    

2 Regression 170708.511 2 85354.255 2869.533 .000c 

Residual 20286.088 682 29.745   

Total 190994.599 684    

3 Regression 172428.587 3 57476.196 2108.223 .000d 

Residual 18566.012 681 27.263   

Total 190994.599 684    

4 Regression 172801.438 4 43200.360 1614.686 .000e 

Residual 18193.161 680 26.755   

Total 190994.599 684    

5 Regression 172958.990 5 34591.798 1302.303 .000f 

Residual 18035.609 679 26.562   

Total 190994.599 684    

6 Regression 173074.633 6 28845.772 1091.377 .000g 

Residual 17919.966 678 26.431   

Total 190994.599 684    
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MLR EQUATION CONSTRUCTION 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% 

Confidence 

Interval for B Correlations 

Collinearity 

Statistics 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order Partial Part Tolerance VIF 

1 (Constant) -2.768 .541  -5.119 .000 -3.829 -1.706      

PM10 .768 .011 .939 71.622 .000 .747 .789 .939 .939 .939 1.000 1.000 

2 (Constant) -3.057 .516  -5.929 .000 -4.069 -2.044      

PM10 .672 .015 .822 44.265 .000 .643 .702 .939 .861 .552 .451 2.216 

NO2 .194 .023 .158 8.513 .000 .149 .238 .767 .310 .106 .451 2.216 

3 (Constant) -4.367 .520  -8.391 .000 -5.388 -3.345      

PM10 .604 .017 .738 35.661 .000 .570 .637 .939 .807 .426 .333 3.002 

NO2 .244 .023 .199 10.757 .000 .200 .289 .767 .381 .129 .416 2.403 

O3 .222 .028 .112 7.943 .000 .167 .277 .502 .291 .095 .712 1.405 

4 (Constant) -5.660 .621  -9.113 .000 -6.879 -4.440      

PM10 .589 .017 .721 34.252 .000 .556 .623 .939 .796 .405 .317 3.159 

NO2 .224 .023 .182 9.660 .000 .178 .269 .767 .347 .114 .393 2.547 

O3 .250 .029 .126 8.707 .000 .193 .306 .502 .317 .103 .665 1.504 

CO 2.553 .684 .053 3.733 .000 1.210 3.895 .456 .142 .044 .685 1.460 

5 (Constant) -

10.490 
2.077  -5.049 .000 

-14.57 

 
-6.411      

PM10 .597 .017 .730 34.275 .000 .563 .631 .939 .796 .404 .307 3.258 

NO2 .235 .024 .191 9.983 .000 .188 .281 .767 .358 .118 .378 2.645 

O3 .276 .031 .140 9.033 .000 .216 .336 .502 .328 .107 .581 1.722 

CO 2.183 .698 .046 3.127 .002 .812 3.553 .456 .119 .037 .653 1.532 

HUM .063 .026 .037 2.435 .015 .012 .114 -.478 .093 .029 .595 1.681 

6 (Constant) -

12.846 
2.359  -5.446 .000 -17.477 -8.214      

PM10 .597 .017 .730 34.368 .000 .563 .631 .939 .797 .404 .307 3.258 

NO2 .249 .024 .204 10.185 .000 .201 .297 .767 .364 .120 .346 2.886 

O3 .292 .031 .148 9.294 .000 .230 .353 .502 .336 .109 .549 1.823 

CO 2.685 .737 .056 3.645 .000 1.239 4.131 .456 .139 .043 .583 1.714 

HUM .070 .026 .041 2.686 .007 .019 .121 -.478 .103 .032 .585 1.708 

WS 1.126 .538 .032 2.092 .037 .069 2.183 -.486 .080 .025 .588 1.700 

a. Dependent Variable: PM2.5 
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Excluded Variablesa 

Model Beta In t Sig. 

