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Semiclassical black holes emit radiation called the Hawking radiation. Such radiation, as 

seen by an asymptotic observer far outside the black hole, differs from the original radiation 

near the horizon of the black hole by a redshift factor and the so-called 'greybody factor'. In this 

project, we concentrate on the greybody factor. Various bounds for the greybody factors of non­

rotating black holes are obtained, with major focus on the charged Reissner - Nordstrom and 

the Schwarzschild - Tangherlini black holes. These bounds can be derived using a 2 X 2 

transfer matrix formalism. It has been found that the charges of black holes act as efficient 

barriers. Furthermore, adding extra dimensions to spacetime can shield the Hawking radiation. 

Finally, the cosmological constant has also been found to increase the emission rate of the 

Hawking radiation. 
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1) To calculate the greybody factors for the four-dimensional Reissner-Nordstrom black 

holes, the Schwarzschild - Tangherlini black holes, the charged dilatonic black holes in (2 + 1) 

dimensions, and the charged dilatonic black holes in (3 + 1) dimensions. 

2) To investigate what factors have an effect on the greybody factors. 

3) To compare the 2 X 2 transfer matrix method with the WKB approximation and the 

matching techniques. 

4) To apply the approach to other black holes. 

1) Derivation of the Schrodinger -like equation and the extraction of potential from the 

equation, for each type of black hole. 

r 
A static and spherically symmetric black hole in d dimensions can be described by 

2 2 1 2 2 n 2 
ds =-A(r)dt +--dr +r d~t.d_2' (1) 

8(r) 

where dn:_2 is the metric on (d - 2)-sphere and is given by 

2 2 2 2 2 ° 2 
dn:_2 =d01 + sin 01d022 + sin 0 1 sin 02d032 + ... + sin 1", sin 0d_3dO:_2' (2) 

We are interested in a massless uncharged scalar field emitted from this black hole. The 

equation of motion of this scalar field on the black hole background is 

(3) 

By separating variables 

ffi n i(Uf (2-d)/2 n 
'Y(t,r,~t.)=e r If/e(r)Yem(~t.), (4 ) 

we obtain the Schrodinger -like equation governing the modes, which is given by 

d 
2 

If/f(r) [2 ]
--'2"-+ (j) -Ve(r) If/e(r) =0, (5) 

dr. 

where r· is the standard "tortoise coordinate" given by 


dr. 1 

(6) 

dr .) A(r)8(r) 

and V(r) is the potential produced by the black hole 

f(f + d - 3)A(r) (d - 2»)A(r)8(r) d [ (d-4)/2 I ]
" Ve (r) = + r "A(r)8(r). (7)

2 2 (d-2)/2 d 
r r r 

2 



Its shape depends on the type of black hole. Black holes can be classified into four different 

, types. The first is the uncharged, non-rotating black hole called the Schwarzschild black hole, 

which is the simplest type of black hole. The second is the Reissner- Nordstrom black hole, 

• which is a charged, non-rotating black hole. The th ird is the Kerr black hole, which is an 

uncharged, rotating black hole. The last type of black hole is the Kerr-Newman black hole, 

which is a charged, rotating black hole. Here is a summary of the different types of black holes 

[15J . 
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If a Schwarzschild black hole is surrounded by matter, it becomes a dirty black hole. In higher 

dimensions, the generalization of the Schwarzschild black holes to d dimensions is referred to 

as Schwarzschild-Tangherlini black holes. Similarly, the generalization of the Kerr-Newman 

black holes to (4 + nJ dimensions is called as the Myers-Perry black holes. Moreover, there are 

black holes which are considered as the solutions to the low-energy string theory. Each of 

these black holes is associated with a dilaton field called the charged dilatonic black hole. In 

this project, we will study them in both (2 + 1) and (3 + 1) dimensions. 

2) Calculation of the bounds on the greybody factors of the black holes using the 2 X 2 

transfer matrix techniques. 

A greybody factor is a transmission probability of Hawking radiation to penetrate a 

" poter,ltial barrier produced by a black hole. It is an important quantity which helps us understand .. 
the quantum nature of a black hole. Properties of greybody factors depend on the type of black 
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hole. In this project, greybody factors are calculated using rigorous bounds developed by the 

2 X 2 transfer matrices. We start by rewriting the second order differential equation 

iljl(r) [2 ]
--2- + ()) - V(r) ljI(r) = 0 

dr. 

as two first order differential equations in the 2 X 2 transfer matrix form 

:.ln~kJ=[-k'(:) Ik, ~Jln~J 

where 

2 2 dk(r.)

k (r.) = (j) - V(r) and 1C =--. 


dr. 

Using the inequality for real numbers 

2 2 >
X + y _ 21 xy I. 

we can obtain the rigorous bounds on the greybody factors [16] 

(8) 

where V is a potential barrier produced by a black hole, (j) is a frequency of Hawking radiation, 

and h is any positive function which will be chosen to optimize the bounds. Calculating the 

greybody factor using this technique is relatively more preCise than other methods such as the 

matching techniques. Moreover, the rigorous bounds are powerful in providing the qualitative 

understanding of black holes. 

3) Analytical determination of what variables the results depend on. 

From the above formula, we can see that the rigorous bounds on the greybody factors 

mainly depend on V, a potential barrier produced by a black hole. To analyze the results, we 

will set the values of some parameters such as GM and (j) so that the bounds are functions of 

just one variable. They can, therefore, be plotted using a program such as MAPLE for the 

analytical computation of the results. In general, the rigorous bounds on the greybody factors 

depend on the black hole mass, the black hole charge, and the black hole angular momentum 

as well as the wave frequency and the spacetime dimension . This means that black hole 

characteristics themselves determine what values of the rigorous bounds on the greybody 

factors should be. 
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4) Comparison of results from the 2 X 2 transfer matrices with results obtained from the 

WKB approximation and the matching techniques. 

Using the WKB approximation, the approximate greybody factor is given by [1] 

• 
T '" exp [ - : 1mrp(x)dx J, 

where 

p(x) =-J2m[E - V(x)] . 

The matching techniques are a composition of the approximation methods for finding the 

solutions to the SChrodinger -like equation. First, we find the solutions near the black hole, 

which are called near solutions, by approximating the relevant parameters in order to make the 

Schrodinger -like equation simple enough for us to solve it. Second, we find the solutions at the 

point of infinity by approximating the relevant parameters to obtain the far solutions. Last, we 

relate the near solutions to the far solutions using the appropriate boundary conditions. 

Consequently, the approximate greybody factors can be obtained. We will compare the results 

of the greybody factors acquired using the 2 X 2 transfer matrices with results from the WKB 

approximation and the matching techniques. 

5) The application of the 2 X 2 transfer matrix techniques with other black holes. 

We will apply the bounds on the greybody factors from the 2 X 2 transfer matrix to 

various types of black holes such as the four-dimensional Reissner- Nordstrom black holes (the 

charged, non-rotating black holes), the Schwarzschild - Tangherlini black holes (the non-rotating 

black holes in d dimensions), the charged dilatonic black holes (the black holes associated with 

the dilaton fields) in (2 + 1) and (3 + 1) dimensions, the dirty black holes, and the Myers-Perry 

black holes (the charged rotating black holes in (4 + n) dimensions). The Myers-Perry black 

holes are important in that they are the simplest of the higher-dimensional rotating black holes. 

In addition, there is a new phenomenon, called superradiance, occurring in the Myers-Perry 

black holes, which can never arise in non-rotating black holes. Superradiance is a phenomenon 

by which the reflected wave is larger in its amplitude than the incident wave [14]. 

In this section, we will show you how we can obtain the bounds on the greybody factors 

for various types of black holes by the methodology mentioned above. Vl!e will analyze the 

• factors which affect the bounds on the greybody factors and compare those bounds with the 

5 



approximate greybody factors obtained from the WKB approximation and the matching 

techniques. Application with various types of black holes are as follows; 

1. Reissner- Nordstrom black holes 

The Reissner-Nordstrom metric is given by [1] 

ds 2 = _~dt 2 + ~ - 'd/ + , 2d D.2 , 


2 2 2 

where dD. =de + sin ()d(j/ and 

2GM G( d +p2 ) 
~=1---+ . 

2 r , 

Here M is the black hole mass, 0 is the total electric charge, and P is the total magnetic 

charge. In this case, from equation (1) we find that 

A(r) = 8(r) = Ll(r) and d =4. 

From equation (5), the Schrodinger -like equation is given by 

d 
2
lf/ 

- 2 +[()'/-v{r)]lf/ =0. 
dr. 

From equation (6), the tortoise coordinate is given by 

1 
dr. =-dr . 

Ll 
From equation (7), the potential produced by the Reissner- Nordstrom black hole is given by 

£ ( £ + 1 ) ~ Ll8f Ll 
V(r) = 2 +--'- ­

r r 
where 	£ is the angular momentum. 

From equation (8), the bounds on the greybody factors are given by 

T>sech2[_1 {£(£+1)+ GM+2A }] 

- 2(j) GM + A 3(GM + A)2 ' 

where 

2
A2 =G M 

2 -G(02+p2 ). 

The bounds on the greybody factors versus A are plotted for different angular momenta as 

shown in Figure 1. 
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Figure 1. Dependence of the bounds on the greybody factors on A. 
'L 

Based on the value of A, a decrease in A corresponds to an increase in the magnitude of the 

charge. The graph shows that when the magnitude of the charge increases, the bounds on the 

greybody factors decrease. That is, the charge is an effective barrier in resisting the tunneling 

• of uncharged scalar particles [2-7]. Moreover, the bound is smaller in higher angular momenta. 

If the energy from the potential barrier is higher than the particle's energy, we can use 

the WKB approximation to calculate the greybody factor 

T_, =exp [ -~{2GU{ M - ~) - (M - {j))~G' (M - (j))' - G(0' +p') 

+M~G'M' - G(0' +p')n 
The asymptotic greybody factor for large {J), obtained from the matching techniques, is given 

by [8-10] 

Pw e -1 
T~-------

ePw + 2 + 3e- p,w ' 

where 

27r [GM - .JG
2
M2 - G0

2J2
87rM 

/3 = 1+ 0 2 I 2GM 2 + 50 4 116G 2 M4 and /3, = - .Jd M2 _ G02 

The bound on the greybody factor compared with the asymptotic greybody factor for large {J) is 

shown on the graph in Figure 2. 
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Figure ~. Comparison of the bound on the greybody factor and the asymptotic greybody factor. 

The graph shows that the result from the 2 X 2 transfer matrix is close to the asymptotic result 

for large OJ s. Moreover, the bound on the greybody factor provides a true lower bound. 

2. Schwarzschild - Tangherlini black holes in d dimensions 

The Schwarzschild-Tangherlini metric in d dimensions is given by [1] 

2 

2 2 dr 2 n 2 
ds = -f(r)dt +- + r d~l. ,

d- 2 

f(r) 

where 

f(r)=1-(~ r 

Here, the Schwarzschild radius ro in d dimensions is given by 

'1r(d - l)12 
16JrGM 2 /j.. 

r = and Q
d 

2 = ----- ­
a (d-2)Qd_2 - r«(d-1)/2) 

where M is the black hole mass. In this case, from equation (1) we find that 

A(r) = B(r) = f(r) . 

From equation (5), the Schrodinger -like equation is given by 

d
2

1f/ 
-2+[OJ2 

-v(r)]If/=o. 
dr. 

From equation (6), the tortoise coordinate is given by 

• 1 
dr. =--dr . 

f(r) 
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From equation (7) , the potential produced by the Schwarzschild-Tangherlini metric in d 

dimensions is given by 

(d - 2)(d - 4) ( 2 (r) (d - 2) (r)8,f(r) /J( /J ) f(r) 
V(r) = + +.{ .{ + d - 3 - . 

2 	 2
4 r 2 r 	 r 

From equation (8), the bounds on the greybody factors are given by 

2l (d - 2)(d - 3) + 4f( f + d - 3) J 
T > sech . 

8{i)ro 

The bounds on the greybody factors versus M are plotted for different spacetime dimensions as 

shown in Figure 3. 

0.8 
- , .- -, ­

0.6 .' .. . .. 'T .. .. ' 

0.4 . .. 
0.2 ,/ 	 . . .. ... . 

• t t·.' . 
3 6 	 6 7 8 10 

M 

d=5 
. • • .• d=7 
----------. d= 6 
. . . . . . . . .. . . . . .. . . . d=4 


Figure 3. Dependence of the bound on the greybody factor on the black hole mass in various 

spacetime dimensions. 

The graph shows that when the black hole mass increases, the bounds on the grey body factors 

also increase. However, for the same mass, the bound on the greybody factor is less in higher 

dimensions [11]. 

3. Charged dilatonic black holes in (2 + 1) dimensions 

The charged dilatonic black holes in (2 + 1) dimensions is given by [1] 

2 

2 2 4r 2 2 (}2
ds =-f(r)dt +-dr +r d , 

f(r) 

where• 
f(r) =-2Mr + 81\r 

2 + 8Q 
2 

. 
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Here, M is the black hole mass, 0 is the total electric charge, and A is the cosmological 

constant. In this case, from equation (1) we find that 

f(r) 
A(r) =f(r),8(r) = -, and d = 3. 

4/ 
From equation (5), the Schrodinger -like equation is given by 

d 
2

1J1 
dr. 2 + [ 0/ - V(r)]1JI = O. 

From equation (6), the tortoise coordinate is given by 

2r 
dr. =--dr. 

f(r) 

From equation (7), the potential produced by the charged dilatonic black holes in (2 + 1) 

dimensions is given by 

22 5M 2 1 2 2 2 1 60J
V(r) = -(8m A + 6mA) + 14A r + --2 + 2m M - - (4MO + 8m 0 )-2 +-34 . 

( 
8 r r r 

From equation (8), the bounds on the greybody factors are given by 

2 2 22[-368Am(4m + 3) + 644MA - 25760 A + 115M + 368m M 
T > sech 


60OJ.JM2 - 640
2 A 


2 

5.JM2 -64dA 5M+16m (M+.JM2 -64dA J - - ----+ In 
80J 160J M -.JM2 - 640 2 A 

2 2 
_ 23d (30 - 2M - 4m )]. 


150JA 


The bound on the greybody factor versus 0 is plotted as shown in Figure 4. 
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Figure 4. Dependence of the bound on the greybody factor on the charge of the dilatonic black 

holes in (2 + 1) dimensions. 

The graph shows that when the charge increases, the bound on the greybody factor decreases. 

This result is similar to the Reissner- Nordstrom black hole's result; that is, the charge behaves 

as an effective barrier in resisting the tunneling of uncharged scalar particles. 

The bound on the greybody factor versus the cosmological constant is plotted as shown 

in Figure 5. 
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Figure 5. Dependence of the bound on the greybody factor on the cosmological constant for the 

charged dilatonic black holes in (2 + 1) dimensions. 

The graph shows that when the value of the cosmological constant increases, the bound on the 

greybody factor also increases. That is, the cosmological constant renders the gravitational 

potential produced by the black hole transparent. 

The approximate greybody factor obtained from the matching techniques is given by 

[12] 

COSh[ 1m) _ 1[ 

4A 2 

T ~ 1 - r1[OJ 1[ 

cosh --+­
4A 2 

a/-8m
2 

A ] [1[OJ('+ +,_} 1[
--- - - -1 cosh +-

4 A2 4 A(r+ -,_) . 2 

where 
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8A 
The bound on the greybody factor compared with the apprOximate greybody factor is shown on 

the graph in Figure 6. 
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Figure 6. Comparison of the bound on the greybody factor and the approximate greybody 

factor. 

The graph shows that when the energy of an emitted particle increases, the greybody factor 

also increases. It can be seen that the result derived from the 2 X 2 transfer matrices is 

relatively more accurate when compared with the approximate resu lt. Note that the methods of 

2 X 2 transfer matrices used to obtain the lower bound are comparatively less complex than 

the methods used to obtain the approximate result. 

4. Charged dilatonic black holes in (3 + 1) dimensions 

The charged dilatonic black holes in (3 + 1) dimensions is given by [1] 

2 2 1 2 2 (""'\ 2 
ds =-f(r)dt +-dr +R (r)d~.!. , 

f(r) 

where 

f(r) = 1- r; and R' (r) = r ' (1- r~ )­
For the black hole mass M and the total electric charge Q, r. and r. are given by 

Q 2 

r+ =2M and r_ = - . 
M 
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In this case, from equation (1) we find that 

A(r) = 8(r) = f(r) and d =4. 

The equation of motioR for the radial part is given by 

[0/1 d[ 2 dU(r)] f(f+1)]
-2-- R (r)f(r)-- + - - 2 u(r) = o. 
R (r) dr dr f(r) R (r) 

From equation (6), the tortoise coordinate is given by 

1 
dr. = --dr . 

f(r) 

From equation (7), the potential produced by the charged dilatonic black holes in (3 + 1) 

dimensions is given by 

'- f(f+1)f(r) 
V(r) = . 

R2 (r) 

From equation (8), the bounds on the grey body factors are given by 

2 )fU+l)MIUK/ ( 2 2 )f(f+l)MIW0
2 

4 ( 2M 2M -Q 

T~ . 
2)f(f+l)MIW0

2 

( 2 2)f(f+l)MIW0
2 J2

[( 2M + 2M -Q 

The bound on the greybody factor versus Q is plotted as shown in Figure 7. 
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Figure 7. Dependence of the bound on the greybody factor on the charge of the dilatonic black 

holes in (3 + 1) dimensions. 

