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CHAPTER I

INTRODUCTION

The standard BigBang model was constructed from the principle of cosmol-

ogy, in which one assumes that the universe is both isotropic and homogeneous.

The solution of the Einstein equation consistent with this principle is known as

the “Friedmann-Robertson-Walker solution” [1, 2, 3, 5]. Despite the fact that this

solution has been very successful due to its consistency with many observed data,

it cannot explain some important puzzles in cosmology, such as the horizon and

the flatness problems. In 1981, Alan Guth [4] proposed a very nice solution to

these puzzles known as the “inflationary model.” The idea of this model is that

the universe expanded extremely fast during some period of the early time. The

consequent prediction of the inflationary model is that the background tempera-

ture of the universe is nearly uniform [6]. Such a prediction is consistent with the

cosmic microwave background (CMB) radiation observation [7]. Nevertheless, the

most important powerfulness of this model is that it not only solves the flatness

and the horizon problems, but also provides us the understanding of the mecha-

nism of structure formations. According to the inflationary model, the quantum

fluctuations generated during the inflationary period are stretched to the cosmo-

logical scale and seed the structures we observe nowadays. This effect also leads

to the CMB anisotropy, and therefore the inflationary model does not predict the

perfectly uniform CMB.

As the inflation is assumed in to take place at very high energy scales, the

theories originally used to construct the models of cosmology, such as general rel-

ativity, are no longer valid because the quantum effects become more important.

At these scales, string theory, which is the theory in which the fundamental ob-

ject is a string instead of a point-like particle, is the most promising candidate

for describing the physics. However, it is rather complicated to directly derive

the cosmological model from string theory. In Ref. [26], Ho and Brandenberger

constructed an inflationary theory in which a universal property of string theory,

which is the stringy space-time uncertainty relation (SSUR) ∆xp∆tp ≥ l2s [27],

is taken into account. Such an uncertainty relation implies that space and time
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coordinates do not commuted with each other, and therefore the effective space-

time geometry is noncommutative. This noncommutative inflationary theory is

the subject of this thesis.

This thesis is organized in the following way. In Chapter 2, we review the

fundamental concepts of modern cosmology, putting an emphasis on the inflation-

ary models. In Chapter 3, we consider the cosmological perturbation theory in

order to connect the theoretical results with the observational data, in particular

the CMB power spectrum. We start by discussing the power spectrum of the in-

flaton field fluctuations [9], and then calculate the power spectrum associated with

the curvature and the tensor perturbations by perturbing the Einstein equation

[10, 11]. This chapter ends with the discussion of the CMB anisotropy and the

calculation of the CMB power spectrum [12, 13].

In order to discuss the noncommutative inflation, the concept of the noncom-

mutative field theory needs to be introduced first; this will be done in Chapter 4.

In the first part of this chapter, the motivation for the noncommutative algebra is

given by considering the generalized uncertainty principle [21, 22]. A brief discus-

sion of field theory [15] then follows. We close this chapter with the presentation

of the idea of deformation from a commutative field theory to its noncommutative

counterpart [16, 17]. In Chapter 5, the concept of the noncommutative inflation

is introduced, and the associated power spectra of the curvature perturbation

[26, 28] based on both adiabatic and minimized uncertainty vacua [31, 32] are

obtained. Finally, the comparison between the power spectra in commutative and

noncommutative space-time is done in Chapter 6 [34, 35].



CHAPTER II

COSMOLOGY AND INFLATIONARY

MODELS

Since the ancient time, people have wondered about the structures and the

evolution of the universe. Due to the fact that the distribution of celestial objects,

like stars and galaxies, looks the same to us no matter what direction we look

at, and as the Earth where we all live has no right to be a special location in

the universe, scientists were led to postulate what is known as the cosmological

principle. This principle states that every position of the universe is in no sense

preferred [1], and therefore the universe has to be homogeneous and isotropic.

The recent data from the observation of the cosmic microwave background (CMB)

radiation is an important evidence which confirms this principle. However, people

still had no idea about the “dynamics” of the universe before the twentieth century.

In the early twentieth century, Edwin Hubble observed many galaxies and

found that they are moving away from us with the velocities proportional to their

distances from Earth. This led him to conclude that the universe is expanding.

Thus if one were to construct a theory which describes the universe, such a theory

should obey the cosmological principle and has to give a dynamics of the universe

in agreement with Hubble’s discovery. It turns out that the appropriate theory for

modeling the universe with such characteristics is the general theory of relativity,

whose main idea is that the presence of the mass-energy causes the space-time

geometry to become curved, and the space-time curvature in turn causes anything

with energy to move. Such an interdependence between the space-time curvature

and the mass-energy is encoded mathematically in an equation known as the

Einstein equation. To describe the universe using this theory, one needs to find

the solution to this equation which has all the required characteristics. Such

a solution, fortunately, exists and is known as the Friedmann-Robertson-Walker

(FRW) solution, which describes three possible kinds of the universe (flat, closed,

and open) depending on the matter contained in it. Despite their differences in

many aspects, one thing that these three kinds of the universe has in common
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Figure 2.1: Three-dimensional spaces as the hypersurfaces of constant curvature

embedded in a flat 4-dimensional Euclidean space: (a) spherical space; (b) flat

space; (c) hyperbolic space.

is the prediction that the universe started from an initial singularity known as

the Big Bang. This Big Bang model, however, cannot explain many puzzles in

cosmology, such as the horizon and the flatness problems. A nice way to solve these

problems is to postulate a model, called the inflationary model, which predicts a

rapid expansion of the universe during some early period of the universe. In this

chapter, we will describe the modern theory of cosmology in detail.

2.1 Friedmann-Robertson-Walker Solution

In this section, the Friedmann-Robertson-Walker solution will be discussed in

detail. The convention for the notations used here is as follows. The signature of

the space-time metric is chosen to be mostly plus. All the results in this thesis

are expressed in the natural unit, where ~ = c = kB = 1 and the Newton’s

gravitational constant G is expressed in terms of the Planck mass as G = m−2
pl /8π.

The Greek indices (such as ν, µ) run from 0 to 3, where the index 0 is for the

timelike component of any tensor. The roman indices (such as i, j, k) run from 1

to 3. The Einstein summation convention is also used.

To construct a 4-dimensional space-time describing the universe, we need to

take into account the cosmological principle which states that the universe is both
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homogeneous and isotropic. In the mathematical language, this implies that the

spatial part of the space-time must be a space of constant curvature. In differential

geometry, the curvature of a 3-dimensional space is expressed in terms of the Ricci

scalar, R(3), associated with it. Thus we need to have [1]

R(3) = 6K, (2.1)

with the sectional curvature K being a constant, for the spatial part of the space-

time. This 3-dimensional curvature can be classified into three groups depending

on the sign of the sectional curvature: spherical spaces (K > 0), flat spaces

(K = 0), and hyperbolic spaces (K < 0). All these three distinct spaces are

illustrated in Figure 2.1. Among these three types, whichever that turns out to

describe the universe will depend on the mass-energy density of the universe. To

see this, we start with the Einstein equation which relates the space-time curvature

with the mass-energy density:

Gµν = Rµν −
1

2
Rgµν = 8πGTµν . (2.2)

Here gµν is the metric tensor; Gµν , Rµν , and R are the Einstein tensor, the Ricci

tensor, and the Ricci scalar, respectively; and Tµν is the energy-momentum tensor.

The left-hand side of this equation represents the space-time curvature, while the

right-hand side describes the energy density and the pressure in the universe.

The Ricci tensor and the Ricci scalar are proportional to the second derivatives

of the space-time metric, gµν , with respect to the space-time coordinates. For

the homogeneous and isotropic universe, the matter in the universe is typically

regarded as a perfect fluid with the energy-momentum tensor taking the form

T µ
ν = diag(−ρ, p, p, p), (2.3)

where ρ is the energy density and p is the pressure.

To explicitly write the left-hand side of the Einstein equation, the space-

time metric is the first object that we have to determine. As mentioned earlier,

there are 3 types of the spatial metric depending on the sign of the 3-dimensional

curvature. We start with the case K > 0 in which the 3-dimensional space is a

sphere embedded in a 4-dimensional Euclidean space. Thus we consider a three-

dimensional sphere of radius a as a hypersurface described by an algebraic equation

a2 = x2
1 + x2

2 + x2
3 + x2

4. (2.4)

Then the line element on this hypersurface takes the form

dl2 = dx2
1 + dx2

2 + dx2
3 + dx2

4

= dx2
1 + dx2

2 + dx2
3 +
−(x1dx1 + x2dx2 + x3dx3)

a2 − x2
1 + x2

2 + x2
3

. (2.5)
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Using the spherical polar coordinates (r, θ, φ), where r2 = x2
1 + x2

2 + x2
3 and x1 =

r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ, the line element takes the form

dl2 = dr2 + r2(dθ2 + sin2 θdφ2 +
r2

a2 − r2
dr2)

=
1

1− r2/a2
dr2 + r2(dθ2 + sin2 θdφ2)

= a2
( 1

1− r2
dr2 + r2(dθ2 + sin2 θdφ2)

)
. (2.6)

Notice that in the last line of the above equation, the rescaling r → ar has been

used. One should observe that the metric is independent of the value of the radius

a (which turns out to be inversely proportional to the 3-dimensional curvature).

For the case of K < 0 corresponding to the hyperbolic space, the line element

can be obtained by replacing a2 → −a2 and dx2
4 → −dx2

4 in the analysis of the

spherical hypersurface. As for the flat space with K = 0, we obtain the line

element by simply taking dx2
4 = 0 or a → ∞ before rescaling. Thus, the line

element for all three cases takes the form

dl2 = a2
( 1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)

)
, (2.7)

where

k =


1 spherical space

0 flat space

−1 hyperbolic space

(2.8)

The construction of the space-time metric for a homogeneous and isotropic

universe goes as follows. We start with a 3-dimensional space of constant curvature

obtained above, then assign a “cosmic time” t to it and multiply its line element

by a time-dependent scale factor a2(t) (this will make its size to depend on t).

Treating this 3-dimensional space as a space-like hypersurface at time t in a space-

time, the space-time describing the universe is constructed as a collection of such

hypersurfaces over all values of cosmic time t. Such a “time-slicing” of a space-time

geometry is depicted in Figure 2.2. Note that these hypersurfaces cannot intersect

with each other, otherwise the notion of “evolving in time” of the universe would

not be consistently defined. With this construction, the space-time metric for a

homogeneous and isotropic universe takes the form

ds2 = gµνdx
µdxν

= g00dx
0 2 + dl2

= −dt2 + a2(t)
( 1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)

)
. (2.9)
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Figure 2.2: Time-slicing of space-like hypersurfaces.

This metric is known as the Friedmann-Robertson-Walker (FRW) metric, and the

coordinates of the space-like hypersurface form a “comoving frame.” That the

above metric can explain the expansion of the universe is as follows. Imagine

that all the galaxies are spread over the space-like hypersurface, and each of them

is fixed at some point of the comoving frame. As time goes by, the scale factor

a(t) changes so that the proper distance between galaxies also changes. That it

appeared to Hubble that the universe is expanding is because the scale factor a(t)

was increasing at the time of his observation. It should be mentioned here that

another form of the FRW metric often used in cosmology is

ds2 = a2(η)
(
− dη2 +

1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)

)
, (2.10)

where the η is called the conformal time, which is defined as

η =

∫
1

a(t)
dt. (2.11)

To calculate the expansion rate of the universe, consider the coordinate dif-

ference of two points in the comoving frame, 4xcomo. Then the physical distance,

4xphys, is obtained by multiplying 4xcomo by a scale factor:

4xphys = a(t)4xcomo. (2.12)

The stretching rate of the distance which is observed by an observer in the physical

frame is

1

|4xphys|
d|4xphys|

dt
=
ȧ

a
≡ H =

1

a

a′

a
=

1

a
H, (2.13)
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where H is the Hubble parameter in the conformal time, and H is the Hubble

parameter in the cosmic time. In cosmology, it is conventional to use a subscript

“0” to mean “at the present time.” Thus H0 is the value of the Hubble parameter

at present. Note that a dot, (−̇), over a quantity represents the derivative with

respect to the cosmic time of that quantity, while the prime, (−′), represents the

derivative with respect to the conformal time.

Form the FRW metric, the non-zero components of the metric tensor can

be read off as follows:

g00 = −1 ; g11 =
a2

1− kr2
;

g22 = a2r2 ; g33 = a2r2 sin2 θ. (2.14)

Using the fact that gµρgρν = δµ
ν , the non-zero components of the inverse metric

can be easily found:

g00 = −1 ; g11 =
1− kr2

a2
;

g22 =
1

a2r2
; g33 =

1

a2r2 sin2 θ
. (2.15)

The Christoffel symbol or the affine connection which is proportional to the first-

order derivative of the metric is defined by

Γα
βγ =

1

2
gαρ (∂βgργ + ∂γgβρ − ∂ρgβγ) , (2.16)

and, for the FRW metric, the non-zero components are

Γ0
ij =

1

2
g0ρ (∂igρj + ∂jgiρ − ∂ρgij)

= −1

2
g00∂0gij =

ȧ

a
gij ; (2.17)

Γi
0j =

1

2
giρ (∂0gjρ + ∂jgρ0 − ∂ρg0j)

=
1

2
gik∂0gjk =

ȧ

a
gikgjk =

ȧ

a
δi
j ; (2.18)

Γ1
11 =

1

2
g1ρ (∂1g1ρ + ∂1gρ1 − ∂ρg11)

=
1

2
g11∂1g11 =

kr

1− kr2
g11g11 =

kr

1− kr2
; (2.19)
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Γ1
22 =

1

2
g1ρ (∂2g2ρ + ∂2gρ2 − ∂ρg22)

= −1

2
g11∂1g22 = − 1

2

(1− kr2)

a2
2ra2 = − r(1− kr2) ; (2.20)

Γ1
33 =

1

2
g1ρ (∂3g3ρ + ∂3gρ3 − ∂ρg33)

= −1

2
g11∂1g33 = − 1

2

(1− kr2)

a2
2ra2 sin2 θ

= −r(1− kr2) sin2 θ ; (2.21)

Γ2
12 =

1

2
g2ρ (∂1g2ρ + ∂2gρ1 − ∂ρg12)

=
1

2
g22∂1g22 =

1

2

1

a2r2
2ra2 =

1

r
; (2.22)

Γ3
13 =

1

2
g3ρ (∂1g3ρ + ∂3gρ1 − ∂ρg13)

=
1

2
g33∂1g33 =

1

2

1

a2r2 sin2 θ
2ra2 sin2 θ =

1

r
; (2.23)

Γ2
33 =

1

2
g2ρ (∂3g3ρ + ∂3gρ3 − ∂ρg33)

= −1

2
g22∂2g33 = − 1

2

1

a2r2
2r2a2 sin θ cos θ

= − sin θ cos θ ; (2.24)

Γ3
23 =

1

2
g3ρ (∂2g3ρ + ∂3gρ2 − ∂ρg23)

=
1

2
g33∂2g33 =

1

2

1

a2r2 sin2 θ
2r2a2 sin θ cos θ

= cot θ. (2.25)

The Ricci tensor is proportional to the second-order derivative of the space-time

metric and is defined by

Rµν = ∂α Γα
µν − ∂µ Γα

να + Γα
σα Γσ

µν − Γα
σν Γσ

µα . (2.26)

For the FRW metric, the non-zero components of the Ricci tensor are

R00 = ∂α Γα
00 − ∂0 Γα

0α + Γα
σα Γσ

00 − Γα
σ0 Γσ

0α

= −∂0Γ
i
i0 − Γi

0jΓ
j
i0

= −∂0

(
3
ȧ

a

)
− 3
( ȧ
a

)2

= − 3
ä

a
(2.27)
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and

Rij = ∂α Γα
ij − ∂i Γ

α
jα + Γα

σα Γσ
ij − Γα

σj Γσ
iα

= ∂0 Γ0
ij + ∂k Γk

ij − ∂i Γ
k
jk + Γk

0k Γ0
ij + Γk

lk Γl
ij

−Γk
0j Γ0

ik − Γ0
kj Γk

i0 − Γk
lj Γl

ik

= ∂0
( ȧ
a
gij

)
+ 3
( ȧ
a

)2

−
( ȧ
a

)
gij −

( ȧ
a

)
gij

+∂kΓ
k
ij − ∂iΓ

k
jk + Γk

lkΓ
l
ij − Γk

lj Γl
ik

=
( ä
a

+ 2
( ȧ
a

)2)
gij + ∂kΓ

k
ij − ∂iΓ

k
jk + Γk

lkΓ
l
ij − Γk

lj Γl
ik

=
( ä
a

+ 2
( ȧ
a

)2

+ 2
k

a2

)
gij. (2.28)

Note that the last line of (2.28) was obtained by calculating the Ricci tensor

component by component. Next, the Ricci scalar for the FRW space-time can be

calculated as follows:

R = gµνRµν

= g00R00 + gijRij

= 3
ä

a
+ 3
( ä
a

+ 2
( ȧ
a

)2

+ 2
k

a2

)
= 6

( ä
a

+
( ȧ
a

)2

+
k

a2

)
, (2.29)

Using the above results, we obtain the non-zero components of the Einstein tensor

as

G00 = R00 −
1

2
Rg00

= 3
(( ȧ

a

)2

+
k

a2

)
;

G0
0 = −3

(( ȧ
a

)2

+
k

a2

)
; (2.30)

Gij = Rij −
1

2
Rgij

= −
(
2
ä

a
+
( ȧ
a

)2

+
k

a2

)
gij

Gi
j = −

(
2
ä

a
+
( ȧ
a

)2

+
k

a2

)
δi
j. (2.31)

Having obtained the explicit form of the quantities on the left-hand side

of the Einstein equation for the FRW metric, our next step is to consider the

quantity on the right-hand side of the Einstein equation which is the energy-

momentum tensor Tµν . For our convenience, we switch to work in the Cartesian

coordinates. The first component, T00, is the energy density, and the momentum
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density corresponds to the components T0i. For the stress tensor, its components

are Tij. Recall that the matter in the universe is assumed to be in the form

of the perfect fluid which has no heat conduction and no viscosity. Hence it

looks isotropic in its rest frame [5]. The first condition (no heat conduction)

makes T0i = Ti0 = 0, and the second one (no viscosity or no shear force) makes

Tij = 0; i 6= j. Due to the isotropy of the fluid, its energy-momentum tensor

must, therefore, be a diagonal matrix with the diagonal components:

T 0
0 = −ρ , T i

j = p δi
j (2.32)

with ρ and p being respectively an energy density and the pressure. Since Tµν is

diagonal, its form will not change if we change the coordinates to the spherical

coordinates used in the FRW metric. Thus this form of the energy-momentum

tensor is ready for use in cosmology.

An important property of the energy-momentum tensor is the vanishing of

its divergence, DµT
µ
ν = 0, where Dµ is the covariant derivative. This property

leads to the conservation of the energy, DµT
µ
0 = 0, and the conservation of the

momentum, DµT
µ
k = 0. By considering the time component of the conservation

equations, we obtain

DµT
µ
0 = ∂µT

µ
0 + Γµ

µρT
ρ
0 − Γρ

µ0T
µ
ρ

= ∂0T
0
0 + Γk

k0T
0
0 − Γj

i0T
i
j

= −ρ̇− 3
ȧ

a
ρ− 3

ȧ

a
p

⇒ ρ̇ = −3
ȧ

a
(ρ+ p). (2.33)

Using the equation of state, p = ωρ, we can write the energy density in terms of

the scale factor as

ρ ∝ a−3(1+ω). (2.34)

In order to find the parameter ω in the equation of state, we consider the number

density of particles in the universe, ncomo. In the comoving frame, ncomo is constant

but, in the physical frame, the number density varies with time due to the scale

factor:

nphys =
ncomo

a3
. (2.35)

It follows from equation (2.35) that, for massive (non-relativistic) particles, the

energy density is

ρm = mnphys ∝
1

a3
. (2.36)
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By comparing (2.36) with (2.34), we conclude that ω = 0 for the non-relativistic

matter (so-called dust). For the relativistic massless particles such as photons,

it is affected by the redshift from the expansion of the universe, and therefore

its frequency, ν, will decrease by a factor 1/a. Thus, the energy density of the

radiation takes the form

ρr ∝ νnphys ∝
1

a4
. (2.37)

By comparing (2.37) with (2.34), we get ω = 1/3 for the radiation. These proper-

ties will be important for the following chapters.

Let us now consider the dynamics of the expanding FRW universe by sub-

stituting the energy-momentum tensor and the Einstein tensor into the Einstein

equation. We get ( ȧ
a

)2

+
k

a2
=

8πG

3
ρ , (2.38)

2
ä

a
+
( ȧ
a

)2

+
k

a2
= −8πGp. (2.39)

These are known as the Friedmann equations. Combining these two equations, we

obtain the Raychaudhuri equation which takes the form

ä

a
= −4πG

3
(ρ+ 3p). (2.40)

These three equations (2.38)-(2.40) encode the dynamics of the FRW metric. Be-

fore analyzing the Friedmann equations in order to determine the evolution of

the universe, we would like to mention here that the current observational data

indicate that the universe is expanding, ȧ > 0, and flat, k → 0. Despite this

fact, the spherical and hyperbolic spaces will also be considered here. Let us start

by considering the flat and hyperbolic spaces. The first Friedmann equation is

rewritten as

ȧ2 =
8πG

3
ρa2 + |k|. (2.41)

Since the right-hand side of this equation is always positive, then ȧ is non-zero.

Thus we can conclude that the universe expands forever in these cases, ȧ > 0.

The rate of the expansion can be analyzed by considering the derivative of the ρa3

with respect to the cosmic time, t,

d(ρa3)

dt
= a3ρ̇ + 3a2ȧρ

=
−3ρa2ȧ

ω
≤ 0. (2.42)
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Figure 2.3: Three different evolutions of the universe: the red line (k = −1)

corresponds to the open universe; the blue line (k = 0) corresponds to the flat

universe; and the green line (k = 1) corresponds to the closed universe.

This implies that ρa3 is a decreasing function, and so is ρa2. Thus, if t→∞ then

ρa2 → 0, which in turn implies that ȧ→ 1 for the hyperbolic space and ȧ→ 0

for the flat space. From this analysis, we conclude that for the hyperbolic space

the universe expands forever and faster than the flat space, so we call it is the

“open universe.” For the flat space, the universe stops expanding at the infinite

time, and we call it the “flat universe” as shown in Figure 2.3. For the spherical

space, the Friedmann equation can be rewritten as

ȧ2 =
8πG

3
ρa2 − 1. (2.43)

By using the similar analysis, it is not hard to see that ȧ is a decreasing function,

and therefore will vanish at some finite time, t, and then will become more and

more negative. This means that the universe will collapse at some time in the

future and then continue to contract to the zero size again. This is called the Big

Crunch. The universe with this type of evolution is called the “closed universe.”

What we have done so far is merely the qualitative analysis. The exact solu-

tion for the scale factor can be separately calculated for the matter and radiation

cases. Unfortunately, this will not be done here. Anyway, the exact solutions can

be found in many textbooks on cosmology, such as [5] and [1].
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2.2 Inflationary Models

In the previous section, the Big Bang model or the Friedmann model was ana-

lyzed. This model, however, has many problems, and so people have switched to

use the inflationary model for explaining the evolution of the early universe. In

this section, the problems of the Big Bang model will be discussed in the first part,

following by the exposition of the inflationary model. To deeply understand the in-

flationary model, the dynamics of the inflaton, which is the scalar field responsible

for driving the inflation, will be considered in the last part of this section.

