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ABSTRACT (T HAI) 
 ววิธิวนิท ์สุขมาศ : ผลของการก าหนดทิศทางของโมเลกุลอินทรียต่์อโครงสร้างเพ

อรอฟสไกตข์องฟอร์มามิดิเนียมเลดไอโอไดด์. ( EFFECTS OF ORGANIC 
MOLECULE ORIENTATIONS ON  PEROVSKITE STRUCTURE OF 
FORMAMIDINIUM LEAD IODIDE) อ.ที่ปรึกษาหลกั : รศ. ดร.ธิติ บวรรัตนารักษ,์ 
อ.ที่ปรึกษาร่วม : รศ. ดร.อุดมศิลป์ ป่ินสุข 

  
Latterly, an emergence of the hybrid organic-inorganic perovskites has captivated an 

increasing rate of world-wide attention due to their approving physical properties. 
Formamidinium lead iodide (FAPI), a promising compound owing to its high photovoltaic 
performance, consists of an organic molecule, i.e. the formamidinium (FA) cation, dwelling in 
the centre of the cubic unit cell, caged by the inorganic framework, PbI6. By adopting the ab 
initio method based on the density functional theory including the spin-orbit coupling (SOC) 
effects, the effects of the FA cation on the cubic FAPI were thoroughly and systematically 
investigated. Solidly armed with Euler’s rotations, energy landscapes responsible for various 
sets of orientations of the FA cation were evaluated accordingly. From the energy landscapes, 
the flipping energy barriers are interpreted as thermal agitations needed to flip the FA cation 
over. The highest energy barrier amongst all those of other orientations is 24.7 meV which is 
tantamount to T ~ 286 K––the temperature over which the FA molecules randomly reorient. 
Moreover, it is found that a relatively lowest energy structure when the FA cation is directed 
along (90°,60°, 45°) direction. Owing to the structural optimisation, the I-Pb-I becomes angled 
with less than 7°. The H-I distances are optimal and confined only in the shells in accordance 
with the pair distribution function of the optimal configuration. The resulting configuration 
additionally breaks the inversion symmetry that leads to the Rashba/Dresselhaus effect within 
the electronic band structure. The largest Rashba splitting parameter determined along 
the  direction in the k–space is around 3.0 for the (90°,60°, 45°) configuration. 
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ABSTRACT (E NGLISH) 
# # 6071996423 : MAJOR PHYSICS 
KEYWORD: pair distribution, perovskites, inorganic framework, spin-orbit coupling, 

Euler’s rotations, Rashba/Dresselhaus effect 
 Wiwittawin Sukmas : EFFECTS OF ORGANIC MOLECULE ORIENTATIONS 

ON  PEROVSKITE STRUCTURE OF FORMAMIDINIUM LEAD IODIDE. 
Advisor: Assoc. Prof. Thiti Bovornratanaraks, Ph.D. Co-advisor: Assoc. Prof. 
UDOMSILP PINSOOK, Ph.D. 

  
เน่ืองดว้ยสมบตัิทางกายภาพที่เป็นที่ยอมรับจากสากล ปรากฏการณ์ที่น่าต่ืนตะลึงของ

เพอรอฟสไกตลู์กผสมระหว่างสารอินทรียแ์ละอนินทรียไ์ดดึ้งดูดความสนใจอยา่งมหาศาล ฟอร์
มามิดิเนียมเลดไอโอไดด์ (FAPI) ซ่ึงมีสมรรถภาพทางดา้นการเปล่ียนพลงังานแสงอาทิตยเ์ป็น
ไฟฟ้าประกอบไปด้วยสารประกอบอินทรียซ่ึ์งก็คือไอออนบวกฟอร์มามิดิเนียมด ารงอยู่ที่
ศูนยก์ลางของยูนิตเซลล์ลูกบาศก์และถูกลอ้มไปดว้ยโครงอนินทรีย ์PbI6 ดว้ยการใชป้ระโยชน์
จากทฤษฎีฟังก์ชันนัลของความหนาแน่นกอปรกับผลจากการคู่ควบของสปินออร์บิท ผลของ
ไอออนบวกฟอร์มามิดิเนียมที่มีต่อ FAPI ได้ถูกส ารวจตรวจสอบอยา่งละเอียดและมีแบบแผน
ดว้ยวิธีการของมุมออยเ์ลอร์ ภูมิทศัน์เชิงพลงังานที่ไดจ้ากการวางตวัในทิศทางใดๆของไอออน
บวกฟอร์มามิดิเนียมไดถู้กค านวณซ่ึงมีสันก าแพงเชิงพลงังานที่เกิดขึ้นและสามารถตีความเป็น
ความร้อนที่ใชใ้นการหมุนไอออนบวกฟอร์มามิดิเนียมโดยที่สนัก าแพงที่สูงที่สุดมีค่าเท่ากบั 24.7 
มิลลิอิเล็กตรอนโวลตซ่ึ์งเทียบเท่ากบัอุณหภูมิประมาณ 286 เคลวินและค่าน้ีคืออุณหภูมิที่ไอออน
บวกฟอร์มามิดิเนียมสามารถที่จะเรียงตวัในทิศทางแบบสุ่ม ยิง่ไปกวา่นั้นโครงสร้างของ FAPI ที่
มีพลังงานต ่าสุดสัมพทัธ์จะเกิดขึ้นเม่ือไอออนบวกฟอร์มามิดิเนียมหันไปในทิศทาง  (90°,60°, 
45°)  และจากกระบวนการการปรับเชิงโครงสร้างที่เหมาะสมพนัธะ  I-Pb-I   มีมุมที่น้อยมากกว่า
มุมตรง รูปแบบการเรียงตวัที่ไดย้งัก่อให้เกิดการท าลายสมมาตรของโครงสร้าง FAPI ซ่ึงส่งผล
โดยตรงให้เกิดปรากฏการณ์ที่เรียกว่า “ปรากฏการณ์ราชบา/เดรสเซลเฮาส์” ในโครงสร้างแถบ
โดยที่ค่าการแตกออกแบบราชบาตามทิศทางใน k–space มีค่าประมาณ 3.0 ส าหรับรูปแบบการ
วางตวัของไอออนบวกฟอร์มามิดิเนียมในทิศทาง (90°,60°, 45°) 
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1. INTRODUCTION 
 

 Most recently, an emergence of world-wide attention towards hybrid organic-inorganic 
perovskite (HOIPs) has sharply arisen owing to their potential applications, for instance, in 
thermoelectric, optoelectronic, and photovoltaic technology, resulting from their astounding 
electronic, excitonic, and optical properties [1-4]. From 1978 to 2015, there have been some 
intensive research into the optoelectronic properties of HOIPs and crucial findings in the 
development of HOIP solar cell [3]. Weber et al. were the first to synthesise 
𝑀𝐴𝑃𝑏𝑋3 (𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3) and determine its crystal structure in 1978 [5]. A couple of decades later, 
carried out by Mitzi et al., there came syntheses and characterisation of HOIPs for use in 
electronic devices, specifically optoelectronic devices [6-9]. The first experiment report on a 
HOIP-based solar cell, 𝐶𝐻3𝑁𝐻3𝑃𝑏𝐵𝑟3 on a mesoporous 𝑇𝑖𝑂3 surface, was published revealing the 
solar cell exhibits 3.1% conversion efficiency [10]. The ongoing advancement was followed by 
tremendous breakthroughs in syntheses and device fabrications of HOIP solar cells [11, 12]. 
However, the aspect of short-term and long-term stability of this type of material is still a big 
challenge relating to ambient conditions [13].  
 It is also suggested that such systems’ nature of structure and dynamics, for instance, the 
presence of supposed ferroelectric domains responsible for reducing rate of electron-hole pair 
recombination enhances their optoelectronic properties [14] as well as the interaction between the 
molecular cation and the inorganic framework [15], all impact upon the photovoltaic performance 
of these very materials. Thus, many researchers have recently attempted to understand these 
fundamentally structural and motional behaviours that lead to the development of this class of 
materials towards devices. 
 Solar cell based on HOIPs, named Formamidinium lead iodide–𝐻𝐶(𝑁𝐻2)2𝑃𝑏𝐼3 or FAPI 
hereafter, has latterly displayed more than 20% of power conversion efficiency which draws 
attention from many conventional silicon solar cell researchers and delivers marvellous prospects 
for commercialisation in the near future [16], FAPI, the sister compound of Methylammonium 
lead iodide or MAPI, exhibits 1.41 eV bandgap energy that is far better matched to solar spectrum 
than that of MAPI [17]. 
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 There has been a myriad of experiments on the synthesis, structure, and phase transitions 
of FAPI systematically conducted by Stoumpos et al. [18]. The material adopts a non-perovskitic 
structure, hexagonal yellow phase (𝛿 − 𝐹𝐴𝑃𝐼), in the space group of 𝑃63𝑚𝑐  at low temperature, 
whereas its cubic structure is generally formed at higher temperature. Nevertheless, by obtaining 
data from the single crystal X-ray diffraction, Weller et al. have strongly confirmed that FAPI 
crystallises at room temperature as a cubic phase (𝛼-phase) [19]. Moreover, atomic positions of 
FAPI investigated by using Neutron power diffraction reveals that the trigonal planar 
𝐻𝐶(𝑁𝐻2)2