The graph shows that when the charge increases, the bound on the greybody factor decreases. 


This result is similar to the Reissner- Nordstrom and the (2 + 1) dimensional charged dilatonic 
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black holes' results; that is, the charge behaves as an effective barrier in resisting the tunneling 

of uncharged scalar particles. The rigorous bounds presented here only work for certain 

potentials. Such potentials have to satisfy V(±CO) ~ V±oo. 

5. 	Dirty black holes 

A general static spherically symmetric spacetime for a dirty black hole is given by [13] 

2 	 -Up(r) ( 2m(r) ) 2 d/ 2 r"\2
ds = -e 1 - -- dt + + r d~ l. , 

r 1- 2m(r) / r 

where ¢(r) is related to the distribution of matter and m(r) is the total mass within the radius r 

from center of a black hole. In this case, from equation (1) we find that 

'L 	
-Up(r) [ 2m(r)] 2m(r)

A(r)=e 1--- ,B(r)=1---andd=4. 
r r 

From equation (5), the SChrodinger -like equation is given by 

d 1f/ 
2 [2 ]-2-+ OJ -V(r) If/=O . 

dr. 

From equation (6), the tortoise coordinate is given by 

dr. =e~(r) [1 _2m(r) ]-1 
dr r 

From equation (7), the potential produced by the Reissner- Nordstrom black hole is given by 

-2~(r) [ 2m(r)][ (( + 1) 2(1- S2 )m(r) 	 ]
V(r)=e 1--- 2 + 3 -4(1-S)Jr(P-P') , 

r r r 

where P is the matter density, Pr is the radial pressure, and S is the spin of a particle which 

runs from integers 0 to 2. 

From equation (8), the bounds on the greybody factors are given by
• 	

sech2 [_1_{(( + 1) + 1-S2}J'T ~ 
2UJrH 	 2 

where rH =2m(rH). The bound on the greybody factor depends on the frequency wave OJ, the 

angular momentum (, the spin S, and the horizon radius rH which is related to the contribution 

of matter. 

6. Myers-Perry black holes in (4 + n) dimensions 

A Myers-Perry black hole in (4 + n) dimensions is given by [14] 

14 



2 2 L 2 "B2 2 2 . 2B 2 J..L . 2 B 2ds =-dt +-dr +L.d +(r +a )Sln dqJ +--(dt-asm dm)
f1 't'r n-lL 

+ / COS 
2 BdQ

n
2, 

where 

J..L" 2BA 2 2 2 2
D. = r + a - --, L. = r + a cos , 

n - l 

r 

and dQ 2 
is the line-element on the unit n-sphere S. We choose coordinates so that 

n 

2 2B2dB3 2 2dO.: =dB1 + sin
2BldB; + ~in 2 Bl sin 2+ .. . + (rI~:ll sin B; )dB

n 
. 

The black hole mass MSH and the angular momentum J are defined as follows 

(n + 2)27r ,n+3)/2 2a 


MBH = J..L and J = --MBH . 


167rGf[(n + 3) 12] n + 2 

In this case, the Schrodinger -like equation is given by 

2 

d Rjem [ 2 J_--'-- + ((1) - mW) - V e (r) R oe - 0,
2 J m J mdr. 

where 

a 
W(r)=--­

a 2 + r 2 

The tortoise coordinate is given by 

r2 + a 2 

dr. = dr . 
f1(r) 

The potential produced by the Myers-Perry black holes in (4 + n) dimensions is given by 

f1(r) j(j + n -1)a 
2 

n(n - 2)f1(r) nf1' (r)[A 
V(r) = ( 2 2)2 jem + 2 + 2 + 

r + a r 4r 2r 

_ 3/f1(r) + [rf1(r)]' ]. 

2 + 2) 2 2 + 2(r a r a 

From equation (8), the bounds on the greybody factors are given by 
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2{1 	 1}sech 	 -In(1- m I m.) +--fem for m :::; 0 
2 2rJv ) 

1 	 1}
sech 2 { 	 --In(1- m I m. ) + for O:::;m<m.' fem 
2 	 2r W(1- m I m.) 

H

T? 

1 	 1 I }sech2{ --In(m 1m. -1) + 'f em+ J: for m. :::;m<2m. 
2 2r W(m / m. -1) 

2{1 	
H 

1 high} sech 	 -In(ml m. -1)+--l em +Jm for m? 2m. 
2 2r W )

H 

2 
where rH is the horizon radius, m. =W( a + r:) Ia, and 

2 
n(2n - 3) a 

')em = + j(j + n -1) +---­
8 4(r:+a 2 

) 

2n + 1 	 ] r a
+ - j(j + n -1) + Affm(aW) ~arctan-

[ 
2 	 a r 

H 

2 

n(r: +a ) (n+2 n+4 / J 
+ 	 2 1'--'--'--2 . 2F,

8r 2 2 r 
H 	 H 

The case where m < m. is called the non-superradiance mode and the case where m? m. is 

called the superradiance mode. Superradiance is a phenomenon by which the reflected wave is 

larger in its amplitude than the incident wave. This phenomenon can arise for rotating black 

holes only, such as the Myers-Perry black hole. 

The bound on the greybody factor versus the wave frequency for a spin zero angular 

momentum mode is plotted for five (n =1) and six (n =2) dimensions as shown in Figure 8 . 
• 
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Figure 8. Dependence of the bound on the greybody factor on the wave frequency in five (n = 

1) and six (n =2) dimensions 

The graph shows that when the wave frequency increases, the bounds on the greybody factors 

increase to their maximum and then decrease. Moreover, the bound on the greybody factor is 

lower in higher dimensions. 

The bound on the greybody factor versus the angular momentum of the Myers-Perry 

black hole is plotted as shown in Figure 9. 
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Figure 9. Dependence of the bound on the greybody factor on the angular momentum. 
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The graph shows that the bound on the greybody factor decreases as the angular momentum 

• 


of the black hole increases. 
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In this project, we obtain valuable knowledge from developing mathematical techniques 

to calculate the rigorous bounds on the greybody factors. These bounds are derived for the 

four-dimensional Reissner - Nordstrom black holes, the higher dimensional Schwarzschild -

Tangherlini black holes, the charged dilatonic black holes in (2 + 1) dimensions, the charged 

dilatonic black holes in (3 + 1) dimensions, the dirty black holes, and the Myers-Perry black 

18 



• 


holes. We gain understanding of the key factors that affect the greybody factors. These key 

factors are summarized as follows; 

For lIle Reissner- Nordstrom black holes, when the magnitude of the charges increases, 

the bound on the greybody factor decreases. That is, the charges are an effective barrier in 

resisting the tunneling of uncharged scalar particles. 

For the d-dimensional Schwarzschild - Tangherlini black holes, the bound on the 

greybody factor is lesser in higher dimensions. 

For the charged dilatonic black holes in (2 + 1) dimensions, when the charges increase, 

the bound on the greybody factor decreases. This result is similar to the Reissner- Nordstrom 

black hole's result; that is, the charges behave as an effective barrier in resisting the tunneling 

of uncharged scalar particles. Moreover, when the value of the cosmological constant 

increases, the bound on the greybody factor increases as well . That is, the cosmological 

constant renders the gravitational potential produced by the black hole transparent. 

For charged dilatonic black holes in (3 + 1) dimensions, when the charges increase, the 

bound on the greybody factor decreases. This result is also similar to the Reissner-Nordstrom 

black hole's and the (2 + 1) dimensional charged dilatonic black hole's result. That is, the 

charges behave as an effective barrier in resisting the tunneling of the uncharged scalar 

particles. 

For dirty black holes, the bound on the greybody factor depends on the frequency wave, 

the angular momentum, the spin, and the horizon radius which is related to the contribution of 

matter. Choosing the appropriate functions ¢(r) and m(r) can generate considerably more 

specific results. 

For the Myers-Perry black holes in (4 + n) dimensions, we have established certain 

rigorous bounds on the greybody factors (mode dependent transmission probabilities). There 

are possibilities for the emergence of superradiance. Superradiance is a phenomenon by which 

the reflected wave is larger in its amplitude than the incident wave. The condition under which 

superradiance occurs entails the wave frequency being lesser than the rotation rate of a given 

black hole. We have also obtained (mutatis mutandis) certain rigorous bounds on the emission 

rates for the superradiant modes. In the absence of exact results, (the relevant differential 

equations seem highly resistant to explicit analytic solution), quantitative bounds along these 

lines seem to be the best attainable solutions. 
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In Euclidean space there is a trivial upper bound on the maximum length of a 
compound "walk" built up of variable-length jumps, and a considerably less trivial 
lower bound on its millimLlm length. The existence of this non-trivial lower bound 
is intimately connected to the triangle inequalities, and the more general "polygon 
inequalities." Moving beyond Euclidean space, when a modified version of these 
bounds is applied in "rapidity space" they provide upper and lower bounds on the 
relativistic composition of velocities. Similarly, when applied to "transfer matrices" 
these ~unds place constraints either (in a scattering context) on transmission and 
reflection coefficients or (in a parametric excitation context) on particle production. 
Physically these are very different contexts, but mathematically there are intimate 
relations between these superficially very distinct systems. © 2013 AlP Publishing 
LLC. (http://dx.doi.org/10. 106311.4820146J 

I. BACKGROUND 

One is often confronted with physical or mathematical situations where some complicated 
process can be built up by compounding (that is, chaining together) a number of simpler but not 
necessarily equal individual steps. Examples (by no means an exhaustive list) include compounding a 
series of variable-length jumps in physical space, the relativistic composition of multiple velocities, 
and the composition of transfer matrices for scattering from multiple distinct (non-overlapping) 
barriers. 

An interesting and pragmatically useful question is whether information concerning the indi­
vidual steps can be used to place useful bounds on the overall compound process. Herein, we present 
examples of several such phenomena. From a purely technical perspective, this discussion is largely 
based on the analysis of compound scanering processes presented in Ref. I, but the applications will 
be completely different: 

1. 	 There is a simplification of the upper and lower hounds of that article to variahle-Iength 
compound jumps in ordinary Euclidean physical space. 

2. 	 There is a modification of the upper and lower bounds of that article to Lhe special relativistic 
composition of velocities. 

Mathematically, the intimate relationship between the Euclidean translations, special relativistic 
boosts, and quantum scattering is due to the fact that both the Lorentz group and group of transfer 
matrices are Lie groups, with closely related though not identical Lie algebras. Specifically. the 
Lorentz group can be represented by SO(3, I), which is locally isomorphic to SL(2, C), whereas the 
set of transfer matrices form a representation of SUe 1. 1), which is locally isomorphic to SL(2, IR). 
See, for example. the recent review artic1e2 and references therein. (For other relevant background 
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material see, for instance, Refs. 3-8 on composition of velocities in special relativity and Refs. 9-18 
on quantum scaltering.) 

II is the structural similarity between the Lie algebras of S L(2, C) and S L(2, JR.), and the 
relation between velocities and rapidities, versus the relation between transmission probabilities 
und Bugoliubov t:Udtkients, that underlies the close mathematical similarities between Euclidean 
translations, relativistic composition of velocities, and the compounding of transfer matrices. For 
instance. an arbitrary boost can always, up to a three-dimensional rotation R, be written as 

(I) 

with the speed being related to the rapidity by v = tanh ~ . In. counterpoint, an arbitrary transfer 
matrix can always be written in the form I 

P' ] _ [COSh e eid> sinh e e-i>/l ]
T- [cx (2)- P cx' - sinh e ei>/l cosh e e-,d> . 

It is then easy 10 see that 

ei(d>- >/I )/2 io ] ([0 I]) [e (d>+>/I)/2
T= [ 0 e-i(d>->/I)/2 exp e I 0 0 (3) 

with the reflection probability being given by .jR = Ir I = tanh e. (See, for instance, Ref. I) Fur­
thermore, the appropriate subspaces of the Lie algebras of both of these Lie groups can be mapped 
homeomorphically (and even monotonically) to the Euclidean translations, which ultimately under­
lies the close connection to compound jumps in ordinary Euclidean space. Indeed, working with 
the Euclidean space formulation in some sense "trivializes" the bounds and makes clear the close 
connection between the lower bound and the triangle inequalities (or more generally the polygon 
inequalities) . 

II. VARIABLE LENGTH RANDOM WALKS IN PHYSICAL SPACE 

Suppose we have a compound "walk" in physical where the individual step sizes ("jumps") are 
fixed but variable, il> i 2 , i), ..., in, but the directions ni are arbitrary. What if anything can we say 
about upper and lower bounds on the net displacement 

n 

XI2··n = Lni fi? (4) 
;:::; 

Consider the two step case 

(5) 

then it is elementary that 

(6) 

Furthermore, it is also clear that for n steps 

n 

IXI2 ...nl:::: M 12 .. n == Lei. (7) 
i=1 

But can one place a lower bound on IXI2 ...n I? Yes, by a straightforward modification (and simplifi­
cation) of the analysis of Ref. I, for a three-step walk we assert (and shall soon prove) 

(8) 




092105-3 P. Boonserm and M. Visser J. Math. Phys. 54, 092105 (2013) 

More generally, for an n-step walk we assert (and shall soon prove) 

(9) 

or equivalently 

IX I2.1I1 ~ max 12l; - t lj, oj. (10) 
J=I 

We can also write this as 

(II) 

(So, as is reasonably common notation, we use M to denote the maximum, and m to denote the 
minimum.) 

III. TRIANGLE AND POLYGON INEQUALITIES 

To first see why these lower bounds have any hope of working, it is useful to consider the triangle 
inequalities. 

A. 3 steps 

A key observation is this: The 3-step lower bound is non-trivial if and only if the three step­
lengths, ii, f2, and i), violate the triangle inequalities. To see this, recall that for a three-step 
compound walk in physical space we asserted 

( 12) 

Why this odd combination? This is related to the triangle inequalities in a quite elementary manner. 
If ii, i 2 , and f) are the lengths of the sides of a physical triangle in Euclidean space, then they must 
satisfy the triangle inequalities: The length of anyone side of the triangle must be less than or equal 
to the sum of the lengths of the other two sides. That is, 

(13) 

This implies 

(14) 

Therefore, in this situation 

(15) 

That is, if the quantities ii, i 2, and i) are the lengths of the sides of a physical triangle in Euclidean 
space, then there is no constraint on Ix123 Iapart from the trivial one: IXI23I ~ O. Therefore, the lower 
bound on IXI23I is non-trivial if and only if ii, i 2, and i) cannot be interpreted as the lengths of the 
sides of a physical triangle in Euclidean space. Furthermore, if the triangle inequalities are violated, 
then the non-trivial lower bound specifies the extent to which the 3 edges of the "would-be triangle" 
fail to close. 

B. n steps 

Generalizing the above observation: For n steps the lower bound is non-trivial ifand only ifthe 
polygon inequalities are violated. To see this, observe that for an n-step random walk the lengths 
e; can be interpreted as the physical lengths of an n-sided polygon if and only if all n polygon 
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inequalities are satisfied 

Vi (16) 

These polygon inequalities are the natural generalization of the triangle inequalities. They can be built 
up iteratively by subdividing any polygon into triangles. and then applying the triangle inequalities 
step-by-step. That is, 

Vi (j - L lj SO. 
Hi 

(17) 

But then 

(18) 

So if the lengths li can be interpreted as the physical lengths of an n-sided polygon, then there is no 
constraint on IXI2 .. . n I apart from the trivial one: IXI2 ...nl ~ O. Therefore, the lower bound on !XI2...n! 

is non-trivial if and only if the ej cannot be interpreted as the lengths of the sides of a physical 
n-sided polygon in Euclidean space. Furthermore, if the polygon inequalities are violated, then the 
non-trivial lower bound specifies the extent to which the n edges of the "would-be polygon" fail to 
close. 

These observations, though mathematically rather straightforward. and possibly even trivial, 
make it much clearer why the lower bounds take the form they do, why there is any realistic hope 
of obtaining any non-trivial lower bound. and also why there is no realistic hope of a lower bound 
more stringent than the one we have enunciated. 

IV. PROOF OF THE LOWER BOUND 

Start by defining the sums (j E {I, 2, 3, ... , n} ), 

j 

Ml23j = L ej • ( 19) 
i=1 

Then it is elementary that 

(20) 

foralljE {I,2,3, ... ,n}. 

A. Iterative version of the lower bound 

Now take 

ml = el , (21) 

and, for j E {I, 2, 3, ... , n - I}, iteratively ddine the quantities ml23U + I) by 

mm"(j+l) = (fj+1 - M m ... j ) H(lj+1 - Mm. j) 

+(mm. . j - lj+l) H(ml2J.. j - lj+I), (22) ­

where H( . ) is the Heaviside step function . We can equivalently re-write this iterative definilion as 

ml23· .. (j+I) = max If. j +1 - Mm... j,ml23... j - f. j + I , 0) . (23) 

Theorem: By iterating the 2-step bounds, one has 

Vn : (24) 
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Proof by Induction : When we iterate the definitions for Ml23j and m 123)0 then the first two times 
we obtain 

(25) 

(26) 

Thus the claimed theorem is certainly true for n = 2. Now apply mathematical induction: Assume 
that at each stage the interval [ml23.j, M 123j] characterizes the highest possible and lowest possible 
values of IXI2 .. jl. Applying the 2-step bound to the pair IXI2 .-JI and ej + I leads trivially to IXI2"' (J+I)1 

being bounded from above by 

M123 ... (j+I) = MI2J j + ej + l , (27) 

and less trivially to being bounded from below by 

ml2J . (j+I) = max (e j+1 - MI23 .. j, m 123) - ej+l. 0). (28) 

This completes the inductive step. That is. 