2.2.1 The Flatness Problem

In order to discuss the cosmological problems, we first introduce the density pa-

rameter Ω,

Ω ≡ ρ

ρc

=
8πG

3H2
ρ, (2.44)

where ρc is the critical energy density which is the energy density in the flat

universe, k = 0. The evolution of the universe in the FRW model is dictated by

the energy density containing in it:

k =


+1⇒ Ω > 1 ⇒ open universe

0⇒ Ω = 1 ⇒ flat universe

−1⇒ Ω < 1 ⇒ closed universe.

(2.45)

Next, consider the evolution of the density parameter with respect to the change

of the scale factor in the logarithmic scale:

dΩ

d ln a
= a

dΩ

da

= a
H2

ρc

d

da

( ρ

H2

)
=

a

ρc

(dρ
da
− 2ρ

H

dH

da

)
=

a

ρc

[−3(1 + ω)

a
ρ− 2ρ

Hȧ

( ä
a
− ȧ2

a2

)]
=

a

ρc

[−3(1 + ω)

a
ρ− 2ρ

Hȧ

(−4πG

3
(1 + 3ω)ρ−H2

)]
= Ω

(
− 3(1 + ω) + Ω(1 + 3ω) + 2

)
= Ω (Ω− 1)(1 + 3ω). (2.46)
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Figure 2.4: The plots of the density parameter as a function of ln a.

This equation implies that the density parameter is deviated away from that of

the flat universe if it slightly deviates from one at the early time. For an ordi-

nary matter, this is a repelling behavior of the density parameter which obeys an

inequality

d|Ω− 1|
d ln a

> 0 ; 1 + 3ω > 0. (2.47)

This behavior of the density parameter is numerically illustrated in Figure 2.4.

There is no problem if the density parameter at the present time is not equal one.

But from the recent data of the observation, it indicates that Ω = 1.02 ± 0.05

[7] which makes the universe at the early time (at the nucleosynthesis time) is

extremely flat, Ω = 1 ± 10−12 [6]. This is a curious behavior of the universe and

is referred to as the “flatness problem.”

2.2.2 The Horizon Problem

In this subsection, we discuss why the standard Big Bang model cannot describe

the thermal equilibrium in the CMB. First, let us consider the horizon size of the

universe, dH , which is defined as a distance that a photon travels from the moment

of the Big Bang. This distance can be approximated as dH ∼ t ∼ H−1. Thus

any two points, which are separated by more than the horizon size, cannot have

ever been in causal contact and therefore cannot be in thermal equilibrium. Next,

we consider the physical distance, dp, between any two points in the sky. This
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distance is scaled by the scale factor with respect to the comoving distance, and

thus can be approximated as dp ∼ a. Consider a constant quantity expressed in

terms of the ratio of two distances and |Ω− 1|,( dp

dH

)2

|Ω− 1| =
( a

H−1

)2 |k|
a2H2

= const. (2.48)

Thus the derivative of this quantity vanishes,

2|Ω− 1| d

d ln a

( dp

dH

)
+
( dp

dH

)2d|Ω− 1|
d ln a

= 0. (2.49)

Using the condition (2.47), we obtain a condition which leads to the horizon

problem:

d

d ln a

( dp

dH

)
< 0 ; 1 + 3ω > 0. (2.50)

This equation implies that the physical distance stretches more slowly than the

horizon size. This implies that the physical distance between any two points was

larger than the horizon size at the early time. However, the photons began to

travel freely about 300,000 years after the Big Bang (the decoupling time which

will be discussed in the next chapter), so the photons had 300,000 years to be

in causal contact. But this 300,000 years corresponds to a degree of the angular

distance in the sky which is not large enough to describe the uniform temperature

of the CMB radiation that is uniform over the entire sky to one part in 105.

This shortcoming of the Big Bang model is called the horizon problem. Other

shortcomings of this model such as the entropy and magnetic monopole problems

can be found in general textbooks [2, 3]. In this thesis, we discuss only the flatness

and horizon problems in order to introduce the inflationary model.

2.2.3 The Inflation of the Early Universe

The solution of both flatness and horizon problems can be obtained by considering

the conditions (2.47) and (2.50) leading to the flatness and horizon problems, and

the Raychuadhuri equation (2.40). The idea of the model, which can solve the

problems, is to assume that the universe expanded with an acceleration at some

period in the early time [4]. The Raychuadhuri equation tells us that this is

possible only if the “matter” in the universe has a negative pressure (ω < −1/3)

during that period of time. People call this period the inflation period. This model

causes the repelling behavior in Figure 2.4 to change to the attracting behavior

during the period of inflation, and thus it is not necessary that the universe needs
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to be extremely flat before the inflationary period (in other words, the energy

density can differ from the critical density); this solves the flatness problem. As

for the horizon problem, the rapid expansion of the universe during the inflation

period causes any two points that used to be in causal contact (that is, in thermal

equilibrium) before the inflation to become far apart more than the horizon size

when the inflation ends. This means that any two points that might appear to us

that they have never been in thermal contact according to the Big Bang model

were indeed in thermal contact at the early time. Thus there is no horizon problem

if one assumes the inflation period at the early time.

In order to solve the problems exactly, one needs the solution of the question

“how should the universe be expanded?,” or in the other words, “how long must

the universe be maintained in the inflation period?” Conveniently, one chooses the

extreme condition in which ω = −1 during the period of inflation. This condition

leads to the constant Hubble parameter (from the Friedmann equations (2.38)-

(2.39)) and the constant energy density (from the conservation of energy (2.33)),

and the resulting model is called the “de Sitter stage.” In order to determine

period of the inflation one introduces a new parameter N , called the number of

e-folding, which is defined as

ȧ

a
= HI

ln
(a(te)
a(ti)

)
= HI(te − ti)

a(te)

a(ti)
= eN , (2.51)

where N = HI(te− ti), and te , ti and HI denote the ending time, the initial time

of inflation and the constant Hubble parameter in the inflation period respectively.

The condition that must be satisfied in order to solve the horizon problem is that

the physical distance dp at the initial time of inflation must be smaller than the
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horizon size dH = H−1
I during inflation. Using this condition, one obtains

dp(ti) = dH(t0)
(a(te)
a(t0)

a(ti)

a(te)

)
< dH(ti)

= dH(t0)
(T (t0)

T (te)
e−N

)
< dH(ti)

⇒ N > ln
(T (t0)

T (te)

)
+ ln

(dH(t0)

dH(ti)

)
∼ ln

(T (t0)

T (te)

)
+ ln

(T 2(te)

T 2(t0)

)
= ln

(T (te)

T (t0)

)
= ln

( 1015GeV

10−13GeV

)
N > 65, (2.52)

where t0 denotes the present time and T (te) is the temperature at the end of

inflation. Above, we have used a ∝ T−1 and dH = H−1 ∼ mplρ
−1/2
R ∼ mpla

2 ∼
mplT

−2. That the universe must have a negative pressure during inflation implies

that inflation is the period in which the vacuum energy dominates. This statement

can be understood by imagining that, during that period, the universe expands

very rapidly and thus dilutes all particles in the universe, hence the vacuum energy

dominates eventually.

An important thing that needs to be mentioned is that, if we assume that the

universe is in the de Sitter stage with ω = −1 during inflation, then the universe

must rapidly expand forever because ω is a constant value. Such a situation surely

cannot occur in reality, otherwise the universe would be filled with the vacuum

energy forever and there would be no matter that we see around us nowadays.

The way out of this difficulty is that the universe has to be approximately de

Sitter during inflation and the de Sitter characteristic of the space-time dies away

at later time. It turns out that, to achieve this, a scalar field called an inflation

with appropriate dynamics is needed to drive inflation. This will be discussed in

the next subsection.

2.2.4 Dynamics of Inflation

As we have mentioned in the previous subsection, the scalar field is the best

choice as the driving source of inflation. Generally, one chooses a real scalar field,

ϕ, which is coupled to the gravity and has the potential V (ϕ). This real scalar
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field is called an “inflaton,” and the action can be written as

S =

∫
d4x
√
−gL

= −
∫
d4x
√
−g
[1
2
gµν∂µϕ∂νϕ+ V (ϕ)

]
. (2.53)

To obtain the equation of motion, we perform a variation of this action with

respect to the inflation field and set it to zero:

δS = −
∫
d4x
√
−g
[
gµν∂µϕδ(∂νϕ) +

δV (ϕ)

δϕ
δϕ
]

0 = −
∫
d4x

(
∂ν

[
gµν
√
−g∂µϕδϕ

]
−
[
∂ν(g

µν
√
−g∂µϕ)−

√
−g δV (ϕ)

δϕ

]
δϕ

)

0 =
1√
−g

∂ν(g
µν
√
−g∂µϕ)− δV (ϕ)

δϕ
. (2.54)

Thus the equation of motion of the inflaton field is

ϕ̈+ 3Hϕ̇+ ∂ϕV (ϕ) = 0. (2.55)

This equation of motion can be written in terms of the conformal time as

ϕ′′ + 2Hϕ′ + a2∂ϕV (ϕ) = 0. (2.56)

In the above equations, ∇2ϕ vanishes due to the fact that the scalar field is

homogeneous and isotropic. Next, we consider the energy-momentum tensor in

the universe. By assuming that the inflaton dominates at the early time, we get

Tµν = ∂µϕ∂νϕ + Lgµν

= ∂µϕ∂νϕ − gµν

(
1

2
gαβ ∂αϕ∂βϕ + V (ϕ)

)
, (2.57)

T µ
ν = gµρTρν

= gµρ ∂ρϕ∂νϕ − gµρ gρν

(
1

2
gαβ ∂αϕ∂βϕ + V (ϕ)

)
. (2.58)

For the (00)-component, one obtains

T 0
0 = g0ρTρ0

−ρ = g0ρ ∂ρϕ∂0ϕ − g0ρ gρ0

(
1

2
gαβ ∂αϕ∂βϕ + V (ϕ)

)
−ρ = −ϕ̇2 −

(
− 1

2
ϕ̇+

1

2
a−2∇2ϕ+ V (ϕ)

)
ρ =

1

2
ϕ̇+ V (ϕ), (2.59)
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and, by considering the (ij)-components, one gets

T i
j = giρTρj

p δi
j = giρ ∂ρϕ∂jϕ − giρ gρj

(
1

2
gαβ ∂αϕ∂βϕ + V (ϕ)

)
p δi

j = a−2δi
j∇2ϕ− δi

j

(
− 1

2
ϕ̇+

1

2
a−2∇2ϕ+ V (ϕ)

)
p =

1

2
ϕ̇− V (ϕ). (2.60)

From the condition of inflation ρ+ 3p < 0, one obtains

ρ < −3p
1

2
ϕ̇+ V (ϕ) < −3

(1

2
ϕ̇− V (ϕ)

)
ϕ̇ < V (ϕ). (2.61)

This is the condition for dynamical inflation which results in the so-called “quasi-

de Sitter stage” of the universe. In order to recover the de Sitter stage, one takes an

extreme limit ϕ̇→ 0 (and therefore the inflation field is approximately constant)

so that ρ = −p. In this limit, the Friedmann equation takes the form( ȧ
a

)2

= H2 =
1

3m2
pl

(1

2
ϕ̇2 + V (ϕ)

)
=

V (ϕ)

3m2
pl

= constant. (2.62)

Note that we have considered the Friedmann equation in the flat space, k = 0.

In this de Sitter limit, the potential is constant and so there is no dynamics

of inflation. In the real situation, the universe has to be in the quasi-de Sitter

stage, and one allows the potential to depend on time with the condition that

(1/2)ϕ̇2 � V (ϕ) (so as to make the universe almost de Sitter) for a sufficiently

long period of time. The physical meaning of this condition is that the inflaton

slow-rolls in the flat potential and this implies the domination of the friction term

in the equation of motion. Thus, one can approximate the equation of motion as

3Hϕ̇+ ∂ϕV (ϕ) ' 0, (2.63)

and the Friedmann equation in the quasi-de Sitter stage can be approximated as

H2(t) =
V [ϕ(t)]

3m2
pl

. (2.64)

This is known as the “slow-roll approximation.” At this point, it is appropriate to

defined some appropriate parameters, known as the slow-roll parameters, relevant

to the dynamics of inflation. The first one is

ε = − Ḣ

H2
. (2.65)
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This slow-roll parameter can be written in terms of the potential of the inflaton

by differentiating H2 with respect to the cosmic time, and then using the slow-roll

condition (2.63):

ε(ϕ) = − Ḣ

H2

= − 1

2H3

dH2

dt

= − V
′(ϕ)ϕ̇

6m2
plH

3

=
1

2m2
pl

ϕ̇2

H2
, (2.66)

=
m2

pl

2

(V ′(ϕ)

V (ϕ)

)2

. (2.67)

The importance of this parameter can be seen if one notices that the second

derivative of the scale factor can be expressed as

ä

a
= H2(1− ε(ϕ)). (2.68)

This equation implies that the de Sitter stage corresponds to ε = 0. For the

quasi-de Sitter stage, ε < 1 and the change of the slow-roll parameter depends on

the shape of the potential. Generally, the inflation starts with the inflaton slowly

rolling in the flat potential and this corresponds to ε→ 0. After that the potential

is no longer flat, the kinetic term of the inflaton dominates and so ε → 1, which

corresponds to the period that inflation stops. After inflation ends, the inflaton

oscillates about the minimum of the potential well. Then the inflaton decays and

creates the ordinary particles; this makes the universe thermalized. This is known

as the “reheating period” [8]. Another slow-roll parameters can be calculated in

the similar way and are defined by

η(ϕ) = m2
pl

(V ′′(ϕ)

V (ϕ)

)
=

1

3

(V ′′(ϕ)

H2

)
, (2.69)

δ(ϕ) = η(ϕ)− ε(ϕ) = − ϕ̈

Hϕ̇
. (2.70)

These slow-roll parameters can be written in terms of the conformal time as

ε(ϕ) = 1− H
′

H2
=

1

2m2
pl

( ϕ′
H2

)
, (2.71)

δ(ϕ) = η(ϕ)− ε(ϕ) = 1− ϕ′′

Hϕ′
. (2.72)

Finally, by using (2.51) and (2.64), the number of e-fold can be written as

N =
1

m2
pl

∫ ϕi

ϕf

V (ϕ)

V ′(ϕ)
dϕ. (2.73)
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Figure 2.5: The dynamics in the large-field model.

The number of e-fold, which must be greater than 65, will constrain the potential.

We will calculate it in the next subsection.

2.2.5 Classification of Inflationary Models

Since the dynamics of the inflaton field depend on the shape of the potential,

V (φ), we can classify the dynamics into three classes. They are the large-field

model, the small-field model and the hybrid model.

• The large-field model

In the large-field model, the initial value of the inflaton is assumed to be

large. We consider the situation where the inflaton evolves from the initial large

value to a small value as illustrated in Figure 2.5. The generic potential of this

type is

V (ϕ) = Λ4
(ϕ
µ

)p

, (2.74)

where p is an integer number. The shape of the potential in (2.74) is controlled by

two mass-dimensional parameters Λ and µ. The parameter Λ corresponds to the

vacuum energy density during inflation, while the parameter µ gives us the width

of the potential and corresponds to the change of the inflaton field ∆ϕ. As an

example, we consider the quadratic inflaton potential with Λ = µ = m/
√

2 where

m is the mass of the inflaton. Thus the potential takes the form

V (ϕ) =
1

2
m2ϕ2. (2.75)
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From this potential, equations (2.63) and (2.64) become

H2 =
m2ϕ2

6m2
pl

(2.76)

and

3Hϕ̇+m2ϕ ' 0. (2.77)

Using H in (2.76), we can solve (2.77) to get

ϕ ∼= ϕi −
√

2

3
mmplt. (2.78)

By substituting this solution back into (2.76), the scale factor takes the form

a ∼= ai exp
[ m√

6mpl

(
ϕit−

√
2

3
mmplt

2
)]
. (2.79)

We now have three parameters, ϕf , ϕi and m, to determine. First, let us consider

the slow-roll parameters which, in this case, take the form

ε = η =
2m2

pl

ϕ2
. (2.80)

The inflation ends when ε = 1, so the value of the inflaton at the end of inflation

reads ϕf =
√

2mpl. After this, the inflaton will oscillate and will enter the reheat-

ing period. Second, the initial inflaton field can be determined from the number

of e-fold which takes the form

N =
(ϕ2

i − 2m2
pl)

4m2
pl

> 65. (2.81)

This constraint constrains the initial value of the inflaton ϕi > 16mpl. This means

that the initial value of the inflaton field is distributed chaotically, and so people

call this type of model as the “chaotic inflationary model.” Unfortunately, there is

no particle physics motivation for this potential [2]. However, this model is useful

for studying inflation. The mass of the inflaton can be determined by analyzing the

data from observation [2] which yields the value of m = 1.8×1013GeV = 10−6mpl.

• The small-field model

In opposite to the large-field model, the small-field model is the model in

which the inflaton initially rolls down the potential from the small value of ϕ to

the large value of ϕ where the potential is minimum. The shape of the potential
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Figure 2.6: The dynamics of the small-field model.

for the small-field model is illustrated in Figure 2.6. The generic potential of this

type can be written as

V (ϕ) = Λ4
(
1− (ϕ/µ)p

)
. (2.82)

The popular potential in this case is the potential which gives the scale factor

proportional to some power of the cosmic time, a = a0t
p ; p > 1. The model

with this potential is called the “power-law inflation.” The advantage of this po-

tential is that the equation for the generation of the density perturbation can be

solved exactly. In order to find the potential, one considers the Raychuadhuri and

Friedmann equations which can be written as

Ḣ = − ϕ̇2

2m2
pl

= − p
t2
, (2.83)

where H = p/t. From this equation, one obtains the cosmic time as

t = exp
( ϕ√

2p mpl

)
. (2.84)

By using the Friedmann equation and equation (2.83), one obtains

H2 =
1

3m2
pl

(1

2
ϕ̇2 + V (ϕ)

)
⇒ V (ϕ) = 3m2

pl

p2

t2
− 1

2
ϕ̇2

= m2
pl

((3p2 − p)
t2

)
= V0 exp

(
−
√

2

p

ϕ

mpl

)
, (2.85)
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Figure 2.7: The dynamics of the hybrid model.

where V0 = m2
pl(3p

2 − p). From this potential the slow-roll parameters can be

determined immediately:

ε =
1

p
; η =

2

p
. (2.86)

This slow-roll parameters are constant; this implies that the inflation will never

end. This is the disadvantage of the power-law inflation. However, as we have

derived above, we are not concerned with the slow-roll approximation ϕ̇2 � V (ϕ).

Then one can exactly solve the equation for the generic perturbation and this is

the advantage of this model.

• The hybrid model

Both two models that we discussed above are the single-field model. We now

present the model with the multiple-field potential. Indeed, this model contains

only two scalar fields, whose dynamics are depicted in Figure 2.7. As shown this

figure, one of the fields, ϕ, is responsible for the inflationary stage (similar to the

large-field model), but the end of inflation is not at the origin. The other one,

ψ, is responsible for the end of inflation, where the inflaton rapidly rolls down to

the true minimum of the potential; this stage is just like the small-field model.

Therefore, people call this model the hybrid model. However, if the inflaton slowly

rolls in the second step, one has two stages of inflation and the model is called the

“double-inflation model.” An example of the potential for the hybrid model takes
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the form

V =
λ

4

(
ψ2 − M2

λ

)2

+
1

2
g2ϕ2ψ2 +

1

2
m2ϕ2. (2.87)

The transition between these two phases occurs when the sign of the mass param-

eter of ψ changes, which occurs when g2ϕ2 −M2 = 0. Thus one can write this

critical point as ϕc = M/g. The inflation stage corresponds to ϕ > ϕc and stops

when ϕ < ϕc. Thus the number of e-fold is determined by considering only the

first part of evolution (ϕ > ϕc), and takes the form

N ' M4

4m2m2
pl

ln
ϕi

ϕc

. (2.88)

In order to find the parameters in this model, one needs the exhaustive observation

which is quite complicated because there are more parameters in the potential; this

is a drawback of this model. However, some drawbacks of the single-field model

are absent in this model, and moreover this model satisfies the particle theory due

to the occurrence of the symmetry breaking in the end of inflation. The detail

calculation is skipped due to its complication. However, a nice discussion of this

calculation can be found in [2].



CHAPTER III

COSMOLOGICAL PERTURBATION

As we mentioned in the previous chapter, the inflationary model not only

solves the flatness and the horizon problems, but also provides us the mechanism

of structure formations. The structure formations are originated from quantum

fluctuations in the microscopic scales. Then the inflation magnifies them to be

in the macroscopic scales and become a seed of the structures that we observe

today. In this chapter we will determine the power spectrum by using the theory

of cosmological perturbation, and the result will be compared with the observation

in the last part of this chapter. For simplicity, we will discuss the fluctuations of

a single scalar field in the first section. Next, we will offer some ideas of the

metric perturbation in the second section. In the third section, we will determine

the power spectrum of the scalar perturbation and the amplitude of the tensor

perturbation by perturbing the Einstein field equation.

3.1 Scalar Field Fluctuations

Our goal of this section is to find the power spectrum of the generic fluctuation

fields, which actually are the inflaton fields. Thus, in the first part of this section,

we will define the power spectrum of the generic fluctuations. We then calculate

the power spectrum of the fluctuation fields. The basic idea of this calculation

which we are going to do can be applied to determine the power spectrum of the

metric perturbation amplitudes.

3.1.1 The Power Spectrum of Generic Fluctuation Fields

The power spectrum is an important quantity which characterizes the properties

of the perturbations. According to quantum field theory, a scalar field, ϕ(~x, t),

can be quantized by replacing it with the field operator ϕ̂(~x, t). In analogy with
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quantum theory, the field operator obeys the equal-time commutation relations

which take the form

[φ̂(~x, t), π̂(~x′, t)] = iδ3(~x− ~x′), (3.1)

[φ̂(~x, t), φ̂(~x′, t)] = 0, (3.2)

[π̂(~x, t), π̂(~x′, t)] = 0, (3.3)

where π̂(~x, t) is the conjugate momentum of φ̂(~x, t). Moreover, the field operator

can be expanded in terms of the creation and the annihilation operators, â† and

â, respectively:

φ̂(~x, t) =
1

2

∫
d3k

(2π)3/2

(
φk(t)e

ikxâk + φ†k(t)e
−ikxâ†k

)
. (3.4)

Generally, the power spectrum of P(k) is defined by

〈0 | φ2(~x, t) | 0〉 =

∫
dk

k
P(k). (3.5)

The quantity on the left-hand side can be calculated by using the properties of

the creation and annihilation operators such as âk | 0〉 = 0 and 〈0 | â†kâk′ | 0〉 =

δ3(k − k′). The result is

〈0 | φ2(~x, t) | 0〉 =

∫
dk

k

k3

2π2
| φk(t) |2 . (3.6)

Therefore, the power spectrum can be written as

Pφ(k) =
k3

2π2
| φk(t = tk) |2, (3.7)

where tk is the crossing time which we will discuss later. Moreover, the quantities

relevant to the observation are the spectral index, n, and the running of the

spectral index, r. The spectral index for the scalar perturbation is defined as

ns = 1 +
d lnPs

d ln k
, (3.8)

and the spectral index for the tensor perturbation is defined by

nT =
d lnPT

d ln k
. (3.9)

The running of the spectral index can be defined as

rs,T =
dns,T

d ln k
, (3.10)

where the subscripts s and T denote the scalar perturbation and the tensor per-

turbation, respectively.
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3.1.2 Dynamics of Scalar Fluctuation Fields

We begin this subsection by considering the action of a free scalar field which takes

the form

S =

∫
d4x
√
−gL

= −
∫
d4x
√
−g
[1
2
gµν∂µϕ∂νϕ+ V (ϕ)

]
. (3.11)

It is convenient to use the conformal time as the time coordinate. To consider a

small fluctuation of ϕ, we let ϕ→ ϕ+δϕ = ϕ+φ, where φ is called the fluctuation

field. Then, the perturbed action can be written as

S[ϕ+ φ] = S[ϕ] + S[φ]

= S[ϕ] +

∫
d4x
√
−g
(1

2
gµν∂µφ∂νφ−

∂2V (ϕ)

∂ϕ2
φ2
)
. (3.12)

Actually, the second term in the integral above can be interpreted as the mass

term which is of the same order as the slow-roll parameter, V ′′(ϕ) = 3ηφH
2.