+or the FA cation lies in the central mirror plane of the unit cell where it orientates 
over 12 equivalent sites so that the 𝐶 − 𝐻 bond is directed into a cubic face [19]. In addition, 
FAPI was observed to have a thermal hysteresis for the cubic-to-hexagonal phase transition and 
was also demonstrated that FAPI can be kinetically trapped and remains in a meta-stable state, 
namely cubic state, upon temperature quenching from 400 K down to 8.2 K [20]. It was 
additionally reported that the FA cation randomly reorients over 480 sites [20] instead of 12 sites 
as previously suggested by Weller et al. [19].  
 As extensively mentioned above, not only has there been a plethora of evidences 
supporting the existence of the molecular dynamics of the FA cation in FAPI, but also does the 
investigation into effects of diverse orientations of the organic molecule on the well-known 
HOIPs, MAPI, which reported that MAPI exhibits indirect bandgaps owing to the effect of strain 
induced by interaction between the organic molecular orientations and the inorganic framework, 
i.e. 𝑃𝑏𝐼6 [21]. Apart from experimental results, many calculations regarding the rotational effects 
of  𝐶𝐻3𝑁𝐻3

+on MAPI have been made [22, 23] and revealed Rashba Splitting causing an indirect 
bandgap in HOIPs [24]. Because of these phenomena, the effect of the organic molecule’s 
arrangements must play a crucial role in structural stability and other physical properties of these 
hybrid materials.  
 The objectives of this thesis is to use the Ab initio calculations based on the state-of-the-
art density functional theory (DFT) [25] to investigate effects of the FA cation on cubic FAPI, 
together with applying rigid flips through Euler’s rotation on the organic molecule. The energy 
landscape schemes accounting for the FA cation’s different orientations will be elucidated as well 
as the electronic band structures.    
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2. THEORETICAL BACKGROUND 
 
In this chapter, extensively, all theoretical background employed in this thesis are discussed. In 
Section 2.2, the major technique used in this work, the so-called “Density Functional Theory”, 
will be covered in detail. 
 

2.1 Many body problems 
With the help of quantum mechanics, one is able to describe the microscopic properties of 
condensed matters by solving the well-known time-dependent Schrödinger equation. Yet for 
many body problems, since systems in reality always contain a large number of atoms 
(~1023 atoms ), to solve for the exact solution of such systems are cumbersome and almost 
impossible at the moment. The time-independent Schrödinger equation in Hartree atomic units is 
given by; 

ℋ̂Ψ(𝒓1, 𝒓2, … , 𝒓𝑁𝑒
, 𝑹1, 𝑹2, … , 𝑹𝑁𝑛

) = 𝐸Ψ(𝒓1, 𝒓2, … , 𝒓𝑁𝑒
, 𝑹1, 𝑹2, … , 𝑹𝑁𝑛

), (2.1) 

where �̂� is the Hamiltonian of the many-body system,  

ℋ̂ = −
1

2
∑ 𝛻𝑖

2 −
1

2
∑

1

𝑀𝐼
𝛻𝐼

2 − ∑
𝑍𝐼

|𝒓𝑖 − 𝑹𝐼|
𝑖,𝐼

+
1

2
∑

1

|𝒓𝑖 − 𝒓𝑗|
+

1

2
∑

𝑍𝐼𝑍𝐽

|𝑹𝐼 − 𝑹𝐽|
𝐼≠𝐽𝑖≠𝑗

𝑁

𝐼=1

𝑛

𝑖=1

 (2.2) 

 
The small and capital letters denote electron and nuclei, respectively. The first two terms on right-
hand side of Eq. (2.2) are the kinetic energy of electrons and of the nuclei, respectively, where 𝑀𝐼 
represents the mass of the nucleus at site 𝐼 . The following three terms are responsible for 
Coulomb interactions of electron-nucleus, electron-electron, and nucleus-nucleus, respectively, 
since both electrons and nuclei are electrically charged particles. The vector 𝒓𝑖  denotes the 
position of electron at site 𝑖, whereas 𝑹𝐼  and 𝑍𝐼 refer to the position and the charge number of the 
nucleus at site 𝐼, respectively.  
 According to the Born-Oppenheimer approximation [26], the effect from nuclei in 
electronic problem can be omitted at this point, since the nuclei are much heavier than the 
electrons, so they move more slowly. In other words, to the electrons the ions are essentially 
stationary. Therefore, the kinetic term accounting for the nuclei is separated, and the nucleus-
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nucleus interaction term becomes a constant which will as well be taken into consideration 
separately. The problem now to be solved is the Schrödinger equation for electrons, which can be 
written as 

ℋ̂𝑒Ψ𝑒(𝒓, 𝑹) = 𝐸𝑒Ψ𝑒(𝒓, 𝑹) , (2.3) 

where 

ℋ̂ = −
1

2
∑ 𝛻𝑖

2 − ∑
𝑍𝐼

|𝒓𝑖 − 𝑹𝐼|
𝑖,𝐼

+
1

2
∑

1

|𝒓𝑖 − 𝒓𝑗|
𝑖≠𝑗

𝑛

𝑖=1

 , (2.4) 

where Ψ𝑒(𝒓, 𝑹) and 𝐸𝑒  are the electron wave function and eigenvalues, respectively. 
So far the number of variables in the 𝑁𝑒-body wave function has been reduced to 3𝑁𝑒 , 

yet it is still problematic for solving Eq. (2.3). That being said, the many-electron wave function 
can be purely obtained from a product of single-electron wave function as proposed by Hartree in 
1928 [27]. However, this theory fails to describe the true nature of electronic properties due to the 
violation of the anti-symmetry of the wave function–electrons are fermions–which in turn 
implicitly lifts the ground state energy. An improvement from Hartree theory is known as the 
Hartree Fock (HF) theory [28]. In the HF theory, the HF wave function was proposed as a 
determinant of many single-electron wave functions named “Slater determinant”, explicitly 
including the anti-symmetry of the wave function. 

Ψ𝐻𝐹 =
1

𝑁!
𝑑𝑒𝑡 (

𝜓1(𝒓1) 𝜓2(𝒓1)
𝜓1(𝒓2) 𝜓2(𝒓2)

⋯
𝜓𝑁(𝒓1)
𝜓𝑁(𝒓2)

⋮ ⋱ ⋮
𝜓1(𝒓𝑁) 𝜓2(𝒓𝑁) ⋯ 𝜓𝑁(𝒓𝑁)

) (2.5) 

Although the total energy calculated employing HF theory is theoretically lower than that 
obtained from Hartree method, the energy is still higher than the exact one. It is also worth noting 
that the difference of energies calculated with the Hartree and HF methods is the “exchange 
energy”, whereas it is called the “correlation energy” when being the difference between the 
energy calculated with HF method and the true ground state, see Figure 1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

 
Figure 1: The diagram describing energies theoretically calculated with various methods 

 

By the way, the HF theory has various drawbacks, for instance, it is not suitable for systems 
containing a large number of electrons owing to the consumption of huge memory resources and 
expensive computational costs. Fortunately, enough, the density functional theory (DFT) is 
introduced as a hopeful and appropriate tool with which one is allowed to solve the many-electron 
problems. In the followings, a description of this reliable method will be discussed. 
 

2.2 Density functional theory 
The Density functional theory (DFT), first proposed in the year of 1964 by P. Hohenberg and W. 
Kohn [25], is one of most popular and successful approach in investigating ground-state energies 
and electronic structures accounting for many-body quantum systems. Despite being the exact 
method, it needs, in principle, some approximations for exchange-correlation functionals. In the 
followings, a description of the DFT will be discussed in detail. 

2.2.1 The Hohenberg-Kohn theorems 
Hohenberg and Kohn formulated two theorems that has been known to be the starting point of the 
DFT. The two theorems are stated [25] as follows: 
Theorem I: For any system of interacting particles in an external potential 𝑉𝑒𝑥𝑡(𝒓),  there is a one-
to-one correspondence between the external potential and ground-state density, 𝑛(𝒓). In addition, 
the ground-state expectation value of any observable quantity 𝐴  is a unique function. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

< Ψ|�̂�|Ψ > = 𝐴[𝑛0(𝒓)]  , (2.6) 
The theorem implies that the density parameter is the only variable being taken into account for 
DFT instead of the wave function for Hartree-Fock theory. 
Theorem II: For an arbitrarily external potential applied to an interacting system, it is feasible to 
exactly define a universal total energy functional of the particle density, which is given as, 

ℰ[𝑛(𝒓)] = 𝐸𝐻𝐾[𝑛(𝒓)] + ∫ 𝑉𝑒𝑥𝑡(𝒓) 𝑛(𝒓)𝑑𝒓, (2.7) 

where 𝐸𝐻𝐾  is the universal constant that does not completely relate to any information of any 
types of nuclei or their positions. This hereby means it is considered as an arbitrarily universal 
constant for the interacting system, yet it is unknown. Assuming the constant is given, the ground-
state energy can be determined by minimising total energy with respect to density with an 
employment of the variational principle, 

𝛿ℰ[𝑛(𝒓)]

𝛿𝑛
|

𝑛=𝑛0

= 0. (2.8) 

The exact ground-state energy, ℰ0, corresponding to the ground-state density 𝑛0(𝒓)  is given by  
ℇ0 = ℇ[𝑛0(𝒓)] ≤ ℇ[𝑛(𝒓)]. (2.9) 

 

2.2.2 Self-consistent Kohn-Sham equation 
According to the Hohenberg-Kohn theorem, the density parametre is used as the main quantity 
for calculating all observables. In the year of 1965, Kohn and Sham proposed a brand new 
Schrödinger-like equation, namely “Kohn-Sham equation”, as a function of density [29]. One can 
employ the electron density 𝑛(𝒓) as a basic variable in lieu of solving for many-electron wave 
function Ψ𝑒  in Eq. (2.3). The energy functional is given as, 

ℰ[𝑛(𝒓)] = 𝑇0[𝑛(𝒓)] +
1

2
∫ ∫

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ + ∫ 𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 + 𝐸𝑥𝑐[𝑛(𝒓)]. (2.10) 