IXI2.(j+I)1 E [ml23 .(j+I). M I2J.. .(j+I)]. (29) 

as claimed. 
However. these hounds are currently defined in a relatively messy iterative manner. Can this he 

usefully simplified? Can we make the bounds expli(;it? 

B. Symmetry properties for the lower bound 

When we iterate the definitions of MI23 .. j and ml23.. j. a third time we see 

(30) 

We can further simplify this by rewriting ml23 as 

ml23 = max(e l - 1:2 - e3 • e2 - e3 - e l • e3- 1:1 - e2. 0). (31 ) 

Note that this form of ml23 is manifestly symmetric under arbitrary permutations of the labels 123. 
One suspects that there is a good reason for this. In fact there is. 

Theorem: The quantity ml23...j(e;) is a totally symmetric function of the j parameters e;, where 
i E {I. 2, 3 . ... . j} . 

Proof: By inspection the result is true for mi. m12 . and ml23. But this argument now generalizes. 
In fact, the easiest way of completing the argument is to provide an explicit formula. which we shall 
do in Sec. IV C. 

C. Non-iterative formula for the lower bound 

Theorem: 

"In: ml2J...n = max (2e; - Mm··n. O) = max lei - t ekooj. (32)
;EII.2.... nl ;EII.2, ... nl k=1,k;ti 

Proof by Induction : We have already seen that the iterative definition of ml23...j can be written as 

(33) 

which we can also rewrite as 

(34) 
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Now apply induction. The assertion of the theorem is certainly true for n = I and n = 2. and has 
even been explicitly verified for n = 3. Now assume it holds up to some j . then 

ml23 '(j+l) = max[2e j+1 - M 123 . (j+I). ml23 .. j - ej+l. 0) 

= max {2e j + 1 - M123 (j+I) . max (2e; - - e j + l , o}M123j • 0)
i Etl.Z .... j} 

= max {2e j + 1 - M I2J (j+I) , max [2e i - M 123 '(j+ll.OJ,O}
iEtl.2 .... j1 

== max {2ei - M12 ] "(j+l), O}. (35)
; E 11.2 .... j.(j+ I)} 

This proves the inductive step. Consequently, 

Vn: m /23." = max [2e i - M123 .n , 0), (36)
iEtl.2.... n} 

as claimed. 

To simplify the formalism even further. lit us now define 


epeak = max ei . (37)
iEtl.2.. .. n} 

(We shall use the subscript "peak" for the maximum of the individual ei's; the words "max" and 
"min" will be reserved for bounds on the n-fold composition of the ei . ) Then we can simply write 

Vn: ml23. n = max{Upeak - M 123n , 0). (38) 

This is perhaps the simplest way of presenting the lower bound. 

V. RELATIVISTIC COMPOSITION OF VELOCITIES 

Let us now apply the Euclidean space result derived above to a more subtle situation; the 
relativistic composition of velocities. (For general background see Refs. 3-8.) 

A. Collinear velocities 

When it comes to the relativistic composition of velocities the key thing is to note that for a pair 
of collinear (parallel or anti-parallel) velocities we have 

VI + Vz 
VIZ = , (39)

1+ VIV2 

which implies 

Ilvii - IV211 I I Ivd + IV21.:....:....--'-'-----'-- < VI2 < . (40)
I - IvIllv21 - - I + IvIllv21 

If we work with the (non-negative) rapidities ~ i defined by 

Ivd = tanh {i. (41) 

then 

(42) 

That is 

(43) 

. which implies 

(44) 
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It is this version that is closest in spirit to the Euclidean result, and this version that is more likely 

• 	 to lead to a suitable constraint on the composition of II relative velocities. We could also write the 
2-velocity constraint as 

tanh Itanh-I IVII - tanh-I IV211 ~ IVI2I :S tanh (tanh-I IVII + tanh-I IV21). (45) 

B. Non-collinear velocities 

If the velocities are not collinear, there is a more complicated rule for combining velocities 

(46) 

Fortunately, we will not need to be explicit about the details. (For more details see, for instance, 
almost any medium-level technical book on special relativity,3.4 or for example, Refs. 5-8_) If we 
further define a rapidity vector 

( = !tanh- I Ivl) D, 	 (47) 

there will be an analogous vectorial composition rule in rapidity space 

{12 = {I EB{2. 	 (48) 

Fortunately, we do not need the full power of the non-collinear composition rule, we only need to 
know the simple result obtained by looking at the extreme case of collinear (parallel/anti-parallel) 
motion 

That is, 

(49) 

(50) 

So even for non-collinear motion, we still have 

(51 ) 

We can now immediately apply the bound we have already derived for compound walks in physical 
Euclidean space. 

C. Bounds on the composition of velocities 

1. Upper bounds 

For n velocities the upper bound is straightforward, we just iterate the two-step result to obtain 

n 

~12 ·n :S L~;' 	 (52) 
;=1 

whence 

We can also write this as 

(53) 

(54) 
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Here are some explicit special cases obtained by straightforward manipulation of hyperbolic trig 
identities. Relativistically combining three velocities, one has• 

Ivd + IV21 + IV31 + Ivdlv21lv)1
IVI23I < . (55) 

- 1+ Ivlllv21 + IV2I1v)1 + Iv)llvll 
Similarly, relativistically combining four velocities, one has 

Ivll + IV21 + IV31 + IV41 + Iv1llv211 v31 + IV211 v311v41 + IV311 v411vII + IV411vlllv21
IV 1234 I < . (56) 

- 1+ IvlllV21 + IV211v31 + IV311v41 + IV411v1I + Ivdlv31 + IV211v41 + IVlllv211 v311v41 
If one additionally knows that all velocities are collinear, then instead of bounds one has the related 
equalities 

(57) 

and 

VI + V2 + V3 + V4 + VIV2V3 + V2V3V4 + VJV4VI + V4VIV2 
VI234 = (58)

I + VI V2 + V2V) + V3V4 + V4VI + VI v) + V2V4 + VI V2V)V4 

(There does not seem to be any more pleasant reformulation of these results, and in the completely 
general n-velocity case the general the "tanh" formula above seems to be the best one can do.) 

2. Lower bounds 

Obtaining an explicit lower bound is again a lot trickier than the upper bound. When relativis­
tically combining three velocities then, (because of the monotonicity of the tanh function), one has 

IV123 I 2: tanh [ max {{I - {2 - {). {2 - {3 - {I, {) - {I - {z, OJ]. (59) 

When relativistically combining n velocities the best one can do is this 

1,,,"1" ta"h [ mru< 1(; -?; (j. o}]. (60) 

We can also write this as 

Now defining 

(61 ) 

(62) 

and 

Vpeak = max {I v;I}' (63) 
I 

and setting 

m IZ.n == tanh [ max {2 tanh-I Vpeak - tanh-I M 12...n , 0)], (64) 

we can also write this as 

(65) 

So there certainly are quite non-trivial constraints. one can place on the relativistic combination of 
velocitit:s, but they art: a little It:ss obvious than one might at first suspect. 



• 
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VI. SCATTERING 

Compound scattering processes were extensively discussed in Ref. I. (For additional back­
ground see Refs. 2, 12-18; for various explicit bounds on transmission and reflection probabilities 
for scattering processes see Refs. 19-27; for a survey of exact results see Ref. 28.) Rather than 
unnecessarily repeating the results of Ref. I, we shall herein content ourselves with a few explicit 
comments regarding 2-barrier. 3-barrier, and 4-barrier systems. The key point is that for the trans­
fer matrix as represented in Eqs. (2) and (3) the rdleclion probability is .JR = tanh(8). and that 
composing transfer matrices corresponds to composing Euclidean jumps of length 101. see Ref. I. 

Specifically. for two non-overlapping barriers the transmission and reflection prohahilities are 
bounded by 

(66) 

and 

JR; - .JR; }2 { JR; + .JR; }2
< RI2 < (67){ I - ff..JR; - - I + JR;.JR; 

For three non-overlapping barriers, the results of Ref. I, combined with a lillie work using hyperbolic 
trigonometric identities. lead to 

and 

(69) 

For four non-overlapping barriers, a completely analogous calculation straightforwardly yields 

TIT2 T3T4 
T1234 ::: 2 (70) 

{I + L;<j }(I - T;)(I - Tj ) + J(I - Td(l - T2)(1 - T3 )(I - T4)} 

and 

(71) 

I 

That is. explicitly, 


R1234 ~ (72) 


JR; +..[l[;, +.,flf;, +.,fif; + JR2 R3R4+ J R3R4RI + J R4RIR2 + JRIR2 R3j2 

1+ Li<j }R;Rj + JRIRz R3R4 

Upper bounds on T, and lower bounds on R, are less algebraically tractable, (at least in explicit 
closed form), and we refer the reader to Ref. I for more details. 

VII. PARAMETRIC EXCITATIONS 

By working in the temporal rather than spatial domain, particle scattering processes can be 
re-phrased in terms of particle production via parametric excitation. (See Ref. I for details)_ In this 
context, the net particle production due to two non-overlapping excitation events is bounded by 
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For three non-overlapping excitation events, one obtains .. 
NI23 S IjNt(1 + N2)(1 + N) + jN2(l + N)(1 + Nt) 

+jN)(1 + Nt)(1 + N2 ) + jNt N2 N) r. (74) 

For four non-overlapping excitation events a straightforward (but rather tedious) calculation yields 

N1234 S IjNt(1 + N2 )(1 + N))(I + N4 ) + jNt N2 N3(l + N4 ) 

+ (cyclic pennutationS)} 2 . (75) 

Further "explicit" algebraic fonnulae would be rather unwieldy, and for all practical purposes one 
is better off using the somewhat less "explicit" formulae in presented terms of hyperbolic functions 
in Ref. I. Similarly lower bounds on N are less algebraically tractable. (at least in explicil closed 
form), and we again refer the reader to Ref. I for more details. 

.... 
VIII. DISCUSSION 

That particle scattering in the spatial domain is malhematically intimately related to particle 
production in the temporal domain is a very standard result, ultimately going back to the relationship 
between scattering and transmission amplitudes and the Bogoliubov coefficient~. (See, for instance, 
Refs. 1,2,13, and 28 for more details on this specific point.) The intimate mathematical relationship 
between particle scattering and relativistic composition of velocities is less well-xnown, but is 
quite standard. The SO(3, I) Lorentz group is locally isomorphic to SL(2, IC), while the group of • 
transfer matrices SU(I, I) is locally isomorphic to S L(2, IR). Ultimately, il is Ihe facllhallheir Lie 
algebras are both isomorphic 10 Euclidean space that ties the three problems (physical Euclidean 
space, relativislic composition of velocilies, and composilion of scattering processes) together. The 
overall result of the current article is 10 rigorously establish several clearly mOlivated and robusl 
mathematical bounds on these three closely inter-related physical problems. 
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1 Introduction 

The spacetime geometry of a black hole, in the region that interpolates between the horizon 

and spatial infinity, (the domain of outer communication), generically acts as a potential 

barrier that partially reflects both ingoing and outgoing excitations. (See for instance 11-4].) 
In the case of outgoing excitations (Hawking quanta) the resulting transmission probabili­

ties are called Ugreybody factors". Calculation of these greybody factors, when practical, is 

based on analyzing the excitations in terms of a Regge-Wheeler equation, (or closely related 

variant thereof, such as the Zerilli or Teukolsky equations), which in the non-super-radiant 

case reduces the problem to a one-dimensional barrier-penetration problem. 

Even then, finding exact solutions is mostly impractical , and one typically resorts 

either to making semi-analytic or numerical estimates, or to deriving rigorous analytic 

bounds. Indeed, rigorous bounds have already been established for the greybody factors 

of the Schwarzschild [5] and Riessner-Nordstrom [6, 7] black holes, and more generally for 

arbitrary static sphcrically symmctric asymptotically flat black holes [8]. Some preliminary 

work on the Kerr-Newman spacetime is presented in reference [9] . Some of the new issues 
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raised in dealing with rotating black holes are purely technical - the specific form of the 

metric is much more complicated. But there are new conceptual issues to deal with as well 

- the presence of super-radiant modes now adding extra conceptual overhead. 

The technique we are using to derive rigorous bounds on the greybody factors is a tech­

nique of general applicability to bounding transmission probabilities for one-dimensional 

barrier penetration problems. First developed in reference [10], this quite general technique 

has subsequently been extended in several different ways [11 - 14]. before then being specifi­

cally applied to the analysis of black-hole grey body factors in references [5-9). In the current 

article we shall analyze bounds on the greybody factors for scalar field excitations on the 

Kerr-NewllIall geometry ill some det.ail , first fur the zero-angular-momentum m = 0 mode, r­
~ secondly for generic non-super-radiant modes, and finally for the super-radiant modes. 
~ 
tIj

Radial Teukolsky equation for scalar fields2 t-cJ 
oThe radial Tl:!ukolsky equat.ioll for scalar field excitatiuns un the Kerr-Newman space­

time is discussed in references [15],1 [16],2 and [17]. The radial Teukolsky equation is w 
considerably more complicated than the Regge-Wheeler equation for scalar field excitations 

on non-rotating spacetimes [15). 3 Particularly useful recent references are [18·20], though 

a wealth of other relevant material is also available [21-24] . The scalar field excitations 

are described by the curved-spacetime Klein-Gordon equation, which is in this context the 

spin-zero case of the Teukolsky master equation; the radial Teukolsky equation for scalar 

fields then corresponds to the radial part of this Klein-Gordon equation. (Nomenclature is 

not entirely consistent in this field, but this seems to be the consensus.) 

Begin by writing the Kerr-Newman geometry in the form [25, 26] 

~ 2 sin2
f) 2 2 2 L: 2

di=-L: (dt-asin2 0dr/» +I;[adt-(r +a )dr/>] + 6 dr +L:d02 
, (2.1) 

where 

(2.2) 

Here M is the mass of the black hole, J = M a is its angular momentum, and Q is its 

charge. The quantities r ± denote the locations of the inner and outer horizons. Setting 

Q ~ 0 gives the Kerr spacetime [27-29].4 Now consider a massless electrically neutral 

minimally coupled scalar field. (AddiJlg mass and electric: dlargc to the scalar field is not 

intrinsically difficult [18], but is somewhat tedious, so we shall not do so for now.) 

1See especially page 128. 

2See especially pages 114- 115. 

3See especially pages 89-90. There they make it clear, just after (4.2.7), that while the phrase "Regge­


Wheeler equation" originally applied only to (axial) gravitational perturbations of the Schwarzschild geom­


etry, it is now customary to apply that phrase also to the perturbations of a scalar field . More generally 


this terminology is now commonly applied to all manner of perturbations on generic spherically symmetric 

spacetime:; where separation of variables leads to similar-looking equations. 


4 Reference 129] is published as a chapter in reference [28]. 
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2.1 Spheroidal harmonics 
• 

It is a standard result, see Carter [30], that one can then use separation of variables to 

consider field modes of the form 

,T,( e .) = Rem(r) Sem(()) exp( -iwt + im¢) 
'l' r, '¢' t 

2 
. (2 .3) 

V1'2 + a

It is now a standard but quite tedious computation to verify that the "spheroidal har­
immonics" Slm(e) e ¢ generalize the usual "spherical harmonics" Ylm ((), ¢), and satisfy the 

differential equation: 

2 
I d [ . d ] 2 2 . 2 m }sin e de sm ede - a w sm () - sin2 () + 2maw + Alm(aw) Slm{{)) = O. (2.4){ 

(See for instance [31J pp 26-27.) Note this differential equation is independent of M and Q, 
though it does indirectly depend on the angular momentum via the dimensionless combi­

nation aw = (JjM)w . Here the separation constant Aem(aw) generalizes the usual quantity 

e( e+ 1) occurring for spherical harmonics, and in fact in the slow-rotation limit we have 

(2.5) 

with 

(2.6) 

Some useful background references are [32-35]. Note that since the differential operator 

is negative definite we automatically have the constraint that Alm{aw) + 2maw ~ O. (To 

establish this, simply multiply the differential equation by sin2 eSlm(()), and integrate by 

parts.) In fact , re-writing the differential equation as 

1 d [. d ] (. m )2 }
{ sin () de sm BdB - aw smB - sin e + Aem(aw) Stm{B) = 0, (2.7) 

we can also see that Alm{aw) ~ 0, an observation that will prove to be useful in the calcu­

latioll below. FIlft.hermorc, the diffcrP.lItial equatioll for the Slm (B) can be explicitly solved 

in terms of the confluent Heun functions. Unfortunately, this observation is less useful than 

one might hope, simply because despite valiant efforts not enough is yet known about the 

mathematical properties of Heun functions [36-39] . 

2.2 Effective potential 

With these preliminaries out of the way, it is now straightforward to write down the Teukol­

sky equation for the radial modes [18] 

{dd:; - Uem(r) } Rlm(r) = O. (2 .8) 

Here we use the "tortoise coordinate" defined by 

r2 + a2 r2 + a2 

dr - dr = dr. (2 .9)
.- ~ (r-r+)(r-r_) 
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(2.1O) 

Explicitly 

Thus T. runs from +00 at spatial iufiuity to -00 at the outer horizon, located at r = r +. 