For convenience, one considers the massless scalar field, and so this term can be

neglected. However, if one considers the massive scalar field, one can put this

term back in the last step. In (3.12), we treat ϕ as a classical background field,

and the fluctuation field φ as a quantum field. Thus by using the Euler-Lagrange

equation, the equation of motion takes the form

φ′′ +
2a′

a
φ′ −∇2φ = 0. (3.13)

Note that this equation of motion can also be obtained by directly substituting

ϕ(~x, η) = ϕ0(η)+φ(~x, η) into the equation of motion of the inflaton field. In order

to find the power spectrum, we must quantize this fluctuation field. By using

(3.4), we can consider φ as a function of the conformal time:

φ′′k +
2a′

a
φ′k + k2φk = 0. (3.14)

Let us consider the qualitative behavior of the solution to this equation. Since this

equation looks complicated, we therefore consider two extreme cases with respect

to the wavelength of perturbation, λ.

For the first case, k � aH and this corresponds to the perturbation that

has wavelength much smaller than the horizon size, λ� H−1. In this regime, the

friction term (second term) can be neglected and so equation (3.14) is reduced to

φ′′k + k2φk = 0. (3.15)
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The solution of this equation can be easily obtained and takes the form φk ∼
exp(ikη). This means that the fluctuation modes are the oscillating modes as long

as their wavelengths are smaller than the horizon size.

For the second case, k � aH and this corresponds to the fluctuation modes

with wavelengths much larger than the horizon size, λ � H−1. Thus, one can

neglect the effect of the third term, and so equation (3.14) is reduced to

φ′′k + 2aHφ′k = 0. (3.16)

The solution of this equation is simply a constant. This implies that these fluctu-

ation modes are frozen.

From this analysis, we can conclude that, as the scale factor increases faster

than the horizon during inflation, the fluctuation modes, whose wavelengths are

smaller than the horizon size, oscillate until their wavelengths are of the same order

as the horizon size, these fluctuation modes then cease to oscillate and become

frozen. After the inflation ends, the horizon expands faster than the scale factor.

Thus, the fluctuations are frozen at some specific time, called the “crossing time.”

At some time after that, the fluctuations will reenter the horizon and oscillate

again. Since one considers the fluctuation modes that reenter the horizon at the

decoupling time, then these fluctuations will make the perturbations of the matter

density and we observe them as a CMB anisotropies nowadays.

Next, we determine the exact solution of equation (3.14). For convenience,

we let uk = aφk. Then the equation of motion changes to

u′′k +
(
k2 − a′′

a

)
uk = 0. (3.17)

By using the relation from the quasi de Sitter stage (2.65),

H′

H2
= 1− ε, (3.18)

the factor a′′/a in (3.17) can be written as

a′′

a
= H′ +H2

= H2
(
2− ε

)
. (3.19)

Using equation (3.18) again, one obtains

dH = (1− ε)H2dη,

H =
−1

(1− ε)
1

η
,

H2 = (1 + 2ε)
1

η2
. (3.20)
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By substituting the above form of H into (3.19), we find

a′′

a
=

1

η2
(2 + 3ε) =

1

η2

(
ν2 − 1

4

)
, (3.21)

where ν = 3/2 + ε. Thus, the equation of motion becomes

u′′k +
(
k2 − 1

η2
(ν2 − 1/4)

)
uk = 0. (3.22)

By considering the differential equation of the Bessel function,

x2 d
2

dx2
Jν(kx) + x

d

dx
Jν(kx) + (x2k2 − ν2)Jν(kx) = 0, (3.23)

it is not hard to verify that the solution of equation (3.22) takes the form

uk =
√
−kη

(
AkJν(−kη) +BkNν(−kη)

)
, (3.24)

where Nν(−kη) is the Neumann function. The constants Ak and Bk can be found

by using the boundary conditions corresponding to the two limits discussed above.

For the case k � aH which corresponds to −kη � ν, the fluctuation modes take

the form

uk =

√
2

π

(
Ak cos(−kη − νπ/2− π/4) +Bk sin(−kη − νπ/2− π/4)

)
∼ e−ikη. (3.25)

This implies Bk = iAk. Thus, the general form of uk can be written as

uk =
√
−kηCke

i π
2
(ν+1/2)

(
Jν(−kη) + iNν(−kη)

)
,

=
√
−kηCke

i π
2
(ν+1/2)

(
H(1)

ν (−kη)
)
, (3.26)

where H
(1)
ν (−kη) is the first kind Hankel’s function and Ck are some constants

that can be found by using the normalization in (3.1). Indeed, from the action of

the fluctuation field in (3.12), the conjugate momentum can be written as

π̂(~x, η) = a2dφ̂(~x, η)

dη

=

∫
dk

(2π)3/2
a2
(
φ′ke

ikxâk + φ′†k e
−ikxâ†k

)
. (3.27)

By calculating the commutator in (3.1), using the commutator of annihilation and

creation operators,

[â(~k), â†(~k′)] = δ3(~k − ~k′), (3.28)
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and the property of the Bessel function,

Jν(x)N
′
ν(x)− J ′ν(x)Nν(x) =

2

πx
, (3.29)

one finds that Ck takes the form
√
π/4k. Thus, the exact solution can be expressed

as

φk =
√
π/4ei π

2
(ν+1/2)

√
−η
a

H(1)
ν (−kη). (3.30)

With this solution, one finds the power spectrum of the inflaton field as

Pφ(k) =
k3(−ηk)

8πa2(ηk)

(
J2

ν (−kηk) +N2
ν (−kηk)

)
. (3.31)

In this form, one cannot find the spectral index and the running spectral index.

However, these parameters can be determined by using the adiabatic approxima-

tion. By doing that, it appears that the slow-roll parameters adiabatically change

with time and the crossing time can be approximated as −kηk → 0. Thus the

fluctuation modes take the form

φk =
ei π

2
(ν−1/2)

√
2k

2ν−3/2

a

Γ(ν)

Γ(3/2)
(−kη)−ν , (3.32)

where we have used the asymptotic form of Hankel’s function,

H(1)
ν (x� 1) =

√
2/πe−i π

2 2ν−3/2 Γ(ν)

Γ(3/2)
x−ν . (3.33)

With this result, the power spectrum takes the form

Pφ(k) = Ak−2ε, (3.34)

where

A =
22ε

π2

Γ2(3/2 + ε)

Γ2(3/2)
(1− ε)2(1+ε)(aH)2εH2, (3.35)

and the spectral index can be written as n = 1 − 2ε. Furthermore, the power

spectrum and the spectral index of the massive scalar fields can be determined by

replacing ν2 with ν2
m = ν2−3ηφ and νm = 3/2+ ε−ηφ. Thus, the power spectrum

and the spectral index can be expressed as

Pmφ(k) = Amk
2(ηφ−ε), (3.36)

where

Am =
22(ε−ηφ)

π2

Γ2(3/2 + ε− ηφ)

Γ2(3/2)
(1− ε)2(1+ε−ηφ)(aH)2(ε−ηφ)H2, (3.37)

and nm = 1− 2ε+ 2ηφ.
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3.2 The Metric Perturbation

As we have mentioned in the previous section, the structures that we can observe

nowadays are generated from the quantum fluctuations which become classical

perturbations by the inflation. Moreover, we have shown that the generic scalar

field can fluctuate in the inflation period. Since, the inflaton dominates in that

period, then the generic scalar field is the inflaton field. Therefore, in this sub-

section, we will show that the inflaton field also causes the perturbation in the

curvature through the Einstein equation, δϕ⇒ δTµν ⇒ δgµν . On the other hand,

the perturbation of the curvature will also generate the fluctuation in the infla-

ton field, δgµν ⇒ δϕ. This coupling between the perturbations of curvature and

scalar field, δgµν ⇔ δϕ, allows us to determine both the metric and inflaton field

perturbations at the same time.

The metric fluctuations can be considered in the same way as the scalar

field fluctuations in that one expresses the metric as a linear combination of the

background metric (FRW metric) and the small fluctuation metric,

gµν = g(0)
µν (t) + gµν(~x, t). (3.38)

Generally, the metric perturbation can be decomposed into three parts, namely,

the scalar, the vector, and the tensor perturbations, according to their spins. In

this thesis, we will consider only the scalar and the tensor perturbations. The

vector perturbation can be neglected because it corresponds to the rotational-

velocity fields which are not excited during the inflation stage.

3.2.1 Scalar Perturbation

In this subsection, we will determine the power spectrum of the scalar perturba-

tion by perturbing the Einstein equation. Generally, the metric with the scalar

perturbation takes the form

gµν = a2

(
−1 − 2A ∂iB

∂iB (1 − 2ψ) δij + DijE

)
, (3.39)

where Dij =
(
∂i∂j − 1

3
δij∇2

)
, and A, B, ψ, E are the perturbation parameters

which have small values. To find the inverse metric, gµν , one writes

gµν =
1

a2

(
−1 + x ∂iy

∂iy (1 + 2χ) δij + Dijz

)
, (3.40)
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where x, y, z, and χ can be calculated by using the relation

gµα gαν =
(
gµα
(0) + gµα

) (
g(0)

αν + gαν

)
= δµ

ν . (3.41)

By considering the (0,0) component, we find

g0αgα0 = g00g00 + g0igi0

= (−1 + x)(−1− 2A) + ∂iB∂iy

= 1 + x+ 2A = 1,

⇒ x = 2A. (3.42)

Note that we kept only the terms of linear order in perturbations in the above

calculation. Similarly, the consideration of the (0, i) components gives

g0αgαi = g00g0i + g0jgji

= (−1 + 2A)(∂iB) + ∂jY [(1 − 2ψ)δji + DjiE]

= −∂jB + ∂iyδij = 0,

⇒ y = B. (3.43)

For the (i, j) components, one obtains

giαgαj = gi0g0j + g0kgkj

= ∂iB ∂jB +
(
(1 + 2χ)δik + Dikz

)
((1− 2ψ)δkj + DkjE)

= (1 − 2ψ + 2χ)δi
j + Di

jE + Di
jz = δi

j,

⇒ χ = ψ; z = −E. (3.44)

Thus, gµν can be expressed in the form

gµν =
1

a2

(
−1 + 2A ∂iB

∂iB (1 + 2ψ)δij − DijE

)
. (3.45)

We now determine the perturbed affine connection by using the above metric. The

background affine connection takes the form

Γα
βγ =

1

2
gαρ (∂βgργ + ∂γgβρ − ∂ρgβγ) (3.46)

with gµν being the FRW metric. One of the components of this affine connection

is

Γ0
00 =

1

2
g00(∂0g00 + ∂0g00 − ∂0g00) =

1

2

1

a2
∂0a

2 =
a′

a
. (3.47)

Other components can also be determined in the same way. The results are

Γi
0j =

a′

a
δi
j ; Γ0

ij =
a′

a
δij ; (3.48)
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Γi
00 = Γ0

0i = Γi
jk = 0 . (3.49)

We next calculate the affine connection perturbation which takes the form

δΓα
βγ =

1

2
δgαρ (∂βgργ + ∂γgβρ − ∂ρgβγ)

+
1

2
gαρ (∂βδgργ + ∂γδgβρ − ∂ρδgβγ) , (3.50)

where δgµν represents the metric perturbation, which is the scalar perturbation in

this case. Its components are as follows:

δΓ0
00 =

1

2

(
δg00∂0g00 + δg0i∂0gi0 + δg00∂0g00

+δg0i∂0g0i − δg00∂0g00 − δg0i∂ig00

)
+

1

2

(
g00∂0δg00 + g0i∂0δgi0 + g00∂0δg00

+g0i∂0δg0i − g00∂0δg00 − g0i∂iδg00

)
=

1

2

(−2A

a2
2aa′ +

1

a2
∂0(−2A(−a2))

)
=

1

2

(−4Aa′

a
+

4Aa′

a
+ 2A′

)
= A′, (3.51)

δΓ0
0i =

1

2

(
δg00∂0g0i + δg0j∂0gji + δg00∂ig00

+δg0j∂ig0j − δg00∂0g0i − δg0j∂jg0i

)
+

1

2

(
g00∂0δg0i + g0j∂0δgji + g00∂0δg00

+g0j∂iδg0j − g00∂0δg0i − g0j∂jδg0i

)
=

1

2

(2A

a2
∂i(−a2(1 + 2A)) +

(−1 + 2A)

a2
∂i(−a22A) +

∂jB

a2
∂0a

2δij

)
= ∂iA+

a′

a
∂iB, (3.52)

δΓi
00 =

1

2

(
2δgi0∂0g00 + 2δgij∂0g0j − δgi0∂0g00 − δgij∂jg00

)
+

1

2

(
2gi0∂0δg00 + 2gij∂0δg0j − gi0∂0δg00 − gij∂jδg00

)
=

1

2

(∂iB

a2
∂0(−a2) +

(2)

a2
∂0(a

2∂iB)− 1

a2
∂i(−a22A)

)
=

a′

a
∂iB + ∂iB′ + ∂iA, (3.53)
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δΓ0
ij =

1

2

(
2δg00∂ig0j + 2δgok∂igkj − δg00∂0gij − δg0k∂kgij

)
+

1

2

(
2g00∂iδg0j + 2g0k∂iδgkj − g00∂0δgij − g0k∂kδgij

)
=

1

2

(−2A

a2
∂0(a

2)δij +
(−2)

a2
∂i(a

2∂jB)− −1

a2
∂0((−2ψδij +DijE)a2)

)
= −2A

a′

a
δij − ∂i∂jB − ψδij +

1

2
DijE

′ +
a′

a
(−2ψδij +DijE), (3.54)

δΓi
0j =

1

2

(
δgi0∂0g0j + δgik∂0gkj + δgi0∂jg00

+δgik∂jgko − δgi0∂0g0j − δgik∂kg0j

)
+

1

2

(
gi0∂0δg0j + gik∂0δgkj + gi0∂jδg00

+gik∂jδgk0 − gi0∂0δg0j − gik∂kδg0j

)
=

1

2

(2ψδik −DikE

a2
∂0a

2δkj +
δik

a2
∂j(∂kBa

2)

+
δik

a2
∂0((−2ψδkj +DkjE)a2)− δik

a2
∂k(∂jBa

2)
)

= −ψ′δi
j +

1

2
Di

jE
′, (3.55)

and

δΓi
jk =

1

2

(
δgi0∂jg0k + δgil∂jglj + δgi0∂kg0j

+δgil∂kglj − δgi0∂0gjk − δgil∂lgjk

)
+

1

2

(
gi0∂jδg0k + gil∂jδglk + gi0∂kδg0j

+gil∂kδglj − gi0∂0δgjk − gil∂lδgjk

)
=

1

2

(−∂iB

a2
∂0a

2δjk + δil∂j(−2ψδlk +DlkE)

+δil∂k(−2ψδlj +DljE)− δil∂l(−2ψδjk +DjkE)

= −a
′

a
∂iBδjk − δi

k∂jψ − δi
j∂kψ + δjk∂

iψ

+
1

2
Di

k∂jE +
1

2
Di

j∂kE −
1

2
Djk∂iE. (3.56)

In order to determine the left-hand side of the perturbed Einstein equation, one

must calculate the perturbed Ricci tensor and the perturbed Ricci scalar. The

Ricci tensor is defined as

Rµν = ∂α Γα
µν − ∂µ Γα

να + Γα
σα Γσ

µν − Γα
σν Γσ

µα . (3.57)
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Thus, the (0,0) component of the unperturbed Ricci tensor takes the form

R00 = ∂α Γα
00 − ∂0 Γα

0α + Γα
σα Γσ

00 − Γα
σ0 Γσ

0α

= −∂0Γ
i
0i + Γi0iΓ0

00 − Γi0iΓi
0i

= −3
a′′

a
+ 3

(
a′

a

)2

. (3.58)

Other components can be calculated in the same way. The results are

Rij =
(a′′
a

+

(
a′

a

)2 )
δij ; R0i = 0 . (3.59)

The first-order perturbation of the Ricci tensor takes the form

δRµν = ∂α δΓ
α
µν − ∂µ δΓ

α
να + δΓα

σα Γσ
µν + Γα

σα δΓ
σ
µν

− δΓα
σν Γσ

µα − Γα
σν δΓ

σ
µα . (3.60)

The (0, 0), (0, i), (i, j) components can be calculated as follows:

δR00 = ∂0δΓ
0
00 + ∂iδΓ

i
00 − ∂0 δΓ

0
00 − ∂0 δΓ

i
0i

+ δΓ0
00 Γ0

00 + δΓi
0i Γ

0
00 + Γ0

00 δΓ
0
00 + Γi

0i δΓ
0
00

− δΓ0
00 Γ0

00 − δΓi
0i Γ

i
0i − Γ0

00 δΓ
0
00 − Γi

0i δΓ
i
0i

= ∂i

(a′
a
∂iB + ∂iB′ + ∂iA

)
− 3∂0

(
− ψ′ + 1

2
Di

iE
′
)

+ A′3
a′

a

+3
a′

a

(
− ψ′ + 1

2
Di

iE
′
)
− 2
(
3
a′

a

)(
− ψ′ + 1

2
Di

iE
′
)

=
a′

a
∂i∂

iB + ∂i∂
iB′ + ∂i∂

iA+ 3ψ′′ + 3
a′

a
A′ + 3

a′

a
ψ′, (3.61)

δR0i = ∂0δΓ
0
0i + ∂jδΓ

j
0i − ∂0 δΓ

0
i0 − ∂0 δΓ

j
ij

+ δΓ0
j0 Γj

0i + δΓj
kj Γk

0i + Γ0
00 δΓ

0
0i + Γj

0j δΓ
0
0i

− δΓj
00 Γ0

ij − δΓ0
0j Γj

i0 − Γ0
00 δΓ

0
i0 − Γk

0j δΓ
j
ik

= ∂j

(
− ψ′δj

i +
1

2
Dj

iE
′
)
− ∂0

(
− a′

a
∂iB − 3∂iψ

)
+3

a′

a

(
∂iA+

a′

a
∂iB

)
− a′

a

(a′
a
∂iB + ∂iB

′ + ∂iA
)

+
a′

a
δk
i

(
− a′

a
∂kB − 3∂kψ

)
+
a′

a
δk
j

(
− a′

a
∂jBδik − δj

k∂iψ − δj
i ∂kψ + δik∂

jψ

+
1

2
Dj

k∂iE +
1

2
Dj

i∂kE −
1

2
Dik∂jE

)
=

a′′

a
∂iB +

(
a′

a

)2

∂iB + 2
a′

a
∂iA+ 2∂iψ

′ +
1

2
∂jD

j
iE
′, (3.62)
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and

δRij = ∂0δΓ
0
ij + ∂kδΓ

k
ij − ∂i δΓ

0
j0 − ∂i δΓ

k
kj

+ δΓ0
00 Γ0

ij + δΓk
0k Γ0

ij + Γ0
00 δΓ

0
ij + Γk

0k δΓ
0
ij

− δΓk
0i Γ

0
jk − δΓ0

ki Γ
k
j0 − Γ0

ki δΓ
k
j0 − Γk

0i δΓ
0
jk

= ∂0

(
− 2A

a′

a
δij − ∂i∂jB − ψδij +

1

2
DijE

′ +
a′

a
(−2ψδij +DijE)

)
+∂k

(
− a′

a
∂kBδij − δk

j ∂iψ − δk
i ∂jψ + δij∂

kψ

+
1

2
Dk

j ∂iE +
1

2
Dk

i ∂jE −
1

2
Dij∂kE

)
−∂i

(
∂jA+

a′

a
∂jB

)
− ∂i

(
− a′

a
∂kBδkj − δk

k∂jψ − δk
j ∂kψ + δkj∂

kψ
)

+
a′

a
A′δij +

a′

a

(
− ψδk

k +
1

2
Dk

kE
′
)
δij

+4
a′

a

(
− 2A

a′

a
δij − ∂i∂jB − ψ′δij +

1

2
DijE

′ +
a′

a
(−2ψδij +DijE)

)
−a
′

a

(
− ψδk

i +
1

2
Dk

iE
′
)
δjk

−δk
j

a′

a

(
− 2A

a′

a
δki − ∂k∂iB − ψ′δki +

1

2
DkiE

′ +
a′

a
(−2ψδki +DkiE)

)
−a
′

a

(
− ψδk

j +
1

2
Dk

jE
′
)
δki

−δk
i

a′

a

(
− 2A

a′

a
δkj − ∂k∂jB − ψ′δkj +

1

2
DkjE

′ +
a′

a
(−2ψδkj +DkjE)

)
= δij

[
− 5

a′

a
ψ′ − a′

a
A′ − a′

a
∂k∂

kB − ψ′′ − 2
a′′

a
A

−2A
(a′
a

)2

− 2
a′′

a
ψ − 2

(a′
a

)2

ψ + ∂k∂
kψ
]

+
1

2
DijE

′′ +
a′′

a
DijE +

(a′
a

)2

DijE +
a′

a
DijE

′ − ∂i∂jB
′ − 2

a′

a
∂i∂jB

−∂i∂jA+ ∂i∂jψ −
1

2
∂k∂

kDijE +
1

2
∂j∂kD

k
iE +

1

2
∂i∂

kDkjE. (3.63)

We next consider the Ricci scalar. The unperturbed Ricci scalar is

R = gµνRµν

= g00R00 + gijRij

=
−1

a2

(
− 3

a′′

a
+ 3
(a′
a

)2)
+
δij

a2

(a′′
a

+
(a′
a

)2)
δij

=
6a′′

a3
, (3.64)
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and the perturbation of the Ricci scalar can be found as

δR = δgµνRµν + gµνδRµν

= δg00R00 + δgijRij + g00δR00 + gijδRij

=
2A

a2

(
−3

a′′

a
+ 3
(a′
a

)2
)

+
2ψδij −DijE

a2

(
a′′

a
+
(a′
a

)2
)
δij

+
−1

a2

(
a′

a
∂i∂

iB + ∂i∂
iB′ + ∂i∂

iA+ 3ψ′′ + 3
a′

a
A′ + 3

a′

a
ψ′
)

=
δij

a2

[
δij

(
− 5

a′

a
ψ′ − a′

a
A′ − a′

a
∂k∂

kB − ψ′′ − 2
a′′

a
A

−2A
(a′
a

)2

− 2
a′′

a
ψ − 2

(a′
a

)2

ψ + ∂k∂
kψ
)