The first term on the right-hand side is non-interacting kinetic energy functional, responsible for 
all electrons in the system. The second term arises from the electron-electron interaction, known 
as Hartree energy.  As for the third term, the external potential energy is due to nuclei and the 
inner shells’ electrons. Finally, the last term is nothing but the exchange-correlation energy. 
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Within the Kohn-Sham scheme, the particle density 𝑛(𝒓)  of the system with non-interacting 
particles can be obtained as  

𝑛(𝒓) = ∑|Ψ𝑖
𝐾𝑆(𝒓)|

2
=

𝑁

𝑖=1

∑ Ψ𝑖
∗𝐾𝑆(𝒓) Ψ𝑖

𝐾𝑆(𝒓)

𝑁

𝑖=1

. (2.11) 

 The total energy in Eq. (2.10) is blatantly the functional of 𝑛(𝒓) and/or  Ψ𝑖(𝒓). Thus the ground-
state energy can be obtained by minimising ℰ[𝑛(𝒓)] with respect to the density in accordance with 
Eq. (2.9). The energy minimisation can be achieved by adopting the Euler’s equation with a 
Lagrange multiplier (𝜆𝑖), see Appendices for a rigorous derivation. For now, the Kohn-Sham 
orbital (in atomic unit) is written as 

[−
∇𝑖

2

2
+ 𝑉𝑒𝑓𝑓(𝒓)] Ψ𝑖

𝐾𝑆(𝒓) = ℰ Ψ𝑖
𝐾𝑆(𝒓), (2.12) 

where the effective potential is given by  

𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻[𝑛(𝒓)] + 𝑉𝑥𝑐[𝑛(𝒓)], (2.13) 

with 

𝑉𝐻[𝑛(𝒓)] = ∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ 

and  

𝑉𝑥𝑐[𝑛(𝒓)] =
𝛿𝐸𝑥𝑐[𝑛(𝒓)]

𝛿𝑛
. 

 

The Kohn-Sham equation allows one to investigate complex quantum systems by completely 
mapping an interacting system into a fictitious no-interacting system in which the particle is 
dwelling. Note that, the Kohn-Sham orbital, Ψ𝑖

𝐾𝑆(𝒓), is not the wave function of the system, the 
density obtained from the Kohn-Sham orbitals, however, is the exact density of the true system. 

To solve the Kohn-Sham equation, described by flowchart in Figure 2, firstly, the initial 
value of the density is guessed in order to obtain the effective potential. Secondly, the equation is 
solved to output the total energies and the Kohn-Sham orbitals. Afterwards, the new density is 
subsequently obtained from the just-calculated Kohn-Sham orbitals and then used for next step. 
This iterative process runs self-consistently until the convergence criterion of density is fulfilled. 
Finally, the output quantities, e.g. band structures and density of states, are calculated via the 
converged density. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

  In Eq. (2.13), the first two terms, 𝑉𝑒𝑥𝑡(𝒓) and 𝑉𝐻(𝒓), are able to be exactly evaluated, 
whereas the last term, 𝑉𝑥𝑐[𝑛(𝒓)], is still unknown, which must be modelled. The exchange-
correlation potential, 𝑉𝑥𝑐[𝑛(𝒓)], contains all unknown information–all the quantum mechanical 
and explicit many-body effects.   

As for the conventional exchange-correlation functions, there are two types of well-known 
methods, namely the Local Density Approximation (LDA) and the Generalised Gradient 
Approximation (GGA).  

 Local Density Approximation (LDA): By far the simplest way to derive 𝐸𝑥𝑐[𝑛] is 
the scheme called the local density approximation, wherein the exchange-correlation 
functional is directly derived from the homogeneous electron gas [30]. The method 
works quite efficiently for slow varying density, e.g. free electron-gas-like systems. 
Practically, LDA approximates 𝐸𝑥𝑐[𝑛]  by assuming the exchange-correlation energy 
density, 𝜖𝑥𝑐

𝐿𝐷𝐴[𝑛(𝒓)], at any point 𝒓 in space is of the same form as the homogeneous 
electron gas, 𝜖𝑥𝑐

ℎ𝑜𝑚[𝑛(𝒓)], which has been profoundly studied adopting Green’s-function 
Monte Carlo method [31]. The proposed approximation is thus given by 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝒓)] = ∫ 𝑛(𝒓) 𝜖𝑥𝑐

ℎ𝑜𝑚[𝑛(𝒓)] 𝑑𝒓. (2.14) 

Nevertheless, it is conventionally not appropriate in using LDA in many cases, for 
instance, in the case of rapidly-varying density systems–more complex systems. 

 Generalised Gradient Approximation (GGA) 
In real systems, mostly, the electron density is unlikely to be homogeneous and it is 
therefore impractical for LDA scheme to be applied in many cases. There are, 
nevertheless, many attempts to improve the LDA by considering higher-order terms of 
the exchange-correlation energy. Consequently, not only is the electron density, 𝑛(𝒓), 
included in the exchange-correlation energy, but the gradient of density, ∇𝑛(𝒓), is also 
taken into account, which is expressed as 

𝐸𝑥𝑐
𝐺𝐷𝐴[𝑛(𝒓)] = ∫ 𝑛(𝒓)𝜖𝑥𝑐[𝑛(𝒓), ∇𝑛(𝒓)] 𝑑𝒓. (2.15) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

 
Figure 2: Schematic diagram for solving self-consistent Kohn-Sham equation 

   

2.2.3 The secular equation 
In order to solve for the Kohn-Sham equation, the method for obtaining the solutions is described 
as follows: Firstly, the Kohn-Sham orbitals are expressed as a linear combination of arbitrary 
basis function, 

Ψ𝑛(𝒓) = ∑ 𝐶𝑖
𝑛𝜑𝑖(𝒓)

𝑄

𝑖=1

, (2.16) 

 
where 𝐶𝑖

𝑛  are sets of coefficients and 𝑄 → ∞ ; practically, however, 𝑄  is always set to be as 
possibly large as to increase a degree of accuracy of the Kohn-Sham orbitals. Subsequently, the 
Kohn-Sham orbitals are substituted into the Kohn-Sham equation, Eq. (2.12), as follows: 
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∑ 𝐶𝑖
𝑛 [−

∇𝑖
2

2
+ 𝑉𝑒𝑓𝑓(𝒓)] 𝜑𝑖(𝒓) = ∑ 𝐶𝑖

𝑛ℰ𝑖𝜑𝑖(𝒓)

𝑄

𝑖=1

𝑄

𝑖=1

 (2.17) 

 
Next, Eq. (2.17) is multiplied by the complex conjugate of the basis function, 𝜑𝑗

∗(𝒓) , and 
integrated over all space, written as 

∑ 𝐶𝑖
𝑛 ∫ 𝜑𝑗

∗(𝒓) [−
∇𝑖

2

2
+ 𝑉𝑒𝑓𝑓(𝒓)] 𝜑𝑖(𝒓) 𝑑𝒓 = ∑ 𝐶𝑖

𝑛ℰ𝑖 ∫ 𝜑𝑗
∗(𝒓) 𝜑𝑖(𝒓)𝑑𝒓.

𝑄

𝑖=1

𝑄

𝑖=1

 (2.18) 

Eq. (2.18) can be viewed as a matrix form, where the integral on the left-hand side is represented 
as the Hamiltonian matrix, ℋ, and the overlap matrix, 𝕆, being on the right-hand side. Now it 
can thus be written as 

ℋ𝒞 = ℰ𝕆𝒞, (2.19) 

which is known as the “secular equation”. The Hamiltonian matrix and the overlap matrix are the 
𝑄 × 𝑄 dimensional matrices. This eigenequation can be solved using several methods. And, lastly, 
the 𝑄 eigenvalues and the 𝑄 sets of eigenfunctions are obtained and they are used as primary 
inputs for determining further interested quantities. 
 

2.2.4 Techniques of calculation in DFT 
2.2.4.1 Plane wave basis set 
In solid, there are a variety of defects causing difficulties in solving the Kohn-Sham equation of 
real solid. If one considers only a periodic solid, invariant under translational and rotational 
symmetries, this complex problem can be simplified by exploiting Bloch theorem [32]. In Bloch 
theorem, the electron wave function being the solutions of the Schrödinger equation is plane 
waves multiplied with a periodic function 𝑢𝑘

𝑛(𝒓) as 

Ψ𝒌
𝑛(𝒓) = 𝑢𝑘

𝑛(𝒓) 𝑒𝑖𝒌∙𝒓 , 
(2.20) 

where 𝒌 is a wave vector and 𝑛 is a band index. The wave function and energy eigenvalue must 
fulfil these conditions: 

ℰ(𝐤) = ℰ(𝐤 + 𝐆) , (2.21) 

Ψ𝒌
𝑛(𝒓) = Ψ𝒌+𝑮

𝑛 (𝒓), (2.22) 
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with 𝑮 being the reciprocal lattice vector. Consequently, the maximum value of 𝑮, 𝑮𝑚𝑎𝑥 , is 
related to the kinetic cutoff energy by the expression: 

ℰ𝑚𝑎𝑥 =
ℏ2𝑮𝑚𝑎𝑥

2

2𝑚
 . (2.23) 

As for the periodic function, it is defined as a summation over plane wave sets, 

𝑢𝑘
𝑛(𝒓) = ∑ 𝐶𝑗

𝑛(𝒌)𝑒𝑖𝑮𝑗∙𝒓

𝑗

 . (2.24) 

By plugging Eq. (2.24) into Eq. (2.20), the volumetric normalised electron wave function is 
conclusively written as 

Ψ𝑘
𝑛(𝒓) =

1

√𝑉
∑ 𝐶𝑗

𝑛(𝒌)𝑒𝑖(𝒌+𝑮𝑗)∙𝒓

𝑗

 . (2.25) 

  