This region, the "domain of outer communication", is the only part of the spacetime 

geometry relevant for current purposes. The "effective potential" Uem (T) is: 

~ ( (T~)' 3T2~) ( rna)2
Uem(T) = (2 2)2 Ac",(aw) + 2 2 - (2 2)2 - W - 2 2 (2.11)

T +a T +a T +a T +a 

For calculational purpose it is now useful to define quantities 

a a 
w = --,:----:c and more specifically, f1+ = ') 2' (2.12)

a 2 + r2' a- + r+ 

Here W(T) is (perhaps somewhat vaguely) related to frame dragging, while f1+ is the angular 
velocity of the event horizon . We can now write 

(2.13) 

with 
~ 

Vem (T) = (2 2)2 {Aem (aw) + WMQ J (T )} . (2.14) 
T + a 

Here we have separated out the quantity 

(2.15) 


which depends only on the spacetime geometry, not on the multi pole (em) under con­

sideration. This definition of Vem (T) is now as close as possible to our earlier usage in 

references [5-8], and to the general (non-relativistic quantum mechanical) analyses of ref­

erences [10-14] . If one switches off rotation, a -t 0, then this radial Teukolsky equation 

reduces to the Regge-Wheeler equation [15? -17]. 

2.3 Positivity properties 

We have already seen that the separation constant Aem(aw) is positive. More subtly the 

quantity WiHQJ(r) is also positive. (This result depends implicitly on the Einstein equa­

tions and the resulting special properties of the Kerr-Newman spacetime.) 

To check the positivity of WuQJ{r), we write 

(2.16) 

In particular note that 

and (2.17) 

Furthermore 
as; M; IQI S; lvl. (2.18) 
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Now consider 

(1'6)' = [1'(1' - l'+)(1' - 1'_)]' 

= (1' - 1'+ )(1' - 1'_) + 1' (1' - 1'+ ) +1'(1' - 1'_)... 
= 31'2 - 21'{1'+ + 1'_) + 1'+1'_. (2.19) 

Then 

2WMQJ(1') ex:: (1'6)'(1'2 + a ) - 31'26 

= (31'2 - 27'( l'+ + l' _) + 1'+ l' _ )(1'2 + a2) - 31'2 (1' - 1'+) (1' - l' _) 

= [0]1'4 + [-2(1'+ + 1' _) + 3{1'+ + 1' . )]1'3 + [3a2 + 1'+1' _ - 31'+1' _J1'2 ~ 
r-L.~+[-2a2(1'+ + 1'-)]1' + [a21' +1'-]1'0 
!-~ 

iT]
= (1'+ + l' _ )1'3 + [3a2 - 21'+1'_11'2 - 2a2(1'+ + 1'_)1' + a21'+1'_ 

= 1'2(1'1'+ + 1'1'_ - 21'+ l' _) + a21'(21' - r + - l' _) + a26 

2 o. (2 .20) 

Here in the penultimate line all three terms are manifestly positive outside the outer horizon 

(for 1" 2 1'+) . 
Furthermore limr~oo WMQJ = 0 and WMQJ( 1' +) = 1'+(1'+ - 1'-)/(1'~ + a2). Thence we 

• see that Vem -t 0 both at the outer horizon 1'+ and at spatial infinity . 
~j 
I 

2.4 Super-radiance 

It is the trailing term in the effective potential , the (w - mr;:;)2 term, that is responsible 

for the qualitatively new phenomenon of super-radiance, which never occurs in ordinary 

non-relativistic quantum mechanics. The reason for this is that the Schrodinger equation 

is first-order in time derivatives, so the effective potential for Schrodinger-like barrier­

penetration problems is generically of the form 

U(1') = V(1') - w. (2.21 ) 

In contrast, for problems based on the Klein-Gordon equation (second-order in time deriva­

tives) the qualitative structure of the effective potential is 

U(1') = V(1') - (w - mr;:;)2 . (2.22) 

We shall soon see that it is when the quantity w - mr;:; changes sign that the possibility 

of super-radiance arises. (See for instance the general discussion by Richartz et al [40J.) 

In the current set-up super-radiance is related to the rotation of the black hole, but if the 

scalar field additionally carries electric charge there is another contribution to Til coming 

from the electrostatic potential, and so a separate route to super-radiance [18, 40]. 
While the Dirac equation , being first-order in both space and time, might seem to side­

step this phenomenon, it is a standard result that iterating the Dirac differential operator 

t.wice prodl\ces a Klein-Gurdon-like .differential CClllatioll. In terms of the Dirac matrices 

we have: 

(2.23) 
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So, once one factors out the spinorial components, and concentrates attention on the 
secolld-ordcr differelltial ('Cjuatioll for the iilllplitudc ()f tllc Dirac held , eV(~1I the Kkill 

paradox for charged relativis£ic fermions can be put into this framework. It is the trailing 

(w - mtv)2 term, and more specifically the change in sign of w - mtv, that is the harbinger 

of super-radiance. Indeed, assuming tv is monotonic (which it certainly is in the situations 

we shall be interested in) let liS define t.he quantity m. = wjr1+ . Then: 

• the modes m < m. are not super-radiant; 

• the modes m 2: m. are super-radiant. 

We shall soon see much more detail regarding the super-radiance phenomenon in the sub­

sequent discussion . 

3 Non-super-radiant modes (m < m .. ) 

It is convenient to split the discussion of the non-super-radiant modes into three sub-cases: 

• m = 0, zero-angular-momentum modes; 

• m < 0, negative-angular-momentum modes; 

• m E to, m.), low-lying positive-angular-momentum modes. 

3.1 Zero-angular-momentum modes (m = 0) 

This sub-case is both particularly simple, and is in many ways a guiding template for all 

the other cases. Some preliminary work on these zero-angular-momentum modes in the 
Kerr-Newman spacetime is presented in reference [9]. We note that from reference [10] pp. 

427-428 we have the very generic bound: 
\...---1 
I 

2 {J+X J[h' (r)]2 + [Uem(r) + h(rr]2 } Vh(r) > O. (3.1 ) Tern 2: sech -00 2h(r) dr. ; ~) 

Note that we need h(r) > 0 everywhere in order for this bound to hold. Suppose we set 

m = 0, then 

(3.2) 

Now choose h(r) = w > 0, and change the integration variable from dr. to dr, so that 

Tt,rn=o 2: sech2 {.:w 1:00 
I(r2 ~ a2) [At,rn=O + WMQJ(r)] Idr}. (3 .3) 

(This corresponds to the Case I bound of reference [10].) As long as Aim and WMQJ(r) 
are always positive (and we have already checked that above) we can dispense with the 
absolute value symbols and write 

TI.m=O 2: sech2 {~1+00 (2 1 2) [Ae,m=O+ WMQJ(r)] dr}. (3.4)
2w T+ r + a 

This now decouples the problem to considering two integrals, each of which can be explicitly 

evaluated in closed form. 
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l
First integral: we note that 

+CXl Ae. m=O arctan(a/1'+) 
(3 .5)r + (1'2 + a2 ) d1' = Ae.m=o(aw) a 

.. 
This quantity is independent of M and Q. 


Second integral: when it comes to evaluating the integral involving WMQJ it is best to 


ddillc thl~ dimellsiunless qllalltity 

(3 .6) 

To evaluate this the best trick is to integrate by parts: 

(3.7) 

(Note that the boundary terms vanish.) This then equals: 

'
r
'--1 
X 

M 

r-rj 

o 
GJ 

(3 .8) 

So finally o 

This dimensionless quantity is independent of the parameters characterizing the scalar 

mode (£, m, w), and depends only on the parameters characterizing the spacetime geometry 

(a,1'+,1'-), which in turn implicitly depend only on (M,Q,J). 

Consistency check: if you look carefully this quantity KMQJ docs have a finitp limit 

as a -7 0, as it should do to be consistent with the physics of the Reissner-Nordstrom 

spacetime. (The limit is a little tricky.) We can recast KMQJ as 

(3.9) 

l--l 
I 

with limit 

3 1 1'_ 1 l'+ - 21'_ 1 91'+ + 21'_ + 31'+ - 61'_ 31'+ - 1'_ 
-7 - + -- + --'--- (3 .11) 

8 12 1'+ 8 l'+ 24 1'+ 61'+ 

Final result: collecting terms, we can write the bound on the transmission probability 

as 
2 [Ie,m=o]Te,m=o 2 sech -?--, (3.12)

_1'+w 

with 
arctan(a/1'+)

Ilm=o = Aem=o{aw) / + KMQJ. (3.13) 
, , a T+ 
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This cleanly separates out the mode dependence (em) from the purely geometrical piece 

KMQJ. Note Ie,m=o is now a dimensionless number that depends only dimensionless ratios 

such as air+ and r -Ir+ , and implicitly (via Ae,m=O) on eand aw . In view of the known 

.. slow rotation expansion for Ae,m=O (aw) we know that 

arctan(alr+)
hm=o(w -7 0) = e(e + 1) I + /(MQJ. (3.14) 

a r+ 

So at low frequencies the transmission bound is dominated by the 11w pole in the argument 

of the hyperbolic secant function. If we wish to be very explicit we can write 

A () 3) arctan(alr+)
Ie.m=o = ( e,m=O aw + -8 I - (3.15) 

a r+ 

r+r_ r +([r~ + a2] arctan(alr+) - ar+) 1 r +(3a + r + - 2r_)+-- + - --'--~"""":"'-=--~ 
8 a3(r~+a2) 8 r~+a2 

There are certainly other ways of re-writing this quantity, but this version is sufficient for 

exhibiting key aspects of the physics. 

3.2 Non-zero-angular-momentum modes (m i=- 0) 

What if anything can we do once m =1= o? Recall the basic result 

rr > h2 {J+OO J[h' (r)]2 + [Uem(r) + h(r)2]2 d }. 
.Lem - sec -00 2h(r) r. , Vh(r) > O. (3.16) 

Now by the triangle inequality we certainly have 

h2 { 1 J+oo IhI Id 1 ]+00 IUem(r) + h(r)21 d }.
Tern ?: sec? -h r. + -2 2h( ) r., Vh(r) > O. (3.17)-00~ - .x; r 

We are now free to pick h(r} so that it is monotone, h'(r) > 0 or h'(r) < o. Then subject 

to this condition 

h2{~II [h(OO)] I ~ J+oo IUem(r) + h(r)21 d }. Vh(r) > O. (3.18)Tern ?: sec 2 n h( -00) + 2 -00 2h(r) r., 

Apply this general result to our specific situation 

(3 .19) 

by choosing 

h(r) = w - mtv. (3 .20) 

(This construction is now as close as one can get to the Case I bound of reference [10].) 
2Note this choice for h(r) is, since tv = al(a2 + r ), always monotonic as a function of r.. In 

contrast, (remember that w > 0 and a> 0) , we see that this h(r) is positive throughout the 

domain of outer communication if and only if w > mO+, which is completely equivalent 

to m < wIO+, or m < m •. This is easily recognized as the quite standard condition that 

the mode does not sufkr from :-;upcr-radiallt inst.ahility. Let us IlOW sec where we can go 

with this. 
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3.2.1 Negative-angular-momentum modes (m < 0) 

First note tha t in this situation, for the specific function h(r) chosen above, we have 

h{oo) w 1.. ---':---'- = = < 1 (3.21)
h(-oo) w - mO+ 1 - mO-t /w . 


Then 


~ lIn [h~~:;)] I= ~ In(l - mO +/w) . 
 (3.22) 

Also in this case we have w - mn+ > h(r) > w, so 
C_i 

+OO IUem{r) + h(r?1 d _ ]+00 IVeml d ]+00 Vern d 
r. - r. < r•. (3.23)J- 00 2h(1') -00 2h(r) -00 2w X 

h-~ 
L ... 

Then 
2 {I J+OO Vl m<o }Te,m<o 2 sech -In(1 - mO+/w) + -'- dr. . (3.24)

2 - 00 2w 

But that last illtegral is almost identical to that we performed for m = 0, the only change 

being the replacement Ae,m=O -t Ae,m<O' Therefore 

2 {I Ie m<o}Tem <o 2 sech -In(l - mO+/w) + -'- , (3.25) 
, 2 21'+ W 


where in comparison we previously had 


2 {Iem-o}Te m=O 2 sech -'--- . (3 .26) 
, 2r+w 

Explicitly 

arctan(a/r+)


Iem = Alm{aw) / + KMQl , (3.27) 
a r+ 

and 

A (aw) arctan(a/1'+) + K }
1 lm air MQl 

Te m < O 2 sech2 -In(l - mn+/w) + 2 + . (3.28)
' { 2 r + w 

Note that for m < 0 we have -m :S e, so we could also write the weaker (but perhaps 

slightly simpler) bound 

2 { 1 Ie m<o}Te,m<o 2 sech 21n (1 + fn+/w) + 2;+ w . (3.29) 

3.2.2 Low-lying positive-angular-momentum modes {m E (0, m .. )) 

For this situation we first note that 


h(oo) = w = 1 > l. 
 (3.30)
h( -(0) w - mn+ 1 - mn+/w 
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Then we see 
• (3.31)11111 [h~~~)] 1= -1 In (1 - mD.+/w) . 

Also, in this case w - mO+ < h{r) < w, so.. 

j +OO IUem(r) + h(r)21 dr. = j+oo lVe,m>ol dr. < j+oo Ve,m>O dr. . (3.32) 
-00 2h('r) -00 2h(r) 2{w - mO+)-00 

Then 

2 { 1 1 j+oo lVem>ol }


Te,m>o ~ sech -2 In (1 - mO+/w) + 2 (w ~ 0+) dr. . (3.33)-00 

But that remaining integral is qualitatively the same as that which we performed for the 

m = 0 and m < 0 cases, therefore 

? { 1 Ie m>O }Te,m >o ~ sech- - - In(1 - mO+/w) + (' D.)' (3.34)
2 21'+ W - m + 

where in comparison 

2 {Ie,m=o}Te m=O ~ sech -- . (3.35) 
, 21'+ W 

Explicitly 

arctan(a/r+)


Iem = Aem{aW) / + KMQJ, (3.36) 
a 1'+ 

and 

..............
A ( ) arctan(a/r+) K }
1 em avJ air + MQJ 

Te,m>o ~ sech2 -2"ln{1- mO+/w) + 21'+(w _ +mO+) . (3 .37)
{ 

Note that for m > 0 we have m S e, so we could also write the weaker (but perhaps slightly l 0 
simpler) bound 

(3 .38) 

3.3 Summary (non-super-radiant modes) 


Define 

• (3 .39) 

where 

Then for the non-super-radiant modes 

2 { 1 Ie ni<O}Tl m<O ~ sech -In(1- mn+lw) + -'--- , (3.41) 
, - 2 21'+ W 
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and 

. 2 { 1 Ie,m >o }
Te,mE(O.m.) 2: sech --In(l - mD.+/w) + ( D. . (3.42)

2 _ 2r+ w - m +) 


These bounds can also be written as

• 

.) { 1 Ie mo}Te.m<o 2: sech- -In(1 - m/m.) + -'---< , (3.43)
- 2 2r+ w 

and 

2 { 1 Iem>o}
TemE(Om.) 2: sech --In(l- m/m.) + (' /)' (3.44 ) 

" 2 2r+ w 1 - m m. 

These are the best general bounds we have been able to establish for the non-super-radiant LJ 
modes. 

4 Super-radiant modes (m > m.) 

For the super-radiant modes we must be more careful. Inspection of the original derivation 

in reference [10] shows that fundamentally the analysis works by placing bounds on the 

Bogoliubov coefficients: 

lal :S cosh f- {) dr; 1.61 :S sinh 1{) dr, ( 4.1) 

where 

f_\ = I-a d = J+<Xl J[h' (r)]2 + [Uem(r) + h(r)2]2 d . (4.2)
CJ u r -00 2h(r) r., Vh(r) > O. 

In the non-super-radiant case these constraints on the Bogoliubov coefficients quickly and 

directly lead to a bound on the transmission coefficient T = lal-2 . In counterpoint, in the 

super-radiant c&:;e the Bogoliubov coefficients also ha.ve all additional physical interpreta­

tion: the near-horizon quantum vacuum state now contains a nontrivial density of quanta ', 
! 
.IJ 

\ 

when viewed from the region near spatial infinity [40]. The number of quanta per unit 

length in each mode is n = k I,BI2, corresponding to an emission rate 

(4.3) 

Explicitly. the emission rate in ea.ch specific mode is bounded by 

(4.4) 

where 
e = J+oo J[h' (r)]2 + [Ulm{r) + h(r)2]2 d . 

Vh(r) > O. (4.5)
-00 2h(r) r., 

The net result is that one is still interested in the same integral, out now under different 

conditions, and with an additional physical interpretation. To be more explicit about this, 

note that 

__ J+<Xl J[h' (r)]2 + [Vem{r) - (w - mtv{r))2 + h{r)2]2 . 
Vh(r) > O. (4.6)e - 2h(r) dr.,-<Xl 
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The art comes now in choosing a specific h(r) to in some sense optimize the bound, (either .. by making it a particularly tight bound, or by making it a particularly simple bound), sub­

ject now to the conaition that w-mw(r) is assumed to change sign at some finite value of r, 
and subject to the condition that one wants the integral to be finite, (implying in particular• 
that the integrand should vanish both on the outer horizon anel a t spa tial infinity). 