+
1

2
DijE

′′ +
a′′

a
DijE +

(a′
a

)2

DijE +
a′

a
DijE

′ − ∂i∂jB
′ − 2

a′

a
∂i∂jB

−∂i∂jA+ ∂i∂jψ −
1

2
∂k∂

kDijE +
1

2
∂j∂kD

k
iE +

1

2
∂i∂

kDkjE
]

=
1

a2

(
− 6

a′

a
∂i∂

iB − 2∂i∂
iB′ − 2∂i∂

iA− 6ψ′′

−6
a′

a
A′ − 18

a′

a
ψ′ − 12

a′′

a
A+ 4∂i∂

iψ + ∂k∂
iDk

iE
)
. (3.65)

Using the above results for the Ricci tensor and the Ricci scalar, the components

of the Einstein tensor,

Gµν = Rµν −
1

2
gµν R , (3.66)

can be easily found:

G00 = R00 −
1

2
g00R

= −3
a′′

a
+ 3

(
a′

a

)2

− 1

2
(−a2)

6a′′

a3

= 3

(
a′

a

)2

, (3.67)

G0i = 0 ; Gij =

(
− 2

a′′

a
+

(
a′

a

)2
)
δij . (3.68)

Thus, the perturbation of the Einstein tensor takes the form

δGµν = δRµν −
1

2
δgµν R −

1

2
gµν δR , (3.69)
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and its components read

δG00 = δR00 −
1

2
δg00R −

1

2
g00 δR

=
a′

a
∂i∂

iB + ∂i∂
iB′ + ∂i∂

iA+ 3ψ′′ + 3
a′

a
A′ + 3

a′

a
ψ′

−1

2
(−2A)a2 6a′′

a3
− 1

2
(−a2)

(
1

a2

(
− 6

a′

a
∂i∂

iB − 2∂i∂
iB′ − 2∂i∂

iA

−6ψ′′ − 6
a′

a
A′ − 18

a′

a
ψ′ − 12

a′′

a
A+ 4∂i∂

iψ + ∂k∂
iDk

iE
))

= −2
a′

a
∂i∂

iB − 6
a′

a
ψ′ + 2 ∂i∂

i ψ +
1

2
∂k∂

iDk
iE , (3.70)

δG0i = δR0i −
1

2
δg0iR −

1

2
g0i δR

=
a′′

a
∂iB +

(
a′

a

)2

∂iB + 2
a′

a
∂iA+ 2∂iψ

′ +
1

2
∂jD

j
iE
′ − 1

2
∂iBa

2 6a′′

a3

= −2
a′′

a
∂iB +

(
a′

a

)2

∂iB + 2∂i ψ
′ +

1

2
∂k D

k
iE
′ + 2

a′

a
∂iA , (3.71)

δGij = δRij −
1

2
δgij R −

1

2
gij δR

= δij

[
− 5

a′

a
ψ′ − a′

a
A′ − a′

a
∂k∂

kB − ψ′′ − 2
a′′

a
A

−2A
(a′
a

)2

− 2
a′′

a
ψ − 2

(a′
a

)2

ψ + ∂k∂
kψ
]

+
1

2
DijE

′′ +
a′′

a
DijE +

(a′
a

)2

DijE +
a′

a
DijE

′ − ∂i∂jB
′ − 2

a′

a
∂i∂jB

−∂i∂jA+ ∂i∂jψ −
1

2
∂k∂

kDijE +
1

2
∂j∂kD

k
iE +

1

2
∂i∂

kDkjE

−1

2

(−2ψδij +DijE)

a2

6a′′

a3

−1

2
δija

2 1

a2

(
− 6

a′

a
∂i∂

iB − 2∂i∂
iB′ − 2∂i∂

iA− 6ψ′′

−6
a′

a
A′ − 18

a′

a
ψ′ − 12

a′′

a
A+ 4∂i∂

iψ + ∂k∂
iDk

iE
)

=

(
2
a′

a
A′ + 4

a′

a
ψ′ + 4

a′′

a
A− 2

(
a′

a

)2

A+ 4
a′′

a
ψ − 2

(
a′

a

)2

ψ

+2ψ′′ − ∂k∂
k ψ + 2

a′

a
∂k∂

kB + ∂k∂
kB′ + ∂k∂

kA− 1

2
∂k∂

mDk
mE

)
δij

−∂i∂jB
′ + ∂i∂jψ − ∂i∂jA+

a′

a
DijE

′ − 2
a′′

a
DijE

+

(
a′

a

)2

DijE +
1

2
DijE

′′ +
1

2
∂k∂iD

k
jE

+
1

2
∂k∂jDikE −

1

2
∂k∂

kDijE − 2
a′

a
∂i∂jB . (3.72)
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For our convenience, we will express the perturbed Einstein tensor which has one

index up and one index down in the form

δGµ
ν = δ(gµα Gαν )

= δgµαGαν + gµα δGαν . (3.73)

Its components are

δG0
0 = δg00G00 + δg0iGi0 + g00δG00 + g0iδGi0

=
2A

a2
3
(a′
a

)2

+
−1

a2

(
− 2

a′

a
∂i∂

iB − 6
a′

a
ψ′ + 2 ∂i∂

i ψ +
1

2
∂k∂

iDk
iE
)

=
1

2

(
2
a′

a
∂i∂

iB + 6
a′

a
ψ′ − 2 ∂i∂

i ψ − 1

2
∂k∂

iDk
iE + 6

(a′
a

)2

A
)
, (3.74)

δG0
i = δg00G0i + δg0jGji + g00δG0i + g0jδGji

=
2∂j

a2

(
− 2

a′′

a
+
(a′
a

)2)
δij

+
−1

a2

(
− 2

a′′

a
∂iB +

(
a′

a

)2

∂iB + 2∂i ψ
′ +

1

2
∂k D

k
iE
′ + 2

a′

a
∂iA
)

=
−1

a2

(
2
a′

a
∂iA + 2 ∂iψ

′ +
1

2
∂kD

k
iE
′
)
, (3.75)

δGi
j = δgi0G0j + δgikGkj + gi0δG0j + gikδGkj

=
2ψδik −DikE

a2

(
− 2

a′′

a
+
(a′
a

)2)
δkj

+
δik

a2

([
2
a′

a
A′ + 4

a′

a
ψ′ + 4

a′′

a
A− 2

(
a′

a

)2

A+ 4
a′′

a
ψ − 2

(
a′

a

)2

ψ

+2ψ′′ − ∂k∂
k ψ + 2

a′

a
∂k∂

kB + ∂k∂
kB′ + ∂k∂

kA− 1

2
∂k∂

mDk
mE

]
δkj

−∂k∂jB
′ + ∂k∂jψ − ∂k∂jA+

a′

a
DkjE

′ − 2
a′′

a
DkjE

+

(
a′

a

)2

DkjE +
1

2
DkjE

′′ +
1

2
∂l∂kD

l
jE

+
1

2
∂l∂jDklE −

1

2
∂l∂

lDkjE − 2
a′

a
∂k∂jB

)

=
1

a2

([
2
a′

a
A′ + 4

a′′

a
A − 2

(a′
a

)2

A + ∂i∂
iA + 4

a′

a
ψ′ + 2ψ′′

− ∂i∂
iψ + 2

a′

a
∂i∂

iB + ∂i∂
iB′ − 1

2
∂k∂

mDk
mE
]
δi
j

−∂i∂jA + ∂i∂jψ − 2
a′

a
∂i∂jB − ∂i∂jB

′ +
a′

a
Di

jE
′ +

1

2
Di

jE
′′

+
1

2
∂k∂

iDk
jE +

1

2
∂k∂j D

ikE − 1

2
∂k∂

k Di
jE .

)
(3.76)
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For the right-hand side of the Einstein equation, one needs to calculate

the perturbation of the energy-momentum tensor. In the period of inflation, the

universe is dominated by the inflaton field with the energy-momentum tensor

Tµν = ∂µφ ∂νφ − gµν

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
, (3.77)

whose components take the forms

T00 = φ′2 − g00

(
1

2

−φ′2 + (~∇φ)2

a2
+ V (φ)

)
=

1

2
φ′2 + a2V (φ), (3.78)

T0i = 0 ; Tij =

(
1

2
φ′

2 − V (φ) a2

)
δij . (3.79)

The perturbation of the energy-momentum tensor arises from both the metric

perturbation and the inflaton field fluctuations, and takes the form

δTµν = ∂µδφ ∂νφ + ∂µφ ∂νδφ − δgµν

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
− gµν

(
1

2
δgαβ ∂αφ ∂βφ+ gαβ ∂αδφ ∂βφ+ ∂φV δφ

)
. (3.80)

Its components are calculated as follows:

δT00 = 2∂0δφ ∂0φ− δg00

(
1

2
g00 ∂0φ ∂0φ +

1

2
gij ∂iφ ∂jφ + V (φ)

)
− g00

(1

2
δg00 ∂0φ ∂0φ+

1

2
δgij ∂iφ ∂jφ+ g00 ∂0δφ ∂0φ

+gij ∂iδφ ∂jφ+ ∂φV δφ
)

= 2δφ′φ′ − (−2A)a2

(
1

2

(−1)

a2
φ′2 + V (φ)

)
−(−a2)

(
1

2

2A

a2
φ′2 +

−1

a2
δφ′φ′ + ∂φV δφ

)
= δφ′φ′ + 2Aa2V (φ) + a2∂φV δφ, (3.81)

δT0i = ∂0δφ ∂iφ+ ∂iδφ ∂0φ− δg0i

(
1

2
g00 ∂0φ ∂0φ +

1

2
gij ∂iφ ∂jφ + V (φ)

)
= ∂iδφφ

′ − ∂iBa
2

(
1

2

(−1)

a2
φ′2 + V (φ)

)
= ∂iδφφ

′ +
1

2
∂iBφ

′2 − a2∂iBV (φ), (3.82)
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δTij = ∂iδφ ∂jφ+ ∂jδφ ∂iφ− δgij

(
1

2
g00 ∂0φ ∂0φ +

1

2
gij ∂iφ ∂jφ + V (φ)

)
− gij

(1

2
δg00 ∂0φ ∂0φ+ g00 ∂0δφ ∂0φ+ ∂φV δφ

)
= −(−2ψδij +DijE)a2

(
1

2

(−1)

a2
φ′2 + V (φ)

)
−a2δij

(
1

2

2A

a2
φ′2 +

−1

a2
δφ′φ′ + ∂φV δφ

)
= (−ψφ′2 + 2ψa2V − Aφ′2 + φ′δφ′ − a2∂φV δφ)δij

+
(φ′2

2
− a2V

)
DijE. (3.83)

To use the above result for the perturbed energy-momentum tensor in the Einstein

equation, we need to raise the first index of the energy-momentum tensor up by

using the metric gµν and then vary the result according to

δT µ
ν = δ(gµα Tαν)

= δgµα Tαν + gµα δTαν . (3.84)

Its components read

δT 0
0 = δg00 T00 + δg0i Ti0 + g00 δT00 + g0i δTi0

=
2A

a2

(
1

2
φ′2 + a2V (φ)

)
+
−1

a2

(
δφ′φ′ + 2Aa2V (φ) + a2∂φV δφ

)
=

Aφ′2

a2
− δφ′φ′

a2
− ∂φV δφ, (3.85)

δT i
0 = δgi0 T00 + δgij Tj0 + gi0 δT00 + gij δTj0

=
∂iB

a2

(
1

2
φ′2 + a2V (φ)

)
+
δij

a2

(
∂jδφφ

′ +
1

2
∂jBφ

′2 + a2∂jBV

)
=

∂iδφφ′

a2
+
∂iBφ′2

a2
, (3.86)

δT 0
i = δg00 T0i + δg0j Tji + g00 δT0i + g0j δTji

=
∂jB

a2

(
1

2
φ′2 − a2V (φ)

)
δij +

−1

a2

(
∂iδφφ

′ +
1

2
∂iBφ

′2 + a2∂iBV

)
=
−∂iδφφ

′

a2
, (3.87)

δT i
j = δgi0 T0j + δgik Tkj + gi0 δT0j + gik δTkj

=
2ψδik −DikE

a2

(
1

2
φ′2 + a2V (φ)

)
δkj

+
δik

a2

(
(−ψφ′2 + 2ψa2V − Aφ′2 + φ′δφ′ − a2∂φV δφ)δkj

+
(φ′2

2
− a2V

)
DkjE

)
=

(−Aφ′2
a2

+
δφ′φ′

a2
− ∂φV δφ

)
δi
j. (3.88)
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Before proceeding further, it should be noted that there is one thing that we

need to be careful about. When we say we are perturbing the space-time metric, we

really mean that we use another metric which describes the space-time geometry

slightly different from the original (background) space-time. We, therefore, have

to make sure that the perturbed metric, which we use in doing calculations, really

describes the geometry different from the unperturbed one. This is a deep issue,

since it might be that the “perturbed metric” that we use indeed describes the

same geometry as that of the original one but in a different coordinate system.

More generally, two perturbed metrics might correspond to the same geometry

but different coordinate systems. This issue therefore concerns the choices of the

coordinate system or the “gauge choices.” (Thus “choosing a gauge” simply means

“choosing a coordinate system.”) To discuss this issue in detail, one needs a map

between two geometries that enables us to compare any quantity evaluated with

respect to different geometries but at the same space-time point. This means that

if different numerical values of this quantity on different geometries are linked by

such a map, then they are associated to the same space-time point.

There are two ways to solve this problem. The first one is to choose a

coordinate system (or a gauge) to work with, which is full of dangers due to the

presence of unphysical degrees of freedom. However, the physical property can be

determined by using the longitudinal gauge in the computation of the curvature

perturbation [10]. The other solution is to do things in a gauge invariant manner,

that is, to use the gauge-invariant quantities, such as the Bardeen’s potentials

defined by

Φ = −A +
1

a

[(
−B +

E ′

2

)
a

]′
, (3.89)

Ψ = −ψ − 1

6
∇2E +

a′

a

(
B − E ′

2

)
. (3.90)

This implies that the gauge invariant counterparts of the perturbation of the

inflaton field and the energy-density perturbation take the forms

δ̃φ = −δφ + φ′
(
E ′

2
− B

)
(3.91)

δ̃ρ = −δρ + ρ′
(
E ′

2
− B

)
. (3.92)

To work out things in a gauge invariant way, we first express all quantities in the

perturbed Einstein equation in terms of the gauge-invariant quantities. From the
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Bardeen’s potential, the perturbation parameters take the forms

A = −Φ +D′ +HD, (3.93)

ψ = −Ψ− 1

6
∇2E −HD, (3.94)

where D = E ′/2− B. By substituting the above results into the Einstein tensor,

one obtains

δG0
0 =

1

a2

(
2H∇2B + 6Hψ′ − 2∇2ψ − 1

2
∂k∂

iDi
kE + 6HA

)
=

1

a2

(
2H∇2B + 6H(−Ψ′ − 1

6
∇2E ′ −H′D −HD′)

−2∇2(−Ψ− 1

6
∇2E −HD)− 1

3
∇2∇2E + 6H(−Φ +D′ +HD)

)
=

2

a2

(
− 3H(HΦ + Ψ′) +∇2Ψ + 3H(H2 −H′)D

)
, (3.95)

δG0
i =

−1

a2

(
2H∂iA+ 2∂iψ

′ +
1

3
∂i∇2E ′

)
=
−1

a2
∂i

(
2H(−Φ +D′ +HD) + 2(−Ψ′ − 1

6
∇2E ′ −H′D −HD′) +

∇2E ′

3

)
=

2

a2
∂i

(
HΦ + Ψ′ − (H2 −H′)D

)
, (3.96)
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δGi
j =

1

a2

(
δi
j

(
4Hψ′ + 2HA′ + 2H∇2B + 2ψ′′ + 4H′A+ 2H2A

−∇2ψ +∇2B′ +∇2A− 1

3
∇2∇2E

)
+

1

2
Di

jE
′′ +HDi

jE
′

−∂i∂jB
′ − 2H∂i∂jB − ∂i∂jA+ ∂i∂jψ −

1

2
∇2Di

jE −
2

3
∇2∂i∂jE

)

=
1

a2

(
δi
j

(
4H(−Ψ′ − 1

6
∇2E ′ −H′D −HD′)

+2H(−Ψ′ +D′′ +H′D +D′H) + 2H∇2B

+2(−Ψ′′ − 1

6
∇2E ′′ −H′′D − 2H′D′ −HD′′)

+4H′(−Φ +D′ +HD) + 2H2(−Φ +D′ +HD)

−∇2(−Ψ− 1

6
∇2E −HD) +∇2B′

+∇2(−Φ +D′ +HD)− 1

3
∇2∇2E

)
+

1

2
Di

jE
′′ +HDi

jE
′ − ∂i∂jB

′ − 2H∂i∂jB

−∂i∂j(−Φ +D′ +HD) + ∂i∂j(−Ψ− 1

6
∇2E −HD)

−1

2
∇2Di

jE −
2

3
∇2∂i∂jE

)

=
−2

a2

(
δi
j

(1

2
∇2(Φ−Ψ) + 2HΨ′ + Ψ′′ +HΦ′

+(2H′ +H2)Φ + (H′′ −HH′ −H3)D
)
− ∂i∂j(Φ−Ψ)

)
. (3.97)

Observe that the above result is not gauge invariant. Thus we replace it with its

gauge-invariant counterpart. For the (0,0) component,

˜δG
0

0 = −δG0
0 + (G0

0)
′D

=
2

a2

(
− 3H(HΦ + Ψ′)−∇2Ψ + 3H(H2 −H′)D

)
+
(−6H′H

a2
+

6H3

a2

)
D

=
2

a2

(
3H(HΦ + Ψ′)−∇2Ψ

)
, (3.98)
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The corresponding gauge-invariant component of the energy-momentum tensor is

δ̃T
0

0 = −δT 0
0 + (T 0

0 )′D

=
(Aφ′2
a2
− δφ′φ′

a2
− ∂φV δφ

)
+
(−1

a2
(1/2φ′2 + a2V (φ))

)′
D

= −(−Φ +D′ +HD)
φ′2

a2
− (−δ̃φ+ φ′′D + φ′D′)

φ′

a2

+(−δ̃φ+ φ′D)∂φV +
Hφ′2

a2
D − φ′φ′′

a2
D − ∂φV φ

′D

= Φ
φ′2

a2
− δ̃φ φ

′

a2
− δ̃φ∂φV. (3.99)

By substituting (3.98) and (3.99) into the Einstein equation, one obtains

3H(HΦ + Ψ′)−∇2Ψ = 4πG
(
Φφ′2 − δ̃φ φ′ − a2δ̃φ∂φV

)
. (3.100)

For the (0, i) component, we find

˜δG
0

i = −δG0
i + (G0

i )
′D

=
−2

a2
∂i

(
HΦ + Ψ′ − (H2 −H′)D

)
, (3.101)

and

δ̃T
0

i = −δT 0
i + (T 0

i )′D

=
∂iδφφ

′

a2
+
∂jBφ

′2

a2

=
φ′

a2
∂i(−δ̃φ+ φ′D). (3.102)

The Einstein equation for this component takes the form

∂i

(
HΦ + Ψ′

)
= 4πGφ′∂iδ̃φ. (3.103)

Finally, for the (i, j) components, we find

˜δG
i

j = −δGi
j + (Gi

j)
′D

=
2

a2

(
δi
j

(1

2
∇2(Φ−Ψ) + 2HΨ′ + Ψ′′ +HΦ′

+(2H′ +H2)Φ + (H′′ −HH′ −H3)D
)
− ∂i∂j(Φ−Ψ)

)
+
(2H
a2

(2H′ +H2) +
1

a2
(−2H′′ − 2HH′)

)
Dδi

j

=
2

a2
δi
j

(1

2
∇2(Φ−Ψ) + 2HΨ′ + Ψ′′ +HΦ′

+(2H′ +H2)Φ +
)
− ∂i∂j(Φ−Ψ), (3.104)
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δ̃T
i

j = −δT i
j + (T i

j )
′D

=
(
(−Φ +D′ +HD)

φ′2

a2
− (−δ̃φ′ + φ′′D + φ′D′)

φ′

a2
+ (−δ̃φ+ φ′D)∂φV

)
δi
j

+(−δ̃φ+ φ′D)∂φV −
(Hφ′2
a2

D +
φ′φ′′

a2
D − ∂φV φ

′D
)
δi
j

=
(
− Φ

φ′2

a2
+ δ̃φ

′ φ′

a2
− δ̃φ∂φV

)
δi
j, (3.105)

and

2

a2
δi
j

(1

2
∇2(Φ−Ψ) + 2HΨ′ + Ψ′′ +HΦ′ + (2H′ +H2)Φ +

)
−∂i∂j(Φ−Ψ) =

(
− Φ

φ′2

a2
+ δ̃φ

′ φ′

a2
− δ̃φ∂φV

)
δi
j. (3.106)

From equation (3.106), one obtains ∂i∂j(Φ − Ψ) = 0 for i 6= j. Choosing

a simple solution Φ = Ψ, then equations (3.100), (3.103), and (3.106) can be

rewritten as

∇2 Φ − 3HΦ′ −
(
H′ + 2H2

)
Φ = 4π G

(
δ̃φ φ′ + δ̃φ

∂V

∂φ
a2

)
;(3.107)

Φ′ + HΦ = 4 π G
(
δ̃φ φ′

)
; (3.108)

Φ′′ + 3HΦ′ +
(
H′ + 2H2

)
Φ = 4π G

(
δ̃φ φ′ − δ̃φ

∂V

∂φ
a2

)
.(3.109)

The first term on the right-hand side of (3.107) and (3.109) can be eliminated.