2.2.4.2 The PAW pseudopotential method 
The Projected Augmented Wave or PAW method was adopted throughout the work. This 

method was methodically adopted from the augmented plane wave method by separating the 
wave function into two parts: partial wave expansions inside the sphere and envelope function 
outside the sphere [33]. The envelope function must be differentiable and totally matched at the 
sphere boundary. Since having countless number of partial waves close to the atomic core, the all-
electron wave function, 𝛹, is in turn mapped into a fictitious smooth function which is known as 
auxiliary wave function, Ψ̃, consisting of a smaller number of the partial wave basis. Within the 
sphere of volume Ω𝑅, each of the wave function and the fictitious smooth wave function can be 
expanded as a linear combination of the partial wave basis set: 

 
|Ψ(𝐫)⟩ = ∑ 𝑎𝑖𝑖 |𝜙𝑖(𝐫)⟩ ,  inside ΩR (2.26) 

and  

|Ψ̃(𝐫)⟩ = ∑ 𝑏𝑖𝑖 |𝜙�̃�(𝐫)⟩  ,  inside Ω𝑅. (2.27) 

whereas the all-electron partial wave and the auxiliary partial wave outside the sphere are 
identical: 
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𝜙𝑖(𝐫) = �̃�𝑖(𝐫).  outside Ω𝑅 (2.28) 

The all-electron partial wave is the solution solved from the radial Schrödinger equation for an 
isolated atom and the auxiliary wave function can be chosen from the all-electron partial wave 
that match the all-electron partial wave outside the sphere. Accordingly, the all-electron wave 
function and the auxiliary wave function are connected via the transformation operator, 𝜏. 

|Ψ⟩ = 𝜏|Ψ̃⟩ , (2.29) 

the transformation operator can be defined as 

𝜏 = �̂� + ∑ 𝑆𝑅

𝑅

. (2.30) 

As defined in Eq. (2.30), the transformation operator can generally be obtained by combining the 
identity operator (�̂�) with a sum of the atomic contribution (𝑆𝑅) at each particular site 𝑅. The atomic 
contribution reflects the difference between all-electron partial wave and the auxiliary partial 
wave, that is to say, 

𝑆𝑅|𝜙�̃�⟩ = |𝜙𝑖⟩ − |𝜙�̃�⟩ . (2.31) 

Now the new operator needed to be defined: |𝑃�̃�⟩ as the projector operator expressing the local 
character of a wave function in the atomic region [34]. The operator is bound to be orthonormal to 
the smooth partial wave basis set,  

⟨P̃𝑚|�̃�𝑛⟩ = 𝛿𝑚𝑛 . 

By using the mentioned property, the smooth wave function can be written as  

|Ψ̃⟩ = ∑|𝜙�̃�⟩ ⟨𝑃�̃�|Ψ̃⟩

𝑖

. 
(2.32) 

By applying Eq. (2.30) into (2.32), we have 

|Ψ⟩ = (�̂� + ∑(|𝜙𝑖⟩ − |𝜙�̃�⟩)⟨P̃𝑖| 

𝑖

) |Ψ⟩ . (2.33) 

As a result, the transformation operator in also written as 

𝜏 = �̂� + ∑(|𝜙𝑖⟩ − |𝜙�̃�⟩)⟨P̃𝑖| 

𝑖

. (2.34) 

Now consider an arbitrary operator represented as 𝐴, the expectation value of 𝐴: 
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⟨𝐴⟩ = ∑ 𝑓𝑛⟨Ψ𝑛|𝐴|Ψ𝑛⟩

𝑛

 , 
 

⟨𝐴⟩       = ∑ 𝑓𝑛⟨Ψ𝑛|𝜏†𝐴𝜏|Ψ𝑛⟩

𝑛

 . (2.35) 

The occupation number is denoted by 𝑓𝑛 . To apply the PAW approach to the Kohn-Sham 
equation, this very equation can be rearranged as 

(ℋ̃ − ℰ�̃�)|Ψ̃⟩ = 0 , (2.36) 

where ℋ̃ = 𝜏†ℋ𝜏 and �̃� = 𝜏†𝜏 operators are represented as pseudo-Hamiltonian and overlap matrix, 
respectively 
 

2.2.4.3 Cutoff energy and k-point mesh 
The reciprocal space, known as 𝒌 -space, represents the Fourier transform of the repetitive 
periodic lattice in the real space. In this work, the Kohn-Sham equation is solved within 
reciprocal space using plane waves for basis sets. The infinite number of the plane-wave basis 
sets in Eq. (2.25) gives the exact solution of the Kohn-Sham equation. It is, nevertheless, 
impossible to evaluate the exact solution due to limited computational resources. Therefore, the 
limited yet suitable number of plane-wave basis sets, as proposed by Monkhorst and Pack [35], is 
conditioned by the kinetic cutoff energy, 𝐸𝑐𝑢𝑡, which is defined through the maximum value of 
the reciprocal lattice vector, 𝑮𝑚𝑎𝑥. Now the kinetic energy cutoff is written as 

𝐸𝑐𝑢𝑡 ≤
ℏ2

2𝑚
|𝒌 + 𝑮𝑚𝑎𝑥|2 . (2.37) 

The larger the number of the kinetic cutoff energies and the 𝑘-points, the more accurately the 
energy is evaluated; it also requires more computational resources.  

2.2.5 Geometry optimisation 
The geometry optimisation is the process of finding an arrangement in space of crystal structures 
where they are of minimum energies [36]. The considered structure is relaxed so that the net 
interatomic force on each atom is satisfactorily close to zero the atomic positions are stationary 
points. However, in DFT, the temperature is not taken into account, the system in contact with 
any value of pressure and 𝑇 = 0 𝐾 reservoirs prefers the minimum enthalpy, as given, 
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ℋ = 𝐸 + 𝑃Ω. . (2.38) 

The strain components are of 9 dimensions, together with 3𝑁 , thus the enthalpy is now of the 
functional of (9 + 3𝑁)-dimensional space: 

ℋ = ℋ(𝜖, 𝒓1, 𝒓2, 𝒓3, … , 𝒓𝑁) . (2.39) 

The first derivative of the enthalpy with respect to the coordinates of atoms, 𝑋𝑖, gives rise to the 
force vector, which is written as 

𝐹 = −
𝜕ℋ

𝜕𝑋
|

𝑃
 . (2.40) 

The variation of enthalpy around the minimum 𝑋𝑚𝑖𝑛 is defined as  

𝛿ℋ =
1

2
(𝑋 − 𝑋𝑚𝑖𝑛) ∙ 𝐵(𝑋 − 𝑋𝑚𝑖𝑛) , (2.41) 

where 𝐵  denotes the Hessian matrix. The quasi-Newton method [36] being used to 
simultaneously relax lattice parameters and the internal coordinates of crystals under pressure 
helps search for the 𝑋𝑚𝑖𝑛 from the force in one relaxation step. The 𝑋𝑘 is improve to obtain 𝑋𝑚𝑖𝑛 
through the equation 

∆𝑋𝑘 = 𝐻𝑘𝐹𝑘 , (2.42) 

where 𝐻 = 𝐵−1 . Despite 𝐻0  being unknown, it can be speculated and updated by the BFGS 
method [37]. When  𝑋  reaches its minimum, the crystal structure then satisfies the external 
pressure and it also has the minimum enthalpy which is evaluated through the aforementioned 
algorithm. 
 

2.2.6 Electronic band structure 
The solution of the Kohn-Sham equation, Eq. (2.12), outputs the ground-state wave function, 
𝛹𝒌

𝑛(𝒓), and is also corresponding to the Hamiltonian of the system. Then, the electronic properties 
of the system are obtained by evaluating the expectation values of the total energy responsible for 
any 𝒌-vector, which is given by 

⟨Ψ𝑛𝒌′|ℋ̂|Ψ𝑛𝒌⟩ = 𝜖𝑛𝒌𝛿𝒌𝒌′ . 
(2.43) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

After obtaining energies corresponding to each value of 𝒌 , the electronic band structure is 
determined by plotting this set of energy eigenvalues along the high symmetry points in the first 
Brillouin zone. 
 

2.2.7 Density of states 
The density of states (DOS) describes the number of states which are available to be occupied by 
the system at each level of energy. It is mathematically interpreted as a distribution via a 
probability density function. The DOS for a given 𝑛𝑡ℎ-energy level, 𝑔(휀), is expressed as 

𝑔𝑛(휀) = ∫
𝑑𝒌

4𝜋3 𝛿(휀 − 휀𝑛(𝒌)), (2.44) 

where the integral is all over any primitive cell, 휀𝑛(𝒌) denotes the energy eigenvalue accounting 
for the 𝑛𝑡ℎ-energy level. In the same manner, the partial density of states (pDOS) corresponds to 
the projection of any particular orbital of the particular atom on the density of states. 
 

2.2.8 Spin-orbit interaction  
In hydrogen-like atoms, the central potential, as neglecting spin, suitable for the valence electron 
is no longer of the pure Coulomb form. Since the electrostatic potential, ∅(𝑟), presenting in  

𝑉𝑐(𝒓) = 𝑒∅(𝒓) 
(2.45) 

is no longer due only to the nucleus of the electric charge |𝑒|𝑍; the cloud of negatively charged 
electrons in the inner shells must be taken into account. Electrostatically, this results from the fact 
that the higher angular momentum states are more susceptible to the repulsion due to the electron 
cloud. Now the valence electron experiences the electric field 

𝑬 = − (
1

𝑒
) ∇𝑉𝑐(𝒓). (2.46) 

Nevertheless, electrodynamically, a moving charge subjected to an electric field feels an effective 
magnetic field given by 

𝑩𝑒𝑓𝑓 = − (
𝑣

𝑐
) × 𝑬. (2.47) 

And since the electron has a magnetic dipole moment, 𝝁 = 𝑒𝑺 𝑚𝑒𝑐⁄ . By plugging Eqs. (2.45) and 
(2.46) into the Hamiltonian of the dipole, this gives rise to the following interaction energy: 
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𝐻𝑆𝑂𝐶 = −𝝁 ∙ 𝑩𝑒𝑓𝑓 =
1

2𝑚𝒆
𝟐𝑐𝟐

1

𝑟

𝑑𝑉𝑐

𝑑𝑟
(𝑳 ∙ 𝑺).. (2.48) 

A factor of 2 is corrected in order that the energy includes the precession of the electron’s spin 
moment, which is relativistic effect when in the absence of an external magnetic field. The 
rigorous derivation, however, is traced back to the original work proposed by L. H. Thomas [38]. 
The SOC Hamiltonian, 𝐻𝑆𝑂𝐶 , will  be added in the Kohn-Sham equation, Eq. (2.12), as a 
correction term in order to precisely evaluate the system’s total energies and the electronic band 
structures. 