Now the tri angle inequality implies (Vh(r) > 0) that 

1 ]+00 Ih'(r)1 d J+oo Ivtm(r) - (w - mw(r)) 2 + h(rfl
O- < - - - r .. + dr•. (4 .7) 

- 2 - 00 h(r) - 00 2h(r ) 

Additionally we know that Vern -7 0 at both the outer horizon and spatial infinity: so to I I 
'--1 

keep the integral finite we need both h(00)2 = w2 and h( r+)2 = (w - mO+)2. Based on r-r-1 
1--1,""""this observation, it is now a good strategy to again use the triangle inequality to split the 
LIJintegral as follows 

.... rd 
1 ]+00 Ih'(r)1 ]+00 Vem(r) ]+00 Ih(r)2 - (w - mw(r))21 

8 S "2 - :x; h0T dr .. + -00 2h(r) dr. + -:x; 2h(r) dr.. (4.8) o 
2Now split the super-radiant modes into two sub-cases depending on the relative sizes of w

and (w - mO+)2. But note that in the super-radiant regime w2 = (w - mO+)2 when m = 
2i.v /0+ = 2m•. This suggests splitting the super-radiant regime into two distinct sub-cases: 

• mE [m.. ,2m.) . 

• mE [2m., (0). 

4.1 Low-lying super-radiant modes (m E [m .. , 2m.. )) 

In this region we have w2 > (w - mO+)2 and so we could take: 
r--'-\ 

rna } Lv h(r)=max { w-(a2 +r2),mO+-w . (4 .9) 

This quantity is positive and monotone decreasing as we move from spatial infinity to the 

horizon, and becomes a flat horizontal line near the horizon. Note that by construction 

h(r) 2: mO+ - w everywhere. First, from the definition of h(r), in this situation we have 

] +00 ih'«r)) I dr.. = lIn h(r)l~ = In ( OW ) = -In(m/m. - 1) . (4.10) 
-00 h r + m + - w 

Second 

lem+ 00 Vem(r) dr < ]+00 Vtm(r) 
(4.11)

2w{m/m. - 1)'] 
-00 2h(r) .. - -00 2{mO+ - w) 

where the lem integral is the same quantity we have considered several times before. Finally, 

the remaining integral to be performed is 

low = ]+00 h(r)2 - (w - mw(r))2 d
J (4.12) 

m -00 2h(r) r., 

- 12 ­



with the integrand being both independent of €, and carefully chosen to be zero over much 
, 

of thl' rcit-vcmt. rauge. lu(ked, IlllwrappiJl~ all of t.he dC/illit.ions, we are interested in 

(4.13) 

The upper limit of integration TO is d(,filled by 

(4.14) 

that is, by 
2 2 _ 2(m - m.) (.2 2)

TO - T+ - 1 + + a . (4 .15)
2m. -m 

Explicitly 

TO = (4 .16) 

Note TO > T + for m E [m., 2m.). Then 

(4.17) 


But over the relevant domain O:S: (2w - mW(T) - mO+ :s: 2(w - mO+), therefore 

(4.18) 


The remaining integral is now simple and manifestly finite. 

(4 .19) 


(In fact we could have evaluated J~w exactly, but given the other approximations being 

made in deriving the bounds, there is no real point in doing so.) Assembling the pieces we 

have: 

'T' h2 { 11 (/ 1) Ie,mE[m.,2m.) J 10W }.Ie mE[m 2m ) 2: sec -- n m m. - + 2 (/ ) + m . (4.20) 
, ',' 2 T+w m m. - 1 

• 
Furthermore: 

. h2 { II (/ 1) I e,mE[m.,2m.) J 10W }r e,mE[m.,2m.):S: w sm -2 n m m. - + 2T+w(m/m. -1) + m . (4.21) 

4.2 Highly super-radiant modes (m 2: 2m.) 

In this region we have (w - mO+)2 > w2 and so we could take: 

(4.22) 
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This is now both positive and monotone decreasing as we move from the horizon to spatial 

illhllit.y, aud bc(:()rrl\'~ a fiat. horizoutallillc Iwar ~pat.ial iufinity. Note h(r) 2: weverywhere. 

First, from the definition of h(r), in this situation we have 

+00 Ih'(r)1 (mn w)
-ex:; h(r) dr, = Ilnh(r)l~ = In : - = In(m/m. - 1) . (4.23)/ 

Second 

+00 Vem(r) dr < /+00 VCm(r) = lem 
(4.24)

/ -00 2h(r) • - -00 2w 2w' 

where the lem integral is the same quantity we have .considered before . Finally, the remain­

ing integral is 

jhigh = /+00 h(r)2 - (w - m:r:v(r))2 dr 
(4.25) 

m -00 2h(r) . , i-r-:
' 0 

with the integrand being zero over much of the relevant range. Indeed we are now interested C:J 
in 

00 2 2. 1 w - (w - mw(r))2 r2 + ajhlgh = dr (4.26) 
m TO 2w L\' 

The lower limit of integration ro is now defined by ma/(a2 + r5) = 2w, that is, by 

ro = aJ m - 1. (4.27)
2wa 

Note that since m 2: 2m. we have 

. 
ro 2: a - -1 = a (4.28) 

wa ~ 
so we are safely outside (or possibly just on) the outer horizon. If m > 2m. then ro > r + 
and the integrand is manifestly finite over the entire range of interest, while falling of 

asymptotically as 1/r2 , so the integral j::;gh is fillite. If m = 2m. so ro = T +, then both the 

numerator and denominator of the integrand to zero at the outer horizon, though the ratio is 

finite. So the integrand again remains finite over the entire range of interest, while falling of 

asymptotically as 1/r2 , so the integral j::;gh is again finite. (In fact we can evaluate j~W ex­

actly, but the result is algebraically messy, and given the other approximations being made 

in deriving the bounds, there is no real point in doing so.) Assembling the pieces we have: 

rp h2 { 1 I (/ ) /e,m>2m. jhigh}
.It,m?;2m. 2: sec 2 n m m. - 1 + 2r+w + m . (4.29) 

Furthermore: 

. h2 { 1 I (/ 1) le,m>2m. jhigh}r em >2m. ::; w sm - n m m. - + - + m . (4.30) 
, - 2 2r+w 
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4.3 Summary (super-radiant modes) 

Pulling the results for the low-lying and highly super-radiant modes together we see that 

for the transmission probabilities we have: 
.. 

h2 { 11 (/ 1) Ie,mE!m. ,2m.) J 10W }TemE!m• . 2m.) 2: sec --nmm.- + (/ )+ m . (4.31) 
, 2 21'+W m m. - 1 

2 { 1 (/ ) Ie ,m >2m. Iligh}T P,m >2m. 2: sech - In m m. - 1 + + Jm . (4 .32) 
- 2 21'+W 

Furthermore for the super-radiant emission rates we have: 

c~ 
r < . h2 { 11 (/ 1) I e,mE!m.,2m.) JIOW}

( ,mE!m. ,2m.) - W sm -2 n m m. - + 21'+w (mlm. _ 1) + m . (4.33) 
~ 

lIem>2m h-h}r e,m>2m. < - W sinh2
{ -2 In(m/m• - 1) + ' 2 - . + J 

m 
19 . (4.34) M 

- T+W ru 
C) 5 Discussion 
C,J 

The net result of this article is to establish certain rigorous bounds on the grey body factors 

(mode dependent transmission probabilities) for scalar fields on Kerr-Newman black holes. 

As a side effect, we have also obtained certain rigorous bounds on the emission rates for the 

super-radiant modes. An interesting feature of these bounds is the ubiquity of the basic 

quantity ft.m which itself is simply linear in the spheroidal harmonic eigenvalue .Atm(aw) . 
(Recall that .Aem(aw) -+ e(e + 1) as rotation is switched off, a -+ 0.) This seems to indicate 

that it is the use of separable spheroidal coordinates that is in many ways more crucial 

than the specific form of the metric components. 
L-.l 

We do not claim that these bounds are in any sense optimal. (Except, perhaps, in the I 

restricted sense that these seem to be the easiest bounds to establish.) It is quite possible 

that making different choices at various stages of the analysis could lead to tighter bounds, 

but there are no really obvious routes to guaranteeing tighter bounds. Possible routes to 

explore might include the "Case II" bounds of reference [10], the Miller-Good version of 

the bounds presented in reference [11], or the general considerations of [12-14]. In a rather 

different direction, since transmission probabilities are intimately related to quasi-normal 

modes, it may prove useful to adapt the formalism and techniques of [41-44]. 

More prosaically, there would be in principle no obstruction to adding mass and charge 

to the scalar field , (see for instance the Teukolsky /Regge-Wheeler analysis in reference [18]), 

but the results are likely to be algebraically messy. Other possibilities to explore might 

include the behaviour of spin-l/2, spin-I, and spin-2 fields, or the consideration of other 

interesting spacetime geometries. 
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Semiclassical black holes emit radiation called Hawking radiation . Such radiation, as seen 
by an asymptotic obserwr far outside the black 1101(\ differs from the original radiation 
near the horizon of the black hole by a reclshift factor and the so-called "greybody 
factor." In thi~ paper, we concentrate on the grey body factor; various bounris for the 
greybody factors of non-rotaging black holes are obtained , concentrating primarily on 
charged Reissner· Nordstrom (RN) and RN de Sitter black holes. These bounds can be 
derived using a 2 x 2 transfer matrix formalism . It is found that the charges of black 
holes ad as elfidellt. barriers. FurtherlOore. adding extra dimensions 1.0 spacetillle can 
shield Hawking radiation. Finally, it is also found that the cosmological constant can 
increase the emission rate of Hawking radiation. 

Keywords: Hawking radiation; greybody factor: bounding; Reissner Nordstrom black 
holes; charged dilatonic black holes . 

PACS Numher(s): 04.50.Gh, 04 .60.-01. 04.70.0y, 04 .20-q, 02.40.-k 

1. Introduction 

Classically, a black hole is associated with the concept that anything which enters 
the gravitational field of a black hole cannot escape. In 1974, Stephen Hawking, 

"Corresponding author. 
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however, showed that semi-classically a black hole could indeed emit quantum radi­
at.ioll, all effect which becaIlle known as Hawking radiatiou. 1 This eft·ed was derived 

by studying quantum field theory in a black hole background. In the context of 
quantum field theory, creation and annihilation of particles are possible. If pair 

production occurs near a black hole horizon, one can picture Hawking radiation as 
one of the particles from pair production falling in, with the other moving away 
from the black hole. An observer outside the black hole would see this particle as 
Hawking radiation. J3ut according to general relativity, a black hole curves space­

time around it. This nontrivial spacetime behaves as gravitational potential under 
which particles move, Some of them are reflected back into the black hole alld oth­

ers are transmitted out of the black hole. Therefore, Hawking radiatioll seen by an 
observer rar outside the black hole differs from radiation which has Hot yet beell 

scattered by the gravitational potential. This diflerence can be llIeasured by the 

so-called "greybouy factor." 
There has been a number of studies devoted to calculating these grey body fac­

tors, Some used the WKJ3 approximation to calculate the greybody factors of the 
four-dimensional Schwarzschild and Reissner-Nordstr6m (RN) black holes,2 4 Some 
solved the wave equation in a black hole background by various approximations. 5 7 

However, there is a rather different analytic techui4.ue to derive rigorous bounds 011 

the greybody factors 8 10 J3y using this method, bounds 011 the greybody factors 

of the four-dimensional Schwarzschild black holes was obtained in Ref. 11. In this 
paper, we extend the analysis and derive rigorous bounds for the greybody fac­
tors of the four-dimensional RN black holes, the higher-dimensional Schwarzschild­
Tangherlini black holes, the charged dilatonic black holes in (2+ 1) dimensions, and 

the charged dilatonic black holes in (3 + 1) dimensions. 

2. The RN Black Holes 

The RN metric is given by 

ds 2 = -Dodt2 + Do -I d1"2 + r2 dS22 , (1) 

where d02 = dfP + sin2 Od¢2 and 

Do = 1 _ 2C.",1 + G(Q2 + P2), (2)
r r2 

The Schrodinger-like equation governing the modes is given by 

d21}; 
d1"; + [w2 - V(1")]1}) = 0, (3) 

where 7', is the standard "tortoise coordinate" 

dl", 
1 = -dr 

Do 
(4) 

and 

V(r) = l(l +?l)Do + Do8r Do" 
1"­ T 

(5) 
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Fig. I. The RN potential with Q = 1 and fl.! = 2 ill Jilf<'rC'n! angular 1lI00nr.llta. 

We can see the structure of the RN potential with Q = 1 and AI = 2 from 
Fig. 1. 

Using the analysis of Refs. 8-10, lower bounds on the transmission probabilities 
are given by 

(6) 

where 

J(h l )2 + (w 2 - V - h2 )2
19 = -'--'--'---'------'-	 (7)

2h 
for some positive function h. vVe set h = w, then 

T ~ sech 
2 (L i: Vdr.) 

2'[ 1 {I(I+ 1) CM+2A}] (8)= sech 2w C M + A + 3( C M + A)2 , 

where 

(9) 

If the black holes have no electric charges or magnetic charges, it is found that 

A = CM and the above bound is reduced to 

2[21(1+1)+1]T 	 (10)~ sech 8CMw ' 

which is exactly the bound for the Schwarzschild black holes emitting spinless par­
ticles. II From Fig. 2, the graph is plotted by setting C M = 2 and w = 2. The point 

A = 2 corresponds to the uncharged RN black hole (which is the Schwarzschild 
black hole). The point A < 2 Jesl:ribes the effeds of charges 011 the bound of the 

greybody factor. Based on the value of A, the decrease in A corresponds to the 

1350058-3 
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Fig. 2. f)epelld'~lIce of the UflUIIU of the grcyu(,uy fact.or 011 t.h" RN black hole charg{!S ill differ"lIt 
angular momenta. 

increase in the magnitude of the charges. The graph shows that when the magni­
tude of the charges increase, the bound of the greybody factor decreases. That is, 
the charges are good barriers to resist tunIleling of uncharged scalar particles. 12 17 

Moreover , the tnmslIlissiuIl wdhciellts is smaller in higher angular momenta. 
By usillg the \VKB approximatiull, the approxima.te transrnis~iull coefficient i~ 

given by4 

(11 ) 


where 

p(.r) = j2m[E - V(x)] . 	 (12) 

We find that 

TWKEJ = exp [-T {2Cw (M - ~) - (M - w) jC2(M - w)2 - C(Q2 + P2) 

+M jC2M2 - C(Q2 + P2)} ] . 	 (13) 

Derivation of this equation is given in Appendix A. Another WKI3 formula devel­
oped by Konoplya and Zhidenko can be found in Ref. 18. The bound of the grey­
body factor of the RN black hole from the 2 x 2 transfer matrix compared with 
one obtained from the WKB approximation is shown in Fig. 3. Now turning to an 
asymptotic analysis inspired by studies of quasi-normal modes, the approximate 
traIlsmissioll coefhcient for large w is given by19 21 

e{Jw - 1 
(14)T :::::; T asymptotic = e{Jw + 2 + 3e- fhw ' 
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Fig. 3. Compa.ri~on of the greybody factor honnd of the RN black hole from the 2 x 2 tran~fer 
matrix and the WI<[3 approximation. 

where 

87rM 
fJ= Q2 5Q4' 

1 + 2ClVI2 + 16C2JH4 (15) 
27r[CM - JC2M2 - CQ2]2 

JC2M2 - CQ2 

The grey body factors obtained from the 2 x 2 transfer mat.rix formalism (Eq. (8)) 
are compared with the asymptotic result (Eq. (14)) on the graph shown in Fig. 4. 
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Fig. 4. Comparison of the greybody factor bound of the RN black hole from the 2 x 2 transfer 
matrix and the asymptotic result . 
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The graph shows that the result. froltl the 2 x 2 transfer matrix is close to the 
asymptotic result at large w. '\[oreover, the 2 x 2 transfer matrix gives a true lower 
bound._ 

3. The Schwarzschild-Tangherlini Black Holes 

The Schwarzschild·-Tangherlini metric in d dimensions is given by 7 

d.' ~ +-(':t'] ,11' + [I - (~"t']-' dr' + r'd!!l_, , (16) 

where the Schwarzschild radim; 1'0 in d dimensions is given by 

167rGM 
(17) 

with 

( IS) 

The black holes in d > 4 dimensions with Gauss-Bonnet (GB) correction term can 
be found in Ref. 22. The Schrodinger-like equation is given by 

d2 .2 ]d1'Z + w - V(r) 1'(d-2)/2:p = 0, (19)[ 

where 
1

dr. = --d1' (20)
f(1') 

and 

V(1') = (d - 2)(d - 4) f2(r) + (d - 2) J(1')arf(1') + l(l + d _ 3/(1'), (21) 
4 1'2 2 r 1'2 

with 

f(r) (22)= 1- C:)d-J. 
From Fig. 5, the Schwarzschild-Tangherlini potential is plotted with l 1 and 
G M = 1 in various dimensions. 