This leads to

Φ′′ + 6HΦ′ + 2
(
H′ + 2H2

)
Φ = 8π Gδ̃φ

∂V

∂φ
a2. (3.110)

Using the action in (3.11), the equation of motion for the inflaton field can be

expressed as

φ′′ + 2Hφ′ = − ∂V
∂φ

a2 . (3.111)

By substituting ∂V
∂φ
a2 from (3.111) and π Gδ̃φ from (3.108) into (3.110), equation

(3.110) can be rewritten as

Φ′′ + 2

(
H − φ′′

φ′

)
Φ′ − ∇2 Φ + 2

(
H′ − H φ′′

φ′

)
Φ = 0 . (3.112)

For convenience, we define a new quantity u ≡ a δ̃φ + zΦ . Then the above

equation becomes

u′′ −∇2u− z′′

z
u = 0, (3.113)

where

z =
aφ′

H
. (3.114)
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In order to determine the power spectrum, we need to quantize the gauge-invariant

variable, u, by repeating the steps in the calculation that we have done in the

previous section. Thus, the amplitude coefficient for quantization expansion, uk,

satisfies

u′′k +
(
k2 − z′′

z

)
uk = 0. (3.115)

The difference between (3.115) and (3.17) is only the factor z′′

z
and a′′

a
. Therefore,

one can write down the power spectrum of the curvature perturbation as

PR(k) =
k3

2π2

| uk(η = ηk) |2

z2
k

, (3.116)

where the curvature perturbation R = −u/z. We will solve this equation by

expressing the factor z′′

z
in terms of the slow-roll parameters and later on set it

equal to (ν2 − 1/4)/η2. Let us consider

z′

Hz
= 1 +

φ′′

Hφ′
− H

′

H2

= 1 + ε− δ. (3.117)

According to the adiabatic expansion, the derivative of this object is equal to zero,( z′

Hz

)′
=

z′′

Hz
− 1

H

(z′
z

)2

− H
′z′

H2z
∼= 0. (3.118)

So we get

z′′

z
=

(z′
z

)2

+
H′

H
z′

z
= (1 + ε− δ)2H2 + (1 + ε− δ)(1− ε)H2

∼= H2(2 + 2ε− 3δ)

=
1

η2
(1 + 2ε)(2 + 2ε− 3δ)

=
1

η2
(2 + 6ε− 3δ)

=
1

η2

(
ν2 − 1

4

)
, (3.119)

where

ν = (
9

4
+ 6ε− 3δ)1/2

=
3

2
+ 2ε− δ. (3.120)

Similar to the previous section, the solution uk takes the form

uk =
√
π/4ei π

2
(ν+1/2)

√
−ηH(1)

ν (−kη), (3.121)
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and so the power spectrum of the curvature perturbation takes the form

PR(k) =
k3(−ηk)

8πz2(ηk)

(
J2

ν (−kη) +N2
ν (−kη)

)
. (3.122)

This power spectrum can be reduced to the power spectrum of the generic scalar

field by replacing z with a. Using the asymptotic form of Hankel’s function in

(3.33) and z = aφ′/H = a
√

2εmpl, the power spectrum can be expressed in the

form

PR(k) = ARk
6ε−2ηR , (3.123)

where

AR =
22ν−3

8π2m2
pl

Γ2(ν)

Γ2(3/2)

(1 + ε)1−2ν

ε
H2(aH)2ν−3, (3.124)

and the running spectral index is

nR = 1 + 6ε− 2ηR. (3.125)

Next, we consider another way to derive the equation of motion in (3.113) using the

action of u. To do so, one needs to find the action of the scalar perturbation field

u. The idea of doing this is to expand the general action up to the second-order in

perturbation variables, since the first-order terms correspond to the action of the

background field. The calculation is rather complicated and lengthy. Therefore,

we only quote the result taken from [11],

S =
1

2

∫
d4x
(
u′2 − ∂iu∂

iu+
z′′

z
u2
)
. (3.126)

By using the Euler-Lagrange equation, this action yields the same equation of

motion in (3.111). Thus, for our convenience, we will use this action in Chapter 5

in order to derive the scalar perturbation field.

3.2.2 Tensor Perturbation

As we have mentioned above, the result of the massless scalar field fluctuation can

be applied to the tensor perturbation. The fluctuation of the inflaton will also

make the fluctuation in the space-time metric, which we can think of as a ripple of

the space-time. Generally, this ripple is called the gravitational waves described

by the metric

gµν = a2(τ)
[
−dτ 2 + (δij + hij) dx

idxj
]
, (3.127)
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where hij has a small value. Considering the degrees of freedom of hij, this tensor

can be decomposed into two parts according to their polarizations,

hij = h+ e
+
ij + h× e

×
ij, (3.128)

where e+ij and e×ij respectively represent the longitudinal and transverse polariza-

tions. The key point of this issue is that the amplitudes of this tensor act as

massless scalar fields. To see this explicitly, consider the action of this tensor,

ST =
m2

pl

2

∫
d4x
√
−g 1

2
∂µhij ∂

µhij. (3.129)

This action leads to the action of the massless scalar fields which takes the form

Ss =
1

2

∫
d4x a2∂µφl ∂

µφl, (3.130)

where φl = mplhl/
√

2, and the equations of motion can be expressed as

φ′′l +
2a′

a
φ′l −∇2φl = 0. (3.131)

This is of the same form as the equation of motion for the generic massless scalar

field in (3.13). Therefore, the power spectrum of the tensor perturbation can be

written as

PT (k) =
k3

2π2

∑
l

|hl|2 = 4× 2
k3

2π2

|φk|2

a2(η = ηk)

= ATk
−2ε, (3.132)

where

AT =
8

m2
pl

22ε

π2

Γ2(3/2 + ε)

Γ2(3/2)
(1− ε)2(1+ε)(aH)2εH2. (3.133)

Notice that the multiplicative factors “2” and “4” in (3.131) correspond to the

number of the polarization and number of the component for each polarization,

respectively. From this power spectrum, the spectral index of the tensor pertur-

bation can be deduced as

nT = −2ε. (3.134)

3.3 From Inflation to CMB Anisotropy

Depending on the gravity sources, the evolution of the universe can be divided

into two phases. The first one is the inflation era, in which the inflaton field is the
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main source of gravity. Therefore, the curvature perturbation is generated from

the inflaton fluctuations; this was discussed in the previous section. As we have

mentioned in the previous section, the amplitudes of the fluctuation modes in the

inflation period are frozen on the scales larger than the Hubble radius. The main

role of these fluctuations is to serve as the seed of all structures that we observe

nowadays. The significant mechanism which yields the structures that we observe

is the re-entry of the fluctuation modes after the end of inflation. This is the second

phase which will be discussed in this section. The energy-momentum tensor will

correspond to the energy density and the pressure of the perfect fluid matter or

radiation. The CMB anisotropy which is generated during the recombination time

will also be discussed.

3.3.1 The Hydrodynamical Perturbation

At the end of inflation, the inflaton decayed and the ordinary objects such as

the radiation and the matter were created. In that period the universe reheated

itself and was then dominated by the radiation. At later time, the universe was

dominated by the matter because the density of the radiation deceases faster than

that of the matter due to the expansion of the universe. Therefore, after the end

of inflation, the evolution of the universe can be divided into the radiation and

the matter periods. The perturbed energy-momentum tensor can be written in

terms of the fluctuations of the energy density and pressure of the perfect fluid

and takes the form

˜δT 0
0 = −δ̃ρ ,

˜δT 0
i = (ρ+ p) a−1δ̃vi ,

˜δT i
j = δ̃p δi

j. (3.135)

The perturbed Einstein equation can be calculated in the same way as in the previ-

ous section, but instead using the energy-momentum tensor in (3.135). Equations

(3.107), (3.108) and (3.109) can be rewritten as

∇2 Φ − 3HΦ′ − 3H2Φ = 4π Ga2 δ̃ρ ; (3.136)

∂i(Φ a)
′ = 4 π Ga2 (ρ+ p) δ̃vi ; (3.137)

Φ′′ + 3HΦ′ +
(
H′ + 2H2

)
Φ = 4π Ga2δ̃p . (3.138)

In order to eliminate the right-hand side of (3.136) and (3.138), we use the defini-

tion of the adiabatic perturbation,

δ̃p = c2s δ̃ρ. (3.139)
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As a result,

Φ′′ + 3H
(
1 + c2s

)
Φ′ − c2s∇2Φ +

[
2H′ +

(
1 + 3c2s

)
H2
]
Φ = 0, (3.140)

where c2s = ṗ/ρ̇. This equation can be solved by eliminating the friction term Φ′.

Let us define a new quantity u by

Φ = 4πG
√
ρ+ p u =

√
4πG

(
H2 −H′

a2

)1/2

u. (3.141)

This quantity then satisfies

u′′ − c2s∇2u− z′′

z
u = 0, (3.142)

where

z =
1

a

(
ρ

ρ+ p

)1/2

=
H
a

(
2

3
(H2 −H′)

)−1/2

. (3.143)

From (3.136) and (3.137), the density contrast can be written as

δ =
δ̃ρ

ρ
=

2

3H2

(
∇2Φ− 3HΦ′ − 3H2

)
. (3.144)

The goal of this part is to find the density contrast and the potential Φ which

play the important role in the determination of the temperature fluctuations in

the CMB anisotropy. These quantities can be obtained once u is determined.

Our consideration can be divided into the matter-dominated and the radiation

dominated parts.

For the matter-dominated universe, one uses the conditions

p = 0; c2s = 0; a(η) = am
η2

2
. (3.145)

The general solutions for u, Φ and δ take the form

u(~x, η) = C ′1(~x)z(η) + C ′2(~x)z(η)

∫
dη

z2
, (3.146)

Φ(~x, η) = C1(~x) + C2(~x, η)η
−5, (3.147)

δ(~x, η) =
1

6

(
∇2C1η

2 − 12C1 + (∇2C2η
2 − 18C2)η

−5
)
, (3.148)

where C ′1(~x), C
′
2(~x), C1(~x) and C2(~x) are arbitrary functions of the spatial coor-

dinates. From these equations (neglecting the effects of the decaying modes), one

can conclude that the potential will be constant on both small and large scales.

On the contrary, the density contrast will be constant only on the large scales,

where the spatial derivatives can be neglected (small k), and will be proportional
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to η2 or t2/3 on the small scales. This conclusion implies that the amplitude of

the curvature perturbation is constant outside the horizon in agreement with the

results in the previous section. As a result, the perturbed density of the matter

grows larger when it reenters the horizon. This perturbed density then causes the

temperature fluctuations on the large scales of the CMB anisotropy that we will

discuss later.

For the radiation-dominated universe, the conditions

p = ρ/3; c2s = 1/3; a(η) = arη, (3.149)

are applied and equation (3.142) can be rewritten as

u′′ − 1

3
∇2u− 2a2

r

a2
u = 0. (3.150)

This equation can be solved by introducing a new function which satisfies a wave

equation [11]. This technical calculation leads to the solutions which take the form

Φ(~x, η) =
1

η3

[(
ωη cos(ωη)− sin(ωη)

)
C1

+
(
ωη sin(ωη) + cos(ωη)

)
C2

]
ei~k·~x, (3.151)

δ(~x, η) =
4

η3

[(
(ω2η2 − 1) sin(ωη) + ωη(1− 1

2
ω2η2) cos(ωη)

)
C1

+
(
(ω2η2 − 1) cos(ωη) + ωη(1− 1

2
ω2η2) sin(ωη)

)
C2

]
ei~k·~x, (3.152)

where ω = k/
√

3. Both general solutions are the oscillation modes and become

constant when we consider the long-wavelength limit, ωη � 1. This yields the

same result as the solution for the matter-dominate universe. The solution which

oscillates on the short-wavelength scales will produce the temperature fluctua-

tions on the small scale of the CMB anisotropy. The effect of these temperature

fluctuations is called “the acoustic oscillation.”

3.3.2 The CMB Anisotropy

As the universe expands, its temperature decreases continuously. This leads to

the formation of the nuclei and atoms. The history of the universe began with

the high temperature and primordial soup of the fundamental particles. As the

temperature decreases, the elementary particles such as photons and neutrons were

formed. Until the temperature is about 3,000 K (t ∼ 300, 000 years), the formation

of atom could take place. At this time, electrons will be bounded in the atoms and
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decoupled from the photons. This is the first time that photons can propagate

freely and it is called “the recombination time or decoupling time.” There is also

the furthest horizon of the light that one can observe, called “the last scattering

surface.” Therefore, photons from this period can be observed in all directions

as a background of the universe and is called “the cosmic microwave background

(CMB) radiation.” The perturbation that reenters at the decoupling time will

produce the fluctuations of the density of the photons in the CMB radiation and

leads to the CMB anisotropy that one observes nowadays.

The temperature perturbations in the CMB arise from five physical effects.

First, the peculiar velocity of our position with respect to the cosmic rest frame.

This effect corresponds to the dipole moment and can be eliminated by using

some technical data analysis. Second, the intrinsic perturbation in the radiation

fluid, δr. This effect arises from the fluctuations that reentered the horizon in

the radiation-dominated period which produced the temperature fluctuations on

the small angular scales. This is the main effect of the small angular scales in

the CMB anisotropy. One calls this effect is the “acoustic oscillation” in the last

scattering surface as we have mentioned in the previous subsection. Third, the

peculiar velocity of the photon on the last scattering surface which leads to the bulk

motion of the baryons. This effect can be neglected in comparison with the second

effect. Fourth, the Sachs-Wolfe effect which is the effect that the photons climb

up the potential at the decoupling time and cause the photon red-shift that we

observe. Finally, the last effect is the integrated Sachs-Wolfe effect. It is caused by

photons passing through the gravitational potential which depends on time before

we observe. This effect has a small effect in comparison with the Sachs-Wolfe

effect. So we will not consider this effect here. The temperature perturbations of

the intrinsic perturbation in the radiation fluid and the Sachs-Wolfe effect will be

considered, and can be written as

δT

T
=

1

4
δr(tdec, xdec) + (Φin − Φ)(tdec, xdec), (3.153)

where Φin = δT
T
|in is the initial temperature fluctuation which already existed

before the decoupling time. The first term comes from the effect of the intrinsic

perturbation in the radiation and the factor 1/4 comes from ρ ∝ a−4 ∝ T 4. The

second term comes from the effect of the Sachs-Wolfe effect. Φin can be determined

in several ways. The easy but mathematically rigorous calculation is considered in

[12] by considering the geodesic equation for the photon propagation in the metric

that is perturbed by the gravitational potential Φ. One obtains

ds =
√

1− 2Φ dt ∼ (1− Φ)dt. (3.154)
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By using the gauge transformation (t→ t+dt) and the conservation of the energy

density equation, a(t) = a0t
2/3(1+ω), one obtains

δa

a
=

−2

3(1 + ω)
Φ. (3.155)

From statistical mechanics, the energy density of the radiation is proportional to

the fourth order of the temperature. Thus, one obtains

δT

T
|in =

−δa
a

=
2

3(1 + ω)
Φ. (3.156)

Finally, (3.152) reduces to

δT

T
=

1

4
δr(tdec, xdec)−

1

3
Φ(tdec, xdec). (3.157)

Next, we will compare this result with the observation. From the view point

of the observer, the CMB anisotropies are generated at the last scattering surface

which is spherically symmetric. So one can expand the temperature fluctuations

in the spherical harmonics,

δT

T
(n̂, x0) =

∑
`,m

a`m(x0)Y`m(n̂), (3.158)

where alm are the multipoles moments. The fluctuations are created by the ho-

mogeneous and isotropic random processes, then the result depends neither on x0

nor on m [13]. Thus, there is no coupling between different scales and orientations

which can be written as

〈a∗`m a`′m′〉 = δ`′`δm′mC`, (3.159)

where C` is the CMB power spectrum. The two-point correlation function of the

temperature fluctuations takes the form

ξ(n̂′, n̂) = 〈δT
T

(n̂, x0)
δT

T
(n̂′, x0)〉

=
∑

``′ mm′

〈a∗`′m′ a`m〉Y ∗`′m′(n̂′) Y`m(n̂)

=
∑
`m

C`Y
∗
`m(n̂′) Y`m(n̂)

=
1

4π

∑
`

(2`+ 1)C`P`(n̂
′ · n̂). (3.160)

Notice that the identity,

P`(n̂
′ · n̂) =

4π

2`+ 1

∑
m

Y ∗`m(n̂′) Y`m(n̂), (3.161)
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was used in the last step. Now, we will return to the two physical effects that

generate anisotropy, These two physical effects are independent from each other.

One can calculate them separately. First, let us consider the Sachs-Wolfe effect,

the temperature perturbation can be expanded in the Fourier expansion and takes

the form

δT

T
(k, n̂, t0) =

1

3
Φ(k, tdec)e

ik̂·n̂(t0−tdec). (3.162)

By using the mathematical identity

exp(i k̂ · n̂(t0 − tdec)) =
∞∑

`=0

(2`+ 1)i`j`(k(t0 − tdec))P`(k̂ · n̂), (3.163)

the two-point correlation function of the temperature fluctuations can be written

as

ξ(n̂′, n̂) = 〈δT
T

(n̂, x0, t0)
δT

T
(n̂′, x0, t0)〉

=
1

V

∫
d3x0

δT

T
(n̂, x0, t0)

δT

T
(n̂′, x0, t0)

=
1

(2π)3

∫
d3k

δT

T
(n̂, k, t0)

δT

T
(n̂′, k, t0)

=
1

9

1

(2π)3

∫
d3k〈|Φ|2〉

∑
``′

(2`+ 1)(2`′ + 1)i`(−i)`′

j`(k(t0 − tdec))j
′
`(k(t0 − tdec))P`(k̂ · n̂)P`′(k̂ · n̂′)

=
1

9

∫
d3k

2π3
〈|Φ|2〉

∑
``′

A`′`P`(k̂ · n̂)P`′(k̂ · n̂′)

=
1

9

∫
d3k

2π3
〈|Φ|2〉

∑
``′,m′m

(4π)2A`′`

(2`′ + 1)(2`+ 1)
Y ∗`′m′(k̂)Y`′m′(n̂′)Y ∗`m(k̂)Y`m(n̂)

=
1

9

∫
dkk2

2π3
〈|Φ|2〉

∑
``′,m′m

(4π)2A`′`

(2`′ + 1)(2`+ 1)∫
dΩkY

∗
`′m′(k̂)Y ∗`m(k̂)Y`′m′(n̂′)Y`m(n̂)

=
1

9

∫
dkk2

2π3
〈|Φ|2〉

∑
``′,m′m

(4π)2A`′`

(2`′ + 1)(2`+ 1)
δ`′`δm′mY`′m′(n̂′)Y`m(n̂)

=
1

9

∫
dkk2

2π3
〈|Φ|2〉

∑
`,m

(4π)2j2
` (k(t0 − tdec))Y`m(n̂′)Y`m(n̂)

=
∑
`,m

4π(2`+ 1)P`(n̂
′ · n̂)

∫
dkk2

2π3

1

9
〈|Φ|2〉j2

` (k(t0 − tdec)). (3.164)

Comparing with (3.160), one obtains

C` =
2

π

∫
dk

k
〈|1

3
Φ|2〉k3j2

` (k(t0 − tdec)). (3.165)
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Notice that this equation is valid for the adiabatic perturbation which 2 ≤ ` �
(to − tdec)/tdec ∼ 100. This equation will be solved if we know the exact solution

of the potential Φ. It means that we must solve for the exact solution of the

differential equation (3.148) which is very complicated. However, one can solve

this equation numerically. Nevertheless, this equation can be solved analytically

by assuming that the potential is the power-law of k,

〈|Φ|2〉k3 = Akn−1tn−1
0 . (3.166)

One obtains

C
(SW )
` =

A

9

Γ(3− n)Γ(`− 1
2

+ n
2
)

23−nΓ(2− n
2
)Γ(`5

2
− n

2
)
. (3.167)

The significant point of this assumption is the scale invariant spectrum where

n = 1.

On the small scales, ` ≥ 100, the intrinsic perturbations in the radiation

fluid are dominated. The CMB power spectrum is

C` =
2

π

∫
dk

k
〈|1

4
δr(k, tdec)|2〉k3j2

` (k(t0 − tdec)). (3.168)

According to the previous section, the solution of the density contrast is the oscil-

lating solution that will induce the CMB power spectrum to oscillate as show in

Figure 3.1. This figure is obtained by using the CMBFAST program [14] which is

evaluated at Ωb = 0.05, Ωc = 0.2, Ων = 0.00, ΩΛ = 0.75 andH0 = 65 km/sec/Mpc.
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Figure 3.1: The CMB power spectrum.



CHAPTER IV

INTRODUCTION TO NONCOMMUTATIVE

SPACE-TIME

The idea of noncommutative space-time was first introduced by Heisenberg

in his attempt to remove the Ultraviolet divergences in quantum field theory [16].

Then, this idea was applied to explain the systems of an electron in strong ex-

ternal magnetic field by Rudolf Peierls [18]. However, it was Snyder who first

formalized this idea in a systematic way and published it in the paper with the

title “Quantized space-time” [19]. Unfortunately, his idea was ignored by the

physics community because during that time the renormalization technique in

quantum field theory was more attractive and was successful in predicting the

data of observation. However, the idea of noncommutative space is more pop-

ular among the mathematicians. It was von Neumann who first used the idea

of the noncommutative phase space in the quantum mechanics to introduce the

noncommutative algebra. This is the well known aspects of “noncommutative ge-

ometry”. After that, the idea of noncommutative space was revived in 1980’s by

three mathematicians, Connes, Woronowich and Drinfel’d who applied the notion

of the differential formalism in noncommutative geometry. This formalism is the

fundamental mathematical tool for studying several modern theories in physics

such as the Yang-Mills gauge theory, Kaluza-Klein mechanism, standard model

for particle physics, etc.

In the past twenty years, there has been a lot of progress in quantum gravity

in particular in string theory. One of the most important developments is the dis-

covery of D-brane which is the multi-dimensional object in string theory [20]. The

studies of D-brane show the connection between string theory and gauge theory

on noncommutative space. This connection pushes the idea of noncommutative

space back into main stream physics again.

In fact String theory and non-commutative space seem to have very deep con-

nection. Already in 1980s, Yonaya discovered the stringy space-time uncertainty

relation [27]. In analogy with Quantum mechanics, one can conclude that string
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theory implies noncommutativity between space and time coordinates. Recently,

Brandenberger and Ho apply the idea of string non-commutative space-time to

cosmology [26]. We will review this idea in detail in Chapter 5.

In this chapter, we start by giving the idea of the noncommutative space-

time and deriving the generalized uncertainty principle. Next, the fundamental

concept of scalar field theory will be reviewed in order to provide us the under-

standing in the concept of field theory in the noncommutative space-time. Finally,

the noncommutative algebra is applied to the field theory in order to use in a cos-

mological regime.

4.1 Generalized Uncertainty Principle

Quantum gravity is the theory which takes an account for the effects of quantum

theory and general relativity. The significant property of the quantum gravity

is the existence of the minimum length scale. This length scale is known as the

Planck length. The Planck length can be determined by comparing the quantum

length scale, λc = ~/mc, with the classical length scale, Rs = Gm/c2. Note that

λc is the Compton wavelength and Rs is the Shcwarzschild radius. This leads to

the Planck mass

mpl =

√
~c
G
∼= 2.2× 10−8kg, (4.1)

Other Planck quantities can be determined by using the dimensional analysis, and

take the form

lpl =

√
~G
c3
∼= 1.6× 10−35m,

tpl =

√
~G
c4
∼= 0.54× 10−43sec,

Epl =

√
~G
c3
∼= 1.2× 1019GeV, (4.2)

where lpl, tpl and Epl are the Planck length, time and energy, respectively.

We are interested in the effect of Planck scale on the principle of Quantum

Mechanics. It turns out that the Heisenberg uncertainty principle needs to be

modified. This generalized version of Heisenberg uncertainty principle occurs in

many models of quantum gravity for example in string theory [21]. In this section,

we will derive the generalized uncertainty principle by following the work of Adler
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Figure 4.1: The curvature of the space-time which is curved due to the photon.

in [22]. Note that only in this section we reintroduce the speed of light c and will

return to the natural unit in the next section.

Let us consider the classical scattering process of the photon and electron.

We assume that at the beginning the electron is at rest in flat space-time. Suppose

the photon energy is high enough to curve the space-time around it. As the photon

propagating toward the electron, the electron starts to feel the curvature of the

space-time as illustrate in Figure 4.1.

We assume that electromagnetic and gravitational interactions can be cal-

culated independently. The effect of the electromagnetic interaction is responsible

for the Heisenberg uncertainty principle which obeys the relation,

∆x ≥ ~
∆p

. (4.3)

This relation implies that one cannot find the exact position and momentum of the

electron at the same time. The exact position of the electron can be determined by

using the very large photon momentum and this leads to the very large uncertainty

for the electron momentum eventually.