2.3 Hybrid organic-inorganic perovskites (HOIPs)  
Materials with the formula 𝐴𝐵𝑋3, wherein situates cations 𝐴 and 𝐵 including an anion 𝑋, are 

called perovskites. The ideal crystal structure of perovskite, as illustrated in Figure 3, consists of a 
corner-sharing tetrahedral cage, 𝐵𝑋6, with a linear 𝐵 − 𝑋 − 𝐵 bond and 𝐴 ions in the interstitial 
positions [39].  

 
Figure 3: The crystal structure of perovskite: ABX3 

 

As for the hybrid organic-inorganic perovskites, 𝐴 happens to be a monovalent organic cation [3]. 
The synthesis and the determination of crystal structure of 𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3 was first reported by 
Weber [5], the usage of HOIPs in optoelectronic devices subsequently happened [7], while the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 

power conversion efficiencies accounting for the HOIP solar cell were 4% and 20% for the year 
of 2009 and 2015, respectively [7-9]. These fascinating performances of HOIPs have thus 
stimulated bunches of HOIP-related research to be proliferating until now. 
 

 
Figure 4: The crystal structure of HOIP 

 
In this work, Formamidinium lead iodide, 𝐻𝐶(𝑁𝐻2)2𝑃𝑏𝐼3  or FAPI, was systematically and 
thoroughly investigated. FAPI adopts a non-perovskitic structure, hexagonal yellow phase (𝛼-
FAPI), in the space group P63mc at low temperature, whereas its cubic structure depicted in 
Figure 4 is formed at higher temperature [18], it however was demonstrated that FAPI can be 
kinetically trapped and remained in a meta-stable state, namely cubic state, upon temperature 
quenching from 400 K to 8.2 K [20]. Thus, we are solely focusing on the investigation of the 
physical properties of 𝛼-FAPI. The 𝑃𝑚3̅𝑚 structure of 𝛼-FAPI, shown in Figure 5(a), with an 
experimentally reported lattice constant of 3.3613 Å  [19]. The organic molecule, the 
Formamidinium (FA) cation, lies in the central mirror plane of the unit cell, wherein it randomly 
reorients over 480 possible sites as suggested by Chen et al. [20] .  
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Figure 5: the cubic structure of FAPI (a). The relaxed structure of FAPI (b).  

 

2.4 Eulerian angles 
To transform one coordinate system to another can be represented by a matrix equation of the 
form 

𝒓′ = 𝝀𝒓 

The fixed system is identified with 𝒓 and the rotated system with 𝒓′, then the rotation matrix 𝝀 
entirely describes the relative orientation of the two systems. The rotation matrix can be obtained 
by the following series of rotations (See Figure 5): 
 The first rotation is anticlockwise through an angle 𝜙  about the 𝑐 -axis, with the 

transformation matrix 

𝝀𝜙 = (
cos 𝜙 sin 𝜙 0

− sin 𝜙 cos 𝜙 0
0 0 1

) (2.49) 

 The second rotation is anticlockwise through an angle 𝜃  about the 𝑎′ -axis, with its 
transformation matrix 

𝝀𝜃 = (
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

) (2.50) 
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 The third rotation is also anticlockwise through an angle 𝜓  about 𝑐′ -axis, with its 
transformation matrix  

𝝀𝜓 = (
cos 𝜓 sin 𝜓 0

− sin 𝜓 cos 𝜓 0
0 0 1

) (2.51) 

 Finally, the new–rotated–coordinate system is evaluated by this equation 

𝒓′ = 𝝀𝜓𝝀𝜃𝝀𝜙𝒓  

(
𝑥′
𝑦′

𝑧′

) = (
cos 𝜓 sin 𝜓 0

− sin 𝜓 cos 𝜓 0
0 0 1

) (
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

) (
cos 𝜙 sin 𝜙 0

− sin 𝜙 cos 𝜙 0
0 0 1

) (
𝑥
𝑦
𝑧

) (2.52) 

 
In this work, the Eulerian angles method is applied in the FA cation–the organic molecule in 
order to determine the energy landscapes corresponding to each orientation of the FA cation.  
 

 
Figure 6: Eulerian angles geometrical definition. The fixed system is shown in black, the rotated 
system is shown in red. The nodal line (N) is shown in blue 
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3. CALCULATION DETAILS 
 

In this work, the total energies accounting for each orientation of the FA cation were numerically 
calculated. The energy landscapes were to be presented, and the possible lowest energy 
orientation(s) is/are identified and used to evaluate the corresponding electronic band structures 
and density of states.  

To make these processes possible, Quantum Espresso Package [40] had been used to 
investigate the physical properties of FAPI. The fully unconstrained noncollinear magnetism 
within the projector augmented wave method was used [41] to describe the core and valence 
electrons, the relaxation algorithm of atoms and lattice parameters used in this work is Broyden-
Fletcher-Goldfarb-Shanno algorithm [37] with a force/atom tolerance equal to 0.001 Hartree/Bohr. 
The GGA method developed by Perdew-Burke-Ernzerhof (PBE) [42] has been selected. Since 
this system consists of 𝑃𝑏  atoms, the spin-orbit coupling and fully relativistic effects are 
undeniably to be taken into account [43]. The spin-orbit coupling (SOC) [44] was applied to 
determine the total energy, optimised structures, and the density of states. To precisely evaluate 
physical quantities with the aid of DFT, the convergence test needs to be achieved systematically.  

 

3.1 Convergence test of FAPI 
The convergence tests are crucial in setting the limits of accuracy of the total ground –state 

energy of the system. The parameters needing to be varied are the kinetic cutoff energies and the 
k-point meshes. With both GGA functional, the conditions for the self-consistent field calculation 
are set to the total energy tolerance change of less than 6 × 10−6  Ry/atom, as the same value as of 
the calculated geometry optimisation.  

The cubic structure of FAPI was optimised by the condition: the internal atoms are allowed to 
relax, while the shape and volume of 1737.1377 a.u.3 are kept fixed in order to be consistent with 
the experimentally reported value. There are two schemes of convergence test of FAPI. First, the 
k-point mesh of 4x4x4 was selected and kept as a fixed parameter, then the cutoff energies 
starting from 30 to 100 Ry were varied, and each of the calculated total energies corresponding to 
each of cutoff energies were then plotted in Figure 7, the energies abruptly decreases during the 
cutoffs from 30 to 70 Ry, the energies nearly maintain the same level of -2099.42 Ry, thus the 
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cutoff energy cutoff of 80 Ry was selected, since the more of other values give no difference in 
evaluating total energy of this system; the difference of cutoff energies between 80 and 90 Ry is 
𝟏. 𝟐𝟓 × 𝟏𝟎−𝟓 𝑹𝒚  or 𝟎. 𝟏𝟕 𝒎𝒆𝑽, which is technically tolerable.        

 
Figure 7: The relationship between the total energies and the cutoff energies when k-point is fixed 
at the value of 4x4x4 

 
Figure 8: The relationship between the total energies and the k-point meshes when cutoff is fixed 
at the value of 80 Ry 
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Second, likewise, the cutoff energy of 80 Ry was selected and kept as a fixed parameter, then 
the k-point meshes starting from 4 × 4 × 4 to 10 × 10 × 10 were varied and plotted in Figure 8, 
the energy profile slightly fluctuates at first, but it tends to remain stable at 8 × 8 × 8 onwards, the 
difference of energies between the k-point meshes of 8 × 8 × 8 and 9 × 9 × 9 is 𝟏. 𝟎 × 𝟏𝟎−𝟓 𝑹𝒚 or 
0.13 meV, so thus the k-point mesh of 8 × 8 × 8  was accordingly selected. Henceforth, the cutoff 
energy of 80 Ry and k-point mesh of 8 × 8 × 8  were used as input parameters in calculating other 
physical properties of FAPI. 

 

3.2 Relaxed structure of FAPI 
As discussed in the previous section, the structure in the relaxation procedure with 80 Ry of 

cutoff energy and 8 × 8 × 8  k-point mesh will be now called the “relaxed structure”, as depicted 
in Figure 5(b) and Figure 18 in Appendices, consisting of the slightly deviated I atoms, i.e. ~0.03 
Å from their unrelaxed positions, and the slightly shifted FA molecule along the [100] direction. 
As a result, the inversion symmetry is already broken at this stage. This structure will be used as a 
starting point in the energy landscape calculation. 