The lower bound on the transmission probability for h = w is 

2 (L1: Vd1")T ~ sech 

2= sech [ 1 100 

-
2w ro 

{(d ­ 2)(d ­
4 

4) f(1') 
1'2 

(d - 2) Or!(T)+ -----­
2 T 

+ l(l + d ­
1'2 

3)} ]dT 

= sech2 [(d - 2)(d ­ 3) + 41(l + d ­
Sw1'u 

3)]. (23) 
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Fig. 5. The higher-dimensional potential with I = I and GM = I in various dimensions. 

If d = 4, t.his bound is reduced to 

T > I2 [21 (l + 1) + 1] (24)- sec I 8Gl'viw ' 

which is, again. exactly the bound for the four-dimensional Schwarzschild black 
holes emitting spinless particles. Figure 6 shows the plot between the transmission 
codhciclIts alld t hc black holc 1l1~l; ill variolls dimcIlsioIls. The graph is plottcd 
by setting I = 1 and w = 2. The line d = 4 corresponds to the four-dimensional 
Schwarzschild black hole. The graph shows that when the black hole mass increases, 
the bound of the greybody factor also increases. However, for the same mass, the 
bOllnd of the greybody factor is less in higher dimenl;ions. 23 

1 ... _. __ _•__ __ __ ___ _____ . __ _ . ___ . • ______ ____ _.. __ . ____ _____ - ----- ------ ---- --- --------- --- - ­

0_8 

0_6 

T 

./0_4 / 

0_2 

O 2 3 4 5 	 6 8 9 10 
M 

d=5 
. • • • .• d = 7 
.---- --- ------------- - d = 6 
-- - ------------- -- d =4 

Fig_ 6_ Dependence of the greyborly factor bound On the black hole mas>; in various dimensions. 
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4. The Charged Dilatonic Black Holes in (2 + 1) Dimensions 

The charged dilatonic metric in (2 + 1) dimensions is given by 5 

') 2 41'2 ') .) 2
ds- = -f(1')dl. + -d1'- +1'-d() , (25)

f (1') 

where 

(26) 

For AI > 8Q /A., this spacet.ime describes a black hole with two event horizons 

!II ± JM2 - 64Q2J\ 
(27)1'± = 8A . 

The Schrodinger-Iike equation is givell by 

d2 2 ]- ') + w - V(1') n(1') = 0, (28)[d1'; 

where 

(29) 

and 

5M
2 

) 1V(1') = -(8m2 J\ + omA) + 14A2
1' + -- + 2m2 M ­( 8 l' 

(30) 

We are only interested in l' between 1'_ and 1'+, The (2 + 1) charged dilatonic 
potential is plotted with m = 1, A = 0,1, Q = 1 and M = 10 as shown in Fig. 7. 
The coordinate 1'. can explicitly be written as 

(31) 

when l' -> 1'+, r. -> -00 and when l' -> 1'_, r. -> 00, The lower bound on the 
transmission probability for h = w is 

T 2 sech
2 [L L: Vd1'.] 
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Fig. 7. The (2 + 1) charged dilatonic potential with m = I, /I = 0.1, Q = 1 and Al = 10. 

2 [-3G8Am(4m + 3) + 644M A - 2576Q2A + 115N[2 + 368m21\1 
= sech 

60w}M2 - 64Q2A 

5}1\12 - 64Q2)\ 51\1 + 16m2 (AI + }1\12 - 64Q2A)- + In 
8w 16w AI - }M2 - 64Q2A 

_ 23Q2(3Q2 - 2M - 4m2)]. 
(32)

15wA 

The a.pproximate trallsmission codhcient is given by 5 

Figure 8 shows the greybody factors of the charged dilatonic black holes in (2 + 1) 
dimensions obtained from the 2x2 transfer matrices (Eq. (32)) and from5 (Eg. (33)). 
The graph is plotted by setting m = 1, M = 10, Q = 1 awl A = 0.1. The graph 
shows that when the energies of the emitted particles increase, the greybody factors 
also increase. It can be seen that the result derived from the 2 x 2 transfer matrices 
is quite accurate when compared with the approximate result. Note that the 2 x 2 
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Fig. 8. Dependence of the greybody factor bound on the energies of the particles emitted from 
the uncharged dilatonic black holes in (2 + 1) dimensions. 

transfer matrices used to obtain the lower bound (32) are relatively less complex 
than the methods used to obtain the approximate result in Eq. (33). 

Figure 9 shows the cffed of the charges 011 the uound of the grey body foctor. 

The graph is plotted by setting m = 1, .M = 10, W = 1000 and A == 0.1. The graph 
shows that when the charges increase, the bound of the -greybody factor decreases_ 
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0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

a 

Fig. 9. Dependence of the greybody factor hound on the charges for the charged dilatonic black 
holes in (2 + 1) dimensions. 
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0.2 	 0.4 0.6 'L 0.6 
Lambda 

Fig. 10. Dependence of the greybody factor bouna on the cosmological constant for the charged 
dilatonic black holes in (2 + 1) dimensiuns. 

This result is similar to the RN black hole's result; that is, the charges behave ru; 
good barriers to' resist tunneling of uncharged scalar particles. 

Figure 10 shows the effect of the coslllological constant on the boulld of the 
greybody factor. The graph is plotted by setting m = 1, M = 10, w = 1000 and 
Q = 1. The graph shows that when the value of the cosmological constant increru;es, 
the tran:;missioll coefficiellt also illcrease:;. That is, the cosmological constant makes 
the gravitational potential produced by the black hole transparent. 

5. The Charged Dilatonic Black Holes in (3 + 1) Dimensions 

The charged dilatonic metric in (3 + 1) dimensions is given by6 

1 
d.<;2 = -f(r)dI2 + f(r) dr2 + R2(r)dU2

, 	 (34) 

where 

(35) 

with 
Q2 

r+ = 2M and r =-. (36)- M 

The equation of motion for the radial part is given by 

1 d [ 2 dll.(r)] [w2 l(l+l)] (37)R2(r) dr R (r)f(r)~ + f(r) - R2(1-) u(r) = O. 
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Fig. 11. The (3 + 1) charged dilatonic potential with I = ) . Q = 1 and M = 10. 

Let 

1
d1' = --dT (38), f(r) , 

then 

d21l(r) (r-r+)(2T-r_)du(r) [2_1(1+1)f(1')] _ 
(39)ar; + r2(1" _ r_) dT, + W R2(r) 1l(r) - O. 

The potential is given by 

V(r) = I(l + 1)f(r). (40)
R2(1') 

The (3 + 1) charged dilatonic potential is plotted with 1 = 1, Q = 1 and M = 10 
as shown in Fig. 11. The lower bound on the transmission probability for h = w is 

h2 
- sec 2w _()() R2(r) • ~ec 2w r+ R2(r) r T > h2 [~f()() l(l + 1)1(1') dr ] =' [~1()() 1(1 + l)d 1 

4(2J\tj2)1(t+l)M/wQ2 (2M2 _ Q2)1(I+l)M/wQ2 

[(2M2)1(1+1)M/wQ2 + (2M2 _ Q2)1(1+1)M/wQ2J2· 

Figure 12 shows the effect of the charges 011 the UOUIlU of the grey body factor. The 
graph is plotted by setting 111 = 10, W = 2 and 1 = 1. The graph shows that when 
the charges increase, the bound of the greybody factor decreases. This result is also 
similar to the RN black hole's and the (2 + 1) dimensional charged dilatonic black 
hole's result. That is, the charges behave as good barriers to resist the tunneling of 
the uncharged scalar particles. 
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Fig. 12. Dependence of the greybody factor bound on the charges for the chargee! di1atonic black 
holes in (3 + 1) dimensions. 

6. Conclusion 

The rigorous bounds presented in this paper only work for some potentials. Such 
potentials have to satisfy V(±oo) -> V±oo. In this paper, the bounds have been 
applied to various types of black holes. 

For the four-dimensional RN black holes, the charges act as a good barrier. This 
call also occur for the charged dilatonic hlack holes, both in (2 + 1) and (3 + 1) 
dimensions. For the Schwarzschild-Tangherlini black holes, a number of dimensions 
can shield Hawking radiatioll. 
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Appendix A. 	 Greybody Factor from the WKB Approximation; 
Derivation of Eq. (13) 

By usillg the WI<B lIlethod, the approxilllate trallslllissioll coefficient is given by4 

T~Twl<o = exp[_~Im .~b P(.T)d.Tj , (A.I) 

where 

p(.r) = J2m[E - V(:r)]. (A.2) 

In particular , we want to compute 

The radial mOlllentum can he written as an integral 

f '·ou' fr"", ire Ip,.dr = dPrdr. 	 (A.3) 
rIO Tin 0 

From the Hamilton equation 

dH 
-=T, 	 (A.4)
dPr 

the above integral becomes 
wro", fTo"" l M

- dH
Prdr = - . dr. 	 (A.5)f	 l'

Tin TJn NI 

f
vVe change the variable H to w' 


' ·ou' _ (rOu , i w dw' , 

Prdr - - ir -.dl. 	 (A.6) 

rin Till 0 T 

We have to kllOw i ' . Starting from the RN metric in Eq. (1) 

ds2 = -~dt~N + ~ -ld1'2 + r 2dH2, (A.7) 

we shift the RN time tRN by a function of r to avoid the singularities 

tRN = t + fer), 

dtRN = dt + f'(r)d1', 

dt~N = dt 2 + 2f'(1')dtdr + [J/(r)fd1'2 . 

Therefore, 

ds2 = _~dt2 -	 2~J'(r)dtdl' - ~[J/(1'Wdr2 + ~ -ldl·
2 + 1' 2 dn 2

. (A.B) 

We choose f ()') suc.:h that the coefficient of dr2 is equal to one 

~f'(r) = ± /2GM _ G(Q2 + P2)
V r 1'2 

=±~. 	 (A.9) 
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Putting it in Eq. (A.8), the new metric can be written as 

ds2 = -6rl/2 + 2~rllrl,. + dT2 + T2dH2 (A.lO) 

The radial null geodesics can be found by 

0= ds2 = -!::"dt2 + 2~dtdT + dT2, (A.Il) 

leading to 

1'.- {l-~' 	 (A.12)
-l-~. 

Therefore, integral (A.6) becomes 

(A.13) 

where 

:r = J2G(M - W')T - G(Q2 + P2). 	 (A.I4) 

Thus, d.T = - (GT j:r )dw' and we obtain 

f
rn" , /.ro", jJ2C(M-W)r_C(Q2+P2) r :r 


p,.dT = --cd:rrir 

r'n ,' ,,, J2CMr-C(Q2+p2) I' -.7: I' 


= wi [2Gw (M -~) - (M - w)JG2(M - w)2 - G(Q2 + P2) 

+!vIJC2M2_G(Q2+P2)). 	 (A.I5) 

Therefore, from Eq. (A.l) 

T::::: TWKB 

= exp [ -~ {2Gw (M - ~) - (M - w)JG2(M - w)2 - G(Q2 + P2) 

+ !vI JG2M2 - G(Q2 + P2)}] . 	 (A.I6) 
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The theoretical foundation s of the phenomenon known as supelTadiance still continue to attract 
considerable attention. Despite m;my valiant attempts at pedagogically clear presentations. the effect 
nevertheless still continues to generate some significant confusion. Pan of the confusion arises from the fact 
that superradiance in a quantum field theory cO.Q.text is not the same as superradiance (superfluorescence) in 
some condensed matter contexts: part of the confusion arises from traditional but sometimes awkward 
normalization conventions. and part is due lO sometimes unnecessary confusion between fluxes and 
probabilities. We shall argue that the key point underlying the effect is flux conservation (and. in the 
presence of dissipation. a controlled amount of flux nom:onscrvation). and that attempling 10 phrase things 
in terms of ret1ecLion and transmission probabili/ies only works in the absence of superradiance. To help 
clarify the situatton we present a simple exactly solvable toy model exhibiling both superradiance and 
damping. 

001: \()\ \ln/PhysRevD.9{) .()MII1.~ 	 PACS numbers: D·UO.Dy, tl4.4H.-b. 47.35.Rs, 98.80.Qc 

I. INTRODUCTION neglecting the necessary distinction between fluxes and 
probabilities.

The phenomenon of quantum field theory (QFT)­
Ex.tending and modifying the analysis of Richam et (1/.

induced superradiance has a long and quite tortuous history. 
[3], we shall argue that the key point underlying the effect is

Key high points are the articles by Zeldovich III and 
flux conservation (and, in the presence of dissipation. a

Manogue [21. and the more recent work by Richartz e( al. 
controlled amount of flux nonconservation). We shall see 

[3,4 I. There are close connections with the so-called "Klein 
that attempting to phrase things in tenns of rellection and 

paradox" for relativistic fennions [2.5-7]. and also some 
transmission probabilities only works in the absence of

significant differences . Specific applications to black hole 
superradiance.

physics include the issues explored in Refs. [3.4.8-I7J. In 
To illustrate and clarify the situation we shall present a 

our own research. when dealing with black hole grey body 
particularly simple and exactly solvable toy model. one 

factors, we have had to deal with superradiance for Kerr, 
which explicitly exhibits both superradiance and danlping. 

Kerr-Newman. and Myers-Perry black holes . see 118.191 
While our own interest in these issues wa~ strongly

and a related conference article (20). 
influenced by research into black hole physics, it should 

Despite all efforts. the superradiance effect nevertheless 
he emphasized that the underlying issues and related 

still continues to generate significant confusion. Part of the phenomena are much more general. 
confusion is purely linguistic-arising from the fact that 
superradiance in a traditional QFf context is not the same 

II. SUPERRADIANCE: BACKGROUND 
as superradiance (superfluorescence; Dicke superradiance) 
in traditional condensed matter contexts [211 · Part of the One key observation is to note that superradiance 
confusion arises froin the use of utterly traditional and 	 never occurs when one is dealing with the SchrOdinger 
standard but sometimes awkward nonnalization conven­	 equation. and at a minimum requires something like the 
tions l2,22I. Pan of the confusion is due to sometimes 	 Klein-Gordon equation (18,19J. For instance. in any 

axially synunetric stationary background. once one applies 
separation of variables YI(x.t) == ",(r.(})e-it'''e-illl'l' lO a'petarp<t .boonsem1@gmail.com 

. tritos.ngampitipan@gmail.com neutral scalar field [23.24]. the Klein-Gordon equation 
·'matt. visser@msor.vuw.ac.nz becomes 
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lr is the trailing term in the effective potential, the 
( (J) - IIHi7)2 term, that is responsible for the qualitatively 
new phenomenon of superradiance. which never occurs in 
ordinary nonrelativistic quantum mechanics. 

The reason for this is that the Schrbdinger equation is 
first order in time derivatives. so the effective potential for 
Schrbdinger-like barrier-penetration problems is generi ­
cally of the simple form 

U(r) := V(r) - OJ. (2) 

fn contrast, for problems based on the Klein-Gordon 
equation (second order in time derivatives) the qualitative 
structure of the effective potential is 

U(r) = V(r) - (w - Jnw)2 (3) 

Similar phenomena occur for charged panicles where 
one has a (w - q<I»] contribution to the effective potential. 
We shall soon see that it is when the quantity (j) - mw (or 
more generally. the quantity (J) - !nW - q<I» changes sign 
that the possibility of superradiance arises. (See for instance 
the general discussion by Richartz el (If. [3,4 J.) For our 
purposes in Refs. [I R.19) superradiance is related to the 
rotation of the black hole 125.26J, but if the scalar field 
additionally carries elecuic charge there is a separate route 
to superradiance (2,27-29J. 

While the Dirac equation. being fir.;t order in both space 
and time. mighl seem to completely sidestep this phe­
nomenon . it is a standard result that iterating the Dirac 
differential operator twice produces a Klein-Gordon-like 
differential equation. In temlS of the Dirac matrices we 

have 

(4) 

So. once one factors out the spinorial components, and 
concentrates attention on the second-order differential 
equation for the amplitude of the Dirac field. even the 
Klein paradox for charged relativistic fermions can be put 
into a closely related (though distinct) framework (21. It is 
the trailing (OJ - mm - q<I»1 term in the effective potential. 
and more specifically the change in sign of w - film - q<I>. 
that is now the harbinger of the so-<:alled "Klein paradox." 
(Which, of course, is not really a paradox [25-7J.) 

III. SUPERRADIANCE: FLUXES 

We shall argue that in the long run it is best to phrase 
things in terms of relative fluxes rather than probabilities. 
For a unit incoming nux, consider the equation 

As long as there is some flux conservation law, as for the 
Klein-Gordon equation. we can ahv(lvs say this. with these 
signs. [Dissipation can be dealt with by giving the potential 
V(r , R) an imaginary contribution. see the discussion 
below.) In some cases this general result simplities. and 
we can reduce this statement about fluxes to a statement 
about probabililies. 

For example: 
(I) 	 If there is no dissipation (Fdissipalctl = 0), and if the 

transmitted flux is non-negative (Flrammiltcd ~ 0). 
then we can simply set R ~ Frellw<d and 
T ~ F lransmilled. and reinterpret these (relative) 
fluxes as probabililies with 

R+T=1. (6) 

(2) 	 If there is some dissipation (Fdissipateu > 0). and if the 
transmitted flux is non-negative (Ftran,rnillcu ~ 0). 
then we can set R ~ Freflected and T ~ Flrallsmilled 

and P0 ~ Ftli" ip"tctl. (lnd then reinterpret these 
(relative) fluxes a~ probubifilies with PII now being 
the probability of decay: 

R + T + Pf) = I. (7) 

(3) 	 In contrast, if Ftranstruued < 0, then we cannol phrase 
things in terms of probabilities that add up to I . We 
have to work in terms of tluxes. In particular in this 
superradiant regime we have 

(8) 

Note the siX'" It is the possibility of ne~alive trunsmilled 
flux that lies at the hean of supelTadiance; in this situation: 

Freflected = I - F trdllsmitted - Fdis.ipated 

= I + IFltansmitted I - Fdis.<ipated · (9) 

The reflected flux can then easily become over unity. 