In order to determine the gravitational interaction from the in-coming pho-

ton on the electron, we will consider the Einstein equation,

Gµν =
8πG

c4
Tµν . (4.4)

For simplicity, one can consider the dimensional estimate in the first place. The

left-hand side (LHS) of the Einstein equation can be viewed as the second deriva-
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tive of the space-time metric with respect to the space-time coordinate. Thus,

one can estimate LHS ≈ δgµν/L
2. L is the characteristic size of the model which

is the approximation radius of the region that the gravitational interaction from

the photon can affect the electron. δgµν is the deviation of the flat space metric

due to the photon energy and it contributes fractional uncertainty to the electron

position at any points in the characteristic region. Dimensionally, one can write

δgµν = ∆x/L. Thus, the left-hand side of (4.4) can be written as

LHS ≈ ∆x

L3
. (4.5)

For the right-hand side (RHS), the energy-momentum tensor represents the energy

density of the photon. By using the dimensional estimate, the right-hand side

can be written as RHS ≈ GE/c4L3 = Gp/c3L3. This photon momentum will

contribute to the uncertainty of the electron momentum in the same order of

magnitude, and then the right-hand side of (4.4) takes the form

RHS ≈ G∆p

c3L3
. (4.6)

From equations (4.5) and (4.6), the uncertainty of the electron position from

gravitational effect can be expressed in the form

∆x =
G∆p

c3
= l2pl

∆p

~
. (4.7)

By combining equation (4.7) with the Heisenberg uncertainty principle (4.3), one

obtains the generalized uncertianty principle:

∆x ≥ ~
∆p

+ l2pl

∆p

~
. (4.8)

This equation implies the maximum accuracy in determining the electron positions

which has the limit at the Planck length. This means that one cannot probe any

object which is smaller than the Planck length. However, the above consideration

is only the rough approximation. More rigorous calculation can be done by using

the linearized perturbation theory in general relativity. The components of the

energy momentum tensor are assumed to be small. In this context, one can perturb

the space-time metric by adding the small perturbation metric, hµν , to the flat

Minkowski metric, ηµν , such that

gµν = ηµν + hµν , |hµν | � 1. (4.9)

From the straightforward calculation with the Lorentz gauge condition [5], one

obtains the linearized Einstein equation which takes the form

�hµν −
1

2
ηµν�h = −16πG

c4
Tµν , (4.10)
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where the D’Alembertian operator � = −∂2
t + ∂2

x + ∂2
y + ∂2

z . By considering the

energy-momentum tensor of the radiation in the flat Minkowski space, one obtains

Tµν = FµρF
ρ
ν +

1

4
FσρF

σρηµν . (4.11)

where Fµρ is the electromagnetic field strength tensor. By assuming the radiation

propagates along x direction, the energy-momentum tensor has only four non-zero

components and takes the form

Tµν = −ρ


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 , (4.12)

where ρ is the energy density of the radiation which takes the form ρ = (c2E2 +

B2)/2. The electromagnetic wave propagating in the x direction can be explained

in terms of the wave function f(x− ct, y, z). Therefore, the perturbed metric can

be written as

hµν = f(x− ct, y, z)


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 . (4.13)

For our convenience, we are only interested in the inhomogeneous solution. Then,

the linearized Einstein equation (4.10) can be reduced to the inhomogeneous wave

equation of the unknown function, f , and takes the form

�f(x− ct, y, z) =
16πG

c4
ρ(x− ct, y, z). (4.14)

The energy density ρ and the unknown function f can be treated separately. Let

us appling the separation of variable method such that

f(x− ct, y, z) = f‖(x− ct)f⊥(y, z),

ρ(x− ct, y, z) = ρ‖(x− ct)ρ⊥(y, z). (4.15)

Substituting these into equation (4.14), one obtains

�f‖(x− ct)f⊥(y, z) =
16πG

c4
ρ‖(x− ct)ρ⊥(y, z)

f‖(x− ct)�f⊥(y, z) + f⊥(y, z)�f‖(x− ct) =
16πG

c4
ρ‖(x− ct)ρ⊥(y, z)

f‖(x− ct)(∂2
y + ∂2

z )f⊥(y, z) =
16πG

c4
ρ‖(x− ct)ρ⊥(y, z)

⇒ f‖(x− ct) =
16πG

c4
ρ‖(x− ct), (4.16)

⇒ (∂2
y + ∂2

z )f⊥(y, z) = ρ⊥(y, z). (4.17)
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For simplicity, one chooses the cylindrical coordinate. We assume that the

radiation is enveloped by the moving cylinder of length L and radius R. We also

assume that R is in the same order magnitude of the characteristic length, L.

Furthermore, it is assumed that the energy density has a constant value ρ0 inside

the moving cylinder and vanishes outside the cylinder. Therefore, the equations

(4.16) and (4.17) can be reduced to

f‖(x− ct) =
16πG

c4
θ(x− ct)θ(L− x+ ct), (4.18)

1

r

∂

∂r

(
r
∂f⊥
∂r

)
= ρ0θ(r −R), (4.19)

where θ is step function. Note that from the above equation, we assume that the

moving cylinder is an azimuthally symmetric cylinder. In order to solve (4.19),

we will determine the solutions for inside and outside the cylinder separately.

There are four boundary conditions that we need to consider. The first is the

non-vanishing of the function at the origin f(r = 0) 6= 0. The second is the

vanishing of the solution at the infinity f(r →∞) = 0. The requirement that the

solutions must be smooth at the surface of the cylinder gives the last two boundary

conditions: f(r < R)|R = f(r > R)|R and ∂rf(r < R)|R = ∂rf(r > R)|R. Thus,

after some calculations, we have

f =
4πG

c4
θ(x− ct)θ(L− x+ ct)ρ0R

2

{
r2

R2 r < R

1 + ln r2

R2 r > R
(4.20)

Recall that in our model, the gravitational interaction can only affect the electron

if and only if the electron is in the characteristic range L from the photon. While

the electromagnetic interaction is assumed to have instantaneous effect. As the

gravitational interaction begins to affect the electron at the surface of the cylinder

(r ∼ R). The electromagnetic interaction will affect the electron at the same time.

By replacing r ∼ R and ρ0 = E/πR2L = p/cπR2L into the above equation (4.20),

one can approximate f function as

f ≈ 4Gp

Lc3
. (4.21)

The function f is the amplitude of the perturbed metric which has the same order

magnitude as δgµν , then the f function can be approximated as f ∼ ∆x/L. Thus,

the uncertainty of the electron position can be written as

∆x ≈ 4Gp

c3
=

4G∆p

c3
= 4l2s

∆p

~
. (4.22)

By combining this equation with the Heisenberg uncertainty principle, one

obtains the same result with the dimensional estimate analysis. As we mentioned
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at the beginning of this section, the calculation in string theory also yields the

same generalized uncertainty principle but, in that case, replacing the Planck

length with the string length. Moreover, both Planck and string lengths are the

minimum length that one can observe in each theory. This consistency makes

string theory one of the most promising candidates for quantum gravity. It implies

that the string theory can be a good choice to describe physics at the high-energy

scale such as in the early universe. We will come back to discuss this issue in the

next chapter.

Another application of the generalized uncertainty principle is the prediction

of black hole remnants [23], [24]. Black hole remnants are the object left over after

Hawking radiation of the small black hole. The idea of the black hole remnants is in

analogous with the stability problem of the hydrogen atom in quantum mechanics.

In the latter, the uncertainty principle prevents the collapse of the hydrogen atom.

While, in the former case, the generalized uncertainty principle prevents a small

black hole to evaporate and vanish. These black hole remnants are one of the

candidates for cold dark matter.

4.2 Review of Scalar Field Theory

Field theory plays the important roles in many areas of cosmology in particular

the inflationary model. We will review some necessary concepts of the classical

and quantum field theory. In this thesis, we consider only the real scalar field

theory.

4.2.1 Scalar Field Theory

Quantum theory of the discrete system is not well defined in the relativistic limit

while the propagation amplitude of free particle violates the causality [25]. How-

ever, the causality problem can be solved in the continuous system which is de-

scribed by the field variable. By using the Lagrangian formalism, we can con-

struct the relativistic field theory whose action is invariant under the Lorentz

transformation in four-dimensional space-time. Let us consider a real scalar field

φ(x) = φ(x0, x1, x2, x3). In this section, we denote the 4-vector, xµ, by using the

Greek indices µ, ν, σ and the 3-dimensional vector will be denote by the arrow

e.g. ~x. In general, the action for real scalar field in 4-dimensional Minkowski



67

space-time is

S =

∫
L(φ, ∂µφ)d4x, (4.23)

where L is the Lagrangian density. The equation of motion is the Euler-Lagrange

equation:

∂µ

( ∂L
∂(∂µφ)

)
− ∂L
∂φ

= 0. (4.24)

In order to consider quantum field theory of the scalar field, we need the Hamil-

tonian which is defined by

H =

∫ (
π(x)φ̇(x)− L(φ, ∂µφ)

)
d3x =

∫
Hd3x, (4.25)

where H is the Hamiltonian density. The conjugate momentum is defined by

π(x) ≡ ∂L
∂φ̇(x)

. (4.26)

4.2.2 Field Quantization

In this subsection, we review the canonical quantization of the scalar field. Let us

consider the free scalar field, φ, with the mass “m”. The Lagrangian density can

be written as

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (4.27)

The Hamiltonian density is

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2. (4.28)

In analogy with quantum mechanics, we replace the field variable and the conju-

gate momentum (φ, π) by their associated operators (φ̂, π̂). These operators must

obey the equal-time canonical commutation relations

[φ̂(t, ~x) , φ̂(t, ~x′)] = [π̂(t, ~x) , π̂(t, ~x′)] = 0, (4.29)

and

[φ̂(t, ~x) , π̂(t, ~x′)] = ıδ3(~x− ~x′). (4.30)

Moreover, the field operators also obey the Heisenberg equations which take the

form

˙̂
φ(x) =

1

i

[
φ̂(x), Ĥ

]
= π̂(x), (4.31)

˙̂π(x) =
1

i

[
π̂(x), Ĥ

]
= (∇2 −m2)φ̂(x), (4.32)
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where Ĥ is the Hamiltonian operator which is determined by replacing the classical

field by the field operator. Combining these two equations of motion, one obtains

(� +m2)φ̂(x) = 0, (4.33)

which is the Klien-Gordon equation of the field operator. In analogy with the

quantum theory, the operator can be written as the superposition of the creation

and annihilation operators. One can expand the field operators as

φ̂(x) =

∫
d3k

(2π)3

√
1

2Ek

(âke
−ikx + â†ke

ikx) (4.34)

π̂(x) =
˙̂
φ(x) =

∫
d3k

(2π)3
(−i)

√
Ek

2
(âke

−ikx − â†ke
ikx). (4.35)

The creation and the annihilation operators have to obey the commutation rela-

tions

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, (4.36)

[âk, â
†
k′ ] = (2π)3δ3(k − k′). (4.37)

From above discussions, one can state that quantum field theory is the quan-

tum theory with infinite degrees of freedom which is referred from the infinite num-

bers of the creation and annihilation operators. As we mentioned in the first part

of this section, the causality problem can be solved by multiple-particle regime.

Therefore, quantum field theory for the scalar field cannot violate the causality by

interpreting that “a measurement which is performed at one point cannot affect

a measurement at another point which is separated by space-like interval” [25].

Due to this interpretation, one uses the continuous Lorentz transformation which

exists only in the continuous system. This is the elegant theory to explain the

nature of particle physics. However, in this work, we consider only in the free

theory in order to see the difference between noncommutative and commutative

field theory. Although, the most important result of the quantum field theory is to

explain the interaction of the particles. This result can be determined by adding

the interaction term in Lagrangian.

4.3 Noncommutative Field Theory

As we mentioned in the first part of this chapter, the idea of noncommutative

space-time is inspired by quantum theory. In quantum mechanics, the phase-space



69

variables, xi and pj, are replaced by the Hermitian operators, x̂i and p̂j which

obey the commutation relation [x̂i, p̂j] = i~δij. By using the simillar concept,

the noncommutivity of space-time can be defined by replacing the space-time

coordinates with the space-time Hermitian operators which obey the commutation

relation,

[x̂µ, x̂ν ] = iθµν , (4.38)

where θµν is constant real-valued antisymmetric 4× 4 matrix with the dimension

of length squared. In analogy with the quantum mechanics, this commutation

relation implies the space-time uncertainty relation

∆xµ∆xν ≥ 1

2
|θµν |. (4.39)

This relation implies that the space-time point will be replaced by the Planck cell.

One cannot probe anything inside the Planck cell. Moreover, it refers to non-local

time coordinate which leads to the causality problem eventually. Since we consider

the dynamics of the scalar field in noncommutative space-time, we need the mul-

tiplication product of such fields, φ(x̂)φ(x̂). Note that, we put the “hat notation

(̂ )” over all parameters that represent the operators for this section. Thus, the

mapping between the multiplication of some given functions in noncommutative

and commutative space-time is defined, and well known as the Groenewold-Moyal

product or “star product”.

4.3.1 The Star Product

It is convenient to define the operator which maps the field in noncommutative

space-time into the function in commutative space-time. The Weyl operator is

the significant operator for this mapping because it is the mapping between the

algebra of coordinate in classical phase space and the algebra of operator in Hilbert

space which is the noncommutative structure. Therefore, in this section, we first

consider the Weyl mapping in order to define the star product. And then, the

property of the star product will be discussed.

The Weyl operator of any function in commutative space-time can be defined

in similar way with Fourier transformation which can be written as

Ŵ [f(x)] =

∫
d4k

(2π)2
f̃(k)eikx̂. (4.40)
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Here f̃(k) are the Fourier coefficients which take the form

f̃(k) =

∫
d4x

(2π)2
eikxf(x). (4.41)

Substituting the Fourier coefficient into equation (4.40), one can rewrite the Weyl

operator in term of a given function, f(x), and the mapping operator M̂(x),

Ŵ [f(x)] =

∫
dDxM̂(x)f(x), (4.42)

where

M̂(x) =

∫
d4k

(2π)4
e−ikxeikx̂. (4.43)

From this context, if one considers in the commutative limit by taking θµν = 0, the

mapping operator will be reduced to the delta-function, δ4(x̂−x). This yields the

Weyl operator taking the form Ŵ [f(x)] = f(x̂). Note that, in the noncommutative

case (θ 6= 0), the mapping operator is no longer written as the delta-function

because it is affected by the Baker-Campbell-Hausdorff formular. Now, we already

have the definition of the algebraic operator. Therefore, in the next step, the

derivative of the operator will be defined. Generally, the derivation can be defined

as the anti-Hermitian linear derivation obeying the commutation relations,

[∂̂µ, x̂
ν ] = δν

µ, [∂̂µ, ∂̂ν ] = 0. (4.44)

Considering the commutation relation for the derivative and the mapping operator,

one obtains

[∂̂µ, M̂(x)] =

∫
d4k

(2π)4
e−ikx[∂̂µ, e

ikx̂]

=

∫
d4k

(2π)4
e−ikx(ikµ)eikx̂

=

∫
d4k

(2π)4
(−∂µe

−ikx)eikx̂

= −∂µM̂(x). (4.45)

The second line of this equation is obtained by expanding the exponential as a

power series. By using this relation, the translation of the mapping operator can
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be expressed as

ev∂̂M̂(x)e−v∂̂ = (1 + v∂̂ +
1

2!
(v∂̂)2 + ....)M̂(x)e−v∂̂

= (M̂ + M̂v∂̂ − v∂M̂ +
1

2!
v∂̂(M̂v∂̂ − v∂M̂) + ....)e−v∂̂

= (M̂ev∂̂ − v∂M̂ − 1

2!
v∂M̂v∂̂ − 1

2!
v∂̂v∂M̂ + ....)e−v∂̂

= (M̂ev∂̂ − v∂M̂ev∂̂ +
1

2!
(v∂)2ev∂̂ + ....)e−v∂̂

= (M̂ − v∂M̂ +
1

2!
(v∂)2 + ....)ev∂̂e−v∂̂

= M̂(x− v). (4.46)

From this relation, it appears that the trace of the mapping operator is in-

dependent of the space-time coordinate (xµ), Tr
(
ev∂̂M̂(x)e−v∂̂

)
= TrM̂(x) =

TrM̂(x − v). One can choose the mapping operator which has trace normaliza-

tion, TrM̂(x) = 1. Therefore, the trace of the Weyl operator can be writen as

TrŴ [f(x)] =

∫
d4xf(x). (4.47)

This property is helpful for us in order to determine the dynamics of scalar field

whose action can be expressed in the term of Weyl operator trace. The discussion

of this property will be analyzed later in the subject of the property of the star

product. Now, we move to the goal of this subsection, the definition of the star

product.

The star product is the mapping between the product of the operators that

live on the noncommutative space-time and any functions which are the multipli-

cation product of the fields that live on the commutative space-time. Therefore,

the star product can be defined in such the way that:

Ŵ [f ∗ g] = Ŵ [f ]Ŵ [g]

=

∫
d4k

(2π)2

d4k′

(2π)2
f̃(k)g̃(k′) e ikx̂ e ik′x̂

=

∫
d4k

(2π)2

d4k′

(2π)2
f̃(k)g̃(k′) e ix̂(k+k′) e −

i
2
θµνkµk′ν

=

∫
d4k

(2π)2

d4k′

(2π)2
f̃(k)g̃(k′ − k) e −

i
2
θµνkµk′ν e ix̂k′ . (4.48)

From the third line of this equation, one uses the Baker-Campbell-Hausdorff for-

mula for the anti-symmetric constant matrix which takes the form

e ikµx̂µ

e ikν x̂ν

= e ix̂µ(k+k′)µ e −
i
2
θµνkµk′ν . (4.49)
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Using the relation Ŵ [eikx] = eikx̂ from (4.40) and (4.41), one obtains

f(x) ∗ g(x) =

∫
d4k

(2π)2

d4k′

(2π)2
f̃(k)g̃(k′ − k) e −

i
2
θµνkµk′ν e ixk′

=

∫
d4k

(2π)2

d4k′

(2π)2
f̃(k)g̃(k′) e −

i
2
θµνkµk′ν e ix(k′+k)

=

∫ ( d4k

(2π)2
f̃(k) e ikx

)
e −

i
2
θµνkµk′ν

( d4k′

(2π)2
g̃(k′) e ixk′

)
= f(x)e

i
2

←−
∂ µθµν−→∂ νg(x). (4.50)

where
←−
∂ µ and

−→
∂ ν are the derivative from right and the derivative from left,

respectively. From this definition, the star product is the ordinary product added

by the infinite space-time derivatives of the functions. Comparing the trace of Weyl

operator in the star product function in commutative space-time, TrŴ [f ∗ g] =∫
d4xf(x) ∗ g(x), with the integration of the multiplication product function in

the noncommutative space-time,
∫
d4xf(x̂)g(x̂), one obtains

f(x̂)g(x̂) = f(x) ∗ g(x). (4.51)

This allows us to directly replace the multiplication product in noncommutative

space-time by the star product in ordinary space-time. From this context, it

promotes us to calculate the object in noncommutative space-time by the object

in commutative space-time which is rather easier. From this definition of the star

product, it yields some different calculations from the commutative space-time

which one can summarize in the context of the properties for the star product in

the next subsection.

4.3.2 The Properties of the Star Product

In this subsection, we will investigate the properties of the star product by using

its definition and the properties of the trace of Weyl operaters. First of all, one

considers the star product of two exponential functions which can be written as

eikx ∗ eipx = eikx e
i
2

←−
∂ µθµν−→∂ ν eipx

= eikx
(
1 +

i

2

←−
∂ µθ

µν−→∂ ν +
1

2!

( i
2

)2←−
∂ µ

←−
∂ ρθ

µνθρσ−→∂ ν

−→
∂ σ + ...

)
eipx

= eix(k+p)
(
1 +

i

2
k ∧ p+

1

2!

( i
2

)2

(k ∧ p)2 + ...
)

= eix(k+p) e−
i
2
k∧p, (4.52)

where ∧ is the wedge product which is defined as k ∧ p = kµθ
µνpν . This property

is similar to the Baker-Campbell-Hausdorff formula. Using the Fourier transfor-
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mation and property of the exponential star product, one obtains(
f(x) ∗ g(x)

)
∗ h(x) =

∫
d4k

(2π)2

d4p

(2π)2

d4q

(2π)2
f̃(k)g̃(p)h̃(q)

(
eikx ∗ eipx

)
∗ eiqx

=

∫
d4K

(2π)2
F̃ (k) e−

i
2
k∧peix(k+p) ∗ eiqx

=

∫
d4K

(2π)2
F̃ (k) e−

i
2
k∧p e−

i
2
q∧(k+p) eix(k+p+q)

=

∫
d4K

(2π)2
F̃ (k) e−

i
2
p∧q e−

i
2
k∧(p+q) eix(k+p+q)

=

∫
d4K

(2π)2
F̃ (k) e−

i
2
p∧qeikx ∗ eix(p+q)

=

∫
d4k

(2π)2

d4p

(2π)2

d4q

(2π)2
f̃(k)g̃(p)h̃(q)eikx ∗

(
eipx ∗ eiqx

)
(
f(x) ∗ g(x)

)
∗ h(x) = f(x) ∗

(
g(x) ∗ h(x)

)
. (4.53)

This is the associative property of the star product. Note that, we use the short

notation, F̃ (k) = f̃(k)g̃(p)h̃(q) and
∫

d4K
(2π)2

=
∫

d4k
(2π)2

d4p
(2π)2

d4q
(2π)2

, while we derive this

property. Next, one considers the trace of the Weyl operator for n-function which

takes the form

Tr
(
Ŵ [f1] Ŵ [f2]...Ŵ [fn]

)
= TrŴ [f1 ∗ f2 ∗ ...fn]

=

∫
d4x( f1(x) ∗ f2(x) ∗ ...fn(x) )

Tr
(
Ŵ [fn] Ŵ [f1]...Ŵ [fn−1]

)
=

∫
d4x( fn(x) ∗ f1(x) ∗ ...fn−1(x) ), (4.54)

This implies that the cyclic property of operator trace yields the cyclic property

of the star product under integration over space-time coordinate. For the special

case of this property, one considers only two functions,

TrŴ [f ∗ g] = TrŴ [g ∗ f ]∫
d4x( f(x) ∗ g(x) ) =

∫
d4x( g(x) ∗ f(x) )

=

∫
d4x

d4k

(2π)2

d4p

(2π)2
f̃(k)g̃(p) e−

i
2
k∧peix(k+p)

=

∫
d4kd4pf̃(k)g̃(p) e−

i
2
k∧pδ4(k + p)

=

∫
d4kf̃(k)g̃(−k)

=

∫
d4x f(x) g(x). (4.55)

This means that the star product and the ordinary product are the same under

integration over space-time coordinate. It is very important property of the star
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product because it yields the same result between the free theories in the com-

mutative and that in noncommutative space-time. Therefore, for the free theory,

the quantization in noncommutative space-time can be done by replacing with

the commutative quantization. Moreover, by using the same action of free the-

ory, it yields the same result for conservation law in order to take into account

the Noether theorem. Finally, one can define the commutator which takes into

account the star product,

[f, g]MB = f(x) ∗ g(x)− g(x) ∗ f(x)

= f(x)e
i
2

←−
∂ µθµν−→∂ νg(x)− g(x)e

i
2

←−
∂ µθµν−→∂ νf(x)

= 2if(x) sin
(1

2

←−
∂ µθ

µν−→∂ ν

)
g(x). (4.56)

From above equation the even-order terms of θµν vanish because it is the anti-

symmetric tensor. This commutator is well known as the Moyal bracket. From

the property in (4.55), it yields that the integral of this commutator over the

space-time coordinate vanishes.