 

3.3 Euler’s rotation applied to relaxed cubic FAPI 
In order to search for the lowest energy structure of FAPI, the FA cation has no choice but be 

reoriented through the Euler's rotation. As illustrated in Figure 9, the FA cation is planar lying in 
the (002) plane, and polar with its dipole parallel to the C–H bond [45] (Blue arrow in Figure 9). 
In this work, the starting point was chosen such that the dipole moment direction points along the 
a–axis or [100] direction, denoted by the N-axis. Under rotation procedure, the centre of mass of 
the FA cation was set to be the origin of the body axes, so that the displacement of the rigid 
body–the FA cation–involves no translation of the body axes. Thus, the only change is in its 
orientation, and hence the corresponding internal displacements of the atoms in the FA cation 
according to the rotation about the body axes. The three Eulerian angles [46] are to rotate anti-
clockwise. The definition of the Euler's rotation is as follows (see Figure 9(a)); 𝜙 is the angle 
between the N– and the a–axis (see Figure 9(b)), and 𝜃 is the angle between the 𝑏′– and the ab–
plane (see Figure 9(c)), and 𝜓 is the angle between the N– and the 𝑎′–axis (see Figure 9(d)). We 
explicitly set (𝜙 = 0°, 𝜃 = 0°, 𝜓 = 0°) as the starting point.  
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Only in the range of 0° − 90° was preferred to rotate the FA cation through 𝜙, 𝜃 and 𝜓. The 
flips of FA were discretised into 7 turning steps with a 15° step size for each angle of rotation, so 
that the sets of simulation contain 343 samples of orientations–covering a large area of two 
octants of the simulation cell. The remaining areas are just the repetition of nearly equivalent 
points in three dimensional space. After systematically applying the rigid flips to the FA cation, 
the energy calculation without structural relaxation was performed. The total energy of each 
orientation of the FA cation can be viewed as a function of 𝜙, 𝜃 and 𝜓, i.e. 𝐸 ≡  𝐸(𝜙, 𝜃, 𝜓). The 
scattered data accumulated from the total energy calculations were interpolated adopting Renka-
Cline gridding method [47] for plotting the energy landscape. However, it is worth mentioning 
that the order of the Eulerian angles cannot be interchanged. Consequently, the energy landscape 
plots can exactly be viewed as the plots between the energy and the corresponding FAPI 
configuration with the FA orientations specified by 𝜙, 𝜃 and 𝜓 rotations in orderly fashion.  

 
Figure 9: The corresponding Eulerian angles for the organic molecule of FA where C–H axis is 
directed to N–axis (a). First rotation is anti-clockwise through an angle ϕ about the c–axis (b). 
Second rotation is anti-clockwise through an angle θ about the a'–axis 
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4. RESULTS AND DISCUSSIONS 
 

This section carefully describes all processes within this work as follows: First, we 
surveyed the energy landscape in the sample parameter space with 𝜙 = 0° − 90°, 𝜃 = 0° − 90°, 
and 𝜓 = 0° − 90°, in order to search for the FA orientations having considerable potential for 
being the lowest energy configuration(s). After the candidates had already been found, the 
structural relaxation was then performed to guarantee that these orientations have the lowest 
possible energy. Then, the structural properties were analysed in terms of pair distribution 
function for bond-lengths. Finally, we performed the electronic calculation and reported the 
electronic band structures and the selections of the projected density of states. 

 

4.1 Energy landscapes  
As our simulations contain 343 samples of the FA cation’s orientations–covering two octants 

of the simulation cell, one can construct the energy as a function of orientation parameters 
specified by (𝜙, 𝜃, 𝜓). For simplicity, it is reported here some cross section of  𝐸(𝜙, 𝜃, 𝜓). The 
cross section through 𝜓 = 0° is a quintessential interpretation, thus one can present 𝐸(𝜙 = 0° −

90°, 𝜃 = 0° − 90°, 𝜓 = 0°) in a three dimensional (3D) plot, as shown in Figure 10. In this saddle-
like landscape, there are a few special paths in this 3D plot which represent the so-called single 
axis rotation. It is worth considering that the path with the FA cation oriented via (𝜙 = 0° −

90°, 𝜃 = 0°, 𝜓 = 0°) simply represents the rotation about the 𝑐–axis. Quintessentially, the energy 
along this transition path resembles a Gaussian-like barrier, with the barrier height of 17 meV.  

 
Table 1: Some energies calculated for 𝜙, 𝜃 and 𝜓, relative to FAPI with (90°, 60°, 45°)–FA. 

𝝓(°) 𝜽(°) 𝝍(°) E-E0 (meV) 
𝟎 0 0 7.63 

𝟗𝟎 15 0 8.10 
𝟗𝟎 75 0 7.34 
𝟒𝟓 60 45 0 

       
 A similar calculation was performed by Fabini et al. [48], who reported the barrier height of 21 
meV along a similar path. The discrepancy arises from the fact that we do not perform further 
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structure relaxation at this stage. Another path is along (𝜙 = 90°, 𝜃 = 0°, 𝜓 = 0°)  which 
represents the rotation about the N-axis. The energy barrier along this path is as low as 2.5 meV. 
Thus the FA cation can easily flip along this path, despite at very low temperature. Here, we 
reported also some selected points in the energy landscapes in Table 1 in comparison with the 
results reported by Fabini et al. [48]. 
 

 
Figure 10: The total energy profile as a function of 𝜙, 𝜃, and 𝜓 = 0°, taking the lowest total 
energy as a reference. The scattered data are interpolated adopting Renka-Cline gridding method 
[47]. The starting point is responsible for (0°, 0°, 0°) configuration. 
 
The energy barriers can be interpreted as entities, to some extent, intertwining with thermal 
agitation, i.e. Δ𝐸~𝑘𝐵𝑇, where Δ𝐸 indicates any flipping energy barrier. It was found that the 
highest barrier of all sets of rotations is of 24.7 meV (see Figure 20 in the Appendices), which is 
corresponding to 𝑇 = 286 𝐾 of thermal excitation energy. This means that at temperature higher 
than 286 𝐾, the FA cation is able to freely and randomly rotate to any values of 𝜙, 𝜃 and 𝜓.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

Another important consideration is the cross section cutting through 𝜓 = 45°. We present 
𝐸(𝜙 = 0° − 90°, 𝜃 = 0° − 90°, 𝜓 = 45°)  in the 3D plot, as shown in Figure 11. As for the 

(90°, 60°, 45°)–FA orientation landscape, it is found to be the lowest possible energy structure 
(see Point A in Figure 11 and Figure 27 in Appendices for the energy and Figure 12 for the 
structure). Consequently, this configuration was taken and performed further structure relaxation. 
The result suggests that its energy is the lowest possible and the final structure changes slightly, 
see Figure 19 in the Appendices. The Pb and I atoms slightly shift, and the 𝐼3 − 𝑃𝑏 − 𝐼3 angle is 
reduced by ~7° , but FAPI remains a cubic structure. Our lowest energy structure, the 
(90°, 60°, 45°) configuration, is in contrast with the (0°, 0°, 0°) configuration previously suggested 
by Weller et al [19].  

 

 
Figure 11: The total energy profile as a function of ϕ, θ, and 𝜓 = 45°, taking the lowest energy 
as a reference (point A). The scattered data are also interpolated adopting Renka-Cline gridding 
method [47].  The next higher energy (point B) is responsible for the equivalent lowest energy 
configuration.   
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Figure 12: The optimum structure of FAPI with the FA cation orienting along (𝜙 = 90°, 𝜃 =

 60°, 𝜓 = 45°) direction. 
 

4.2 Pair distribution function for bond-lengths of three structures of FAPI 
The distribution of distances between pairs of particles, in this case the bond lengths of H–I 

bonds, contained within a given volume can be described by the pair distribution function (PDF) 
[49]. One can determine the PDF by calculating the bond lengths of all pairs of H–I and binning 
them into a histogram. 

As for further analysis on the structure properties of the (0°, 0°, 0°)  and (90°, 60°, 45°) 

configurations, as depicted in Figure 13, Table 5 and 6 in the Appendices, we found that the I–H 
pair distribution of the unrelaxed and (0°, 0°, 0°) configuration can be roughly divided into three 
shells as follows: 2.75–3.20 Å, 3.40–4.20 Å and around 4.70 Å (orange and turquoise bars in 
Figure 13). The I–H pair distribution, of the (90°, 60°, 45°) configuration, on the other hand, can 
be divided into only two shells as follows: 2.75–3.20 Å and 3.40–4.20 Å (purple bars in Figure 
13). It can be interpreted that the lowest energy structure has the optimum bond-lengths between 
the I and H atoms. There will be soon an explanation on a weak interaction between the FA cation 
and the PbI6 framework. 

In the perfect cubic structure, the positions of the I atoms, i.e. I1, I2, and I3, are exactly 
equivalent in terms of spatial symmetry. Therefore, the organic molecule would not be restricted 
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to arrange itself just only in the preferred orientation, (90°, 60°, 45°). Rather it must have a 
multiple of three equivalent sites. We found that Point B in Figure 11 is an example of these 
equivalent configurations. Even though the point B appears to have higher energy in Figure 11, 
after relaxation process, it falls into the lower energy state, and its structure becomes equivalent to 
that of the (90°, 60°, 45°) configuration. These different orientations of the FA cation, together 
with the corresponding displacements of the Pb and I atoms, directly lead to the inversion 
symmetry breaking in PbI6, the inorganic framework. Consequently, this structural asymmetry 
will be responsible for the change in the electronic property, vide infra. 

 
Figure 13: The pair distribution of H–I bonds for three FAPI structures, i.e. 
unrelaxed, (0°, 0°, 0°) , and (90°, 60°, 45°) configurations, respectively.  
 

4.3 Electronic band structures 
It was reported in the case of MAPI that the conduction band minimum (CBM) stems from 

the Pb(6p)–I(5p) anti-bonding states, whereas the valence band maximum (VBM) is brought 
about by the Pb(6p)–I(5p) bonding and the I(5p) non-bonding states. In addition, the VBM is 
mostly dominated by the I(5p) lone pair states [50]. These features are similar to the case of FAPI 
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as well. In our unrelaxed α–FAPI unit cell, there are three equivalent sites for the I atoms in the 
perfect 𝑃𝑚3̅𝑚 space group. As a consequence, the density of states responsible for those three 
I(5p) lone pairs are degenerate. Surprisingly, the bandgap from the sole PBE calculation (1.44 eV) 
is fortuitously close to the experimental reported value, i.e. 1.41 eV [17]. While performing the 
SOC calculation, we nevertheless found that the CBM band is splitting due to the strong SOC 
effect on the Pb(6p) states. The position of the CBM is lowered down and the electronic bandgap 
is narrowing [51]. A similar feature was reported by Mosconi et al. in MAPI [52]. But the 
bandgaps can accurately be corrected by including the effects of the strongly correlated electrons 
which can be achieved by using the GW method or the hybrid functionals [51, 53, 54].  