IV. SUPERRADlANCE: TOY MODEL 

To see how this all works in detail. it is best to choose a 
highly idealized but exactly solvable model. Working in 
1+ I dimensions, consider the partial differential equation 

[-(0, - iw(x))2 + c2D~ - V(x)]",(t.x) = O. (10) 

For simplicity we are working with a ma<;sless particle (e.g. 
photon). as this cuts to the heart of the maller. Adding 
particle rest masses is not particularly difficult (see e.g. 
Manogue [211. but adds technical complications that are not 
central to the issues we wish to discuss. 

Taking ",(I, x) = e-iWJ",(x) this is now equivalent to 
Frcllwctl + Flransmilkd = I - Fdiss ipa",d ' (5) considering the ordinary differential equation (ODE) 

064013-2 
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("i.)~V/(XJ = [V (xJ - ((Ii - m(x))2]V/(x). (I I) 

Selling Ti7(x) -.. 0 then yields a "Schrodinger-Iike" 
equation , witl! no possibility of superradiance, whereas 
w(x ) f. 0 is essential for superradiance . 

Let us now brutally simplify the problem (in the interests 
of making it anlllYllca/lr solvahle). by selting V(x) -+ 0 
and taking 

Ti7(XJ = Qsign(x). ( 12) 

This toy model is a tractable stand-in for generic situations 
where m(x) satisfies boundary conditions w( ±oo) = ±Q. 
We also take units where c -> I . Then we are interested in 

a~ljI(x) == -(w - Qsign(x)J1Ij1(x). (13) 

We shall soon see that for Iwl > IQI we obtain ordinary 
scanering, with no superradiance; whereas for 1(1)1 < IQI we 
obtain superradiance, plus spontaneous emission. 

Now for x f. 0 this ODE has solutions of the form 

(14 ) 

BuL which root should we take? As is standard. let us 

consider the group velocity 

So for the mode with positive group velocity we must have 
sign(k+) = sign(w =f Q). whence 

k =- = sign((1i =f Q)lw =f QI = (II =f Q; 

( 16) 

This is valid for ull oj. positive or negative. Furthermore 

sign(k . L) = sign(w2 _ Ql) . 

( 17) 

Note in contrast that for the phase velocity 

W 
1'±=-- (18)

(' W =f Q 

This easily flips sign in some regions, in fact: 

sign(vin = sign(w)sign(w =f Q). (19) 

Now consider something incoming from the left. and for 
the time being don'l worry {(boul the IlOnlw/iza/ioll. 
Matching across the origin we have 

(20) 

PHYSICAL REVIEW D 90, 064())] (2IJI4) 

From continuity of the wave function and its derivative we 
have 

(21 )1+ r = t : 

Therefore 

L( I - r) = L (I + r). (22) 

implying 

r = _ 	k i· - L = _ (w - Q) - (w + Q) = + ~ (23) 
k+ +L (w-Q)+(w+Q) w' 

This is valid for all w. and normalization independent (since 
the reflecled mode autoll1.atically has Ihe same normaliza· 
tion as the illcoming mode). The reflected flux (more 
precisely. the ratio of reflected to incident flux) is thus 

(24) 

However. if we l1'ulIl to fully understand lrummilled flux. 
lVe Heed 10 normalize properly. 

Now consider something incoming from the left. and 
normalize relativistically: 

(25)
J2I k_I' 

The J2 is standard for the relativistic Klein-Gordon 
equation. to make the flux simple. One must remember 
to include both 1jI' (-iax )VI and irs hermitian conjugate 
when calculating the flux . (For odd historical reasons. for 
the nonrelativistic SchrOdinger equation people do not put 
the J2 in the nomlalization of the modes, they instead put 
an explicit i in the definition of the current.) With this 
normalization we now have (note Ilwl this new amplitude 
"t" will he different from the previolls olle) 

eiCx e- ik _x e ikTX 

- - - +r--- ++I--- . (26)
J2iD fiikJ J2R:l 

From continuity of wave function and derivative we have 

I+r 

J2IL( J21k+ I' 

So we slill have 

(28) 

implying 

k-j - L (w - Q) - (w + Q) Q 
r = - k+ + k_ = - (w _ Q) + (w + Q) = + ~ . (29) 

064013·3 
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Consequel1lly. JS before. 

(30) 

But now. for thl:! transmission amplitude we have 

!ICi (I +~) = 
jrll - QI (OJ + Q) . 

t = 	 (31 ) 
wVIkJ w \w+Q\ 

- If Iwl > IQ\ (the usual situation). then we see 

ill - Q [(0 -+- Q] JOJ2 
- Q2 . ()n2 

I = - - -	 - = = sign w I --. 
w+Q w w 	 d 

(32) 

and so 

(33) 

So in the usual situation we can meaningfully write 

(34) 

-	 However, if I(lJI < \QI (the superradiant case), then 

_ (w - Q) (w + Q)
1= 

(w+Q) W 

JQ2 _w2 

(j) 

~ 
= sign (rll) V;z - I, (35) 

and so in this situation 

Fren~c,ed - 11\2 = I. (36) 

Note the sign t1ip in the flux conservation law. In the 
superradiant situation we must write 

F"an,mined = _\1\2 SO. (37) 

To get a deeper understanding of where the minus sign 
came from. note that the nux ror a "properly normalized" 
statl:! is 

But then 

k 
(flux) = \k: \ = sign(k±) = sign(w =F Q). (39) 

So the flux may not be in the direction one naively expects . 
We can summarize the situation by saying that in bOlh cases 

(40) 

This formula is now equally valid for hoth normal and 
superradiant regimes. and for particles incoming from 
either the left or the right, and easily leads one to verify 
that in this situation (that is. with no dissipation) 

FreOeCled + F'rdflsmined = I . (41) 

We could also write Ihis more explicitly as 

(42) 

This is manifeslly not conservation of probabiliry; bUI is the 
perhaps more inleresting stalement that we have conserva­
tion of flux. Tn particular, we see thaI superradiance can be 
adequately understood using first quantization. 

Wurning: Because of the way some authors (specifically 
Manogue 121. and Richartz el ul. /3.41. and even textbook 
presentations such as Messiah (22[) choose to normalize 
the transmission amplitude. their key result is instead 

(43) 

This is not physically different, bUl is perhaps a lillIe less 
transparent. 

V. SPONTANEOUS EMISSION 

To understand spontaneous emission we need to bring in 
some foundational ideas from second quantization. The key 
point in second quantization is to understand the vacuum 
state; choosing a vacuum state amounts to (what is called) 
choosing the division between "positive and negative 
frequencies:' an issue which is now just a little more subtle 
Ihan one might at firs! expect. RecaJIthat k± = w =t= Q, and 
that the unit nux modes are singular at k± = 0 (that is at 
w = Q in the right-hand half line, and at w = -Q in the 
left-hand half line). 

This observation now leads us, on the two half lines, to 
identify "particle modes" as 

exp( -i[lJJI - [w =t= Q]x) . 
w>±Q; (flux)=+1. (44) 

J2Iw =t=Q\ 

(flux) = ( ~)'[-iD,( ~)] + (conjugate).
y2\k±\ . 	 y2lk±1 exp( -nO)1 + [OJ =F Q]x) 

w>±Q; (flux)=-l, (45) 
(38) J2Iw=FQ\ 
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and to identify "vacuum modes" as 

exp( -i[wl- [M =F Q]x) . 
w<±Q; (flux)=-1. (46) 

J2Iw=FQI 

exp( -i[wl -t- [ru =F Q]x) . 
W < ±Q; (l1ux) ==-j I. (47)

j2111) =F QI ' 

Once these modes have been identified. the rest of the 
analysis is relatively prosaic. 

- For w > IQI we are dealing with panicle modes on 
both sides of the balTier; the usual scattering rules apply. 
regardless of the direction the particle is initially moving in. 

- For w < -IQI we are dealing with vacuum modes on 
both sides of the barrier; this situation is not physically 
relevant for our current purposes. regardless of which 
direction the particle is initially moving in. 

- For w E (-IQI. + IQI). then on one side of the barrier 
you are dealing with particle modes and on the other side 
with vacuum modes, this is tile lIicky situation. Suppose for 
definiteness Q > 0 is positive, and W E (-Q. +Q). t.hen in 
the left-hand half-space we are dealing with panicle modes, 
and in the right-hand half-space we are dealing with 

vacuum modes. 
For particles incident from the left we have already done 

the calculation and found superradiance. In the right-hand 
half space we have a right-moving vacuum mode carrying a 
leftward flux . But what happens if a left-moving vacuum 
mode comes from the right and hits the barrier? It may 
partially reflect to a right-moving vacuum mode, but 
partially transmit to foml a left-moving particle mode in 
the left-hand half-space. This is spontaneous emission. Let 
us do the relevant calculation. We now have 

exp( -i[wl + Lx)) exp(-i[wl + k+x))

I +-+
J2TLT J2jkJ 

+ r exp(-i[wt - k+x]) (48) 
fijkJ 

Continuity of wave function and derivatives now implies 

I+r Ik (I - r)k+ 
(49)

J21LI = J:~ILI' j21LI = j2lk+1 . 

Note several strategic sign flips compared to the previous 
calculation . We now have 

(I + r)L = (I - r)k+. (50) 

so that 

(w - Q) - (w + Q) Q 
(51 )

(w - Q) + (w + Q) w 

PHYSICAL REVIEW D 90, 06401.1 (2014) 

Similarly 

(Ikj( Q) ~(W-Q) (52)'=VlD l-~ =V~ ~ 

(53) 

Since the amplitUde t is associated with a left-moving 
particle in the left half line, the nux in the left-hand half 
line is 

(flux) c= -W = - (~: - I) < O. (54) 

The /lux is leftward . Particles are being emitted by the 
barrier and escaping to the left. (Vacuum modes from the 
right are escaping from the barrier and moving to the left. 
the region in which they become particle modes.) 
Unfortunately this flux is dimensionless, it is a relative 
t1ux-the ratio of the flux of left-moving particle modes on 
the left half line to the flux of left-moving vacuum modes 
on the right half line. 

To convert this to an absolute flux we note Ihat the "unit 
nux" condition corresponds to 

(55 ) 

That is. one particle per u/lil lime per unil jrequenc\'. Then 
the absolute spontaneous emission rate of left-moving 
particles is 

(56) 

Note spontaneous emission occurs only within Ihe super­
radiant regime. 

VI. CONSISTENCY CHECK 

Note that for the specific toy model we have considered. 
the amplitudes 1 and r are infinite at w = O. An observation 
along these lines is hidden in Manogue's article 121, buried 
in appendix I, near the top of page 278. 

Ultimately this infinity is a kinematic singularity due to 
the fact that k+(ul = 0) = -k_(w = 0)_ More generally we 
could consider a "shifted" effective potential hy taking 

ro(x) = Q + Llsign{_t}_ (57) 

Then whenever one encounters ±Q it would be replaced by 
Q± = Q ± Ll. It is easy to see that one now ha~ 

k-:... = W =F Qo.. = (w - Q) ± Ll. (58) 
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and that now k+L = (w - Q)2 - /),.2 . Redoing the 
remainder of the relevant calculations one now tinds 

/),. 2 /),." I (59) /r /:' = (w _ Q)" : W = 1-( 2'I w - Q) 

Note one still has 

(60) 

The kinematic infinity has now moved, from w -c: 0 to 
(1/ = Q, hut the hasic fonn of the flux conservation law is 
unaltered. The stability of the flux conservation law under 
the introduction of and shifts in Q is encouraging. 

Indeed, the basic form of the tlux conservation law 
cannot depend on the particular toy model, which was 
adopted only for simplicity of presentation. As long as 
well-defined asymptotic states exist in the infinite left and 
infinite right (so w( ±oo) must be well defined and finite), 
then the form of the relevant second-order ODE guarantees 
the existence of a transfer matrix [30.31], and also permits 
(with a suitable change in normalization) a Wronskian 
analysis along the lines of Richalu el al. [3]. 

VII. ADDING DISSIPATION 

We had earlier alluded to the fact that dissipation can be 
modeled by adding an imaginary contribution to the 
potential. Let us now see how this works in pnlctice. Set 
V(x) -> ir.s(x) so that we are now interested in thc ODE 

a~w (x) = [if8(x) - (m - Qsign(x))ljW(x). (61 ) 

For an imaginary delta-function potential the scattering 
calculation is an easy modification of the quite standard 
calculation for a real delta-function potential. The key point 
is that while the wave function is still continuous at the 
origin, there will now be a discontinuity in the derivative at 
the origin: 

(62) 

A. Dissipation in Schrodinger-like situations 

If we (temporarily) set Q --+ 0, thereby (temporarily) 
banishing even the possibility of superradiance. we will be 
in a Schrodinger-like situation with damping. Then match­
ing wave fUllctions at the origin 

exp(+ikx) + rexp(-ikx) ~ rexp(+ikx). (63) 

leads to 

1+,. = I; [k( I - r) - k/j == r/, (64) 

or equivalently (since now k± = k = 01 under the current 
hypotheses). 

I+r = r; [u)(I-r)-()J{]=rr . (65) 

Thence 2(v( I - r) = rr and we have 

(JI 

r=--,-. (66 ) 
III + }r 

Note that (II is intrinsically positive. and under normal 
conditions r ~ O. The transmission probability is 

(67) 

For the reflection amplitude we now obtain 

!r 
r= I-I = __ 2__ (68)m+!r' 

Then for the reflection probability we have 

(69) 

But now T + R =F I and in fact 

mr 
T+R=I- . (70) 

(III + ~ r)2 

So the decay probability is identified as 

(71 ) 

This can be viewed as the probability of absorption by the 
bamer. Note that 

rT 
Po= - · (72)

(J) 

Dissipation can actually be negative (antidissipation) when­
ever r < 0 (this occurs in nonstandard situations where the 
imaginary part of the potential is negative). This observa­
tion is compatible with the resuhs of the Wronskian-based 
analysis of Richartz el al. (3 J. 

B. Dissipation and superradiance 

Now let us tum .Q back on. taking .Q =F 0, and see how 
dissipation interacts with superradiance, and the mere 
possibility of having superradiance. From what we have 
previously seen, it is now important to focus onfiuxes. not 
probabiliries. In fLTst-quantized formalism with the unit 
flux nonnalization we wish to match the wave function s 
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1:11..:_1 e-1k-, eik .. x 

j21LI + r J21*-1 t J21k ,I' (73)<4 

From continuity of the W;JVC function, and discontinuity of 
the derivative, we have 

I+r 

J21LI = j2lk+I' 

and 

k k r 
J2/k J (I-r)- J21'k+ll= j 2I k+( 

So we no\\' have 

'L 

L (I - r) - k . (1 + r) = r( I + r). 

implying 

(w - Q) - (w + Q) + r 
((0 - Q) + (w + Q) + r 

Consequently. 

(74) 

(75) 

(76) 

(77) 

Q-t f 
r=-- j - : 

w+,f 

But now for the transmission amplitude we have 

Iw - QI (w + Q ) 
Iw + QI w + ~r . 

(79) 

- If I(til > IQI (the nonsuperradiant situation). then 

(80) 

and so 

(8 I) 

In this nonsupen'adiant case we can meaningfully write 

But now. due to dissipation. F l1ansmill<d + F reflecled #- ]. and 
we in fact have 

Fdis;ipalcd = I - F I1d1lsmin«J ­

(V C - Q~
I - ­

(w + Jf)2 

(Q + w)r 
(w + ~f)2 

Fr<fleclcd 

(Q - tf)2 
-----''--7 

(w + ~rf 

(83 ) 

- In contrast, in the superradiant case. Iwl < IQI. a few 
key signs llip. We now have 

_(III-Q)(IO+Q) (84 )
(w+Q) w+~r 

and so in this situation 

(85) 

In this superradiant situation we must write 

(86) 

- In either situation. be it superradiant or normal, we 
have 

(87) 

The transmitted flux can be either positive or negative. 
Furthermore. in either situation. be it supelTadiant or 
normal. we now see 

(88) 

Note that 

F . 
dis<lp3led 

_ 
-

f F!ransmilleti 
W _ Q (89) 

So again dissipation can actually be negative (antidissipa­
tion). if r < O. (That is. if the imaginary part of the 
potential is negative.) This is again compatible with the 
Wronskian-based analysis of Richanz el al. [3]. 

Finally we have 

(90) 

This formula is now equally valid for both nom)al and 
supenadiant regimes, and for panicles incoming from 
either the left or the right This is manifestly not con­
servation of probability: but is the perbaps more interesting 
statement that we have conservation of flux. In panicular. 
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we see that superradiance can be adequately understood 
using tirst quantization. 