4.3.3 Noncommutative Perturbation Theory

In the previous subsection, we conclude that dynamics of the free scalar field is

the same for both the noncommutative and commutative space-time. Therefore,

in this subsection, we will discuss the different results of the noncommutative and

commutative space-time when adding the interaction term in Lagrangian. After

using the properties derived in the previous subsection, the action of scalar field

in noncommutative space-time can be written as

S =

∫ (1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ ∗ φ ∗ φ ∗ φ

)
d4x. (4.57)

This leads to the equation of motion which takes the form

∂µ∂
µφ+m2φ = − λ

3!
φ ∗ φ ∗ φ. (4.58)

In order to see how the noncommutative quantization differs from the commutative

case, one considers the conjugate momentum which can be rewritten as

π =
∂L
∂φ̇

= φ̇− λ

3!

∂(φ ∗ φ ∗ φ)

∂φ̇
. (4.59)

From this conjugate momentum, the difference occurs due to the second term

which contains the infinite number of time derivatives. This infinite number of
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derivative suggests that the theory is non-local in time. Therefore, the causal-

ity may be violated and the unitarity is not preserved at the quantum level [17].

However, in the special case which time and space are commute (θ0i = 0), the

conjugate momentum in noncommutative space-time is as same as that in commu-

tative space-time because the time derivatives in the interaction term are vanish.

Thus, we can roughly state that the quantization of the interacting scalar field

in noncommutative space-time can be done only in the context of space-space

noncommutivity.

We should also discuss the Noether theorem and see how the noncommu-

tative space-time affects the conservation law. Generally, the energy momentum

tensor can be written in noncommutative space-time as

T µ
ν =

1

2

( ∂L
∂(∂µ)

∗ ∂νφ+ ∂νφ ∗
∂L
∂(∂µ)

)
− ηµ

νL

=
1

2

(
∂µφ ∗ ∂νφ+ ∂νφ ∗ ∂µφ

)
+ ηµ

ν

(1

2
∂ρφ ∗ ∂ρφ− 1

2
m2φ∗2 − λ

4!
φ∗4
)
,(4.60)

where φ∗n is the number, n, of φ with the star product. Considering the divergence

of this tensor, one obtains

∂µT
µ
ν =

1

2

(
∂µ∂

µφ ∗ ∂νφ+ µφ ∗ ∂µ∂νφ+ ∂µ∂νφ ∗ ∂µφ+ ∂νφ ∗ ∂µ∂
µφ
)

+
(1

2
∂ν∂µφ ∗ ∂µφ+ ∂µφ ∗ ∂ν∂

µφ
)

+
1

2
m2
(
∂νφ ∗ φ+ φ ∗ ∂νφ

)
− λ

4!

(
∂ν ∗ φ∗3 + φ ∗ ∂νφ ∗ φ∗2 + φ∗2 ∗ ∂νφ ∗ φ+ φ∗3 ∗ ∂νφ

)
=

λ

4!

(
− ∂ν ∗ φ∗3 + φ ∗ ∂νφ ∗ φ∗2 + φ∗2 ∗ ∂νφ ∗ φ− φ∗3 ∗ ∂νφ

)
=

λ

4!

(
[φ, ∂νφ]MB ∗ φ∗2 − φ∗2 ∗ [φ, ∂νφ]MB

)
=

λ

4!

(
[ [φ, ∂νφ]MB, φ

∗2 ]MB

)
. (4.61)

Note that in the second step one uses the equation of motion. The conserved

charge can be rewritten as Qν =
∫
T 0

νd
3x, which is the integration over only

spatial coordinate. Thus, it is conserved only in the special case, θ0i = 0. This

is consistent with conjugate momentum analysis which the problem occurs in the

noncommutivity of the space and time. However, in the next chapter we will

consider the effect of noncommutative space-time in a cosmological regime.

As we mentioned, quantum field theory can be constructed in the regime of

the noncommutative space. In this regime, the consequence of the noncommuta-

tive effect will exist in the Feymann diagram. From the cyclic property of the star

product, it yields the difference in the vertex of Feymann diagram which is invari-

ant only under cyclic permutation of four-incoming momentum. This leads to the
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loop diagram which cannot be written in the plane. This diagram is known as the

“non-planar diagram”. Moreover, these non-planar diagrams are responsible for

the UV/IR mixing effect. The UV/IR mixing is the effect of the ultraviolet diver-

gence on the infrared behavior which has no analog in the conventional quantum

field theory. For the detail of these topics please look at [16] and [17] for a review.



CHAPTER V

NONCOMMUTATIVE INFLATION

In Chapter 3, we describe the evolution of the early universe by using the

inflationary model. We also assume that inflation took place at the time when

the size of the early universe is very small near the Planck scales. In such a small

length scale, the effect of quantum gravity cannot be neglected. String theory is

the most promising candidate for the quantum gravity. This theory states that the

elementary particle is a string which has the minimum length called string length

ls. As a result of this theory, there is the uncertainty relation in space and time

∆xp∆tp ≥ l2s , where tp and xp denote the physical time and spatial coordinate,

respectively [27]. This relation can be realized by non-commutative space-time

[xp, tp] = ils [26]. However, in string theory, this commutation relation cannot

be simply written down because this relation is neither covariant nor meaningful

when applied to any degree of freedom [28]. Thus, we must keep in mind that it

is just a model that Brandenberger and Ho rose up, and we will follow them in

the first part of this chapter.

5.1 Dynamics of Fluctuation Scalar Field in Non-

commutative Space-Time

The main object of this section is to find the action for the fluctuation field in

noncommutative space-time. For convenience, we will consider the action of the

scalar perturbation field which is deduced from the action of the tensor pertur-

bation field. Usually, we will consider the FRW metric in the context of the

conformal time but the stringy space-time uncertainty relation (SSUR) for the

conformal time is not well defined due to the uncertainty relation, ∆η∆x ≥ l2s
a2(η)

.

It is not clear when ∆η is large because the scale factor in the right hand side

can be changed. Thus, we will modify the FRW metric by defining the new time

coordinate τ which relates to the comoving time by dt = a−1dτ , and the metric
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can be written in the form

ds2 = a−2(τ)dτ 2 − a2(τ)d~x2. (5.1)

Note that we consider in spatially flat universe. So the SSUR is written by

∆t∆xp = ∆τ∆x ≥ l2s . (5.2)

The algebra of the noncommutative space-time associating to this relation can be

written as

[τ, x] = 2il2s . (5.3)

In order to avoid the breakdown of cosmological principle by the noncom-

mutative algebra, we will use the tricky technique for this calculation. This trick

is that we first calculate the action through the star product in two dimensional

space-time. This calculation no longer spoils the cosmological principle. And then

we will extend this action to four dimensional space-time later. Furthermore, this

trick provides FRW metric preserving both the rotational and translational sym-

metries which correspond to the cosmological principle as we will see later in the

final part of this section.

First, we consider two dimensional space-time. The metric in (5.1) can be

written as

gµν =

(
a−2(τ) 0

0 −a2(τ)

)
(5.4)

gµν =

(
a2(τ) 0

0 −a−2(τ)

)
. (5.5)

In the case of commutative space-time, one obtains the action

S =

∫
dτdx

1

2
(∂µφ

†gµν∂νφ). (5.6)

For noncommutative space-time, we replace the multiplication product of the

scalar field by the star product.

S̃ =

∫
dτdx

1

2
(∂µφ

† ∗ gµν ∗ ∂νφ)

=

∫
dτdx

1

2

(
∂τφ

† ∗ a2 ∗ ∂τφ−
(
∂xφ
)† ∗ a−2 ∗ ∂xφ

)
. (5.7)
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The fourier transform of φ can be written as

φ(x, τ) =
V

1
2

2

∫
|k|<k0

dk√
2π

(
φk(τ)e

ikx + φ†k(τ)e
−ikx

)
, (5.8a)

φ†(x, τ) =
V

1
2

2

∫
|k|<k0

dk√
2π

(
φ†k(τ)e

−ikx + φk(τ)e
ikx
)
, (5.8b)

where V is the volume in spatial coordinates. Let us consider the first term in

(5.7), we obtain

S̃1 =
V

8

∫
dτdx

2π

(∫
|k|<k0

dk(∂τφ
†
ke
−ikx + ∂τφke

ikx) ∗ a2

∗
∫
|k|<k0

dp(∂τφpe
ipx + ∂τφ

†
pe
−ipx)

)
=

V

8

∫
|k|<k0

dτdxdkdp

2π

(
(∂τφ

†
ke
−ikx + ∂τφke

ikx)e
i
2
θij←−∂i

−→
∂ja2

)
∗(∂τφpe

ipx + ∂τφ
†
pe
−ipx)

=
V

8

∫
|k|<k0

dτdxdkdp

2π

(
(∂τφ

†
ke
−ikx + ∂τφke

ikx)eil2s(
←−
∂τ
−→
∂x−
←−
∂x
−→
∂τ )a2

)
∗(∂τφpe

ipx + ∂τφ
†
pe
−ipx)

=
V

8

∫
|k|<k0

dτdxdkdp

2π

(
(∂τφ

†
ke
−ikxe−l2sk∂τ + ∂τφke

ikxel2sk∂τ )a2
)

∗(∂τφpe
ipx + ∂τφ

†
pe
−ipx)

=
V

8

∫
|k|<k0

dτdxdkdp

2π

(
(∂τφ

†
k∂τφpe

−ix(k−p) + ∂τφ
†
k∂τφ

†
pe
−ix(k+p))e−l2sk∂τa2

+ (∂τφk∂τφpe
ix(k+p) + ∂τφk∂τφ

†
pe

ix(k−p))el2sk∂τa2
)

=
V

8

∫
|k|<k0

dτdk
(
(∂τφ

†
k∂τφk + ∂τφ

†
k∂τφ

†
−k)e

−l2sk∂τa2

+(∂τφk∂τφ−k + ∂τφk∂τφ
†
k)e

l2sk∂τa2
)
. (5.9)

We assume that φ is the real scalar field. Due to the reality condition of the field

φ(x, τ), we have φk(τ) = φ†−k(τ). Thus, equation (5.9) become

S̃1 =
V

4

∫
|k|<k0

dτdk
(
∂τφ−k∂τφke

−l2sk∂τa2(τ) + ∂τφ−k∂τφke
l2sk∂τa2(τ)

)
' V

4

∫
|k|<k0

dτdk
(
a2(τ − kl2s) + a2(τ + kl2s)

)
∂τφ−k∂τφk. (5.10)

The second term in action (5.7) can be calculated in a similar way as in (5.9)

and takes the form

S̃2 '
V

4

∫
|k|<k0

dτdk
(
a−2(τ − kl2s) + a−2(τ + kl2s)

)
k2φ−kφk. (5.11)
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Combining the first and the second terms, the action (5.7) reduces to

S̃ ' V

∫
|k|<k0

dτdk
1

2

(
β+

k ∂τφ−k∂τφk − β−k k
2φ−kφk

)
, (5.12)

where

β±k =
1

2
(a±2(τ − kl2s) + a±2(τ + kl2s)). (5.13)

From this action, we neglect the effect of SSUR by taking the commutative

limit, ls = 0, and then obtain β±k (τ) = a±(τ). So, the action in (5.12) becomes

the action in commutative space-time as we expect. Note that the action is non-

local in time through the β±k (τ) function which is the result of the realization of

SSUR by noncommutative algebra. Now we already have obtained the action in

the context of noncommutative algebra. Generally, the SSUR is not realized by

noncommutative algebra. In this context, β±k (τ) can be expanded in the order of
H
Ms

[29] which take the form

β±k (τ) =
(
1 + C±1

Hp

M2
s

+ C±2
(Ḣ +H2)p2

M4
s

+ ...
)
a±(τ). (5.14)

Where C± are constants of order 1, p = k
a

is physical momentum and Ms = 1
ls

is

energy scale of string theory. In this case, when we take ls = 0, it yields the same

result as the commutative case.

From the action above, we have an upper bound of integration of k at k0

because we need the fluctuation modes φk which satisfy SSUR. Therefore, it means

that we have an initial time at which the fluctuation modes begin. However, the

upper bound of momentum k0 is easily calculated by defining the energy in τ

coordinate as Ek = ka−2(τ). But in the context of non-local time, we need the

effective scale factor ae which can be defined as

a2
e(τ) =

(β+
k

β−k

)1/2

. (5.15)

Then the energy can be written as Ek = ka−2
e . By using the relations of uncertainty

principle ∆x ∼ 1
k
, ∆τ ∼ 1

Ek
and SSUR, we have(ae(τ)

k

)2

∼ ∆t∆xp = ∆τ∆x ≥ l2s . (5.16)

Finally, the upper bound of energy scale or momentum scale can be defined as

k0 ≡
ae(τ)

ls
. (5.17)
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In order to calculate the power spectrum, we have to write the action in the

term of the conformal time. Since we have seen the metric above, the relation of

conformal time and τ can be written as dη = a−2dτ . In the context of non-local

time we replace a by ae. Note that we put (˜) over the noncommutative parameter

in order to be not confused. Then the noncommutative conformal time takes the

form dη̃ = a−2
e dτ . Thus, the action can be written as

S̃ = V

∫
|k|<k0

a2
edη̃dk

1

2

(
β+

k a
−4
e ∂η̃φ−k∂η̃φk − k2β−k φ−kφk

)
= V

∫
|k|<k0

dη̃dk
1

2

(
(β+

k β
−
k )1/2φ′−kφ

′
k − k2(β+

k β
−
k )1/2φ−kφk

)
= V

∫
|k|<k0

dη̃dk
1

2
y2

k(η̃)
(
φ′−kφ

′
k − k2φ−kφk

)
, (5.18)

where y2
k(η̃) = (β+

k β
−
k )1/2, and prime denotes the derivative with respect to

noncommutative conformal time η̃. To extend the action from two dimensional

space-time to four dimensional space-time, we have to compare this action with

the action of tensor perturbation in d + 1 dimensions of commutative space-time

(3.126) which can be rewritten as

S = V

∫
dηddk

1

2
ad−1

(
φ′−kφ

′
k − k2φ−kφk

)
. (5.19)

From this action, we will see that the difference between the action in non-

commutative and commutative space-time is y2
k(η̃) and ad−1. Therefore, we can

extend the action in noncommutative space-time from 1 + 1 to d + 1 dimensions

by expressing the smeared version of ad−1 as ãd−1
k = y2

k(η̃)a
d−1 for the tensor per-

turbation. Furthermore, we can extend to the scalar perturbation by writing the

smeared version of zd−1 in the form of z̃d−1
k = y2

k(η̃)z
d−1. So, the action of scalar

perturbation in four dimensional noncommutative space-time can be written as

S̃ = V

∫
|k|<k0

dη̃d3k
1

2
z̃2

k

(
φ′−kφ

′
k − k2φ−kφk

)
, (5.20)

where z̃2
k = y2

kz
2. As we have mentioned above, the advantage of this action

is that it preserves both translational and rotational symmetries of flat FRW

metric. Before we move to the next section to calculate the power spectrum of

the fluctuation field, we will emphasize here that first we have smeared version of

scale factor or z which depends on k. Second we have an upper bound of k which

depends on the time when the SSUR is saturated, denoting by η̃0.
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5.2 Power Spectrum in Noncommutative Space-

Time

In this section, we will find the power spectrum of the curvature perturbation in the

noncommutative space-time and compare this power spectrum to the commutative

case. The quantization is a significant mechanism to yield the power spectrum.

Therefore, the first part of this section, we will quantize the scalar perturbation

field (normally, this field is called the gauge invariant potential). For convenience,

the Heisenberg picture in which the operator depends on time is preferred. In

the next subsection, we calculate the power spectrum by using the initial vacuum

which minimizes the uncertainty relation at the time η̃ = η̃0. However, in the last

subsection, the result can be compared to another initial vacuum. Furthermore,

we will compare the result with the commutative case.

5.2.1 Quantization of Scalar Perturbation Field

The metric perturbation can be classified in three components as tensor, vector

and scalar perturbations. The vector perturbation can be neglected because there

is no rotational velocity field during inflation stage [10]. In this subsection, we

will consider only the scalar perturbation because the tensor perturbation can be

deduced from scalar perturbation by replacing ak with zk. From Chapter 3, the

action for the scalar perturbation can be written as

S =
1

2

∫
d4x
(
v′2 − ∂iv∂

iv +
z′′

z
v2
)
. (5.21)

To compare with the action in the previous section, we must transform this action

by using the Fourier transformation,

v(~x, η) =
1

2

∫
d3k

(2π)3/2

(
vk(η)e

i~k·~x + v∗k(η)e
−i~k·~x

)
, (5.22a)

v∗(~x, η) =
1

2

∫
d3k

(2π)3/2

(
v∗k(η)e

−i~k·~x + vk(η)e
i~k·~x
)
. (5.22b)

The action in (5.21) can be written as

S =
1

2

∫
d3kdη

(
v′−kv

′
k − (k2 − z′′

z
)v−kvk

)
. (5.23)

By using the Euler-Lagrange equation, the equation of motion can be written as

v′′k + (k2 − z′′

z
)vk = 0. (5.24)
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This equation of motion is equivalent to the equation of motion for the field Rk =

−φk/z̃k from the noncommutative action in (5.20) by replacing z′′

z
by

z̃′′k
z̃k

. For the

canonical quantization, the Hamiltonian formalism is a significant mechanism,

and then we will find the Hamiltonian. Conveniently, the action in (5.21) can be

rewritten as

S =
1

2

∫
d4x
(
v′2 − ∂iv∂

iv − 2
z′

z
vv′ +

(z′
z

)2

v2
)
. (5.25)

Thus, the Lagrangian density takes the form:

L =
1

2

(
v′2 − ∂iv∂

iv − 2
z′

z
vv′ +

(z′
z

)2

v2
)
. (5.26)

The conjugate momentum can be defined by

π =
∂L
∂v′

= v′ − z′

z
v. (5.27)

The Lagrangian density (5.26) can be written in terms of the conjugate momentum

as

L =
1

2

(
v′π − ∂iv∂

iv − z′

z
vπ
)
. (5.28)

We can write the Hamiltonian density as

H = v′π − L =
1

2

(
v′π + ∂iv∂

iv +
z′

z
vπ
)
.

=
1

2

(
v′π − z′

z
vπ + ∂iv∂

iv + 2
z′

z
vπ
)

=
1

2

(
π2 + ∂iv∂

iv + 2
z′

z
vπ
)
. (5.29)

These lead to Hamiltonian in momentum space as

H =

∫
d3xH =

1

2

∫
d3x
(
v′π + ∂iv∂

iv +
z′

z
vπ
)

=

∫
d3k
(1

2
πkπ−k +

1

2
k2vkv−k +

z′

z
(vkπ−k + v−kπk)

)
. (5.30)

Using the canonical quantization, the fields v(~x, η) and π(~x, η) are replaced by the

operators v̂(~x, η) and π̂(~x, η) which satisfy the standard commutation relations on

the η= constant hypersurface:[
v̂(~x, η), v̂(~x′, η)

]
=
[
π̂(~x, η), π̂(~x′, η)

]
= 0, (5.31a)[

v̂(~x, η), π̂(~x′, η)
]

= iδ3(~x− ~x′). (5.31b)

In Fourier modes, the commutation relations above are[
v̂k(η), v̂k′(η)

]
=
[
π̂k(η), π̂k′(η)

]
= 0, (5.32a)[

v̂k(η), π̂
†
k′(η)

]
= i. (5.32b)
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Generally, the operators can be written in the term of composition of the annihi-

lation and creation operators as

π̂k = −i
√
k

2
(âk − â†−k), π̂−k = π̂†k = i

√
k

2
(â†k − â−k), (5.33)

v̂k =

√
1

2k
(âk + â†−k), v̂−k = v̂†k =

√
1

2k
(â†k + â−k). (5.34)

After substituting (5.33) and (5.34) into (5.30), the Hamiltonian operator takes

the form

Ĥ =

∫
d3k
(k

2
(âkâ

†
k + â†−kâ−k) + i

z′

z
(â†−kâ

†
k − âkâ−k)

)
. (5.35)

The last piece of this integrand is responsible for the squeezing and effects the

time evolution of the system [30].