The effect of the orientations of the FA molecule on the electronic structure was carefully and 
systematically inspected. Figures 14 and 15 exhibit the electronic structures along the selected 
high-symmetry points in the first Brillouin zone of the relaxed  (0°, 0°, 0°) and (90°, 60°, 45°) 
configurations, respectively. The energy gaps of the (0°, 0°, 0°)  and the (90°, 60°, 45°) 
configurations read 0.15 and 0.28 eV, respectively, compared with the experimentally reported 
value of 1.41 eV [17]. The discrepancies are explained due to the strongly correlated nature of the 
electrons: PBE+SOC removes degeneracies [17, 55] from PBE, generally underestimates 
bandgaps (for further discussion of this issue, see Perdew [56] et passim, thanks to the spin-orbit 
coupling (SOC) effect which largely stemmed from the Pb atoms. The tendency of the SOC 
splitting reduces the bandgap by about 1 eV. Strictly speaking, if one compare the bandgap of 
1.44 eV, from the PBE calculation, with the bandgap of 0.28 eV obtained from the PBE+SOC 
calculation of the (90°, 60°, 45°) configuration, the difference is of order of 1 eV.   
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Figure 14: The electronic band structure of the relaxed FAPI with relaxed (0°, 0°, 0°)–FA 
molecule. The dashed circle reveals weak interaction between the I atom and the PbI6 framework. 

 

 
Figure 15: The electronic band structure of the relaxed FAPI with (90°, 60°, 45°) –FA. In the 
same manner, the dashed circle reveals weak interaction between the I atom and the PbI6 
framework. 
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4.4 Projected density of states 
The effects of the FA cation on the inorganic cage is further verified by calculating the 

projected density of states (pDOS), as shown in Figures 16 (a and b). As mentioned above, there 
exists the non-bonding I(5p) orbitals of the I1, I2 and I3 atoms in the valence states. In the 
unrelaxed configuration scheme, these three states are theoretically degenerate, i.e. the branches 
never split. However, upon the FA molecular rotation, the inversion symmetry of cubic FAPI is 
broken. Consequently, the I1, I2, and I3 atoms become clearly distinguishable, and the 
corresponding electronic bands are splitting. The pDOS of the (0°, 0°, 0°) configuration are shown 
in Figure 14. The three highest peaks near the Fermi level are those of the distinguishable I1, I2, 
and I3 atoms. It is worth mentioning that one of the three peaks is out of alignment (brown) and 
the position of the peak is at lower energy compared with the other two, pointed by red arrow the 
Figure 16(a). This causes the (0°, 0°, 0°) configuration to dwell in a slightly lower energy state, 
compared with the unrelaxed configuration. 

The pDOS of the (90°, 60°, 45°) configuration are shown in Figure 16(b). Again, the three 
highest peaks near the Fermi level are those of the distinguishable I1, I2, and I3 atoms. These 
three peaks shift towards lower energies in a similar manner, thus the (90°, 60°, 45°) configuration 
possesses the relatively lowest possible energy. As these I non-bonding states are dominating the 
VBM, we also found that the bandgap in this configuration is widened slightly to be 0.28 eV, 
compared with 0.15 eV of the (0°, 0°, 0°) configuration. 

The unfavourable states corresponding to the non-bonding p-orbitals of the I atoms of the 
PbI6 inorganic framework are likely to adjust themselves to dwell in a more stable configuration 
by deviating the I3–Pb–I3 angles of the (0°, 0°, 0°) and the (90°, 60°, 45°) configurations to be less 
than 180°, i.e. around 173° and 167°, respectively, leading to the so-called octahedral tilting. The 
investigation of octahedral tilting in MAPI was thoroughly carried out and discussed by J. H. Lee 
et al [50].  

In addition, Figures 14 and 15 also show a couple of nearly non-dispersive bands in the 
valence and the conduction bands, which can be assigned to the FA molecule. The dashed circles 
reveal the weak interaction between the FA cation and the PbI6 inorganic framework. The 
interaction is a little stronger in the (90°, 60°, 45°) configuration. Apart from this weak interaction, 
the FA cation seems to only exert strain onto the PbI6 cage, leading to the structural asymmetry 
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which eventually leads to the Rashba splitting effect, as will be discussed next. These 
aforementioned results are similar to a previous work on MAPI  which suggested that MAPI is a 
dynamical bandgap semiconductor [21]. 

The most important effect of our specific orientations of the FA molecule is to remove 
the inversion symmetry. The perovskite structure already becomes non-centrosymmetric. This 
symmetry breaking regime has a crucial impact on the electronic structure. Apart from the 
vertical SOC splitting, the electronic band also exhibits an exotic horizontal spin-splitting 
phenomena [57], the Rashba/Dresselhaus effect [45], as zoomed in the inset of Figures 14 and 15. 
For the (0°, 0°, 0°)  configuration, the Rashba splitting in the conduction band minimum is at 
around 𝑅 ± 0.01 (see Figure 14 and the inset). For the (90°, 60°, 45°),  configuration, the Rashba 
splitting in conduction band minimum is at around 𝑅 ± 0.025 (see Figure 5 and the inset). From 
these 𝑅–points, the Rashba parameters can be evaluated by calculating 2𝛼 =  ∆𝜖/∆𝑘 [58].  For the 
(90°, 60°, 45°) configuration, along the 𝑅 → 𝑀 branch, the Rashba parameters are responsible for 
𝛼𝐶  ~3.0 and 𝛼𝑉  ~1.4 of the CBM and VBM, respectively, and along the 𝑅 → Γ branch, 𝛼𝐶  ~2.3 

and 𝛼𝑉  ~1.4 for the CBM and VBM, respectively. For comparison, MAPI also exhibits the 
Rashba splitting and 𝛼~2 as reported by Mosconi et al [58].  
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Figure 16: The projected-density of states for the relaxed FAPI. The relaxed structure with 
relaxed (0°, 0°, 0°) oriented FA with a peak of I3 shifting leftwards compared to that of the perfect 
cubic FAPI (a). The corresponding FAPI with (90°, 60°, 45°)–FA (b). 
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5. CONCLUSION 
 

Effects of the organic molecules of formamidinium (FA) on FAPbI3 are thoroughly and 
systematically inspected. Equipped with Euler’s rotation, the mechanistic explanations of both the 
structural and electronic properties of this system emerge unexpectedly. The perfect cubic 
structure of FAPI had first been optimised to possess the optimal energy structure.  The agreeable 
values of kinetic energy cutoff and k-point mesh as the selected products from the convergence 
tests were hereafter used throughout all processes of calculation. Then, the relaxed structure was 
kept fixed except for the organic molecule in order to be applied a rigid turn based on Eulerian 
angles to verify its energies accounting for different orientations of the FA cation. Crucially, the 
energy landscapes responsible for different orientations of the organic molecule were studied and 
turned out that the relatively lowest energy structure of FAPI happens to consist of FA cation 
oriented in (𝜙 = 90°, 𝜃 =  60°, 𝜓 = 45°) direction and its equivalent orientations. The flipping 
energy barriers were interpreted to be thermal agitations required for FA to turn to other 
orientations. As a consequence, the electronic band structures of two cases, i.e. FAPI with 
(0°, 0°, 0°)–FA and that with (90°, 60°, 45°)–FA display various types of phenomena. Specifically, 
the latter one exhibits an interesting result, i.e. the well-known Rashba-Dresselhaus effect 
originating from concurrent appearance of spin-orbit interaction and inversion symmetry breaking 
in crystal structure. As for the future work, various types of organic molecules dwelling in the 
perovskite structure are to be studied. Not only do theirs structural and electronic properties, but 
also do their optical response that leads to industrialisation. Finally, we suggest that a possible 
way for engineering the band-edge tunable FAPI is to exploit its temperature dependence. Not 
only may these discoveries possibly enhance the utilisation of this material in the memory and 
data storage industries, but also vivid potential candidate for optoelectronic applications.  
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APPENDICES 
A. Energy minimisation 

The ground-state energy can be achieved by adopting variational principle, specifically Euler’s 
equation with a separate Lagrange multiplier (𝜆𝑖), which is written as 

𝛿

𝛿𝑛(𝒓)
[휀[𝑛(𝒓)] − ∑ 𝜆𝑖 ∫ 𝑛(𝒓)𝑑𝒓

𝑁

𝑖

] = 0 (A.1) 

Due to the normality constraint of each orbital, the number of electrons must be conserved,  

∑ ∫ Ψ𝑖
∗𝐾𝑆(𝒓) Ψ𝑖

𝐾𝑆(𝒓)𝑑𝒓 = 𝑁,

𝑁

𝑖

 (A.2) 

Recall the total energy functional: 

휀[𝑛(𝒓)] = 𝑇0[𝑛(𝒓)] +
1

2
∫ ∫

𝑛(𝒓) 𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ + ∫ 𝑉𝑒𝑥𝑡(𝒓) 𝑛(𝒓)𝑑𝒓 

                             +𝐸𝑥𝑐[𝑛(𝒓)], 
(A.3) 

where 𝑇0[𝑛(𝒓)] is defined as the kinetic energy of the non-interacting electron gas with density 
𝑛(𝒓), 

𝑇0[𝑛(𝒓)] = ∑ ∫ Ψ𝑖
∗𝐾𝑆(𝒓) (−

∇2

2
) Ψ𝑖

𝐾𝑆(𝒓)𝑑𝒓.