Partial 

Correlation 

Collinearity Statistics 

Tolerance VIF 

Minimum 

Tolerance 

1 CO .056b 3.847 .000 .146 .809 1.236 .809 

NO -.007b -.476 .634 -.018 .887 1.127 .887 

NO2 .158b 8.513 .000 .310 .451 2.216 .451 

NOX .030b 1.948 .052 .074 .746 1.340 .746 

O3 .070b 4.759 .000 .179 .772 1.295 .772 

SO2 -.009b -.593 .553 -.023 .768 1.302 .768 

WS -.046b -3.072 .002 -.117 .770 1.299 .770 

HUM -.007b -.463 .644 -.018 .747 1.338 .747 

RAIN .002b .126 .900 .005 .964 1.037 .964 

2 CO .021c 1.473 .141 .056 .733 1.364 .409 

NO -.097c -6.292 .000 -.234 .624 1.602 .318 

NOX -.122c -6.022 .000 -.225 .360 2.776 .218 

O3 .112c 7.943 .000 .291 .712 1.405 .333 

SO2 -.016c -1.103 .270 -.042 .765 1.306 .407 

WS -.008c -.509 .611 -.020 .691 1.447 .405 

HUM -.005c -.321 .748 -.012 .747 1.339 .395 

RAIN -.007c -.529 .597 -.020 .958 1.044 .436 

3 CO .053d 3.733 .000 .142 .685 1.460 .317 

NO -.036d -1.847 .065 -.071 .382 2.621 .313 

NOX -.040d -1.568 .117 -.060 .223 4.483 .199 

SO2 .001d .055 .956 .002 .748 1.337 .294 

WS .005d .318 .750 .012 .683 1.464 .332 

HUM .048d 3.172 .002 .121 .624 1.602 .328 

RAIN .003d .255 .799 .010 .948 1.055 .329 

4 NO -.021e -1.071 .285 -.041 .363 2.753 .282 

NOX -.020e -.790 .430 -.030 .213 4.704 .179 

SO2 -.008e -.545 .586 -.021 .729 1.372 .287 

WS .027e 1.759 .079 .067 .598 1.673 .316 

HUM .037e 2.435 .015 .093 .595 1.681 .307 

RAIN -.002e -.144 .885 -.006 .937 1.067 .311 

5 NO -.018f -.908 .364 -.035 .362 2.766 .278 

NOX -.016f -.607 .544 -.023 .211 4.732 .178 

SO2 -.003f -.184 .854 -.007 .713 1.403 .282 

WS .032f 2.092 .037 .080 .588 1.700 .307 

RAIN -.014f -1.097 .273 -.042 .816 1.226 .305 

6 NO -.035g -1.703 .089 -.065 .322 3.108 .230 

NOX -.037g -1.376 .169 -.053 .188 5.308 .146 

SO2 -.003g -.201 .841 -.008 .713 1.403 .282 

RAIN -.012g -.890 .374 -.034 .807 1.239 .305 

a. Dependent Variable: PM2.5 

b. Predictors in the Model: (Constant), PM10 

c. Predictors in the Model: (Constant), PM10, NO2 

d. Predictors in the Model: (Constant), PM10, NO2, O3 

e. Predictors in the Model: (Constant), PM10, NO2, O3, CO 

f. Predictors in the Model: (Constant), PM10, NO2, O3, CO, HUM 

g. Predictors in the Model: (Constant), PM10, NO2, O3, CO, HUM, WS 
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Collinearity Diagnosticsa 

 

Model Dimension Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) PM10 NO2 O3 CO HUM WS 

1 1 1.914 1.000 .04 .04      

2 .086 4.726 .96 .96      

2 1 2.821 1.000 .02 .01 .01     

2 .132 4.629 .76 .02 .30     

3 .048 7.681 .23 .98 .69     

3 1 3.645 1.000 .01 .00 .01 .01    

2 .205 4.217 .00 .01 .19 .49    

3 .113 5.686 .96 .02 .07 .21    

4 .037 9.871 .02 .97 .73 .28    

4 1 4.522 1.000 .00 .00 .00 .01 .00   

2 .241 4.330 .00 .00 .05 .46 .09   

3 .139 5.703 .25 .04 .25 .01 .14   

4 .061 8.586 .74 .00 .09 .19 .74   

5 .037 11.072 .00 .96 .60 .34 .03   

5 1 5.409 1.000 .00 .00 .00 .00 .00 .00  

2 .247 4.682 .00 .01 .00 .39 .07 .01  

3 .226 4.891 .01 .02 .17 .03 .01 .02  

4 .075 8.471 .01 .00 .22 .10 .87 .01  

5 .037 12.109 .00 .93 .58 .30 .03 .00  

6 .005 31.682 .99 .04 .04 .18 .02 .97  

6 1 6.053 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .502 3.471 .00 .01 .03 .01 .01 .00 .17 

3 .245 4.965 .00 .00 .02 .39 .07 .00 .00 

4 .108 7.492 .00 .04 .27 .07 .22 .01 .21 

5 .052 10.795 .02 .07 .10 .00 .55 .07 .37 

6 .035 13.136 .00 .85 .50 .30 .15 .01 .09 

7 .005 36.040 .98 .03 .08 .23 .00 .90 .15 

a. Dependent Variable: PM2.5 

 

 

 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 6.3598 96.3534 32.6590 15.96884 695 

Residual -23.74317 45.30427 -.00511 5.22520 695 

Std. Predicted Value -1.652 4.006 .001 1.004 695 

Std. Residual -4.618 8.812 -.001 1.016 695 

a. Dependent Variable: PM2.5 
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APPENDIX C 

The 10th Better Air Quality Conference 

Kuching Malaysia 

14 – 16 November 2018 

Poster Presentation  

 

 

E-Abstract book: https://baq2018.org/wp-content/uploads/2018/11/BAQ-E- 

ABSTRACT_COMPILATION.pdf   
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The 2nd International Conference on Environment, Livelihood, and Services 

19 – 22 November 2018 

Bangkok, Thailand 

Oral Presentation 
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