According to the canonical quantization in quantum field theory, the Heisen-

berg picture is more useful. From this picture, there is a unique vacuum state | 0〉.
The vacuum state can be defined in the Fock representation of Hilbert space of

the state that the operators act on. This vacuum state can be expressed as

âk | 0〉 = 0, ∀k. (5.36)

However, this vacuum state can be defined only in the flat space-time with the

constant mass. Thus, the issue of a vacuum state in the time dependent back-

ground such as the cosmological background cannot be well defined [11] because

the vacuum state in the later time will no longer be a vacuum state. Nevertheless,

we can pick an initial vacuum state | 0〉in which satisfy âk(η = η0) | 0〉in = 0, ∀k.
We then transform the operators to what satisfy âk(η) | 0〉 = 0, ∀k which corre-

sponds to commutation relation of the annihilation and creation operators. This

transformation is called the Bogoliubov transformation which can be defined as

âk(η) = αk(η)âk(η
0) + βk(η)â

†
−k(η

0), (5.37)

â†k(η) = β∗k(η)â−k(η
0) + α∗k(η)â

†
k(η

0). (5.38)

The parameters αk and βk are called the Bogoliubov coefficients which obey the

relation

αkα
∗
k − βkβ

∗
k = 1, ∀k. (5.39)

The significant treatment is the initial vacuum state that we pick. If we pick

the unreasonable vacuum, it may yield the unphysical vacuum state at the later

time. However, we have a choice which corresponds to physical states. It is the
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adiabatic vacuum, which the initial state is assumed to be an empty vacuum in the

infinite past [31]. Thus, it would rather not make sense when we talk about the

SSUR which has a finite time. We will follow the idea of Danielsson [31](and also

[32]) by choosing the vacuum state which minimizes the space-time uncertainty

relation. This vacuum has a condition which takes the form

π̂k(η
0) | 0〉in = ikv̂k(η

0) | 0〉in, (5.40)

and the physical interpretation of this vacuum has been discussed in [30]. Using

(5.37), (5.38), (5.33) and (5.34) one obtains

v̂k(η) = fk(η)âk(η
0) + f ∗k (η)â†−k(η

0), (5.41)

π̂k(η) = −i
(
gk(η)âk(η

0)− g∗k(η)â
†
−k(η

0)
)
, (5.42)

where

fk(η) =

√
1

2k

(
αk(η) + β∗k(η)

)
,

gk(η) =

√
k

2

(
αk(η)− β∗k(η)

)
. (5.43)

From (5.41), the equation of motion for fk can be written in same form as the

equation of motion for vk represented in (5.24):

f ′′k + (k2 − z′′

z
)fk. (5.44)

As we explained in the end of the previous section, we can express the equation

of motion in the context of noncommutative space-time by replacing z̃k by z , η̃

by η and keep in mind that the initial time depends on k. Thus, the equation of

motion of fk in noncommutative space-time takes the form

f ′′k + (k2 − z̃′′k
z̃k

)fk. (5.45)

From Chapter 3, the power spectrum of the curvature perturbation in noncom-

mutative space-time can be written as

PR(k) =
k3

2π2

〈0 | v̂†kv̂k | 0〉
z̃2

k(η̃k)

=
k3

2π2

|fk|2

z̃2
k(η̃k)

, (5.46)

where η̃k is time when the mode k crosses the Hubble radius. From this power

spectrum, we will write it in terms of noncommutative parameter and inflation

parameters by finding solution for fk.
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5.2.2 Power Spectrum of Curvature Perturbation

In this subsection, we will find the solution for fk from the differential equation in

(5.45). We will expand z̃′′k/z̃k in the term of slow-roll parameter and introduce the

noncommutative parameter µ in this expansion. Conveniently, we will find the

relation between the conformal time η and the noncommutative conformal time η̃

dη = a−2dτ

=
a2

e

a2
dη̃

=
a(τ + l2sk)a(τ − l2sk)

a2
dη̃

' (a+ l2sk∂τa)(a− l2sk∂τa)

a2
dη̃

=
a2 − (l2sk∂τa)

2

a2
dη̃

=
(
1−

( l2sk∂τa

a2

)2)
dη̃

=
(
1− k2H2

a2M4
s

)
dη̃ = (1− µ)dη̃, (5.47)

where µ = k2H2

a2M4
s

is a noncommutative parameter. From z̃k = ykzk, one obtains

z̃′k
Hz̃k

=
(ae

a

)2 z′
Hz

= (1− µ)(1 + ε− δ) = (1 + ε− δ − µ). (5.48)

Note that, the primes over the noncommutative variables represent the derivative

respect to η̃ and the primes over another variable represent the derivative with

respect to η. From (5.48), we assume that µ is independent on time then yk is also

independent on time. yk can be calculated in similar way as in the calculation of

the relation of η̃ and η which takes the form

yk = 1 + µ/2. (5.49)

Moreover, we assume that the slow-roll parameters are independent on time. Then

the derivative of
z̃′k
Hz̃k

with respect to η̃ is zero. This leads to

z̃′′k
z̃k

=
( z̃′k
z̃k

)2

+
(ae

a

)2 z̃′k
z̃k

H′

H
. (5.50)

By using
z̃′k
z̃k

in (5.48),
(

ae

a

)2

in (5.47) and definition of slow-roll parameter H
′

H2 =

1− ε, the equation (5.50) can be written as

z̃′′k
z̃k

= (1 + ε− δ − µ)2H2 + (1− µ)(1 + ε− δ − µ)(1− ε)H2

= 2(Ha)2(1 + ε− 3

2
δ − 2µ). (5.51)



87

By using the definition of slow-roll parameters in the commutative case, the Hubble

parameter for conformal time can be written as

H = Ha = −1

η
(1− ε)−1

= −1

η̃

(ae

a

)2

(1 + ε)

= −1

η̃
(1 + ε+ µ). (5.52)

Conveniently, we will set

z̃′′k
z̃k

=
1

η̃2

(
ν2 − 1

4

)
. (5.53)

By using (5.51), ν can be written as a function of slow-roll parameters and takes

the form

ν = (
3

2
+ 2ε− δ). (5.54)

Thus, the equation of motion for fk takes the form

f ′′k +
(
k2 − 1

η̃2
(ν2 − 1

4
)
)
fk. (5.55)

Generally, the solution of this equation can be written in the term of a combination

of Bessel and Neumann functions and take the form of

fk =
√
−η̃
(
AkJν(−kη̃) +BkNν(−kη̃)

)
. (5.56)

Thus the power spectrum can be written as

PR(k) =
k3

2π2

(−η̃k)
(
|Ak|2JνJν + |Bk|2NνNν + (AkB̄k + ĀkBk)JνNν

)
z̃2

k(η̃k)
.(5.57)

Now we have the general solution of fk, but it is not specific for arbitrary

constants Ak and Bk. However, the specific solution can be expressed by deter-

mining the constants Ak and Bk. Actually, we must find their multiplication. The

constants can be obtained by using the relation for Bogoliubov coefficients. There-

fore, in the first step we must find gk. Generally, gk is proportional to derivative

of fk. For simplicity, we choose to multiply it by −i. By using the identity of the

Bessel function, gk takes the form

gk = −ik
√
−η̃
(
AkJν−1(−kη̃) +BkNν−1(−kη̃)

)
. (5.58)
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Thus, the Bogoliubov coefficients take the form

αk =

√
k

2
(fk +

gk

k
)

=

√
−kη̃

2

(
(AkJν +BkNν)− i(AkJν−1 +BkNν−1)

)
=

√
−kη̃

2
(Ck − iDk), (5.59)

and

β̄k =

√
k

2
(fk −

gk

k
)

=

√
−kη̃

2

(
(AkJν +BkNν) + i(AkJν−1 +BkNν−1)

)
=

√
−kη̃

2
(Ck + iDk), (5.60)

where Ck =
(
(AkJν +BkNν)− i(AkJν−1 +BkNν−1)

)
and Dk =

(
(AkJν +BkNν)+

i(AkJν−1 +BkNν−1)
)
. From the relation of the Bogoliuibov coefficients in (5.39),

we obtain

αkᾱk − βkβ̄k = 1

(
−kη̃

2
)(CkD̄k − C̄kDk) = 1

(
−kη̃

2
)(AkB̄k − ĀkBk)(JνNν−1 − Jν−1Nν) = 1

AkB̄k − ĀkBk = −iπ
2
. (5.61)

Note that, we use the recurrence relation of Bessel and Neumann functions,

Jν(x)Nν−1(x)− Jν−1(x)Nν(x) = − 2

πx
. (5.62)

Using the initial condition of Bogoliubov transformations, βk(η̃0) = 0, we obtain

the second condition of the constants as

C0,k = −iD0,k

(AkJ0,ν +BkN0,ν) = −i(AkJ0,ν−1 +BkN0,ν−1)

Ak = −(N0,ν + iN0,ν−1)

(J0,ν + iJ0,ν−1)
Bk. (5.63)

Note that, for short notation, we replace Xν(η̃0) by X0,ν . By using these two
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conditions and recurrence relation in (5.62), one acquires

|Ak|2 = −π
2η̃0k

8
(N2

0,ν +N2
0,ν−1), (5.64)

|Bk|2 = −π
2η̃0k

8
(J2

0,ν + J2
0,ν−1), (5.65)

AkB̄k = −iπ
4

+
π2η̃0k

8
(J0,νN0,ν + J0,ν−1N0,ν−1), (5.66)

ĀkBk = i
π

4
+
π2η̃0k

8
(J0,νN0,ν + J0,ν−1N0,ν−1). (5.67)

Substitute these into (5.57), we obtain the power spectrum can be written as

PR(k) =
k4η̃kη̃0

16z̃2
k(η̃k)

(
(N2

0,ν +N2
0,ν−1)JνJν + (J2

0,ν + J2
0,ν−1)NνNν

−2(J0,νN0,ν + J0,ν−1N0,ν−1)JνNν

)
=

k4η̃kη̃0

16z̃2
k(η̃k)

Fν(η̃0, η̃k), (5.68)

where

Fν(η̃0, η̃k) =
(
(N2

0,ν +N2
0,ν−1)JνJν + (J2

0,ν + J2
0,ν−1)NνNν

−2(J0,νN0,ν + J0,ν−1N0,ν−1)JνNν

)
. (5.69)

Now, we have already had the power spectrum in noncommutative space-

time by using the vacuum which satisfies the minimum uncertainty relation. There-

fore, this power spectrum can be compared with another power spectrum in two

ways. First, we will compare with the power spectrum in the commutative space-

time. According to [33], this power spectrum can be reduced to the power spec-

trum in commutative space-time by replacing η̃ by η and z̃k by z. This analysis

agrees with the statement that we mentioned in the previous section. Second, we

must compare with the power spectrum in another initial vacuum. Indeed there is

an adiabatic vacuum. The power spectrum can be reduced to the adiabatic power

spectrum by taking the limit η̃0 → −∞ and η̃k → 0−. From the approximation of

Bessel and Neumann functions,

Jν(x) '
1

Γ(ν + 1)

(x
2

)ν

; 0 ≤ x� ν, (5.70)

Jν(x) '
( 2

πx

)1/2

cos
(
x− 1

2
νπ − π

4

)
;x� ν, (5.71)

Nν(x) ' −Γ(ν)

π

(x
2

)−ν

; 0 ≤ x� ν, (5.72)

Nν(x) '
( 2

πx

)1/2

sin
(
x− 1

2
νπ − π

4

)
;x� ν. (5.73)
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Fν(η̃0, η̃k) can be approximated as

Fν(η̃0, η̃k) '
2

π2(−kη̃0)
, (5.74)

and the power spectrum takes the form

PR(k) =
k2

4π2z̃2
k(η̃k)

, (5.75)

which is in the same form of the power spectrum in adiabatic vacuum.

5.2.3 Power-Law Inflation in Noncommutative Space-Time

In order to compare the results, we must know the exact power spectrum of

the curvature perturbation which depends on the slow-roll parameters and the

noncommutative parameter. For our convenience, we use the power-law inflation

to determine the exact power spectrum. The power-law inflation can be defined

in the way that the scale factor is proportional to the power of time, a(t) = a0t
p,

where p is the power-law parameter which relates to the slow-roll parameters by

p = 1/ε. So, the purpose of this subsection is to find the power spectrum which

depends on the slow-roll, power-law and noncommutative parameters. First, we

will calculate a η̃0, which is the time when the fluctuation modes begin to occur,

in the term of the parameters. The η̃0 can be calculated by using the saturated

uncertainty relation in (5.16). In the first step, we will write the power-law scale

factor in the term of noncommutative time, τ . From dτ = adt, we have

t =
(p+ 1

a0

τ
) 1

p+1
, (5.76)

and from da
dτ

= a−1 da
dt

, the scale factor can be written as

a(τ) = α0τ
p

p+1 , (5.77)
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where α0 = (p + 1)
(

a0

p+1

) 1
p+1

. By using the definition dη̃ = a−2
e dτ , η̃0 can be

written in term of τ0 as

η̃ = α−2
0

∫
(τ 2 − l4sk2)

−2p
p+1dτ

= α−2
0

∫
τ
−2p
p+1

(
1− l4sk

2

τ 2

) −p
p+1
dτ

= α−2
0

∫
τ
−2p
p+1

(
1 +

p

p+ 1

l4sk
2

τ 2

)
dτ

= α−2
0

∫
τ
−2p
p+1

(
1 +

p+ 1

p
µ
)
dτ

= α−2
0

(
1 +

p+ 1

p
µ
)(1 + p

1− p

)
τ

1−p
1+p

η̃0 = α−2
0

(
1 +

p+ 1

p
µ
)(1 + p

1− p

)
τ

1−p
1+p

0

= A0τ
1−p
1+p

0 , (5.78)

where

A0 = α−2
0

(
1 +

p+ 1

p
µ0

)(1 + p

1− p

)
. (5.79)

Substituting (5.77) into (5.78), we get

µ =
p2

(p+ 1)2

l4sk
2

τ 2
. (5.80)

Next, we will determine the horizon crossing time which occurs when
z̃′′k
z̃k

= k2.

From (5.53), the crossing time takes the form

η̃k =

√
ν2 − 1

4

k
. (5.81)

Finally, we will consider z̃k(η̃k) which takes the form

z̃k(η̃k) = z(η)yk = a
φ̇

H
yk = a

√
2εmpl(1 + µk/2),

z̃2
k(η̃k) =

2m2
pl

p
(1 + µk)a

2(η̃k)

=
2m2

pl

p
(1 + µk)α

2
0A

2p
p−1

k η̃
2p

1−p

k

=
2m2

pl

p
(1 + µk)α

2
0A

2p
p−1

k (ν2 − 1/4)
p

1−pk
2p

p−1 . (5.82)
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Substituting these into the power spectrum in (5.68), we obtain

PR(k) =
p(ν2 − 1/4)

1−3p
2(1−p)A

2p
1−p

k A0

32m2
plα

2
0(1 + µk)

k3− 2p
p−1 τ

1−p
1+p

0 Fν(η̃0, η̃k)

=
p(ν2 − 1/4)

1−3p
2(1−p)

32m2
plα

4
1−p

0

(1 + p

1− p

) 1+p
1−p
(
1 +

p+ 1

p
µ0 −

3p+ 1

p− 1
µk

)
k3− 2p

p−1 τ
1−p
1+p

0 Fν(η̃0, η̃k)

= B1

(
1 +

p+ 1

p
µ0 −

3p− 1

p− 1
µk

)
k3− 2p

p−1 τ
1−p
1+p

0 Fν(η̃0, η̃k), (5.83)

where

B1 =
p(ν2 − 1/4)

1−3p
2(1−p)

32m2
plα

4
1−p

0

(1 + p

1− p

) 1+p
1−p
.

Using the definition of the energy upper bound in (5.17), we obtain the effective

scale factor at the beginning time, τ0 as

l4sk
4 = a4

e(τ0) = a2(τ0 + l2sk)a
2(τ0 − l2sk)

= α4
0(τ0 + l2sk)

2p
p+1 (τ0 − l2sk)

2p
p+1

= α4
0

(
τ 2
0 − l4sk2

) 2p
p+1
,

τ0 =
[( lsk
α0

) 2(p+1)
p

+ l4sk
2
] 1

2
. (5.84)

In order to compare the result with the observation, we need to consider two

regions, UV and IR regions, separately [26]. The UV region is the region in which

the fluctuation modes are generated within the Hubble radius. These correspond

to the modes which satisfy the relation k � αp+1
0 lp−1

s . On the other hand, the

region in which the modes are generated outside the Hubble radius are the IR

region corresponding to k � αp+1
0 lp−1

s . Therefore, the first and the second terms in

the right-hand side of (5.84) are dominated for the UV and IR regions, respectively.

In order to neglect the effect of the second term, the initial time η̃0 can be written

as

η̃0 = −α−2
0

(p+ 1

p− 1

)(
1 +

p+ 1

p
µ0

)( ls
α0

) 1−p
p
k

1−p
p , (5.85)

and the power spectrum in the UV region takes the form

PR(k) = B2k
−2
p−1

+ 1
p (1− xk

−4
p−1 + yk

−1
p )Fν(η̃0, η̃k), (5.86)
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where

B2 =
p(ν2 − 1/4)

1−3p
2(1−p)

32m2
plα

4
1−p

0

(1 + p

1− p

) 1+p
1−p
( ls
α0

) 1−p
p
,

x = (ν2 − 1/4)
p+1
p−1 l4sα

2(p+1)
p−1

0

(1 + p

1− p

) 2(1+p)
1−p

( p

p+ 1

)2(3p− 1

p− 1

)
,

y =
( p

p+ 1

)(α0

ls

) 1−2p
p
. (5.87)

From this power spectrum, the factor 1/p in the power of k will make the spectral

index larger than that in adiabatic vacuum and enhances the trend from the red

tilt to the blue tilt spectrum. This result can be estimated to the adiabatic vacuum

by using the approximation of Fν(η̃0, η̃k) in (5.74) which takes the form

Fν(η̃0, η̃k) =
2α2

0

π2

( ls
α0

) p−1
p
(p− 1

p+ 1

)
(1− yk

−1
p )k

−1
p . (5.88)

Form this approximation, it leads to the power spectrum which takes the form

PR(k) = B3k
−2
p−1

+ 1
p (1− xk

−4
p−1 + yk

−1
p )(1− yk

−1
p )k

−1
p ,

= B3k
−2
p−1 (1− xk

−4
p−1 ), (5.89)

where

B3 =
p(ν2 − 1/4)

1−3p
2(1−p)α2

0

16π2m2
plα

4
1−p

0

(p− 1

p+ 1

)(1 + p

1− p

) 1+p
1−p
. (5.90)

This power spectrum is equivalent to the power spectrum of adiabatic vacuum in

[34]. The differences occur only from the technical calculation in the constants B3

and x. From this power spectrum, the spectral index takes the form

n− 1 =
−2

p− 1
+

1

p
−
( 4

p− 1
xk

−4
p−1 +

y

p
k
−1
p

)
+
d lnFν(η̃0, η̃k)

d ln k
. (5.91)

Next, we will determine the power spectrum in the IR region which the second

term in (5.84) dominates over the first term. The initial time η̃0 can be written as

η̃0 = −α−2
0

(p+ 1

p− 1

)(
1 +

p+ 1

p
µ0

)
l2sk, (5.92)

and the power spectrum takes the form

PR(k) = B4k
2

p+1
− 2

p−1

(
1− 2p+ 1

p+ 1
xk

−4
p−1

)
Fν(η̃0, η̃k), (5.93)

where

B4 =
p(ν2 − 1/4)

1−3p
2(1−p)

32m2
plα

4
1−p

0

p+ 1

2p+ 1

(1 + p

1− p

) 1+p
1−p
l
2(1−p)
1+p

s . (5.94)
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This power spectrum provides red tilt spectrum which is very different from the

result in adiabatic vacuum that has blue tilt spectrum. However, the result is

the same as the adiabatic vacuum when we think of the fluctuation modes are

generated and then cross the horizon suddenly, η̃k → η̃0. In this context, in order

to compare with the adiabatic vacuum, one needs the new approximation of yk

which takes the form

y2
k = 2

p−1
p+1 (lsα0)

2(p−1)
p+1 k

−2
p+1

(
1 +

1

2

p

p+ 1
(lsα0)

2(1−p)
p k

2
p

)
. (5.95)

Furthermore, by taking the limit η̃k → η̃0, one finds that

Fν(η̃0) =
4

π2k2η̃2
0

. (5.96)

Substituting these into (5.68), we obtain the power spectrum

PR(k) =
k2

4π2z̃2
k

= B5k
4

p+1

(
1− x′k

2
p

)
, (5.97)

where

B5 =
p2

1−p
1+p

8π2m2
plα

2
0

(α0ls)
2(1−p)
1+p , (5.98)

x′ =
3

2

p

p+ 1
(lsα0)

2(1−p)
p . (5.99)

This power spectrum is in the same form as in the adiabatic vacuum which

we have mentioned above. Now, we already have analyzed the comparison between

the minimized uncertainty and the adiabatic vacuum. Next, we will compare the

results with the observation. Since the comparison is rather complicated, the

numerical method is the significant tool for this process. In order to avoid this

complicity, we deduce the result from [34] and [35] for our analysis. Therefore,

the comparison between the observation and the model will be analyzed here

only in the adiabatic vacuum. From these two papers, we can conclude that the

noncommutative space-time affects the CMB power spectrum only for the low

multipoles. In order to obtain the result only for the cosmologically relevant scale,

10−4Mpc−1 < k < 10−1Mpc−1, they use only the power spectrum in the UV region

(5.89) to determine the CMB power spectrum. In [34], by using the result of [36],

they pick p = 12 and then determine the CMB power spectrum which is illustrated

in Figure 5.1. The result yields the string length is ls ∼= 2.5×10−29 cm. The result

from [35]is more accurate than [34] because they calculate the exponent, p, by the
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Figure 5.1: The CMB angular power spectrum from [34]. The dashing line rep-

resents the noncommutative model for the adiabatic vacuum and the green solid

line represents the best fit ΛCDM without noncommutative effect.

numerical method and use another approximation for the power spectrum in the

intermediate region. This leads to the result which is slightly different from [34]

namely ls ∼ 10−28 cm. However, The result from both papers yields the similar

conclusion: the low multipoles is suppressed by the noncommutative effect.



CHAPTER VI

DISCUSSION AND SUMMARY

In this thesis, we have reviewed the idea of noncommutativity of space-time,

arisen in the context of string theory, and its applications to cosmological models.

We particularly studied the noncommutative inflation model introduced by R.

Brandenberger and P. M. Ho [26].

By encoding the stringy space-time uncertainty relation in the star products

of the inflaton field, we were able to determine the dynamics of inflaton fluctua-

tions. The effects of space-time noncommutivity on the cosmological observations

have been investigated. The latter was discussed in Chapter 5 by following the

works by M. Li and Qing Guo Huang [34].

We found that the noncommutative nature of space-time affects the Cos-

mic Microwave Background power spectrum mostly in the IR region, while the

effect in the UV region seems to be very small. The advantage of noncommuta-

tive inflation is that it allows us to determine not only the power spectrum, the

spectral index, but also the running spectral index of the CMB. We were able to

use the CMB observational data from WMAP satellite at one specific length scale

to constrain the parameters in our model, and used that constraint to predict the

other set of observational data in the different length scale. However, in order

to see how SSUR affects the full CMB power spectrum, one needs to calculate

the CMB power spectrum numerically by using the package program, such as the

CMBFAST. This also involves the modification of the FORTRAN codes which is

not in the scope of this thesis. The results are presented in references [34] and

[35]. The major difference between the commutative and non-commutative in-

flation CMB power spectrum is that the low multipoles seem to be suppressed

in the latter case as illustrated in Figure 5.1. The authors of [34] and [35] con-

strained the string length to ls ∼ 10−29 cm and ls ∼ 10−28 cm, respectively. Note

that the difference between these results is due to the calculation techniques,

and both values of sting length are roughly of the same order of magnitude.
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Table 6.1: The power spectrum of curvature perturbation for the commutative

and noncommutative (NC) space-time.

Power spectrum in UV region Power spectrum in IR region

Commutative

space-time PR(k) ∼ k−
2

p−1 PR(k) ∼ k−
2

p−1

NC space-time

for adiabatic

vacuum

PR(k) ∼ k−
2

p−1

(
1− xk−

4
p−1

)
PR(k) ∼ k

4
p+1

(
1 + x′k

2
p

)

NC space-time

for minimized

uncertainty

vacuum

PR(k) ∼ k−
2

p−1
+ 1

p(
1− xk−

4
p−1 + yk−

1
p

)
Fν(η̃0, η̃k)

PR(k) ∼ k−
2

p−1
+ 2

p+1(
1− x′′k−

4
p−1

)
Fν(η̃0, η̃k)

However, all calculations that we have mentioned above are determined in

the context of the adiabatic vacuum. The calculation in the other vacuum, the

minimized uncertainty relation vacuum, is applied to this approach in order to

take into account the effect of the finite time. This vacuum is introduced in [30]

and then Danielsson applies it to the commutative space-time cosmology [31].

For the noncommutative regime, it was Rong-Gen Cai who uses this vacuum to

calculate the power spectrum [32]. From this regime, one can summarize that the

noncommutative effect enhances the trend of the power spectrum from the red tilt

to the blue tilt spectrum for UV region and the blue tilt to the red tilt spectrum for

the IR region comparing the result from using the adiabatic vacuum. Comparing

to the commutative case, the noncommutative effect enhances the trend from the

red tilt to the blue tilt for both UV and IR regions. In order to see how the

power spectrum is different explicitly, one can see in the Table 6.1. Because Fν is

in the term of the Bessel and Nuemann functions and it is in a very complicate

term, we are able to analyze only the trend of power spectrum for the minimized

uncertainty relation vacuum. However, one can summarize that the effect of the

string theory such as the SSUR provides the explanation for the observed lake of
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CMB power spectrum at the low multipoles. The other meaning of this summary

is that the effect of string theory at the high-energy scale yields the modification

for the large-scale perturbation rather than for the small scale. Nevertheless, this

phenomenal effect can be explained by the fact that the large-scale modes are

generated outside the horizon and then experience growth due to squeezing for

less time than the modes which are generated inside.

In this thesis, we consider only the power-law inflation. The slow-roll pa-

rameters and the power of inflaton field in the potential term, p, are assumed to

be constant. In general case, these parameters should not be constant especially if

we want the inflation to end. Some attempts on other models of noncommutative

inflation has been done, for example the author in [37]. However, they got the

similar results as the results of the power-law noncommutative inflation. For more

accurate calculation, the power spectrum can be calculated up to second order of

the slow-roll parameters and the noncommutative parameter is not constant [38],

[39], [40], [41]. The results of these calculations yield the consistency with our

conclusion.
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