𝑁

𝑖

 (A.4) 

According to Liu et al. [59], a rigorous proof of derivative of 𝑇0[𝑛(𝒓)]  was discussed in detail. 
Thus we have 

𝛿𝑇0[𝑛(𝒓)]

𝛿𝑛(𝒓)
+ 𝑉𝑒𝑓𝑓(𝒓) = 𝜆, (A.5) 

where 

𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) + ∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ + 𝑉𝑿𝑪, (A.6) 

 and the exchange-correlation potential is written as 

𝑉𝑋𝐶(𝒓) =
𝛿𝐸𝑋𝐶[𝑛(𝒓)]

𝛿𝑛(𝒓)
  . (A.7) 

Eq. (A.5) with the constraint (A.2) is exactly the same equation as one obtains from DFT when 
one applies it to a system of non-interacting electrons moving in the external potential 𝑉𝑒𝑓𝑓(𝒓). 
Therefore, we can write   Eq. (A.5) as 
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1

Ψ𝑖
∗𝐾𝑆(𝒓)

𝛿𝑇0[𝑛(𝒓)]

𝛿Ψ𝑖
𝐾𝑆(𝒓)

+ 𝑉𝑒𝑓𝑓(𝒓) = 𝜆, (A.8) 

Finally, to solve for the ground –state energy and density, all one has to do is solve the one-
electron equation, 

[−
∇𝑖

2

2
+ 𝑉𝑒𝑓𝑓(𝒓)] Ψ𝑖

𝐾𝑆(𝒓) = ℰ Ψ𝑖
𝐾𝑆(𝒓). (A.9) 

 

B. Euler’s method for the Hartree energy 
Given the Hartree energy as, 

𝐽[𝑛(𝒓)] =
1

2
∬

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′  . (A.10) 

According to variational principle, one can implement Eq. (A.11) in order to obtain the Hartree 
potential.  The functional derivative of any functional,  𝐽[𝑛(𝒓)], is defined by Eq. (A.11), where 
𝜙(𝒓) is an arbitrary function. 

        ∫
𝛿𝐽[𝑛(𝒓)]

𝛿𝑛(𝒓)
𝜙(𝒓)𝑑𝒓 = [

𝑑

𝑑휀
𝐽[𝑛(𝒓) + 휀𝜙(𝒓)]]

=0

  (A.11) 

 

= [
𝑑

𝑑휀

1

2
∬

[𝑛(𝒓) + 휀𝜙(𝒓)][𝑛(𝒓′) + 휀𝜙(𝒓′)]

|𝒓 − 𝒓′|
𝑑𝒓𝑑′]

=0

  (A.12) 

 

                                             =
1

2
∬

[𝑛(𝒓′)𝜙(𝒓)]

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ +

1

2
∬

[𝑛(𝒓)𝜙(𝒓′)]

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′  (A.13) 

Since 𝒓 and 𝒓′ are interchangeable, thus the two integrands are equal. As a result, the variation of 
the Hartree energy is expressed as 

𝛿𝐽[𝑛(𝒓)]

𝛿𝑛(𝒓)
= ∫

𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′  . (A.14) 
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C. Atomic coordinates of the input structure of FAPI 
1) The cubic structure of 𝐻𝐶(𝑁𝐻2)2𝑃𝑏𝐼3 or FAPI [19] with a lattice parameter of 3.3613 Å 

consists of atoms as described in Table 2 and depicted in Figure 16. 
2) The relaxed structure of FAPI with a lattice parametre of 3.3613 Å consists atoms as 

described in Table 3 and depicted in Figure 17. 
3) The lowest energy structure of FAPI with a lattice parametre of 3.3613 Å consists atoms 

as described in Table 4 and depicted in Figure 18. 
 

Table 2: Atomic fractional coordinates of FAPI 
Atoms x y z 

C 0.569011 0.500000 0.500000 
N1 0.475280 0.682927 0.500000 
N2 0.475280 0.317071 0.500000 
H1 0.741416 0.500000 0.500000 
H2 0.814009 0.567630 0.500000 
H3 0.315280 0.704462 0.500000 
H4 0.315280 0.295538 0.500000 
H5 0.567630 0.185991 0.500000 
Pb 0.000000 0.000000 0.000000 
I1 0.000000 0.500000 0.000000 
I2 0.500000 0.000000 0.000000 
I3 0.000000 0.000000 0.500000 

 
Table 3: Atomic fractional coordinates of relaxed FAPI with (0°, 0°, 0°)-FA 

Atoms x y z 
C 0.572103 0.4997166 0.500000 

N1 0.478304 0.682889 0.500000 
N2 0.478309 0.316526 0.500000 
H1 0.743669 0.500131 0.500000 
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Atoms x y z 
H2 0.570939 0.813387 0.500000 
H3 0.319234 0.703188 0.500000 
H4 0.319128 0.296325 0.500000 
H5 0.571127 0.186119 0.500000 
Pb 0.001372 0.000009 0.000000 
I1 0.005391 0.499948 0.000000 
I2 0.493962 -0.000113 0.000000 
I3 -0.029541 -0.000127 0.500000 

 
Table 4: Atomic fractional coordinates of relaxed FAPI with (90°, 60°, 45°)-FA 

Atoms x y z 
C 0.454035 0.546184 0.500231 

N1 0.460160 0.416006 0.340906 
N2 0.583702 0.540707 0.660055 
H1 0.332394 0.667728 0.499895 
H2 0.348420 0.427592 0.225528 
H3 0.566894 0.296596 0.331098 
H4 0.703094 0.434121 0.670797 
H5 0.571145 0.652515 0.775273 
Pb 0.001541 -0.005318 0.999580 
I1 0.014478 0.499174 0.008818 
I2 0.497450 -0.013184 0.989476 
I3 -0.037545 0.038506 0.498344 
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Figure 17: α–FAPI 

 

 
Figure 18: relaxed α–FAPI with (0°, 0°, 0°)-FA 

 

 
Figure 19: relaxed α–FAPI with (90°, 60°, 45°)-FA 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

D. Energy landscapes 
Energy landscapes are scatter-plotted in three-dimensional space, where the scattered data were 
interpolated adopting Renka-Cline gridding method [47]. The energy landscapes with fixed 𝜙–
angle are plotted in Figures 20-26. 
 

 
Figure 20: Energy landscape of (𝜙 = 0°, 𝜃, 𝜓)–FA 

 

 

 
Figure 21: Energy landscape of (𝜙 = 15°, 𝜃, 𝜓) –FA 
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Figure 22: Energy landscape of (𝜙 = 30°, 𝜃, 𝜓) –FA 

 

 

 

 
Figure 23: Energy landscape of (𝜙 = 45°, 𝜃, 𝜓) –FA 
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Figure 24: Energy landscape of (𝜙 = 60°, 𝜃, 𝜓) –FA 

 

 

 

 
Figure 25: Energy landscape of (𝜙 = 75°, 𝜃, 𝜓) –FA 
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Figure 26: Energy landscape of (𝜙 = 90°, 𝜃, 𝜓) –FA 

 

 
Figure 27: The energy landscape cross section of the (90°, 60°, 45°)–FA configuration.  

E. Equivalent configurations 
The relaxed structures of three configurations possessing nearly the same value of total energies 
are described in Table 5. The equivalent results from the fact that C–H bond is likely to point to I 
atoms: I1, I2, I3. 
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Table 5: The bond-lengths of three different structures of FAPI: unrelaxed structure, (0°, 0°, 0°)–
FA structure, and (90°, 60°, 45°)–FA structure.   

Types of bonding Unrelaxed (Å) 
(0°, 0°, 0°)–FA 

(Å) 
(90°, 60°, 45°)–

FA (Å) 

Pb–I1 3.18 3.18 3.15 

Pb–I2 3.18 3.13 3.15 

Pb–I3 3.18 3.18 3.19 

I1–H1 3.57 3.59 3.87, 3.96 

I1–H2 4.64, 5.22 4.66, 5.19 2.57 

I1–H3 3.98, 5.52 3.97, 5.55 3.73, 4.27 

I1–H4 3.98, 5.22 3.97, 5.55 2.95, 4.67 

I1–H5 4.64, 5.22 4.66, 5.20 3.33, 3.96 

I2–H1 4.75 4.77, 4.77 3.97, 3.86 

I2–H2 3.42 3.43 3.32, 3.97 

I2–H3 3.87 3.86 2.96, 4.65 

I2–H4 3.87 3.86 3.73, 4.26 

I2–H5 3.42 3.43 2.57 

I3–H1 3.57 3.49 3.33 

I3–H2 2.98 2.80 3.89 

I3–H3 2.77 2.91 3.19 

I3–H4 2.77 2.91 3.20 

I3–H5 2.97 2.80 3.92 
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Table 6: Some possible lowest energy relaxed configurations of FAPI 
Bond-lengths (90°, 60°, 45°)–FA (30°, 60°, 45°)–FA 

Pb–I1 3.15 3.19 
Pb–I2 3.15 3.17 
Pb–I3 3.21 3.20 
I1–H1 3.87, 3.96 3.80, 4.06 
I1–H2 2.57 3.28 
I1–H3 3.73 3.00 
I1–H4 2.95 3.69 
I1–H5 2.57 2.56 
I2–H1 3.97, 3.86 3.45 
I2–H2 3.32, 3.97 3.82 
I2–H3 3.32 3.06 
I2–H4 4.26, 3.73 3.11 
I2–H5 2.57 3.11 
I3–H1 3.33 3.84, 3.94 
I3–H2 4.94 2.58 
I3–H3 3.19 3.83 
I3–H4 3.20 2.97 
I3–H5 3.91 3.31 
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