C. Dissipation and spontaneous emission 

Spontaneous emission must again be analyzed usmg 
some of the foundational ideas from second quantization. 
Fortunately most of the calculation can be easily carried 
over (with minor modifications) from the dissipation-free 
case. Then ahsolute spontaneous emission rate of particles 
per IIn;r rime per ul/ir frequency is 

n2 -u/ 
(91 )== 

drdliJ (W+~f)l' 

Note spontaneous emission occurs only within the 
superradiant regime. 

"&. 

VIII- DISCUSSION 

So ill all relevant situalions (without dissipation). with 
the Ilonnalizations of this article we have 

F rellwed + F lr.lnsmined == I. (92) 

which we can also cast as 

(93) 

This is a very clean and convincing result. which clearly 
summarizes many of the most important situations. In the 
presence of dissipation we must instead write 

F rc tlectcd + Ftransmilled = I - Fdissipated . (94) 

For our particular toy model 

D~"/(x) = [irt5(x) - (/iJ - Qsign(x))~lV'(x). (95) 

we were able to explicitly evaluate 

(Q-~r;Z
F - - . 

rcOected - (u) + ~ rj" , 

(96) 

and 

('i7) 

If the last two quantities are non-negative (the first is 
automatically so), then these tluxes can be reinterpreted 
in terms of probabilities: R, T. and PD' for reflection. 
transmission, and decay, respectively. That is 

R+T+PD=l. (98) 

However, if either of the last two quantities is negative 
(either due to superradiance or antidamping). then the 
fonllulation in terms of !luxes is more fundamental. and 
discussion of probabilities should be completely avoided. 
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So-called "dirty" black holes are those surrounded by nonzero stress energy, rather than vacuum. The 

presence of the nonzero stress energy modifies key features of the black hole, such as the surface gravity, 

Regge-Wheeler equation, linear stability, and greybody factors in a rather nontrivial way. Working within 

the inverse-Cowling approximation, (effectively the test-field limit), we shall present general forms for the 
Regge-Wheeler equation for linearized spin 0, spin I, and axial spin 2 perturbations on an arbitrary static 

spherically symmetric background spacetime. Using very general features of the background spacetime, 

(in particular the classical energy conditions for the stress energy surrounding the black hole), we extract 

several interesting and robust bounds on the behavior of such systems, including rigorous bounds on the 

greybody factors for dirty black holes. 

DOl : 1O.IIOJ/PhysRcvD.88.04IS02 

I. INTRODUCTION 

The "cleanest" black holes to work with are undoubt­
edly the Schwarzschild and Reissner-Nordstrom black 
holes. However, real physical black holes are typically 
surrounded by matter or fields of various types, and so 
are embedded in an environment of nonzero stress energy. 
A good model for such systems is a generic static spheri­
cally symmetric spacetime with a Killing horizon. These 
are the so-called "dirty" black holes [1-3]. Without any 
loss of generality, the metric can then be put in the form 

dr
2

2m{r)]ds2 = _e- 2¢(r) I - -- dt2 + + ~dn2.[ r I - 2m{r)/r 

(1) 

The Einstein equations imply 

¢ I = __47T_{-,-P_+--,-:-P,.:-r);-r (2)
I - 2m{r)/ r' 

We shall assume the existence of a black hole horizon such 
that 2m(rH) = rHo Furthermore, for simplicity we assume 
asymptotic flatness, so that m(00) is finite, and we can 
choose ¢(oo) = O. [Asymptotically de Sitter spacetimes 
have an additional cosmological horizon 2m(re) = re, 
where we can choose ¢(rd = 0; asymptotically anti­
de Sitter spacetimes exhibit extra technical complications.] 

*petarpa.boonserm@gmail.com 

t tritos.ngampitipan@gmail.com 

:, matt. visser@msor.vuw.ac.nz 


PACS numbers: 04.70.Dy, 04.62+v, 04.70.Bw 

For an asymptotically flat dirty black hole the surface 
gravity can easily be extracted from a straightforward 
calculation [I]: 

(3) 

We shall now seek to say as much as we can about these 
dirty black holes, without making any particular commit­
ment as to the specific equation of state or other but the 
most general features of the surrounding matter. 

II. CLASSICAL ENERGY CONDITIONS 

While the classical energy conditions are now known to 
not be fundamental physics [4], (they are typically violated 
by semiclassical quantum effects [5-11)), they are never­
theless a good first approximation when dealing with bulk 
matter and/or classical field configurations. In particular 
for the weak and null energy conditions we have 

WEC ~ p ~ 0::::::) m(rH) :::: m{r) :::: m(oo); (4) 

Note the weak energy condition (WEC) implies the null 
energy condition (NEC), so the WEC implies that K :::: 

1/(2'H), independent of the specific nature of the matter 
surrounding the black hole [I]. It is this sort of model­
independent result that we shall now extend first to the 
Regge-Wheeler equation, and subsequently to explicit 
bounds on the greybody factors. 
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III. REGGE-WHEELER EQUATION 

Define a generalized tortoise coordinate r. by 

dr. = e+<b(r)[1 _ 2m(r)]-I. (6)
dr r 

Then the spacetime metric can be written as 

2m(r)] ,ds2 = e- 2<b(r) I - -r- {-dt- + dr;} + r2d!V, (7)[ 

where r is now implicitly viewed as a function of r • . 

A. Spin zero 

For a minimally coupled spin zero massless scalar 
field it is now a simple exercise to show that linearized 
perturbations are governed by a simple variant of the 
Regge-Wheeler equation 

(8) 

where now 

_ -2-'-(r)[ _ 2m(r)] e(e + I) I d
2

r
( ) '" -- (9)Vr. -e I +--. 

r ,z r dr: 

Ifone is considering a scalar field coupled to gravity with no 
other matter present then this result is known to be correct 
with the provision that 4>(r) and mer) be set to values 
consistent with a background solution of the coupled 
gravity-scalar equations, which in view of the "no hair" 
theorems implies the background is Schwarzschild. When 
other nontrivial matter is present the result quoted above 
holds only within a variant of the inverse-Cowling approxi ­
mation (wherein fluctuations of the matter fields and space­
time geometry are assumed negligible compared to 
fluctuations in the scalar field of interest; see Samuelsson 
and Andersson [12] for relevant discussion). This can alter­
natively be rephrased as saying that we are considering 
linearized scalar perturbations in the test-field limit. 

Application of the Einstein equations (to the background 
geometry) now yields 

2 ~ d r = e- 2cf>(rl [ I - 2m(r)][2m(r) - 41T(p - Pr)], (10) 
r dr; r,.J 

whence 

2m(r)]V(r.) = e- 2<b(r) I - -r­[ 

e(e + 1) 2m(r) ( )] (II)X [ r2 + ~ - 41T P - Pr . 

This is clearly consistent with , and a significant general­
ization of, the standard Schwarzschild result. 

B. Spin one 

For the spin one Maxwell field a straightforward 
calculation yields 

V(r.) = e- 2<b(r)[ I _ 2m(r)] e-{e; I). (12) 
r 

The correctness of this result may easily be verified 
a posteriori by noting that, due to the conformal invariance 
of the Maxwell equations in 3 + I dimensions, the physics 
can depend only on the ratio e- 2<b(1-2m/r)/r2. 

Comparison with the known Schwarzschild result then 
fixes the proportionality constant. 

If one is considering a Maxwell field coupled to gravity 
with no other matter present then this result is known to be 
correct with the provision that 4>(r) and mer) be set to 
values consistent with a background solution of the 
coupled Einstein-Maxwell equations, which in view of 
the no hair theorems implies the background is ReiSiIler­
Nordstrom. When other nontrivial matter is present the 
result quoted above holds only within a variant of the 
inverse-Cowling approximation (wherein fluctuations of 
the matter fields and spacetime geometry are assumed 
negligible compared to fluctuations in the Maxwell field) . 
This can be rephras~d as saying that we are considering 
linearized Maxwell perturbations in the test-field limit. 

C. Spin two axial 

For the case of spin two axial perturbations the calcu­
lation is somewhat tedious. For perfect fluid stars (rather 
than black holes) there is general agreement that [13-15] 

(13) 

Here P is the isotropic pressure; P = Pr = PI for perfect 
fluids. For the specific case of boson stars, (with their 
intrinsically anisotropic stresses), there is a very similar 
result involving the radial pressure Pr [16]: 

(14) 

Furthermore, for geneTic stars supported by anisotropic 
stress, and subject to the inverse-Cowling approximation, 
(wherein fluctuations of the matter fields are assumed 
negligible compared to fluctuations in the spacetime 
geometry), Samuelsson and Andersson have argued that 
the above potential (14) retains its validity [12]. 

Note that applying the Einstein equations to the back­
ground geometry we can rewrite (14) as 

041502-2 
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( 15) 

Formally there is no obstruction to now applying this 
result to other situations such as wormholes or dirty 
black holes. (The traversable wormhole calculations of 
S.-W. Kim [17-19] likewise implicitly apply a version of 
the inverse-Cowling approximation, and provide another 
consistency check on the above.) 

D. Spins zero, one, and two 

Now collecting all these results, we can for 5 E {O, I, 2} 
write the Regge-Wheeler potential in a unified form as 

V(r.) = e-2<1>(r)[ I _ 2m(r)][e(e + I) _ 5(5 - 1)2m(r)] 
r r2 r3 

I - 5 d2r 
+--- (16) 

r d?" 
Equivalently: 

V(r.) = e- 2<1>(r)[ I _ 2m(r)][e(e ; I) 
r r 

+ (I - 5~2m(r) - (l - 5)47T(p ...:.. Pr) J (17) 

We now have a very general version of the Regge-Wheeler 
potential simultaneously applicable (within the inverse­
Cowling approximation) to minimally coupled massless 
scalars, Maxwell fields, and axial perturbations of the 
spacetime geometry-for arbitrary static spherically sym­
metric spacetimes-and so in particular applicable to 
(static spherically symmetric) dirty black holes. 

IV. STABILITY CONSIDERATIONS 

It is well known that spacetime is linearly stable 
against oscillations of this type (working within the 
inverse-Cowling approximation) if and only if the Regge­
Wheeler equation has no "negative energy" bound states, 
(which would correspond to pure imaginary eigenfrequen­
cies). A sufficient condition for stability is V(r.} 2:: O. 
(Thus stability is automatic for 5 = I, and will need a little 
further thought for 5 = 0 and 5 = 2.) Furthermore, in view 
of Simon's theorem on the existence of bound states [20], 
a necessary condition for stability is J~: V(r.)dr. 2:: O. 
This same integral also appears in a rather different 
context-it controls one of the very general and simple 
lower bounds one can place on the greybody factors [21]. 
For this reason we will merge the stability discussion with 
that below. 

V. TRANSMISSION BOUNDS 

For one-dimensional potential scattering there are a 
number of very general and robust bounds that can be 

. . . PHYSICAL REVIEW D 88, 041502(R) (2013) 

placed on the transmission and reflection probabilities 
[22]. Further developments in generic contexts can be 
found in [23-26]. For specific applications to black hole 
greybody factors see [21], and further developments in 
[27,28]. Among the various bounds one can develop, two 
particularly simple ones stand out. Firstly [21,22], 

T(w) 2:: sech2{2~ r+oooo V(r.)dr.} . (18) 

Secondly, for any (possibly even rather crude) upper bound 
on the Regge-Wheeler potential of the form 

(19) 

we have [21] 

The second bbund is the more constraining at ultrahigh 
frequencies, while the first bound continues to hold for 
arbitrarily low frequencies . 

We make no particular claim that these bounds are in 
any sense optimal, but they are certainly robust, and make 
absolutely minimal assumptions regarding the form of the 
Regge-Wheeler potential (and so implicitly make abso­
lutely minimal assumptions regarding the nature of the 
stress-energy tensor surrounding the black hole). 

A.Exponentialbound 

Consider the integral J~: V(r.)dr. . This can be 
bounded in the following manner: Observe 

which, (temporarily suppressing the argument r), equals 

_",[e(e + I) 5(5 - J)2m (I - S)( 2m)] 
e ~ - ? +-~- 1-----;- dr 

+ (J - 5) :rUe-<I>( I - 2;)}r. (22) 

Then, in view of assumed boundary conditions at rH and at 
spatial infinity, the total derivative tenn drops out of the 
integral so we have (still an exact result) 

fooe 
-'" [ 2m]-2 e(e+ I) + (I - S) - (5 - 1)2 - dr. (23) 

rH r r 

We shall now bound this integral from above and below. 
On the one hand, merely from the definition of horizon, 

we must have 2m(r)/r < 1 for r> rHo Therefore 
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perturbative sectors. and with consequent massive loss of 
generality. Finally. an extension to spin two polar pertur­
bations described by a generalized Zerilli-type equation is 
in principle certainly possible (see for instance [19]). but is 
mathematically somewhat messier. 
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The Myers-Perry black holes are higher-dimensional generalizations of the usual 
(3 + I )-dimensional rotating Kerr black hole. They are of considerable interest in 
Kaluza-Klein models. specifically within the contexl ofbrane-world versions thereof. 
In the present article. we shall consider the grey body factors associated with scalar 
field excitations of the Myers-Perry spacetimes. and develop some rigorous bounds 
on these grey body factors . These bounds are of relevance for characterizing both the 
higher-dimensional Hawking radiation. and the super-radiance, that is expected for 
these spacetimes. © 2014 AlP Publishing LLe. [http://dx .doi .org/10.1063/1 .4901127] 

I. INTRODUCTION 

Greybody factors modulate the absorption cross-sections of classical black holes. and alter 
the closely related Hawking emission 1.2 probabilities of semi-classical black holes.3-{i Physically, 
the incoming or outgoing wave back-scatters off the gravilational field surrounding the black hole, 
leading to a non-trivial transmission coefficient. In the case of Hawking radiation, this modifies the 
na'ive Planckian spectrum by multiplying it with a frequency-dependent greybody factor. Explicitly 
evaluating these greybody factors is typically an impossible task. even for the simple case of the 
Schwarzschild black hole.7 In view of this difficulty, techniques for placing analytic hounds on the 

11grey body factors have now become of some interest.7
- (Alternatively, one might seek to extract 

14qualitative or numerical informalion.12 
- ) 

The bounds developed in Refs. 7-11 apply to various black holes (Schwarzschild, Reissner­
Nordstrom, Kerr. Kerr-Newman, etc.), and are all based on a very general technique for bounding 
one-dimensional harrier penetration prohahilities; a technique that was first developed in Ref. 15, 
with later formal developments to be found in Refs. 16-19, and additional related discussion in 
Refs. 20-23 . In the current article. we shall apply the same sort of formalism to the Myers-Perry 
rotating black holes in (3 + I + n) dimensions.24

•
25 The Myers-Perry black holes are particularly 

important in that they are the simplest of the higher-dimensional rotating black holes, being of 
particular interest in both Kaluza-Klein scenarios and in brane-world scenarios. 

We first describe the Myers-Perry spacetime.24
•25 setting up the relevant Teukolsky equation for 

scalar field excitations.26 An important part of the technical analysis is the fact that we can place 
positivity constraints on both Ihe separation constant and on the effective potential; without such 
positivity constraints progress would be severely limited. We then analyze both the greybody factors 
and (when relevant) super-radiant emission as a function of the angular momentum quantum number 
m. While zero angular momentum (m = 0) serves as a good template for the other cases, there are 
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some significant differences to take into account. After completing the analysis and summarizing 
the general case, we specialize to (3+ I) dimensions to verify compatibility with the usual Kerr black 
hole, and also consider the specific (3+1+1) five-dimensional case which is perhaps most relevant 
to hrane-world models. We conclude with a hrief discussion of the significance of our results. 

II. TEUKOLSKY EQUATION FOR SCALAR FIELDS 

In selling up the formalism. it is best to first focus on the geometry of the specific spacetimes 
under consideration. and then analyse the technical steps involved in separation of variables, leading 
up to the development of the Teukolsky equation for scalar field excitations. With this in hand, one 
can then proceed to examination of the effective potential. For some general background on black 
hole perturbation theory, see Refs. 27-34. 

A. Myers-Perry spacetime 

The Myers-Perry geometry (with only one of the angular momentum parameters being non­
25zero) is described by the metric24. 

ds 2 = -dr2 + -
1: 

dr 2 + 1: de 2 + (r2 + a2) sin2 e dcp2 
to. 

". 
+-JL-(dt - a sin2 e dcp)2 +,2 cos2e dQ~. 	 (I ) 

rn - l 1: 

Here, 

2 2 JLto.=, +a ---, (2)
rn I-

and dQ~ is the line-element on the unit n-sphere sn. We choose coordinates so that 

whence recursively 

(4) 

(Several other coordinate conventions on the n-sphere are also relatively common.) This Myers­
Perry spacetime has 4 + n dimensions, 4 of them "usual" and n "extra." This is sometimes phrased 
as 3 + I + n dimensions (meaning 3 of space, I of time, and n "extra" Kaluza-Klein dimensions). 
The black hole mass M BH , and angular momentum J, are defined as follows: 

(n + 2) An+2 	 2a 
J = -- M BH . 	 (5)MBH = 16JTG JL, n+2 

Here. G denotes the gravitational constant in the (4 + n)-dimensional space-time, and the quantity 
An + 2 = 2JT(n + 3)1Z1r[(n + 3)/2] is the area of a (n + 2)-dimensional unit sphere. The location of 
the black hole horizon TH is the solution of to.('H) = 0, such that JL = ,~-I (,~ + a2) is satisfied_ 

• 	 (n the specific case of n = 0, this spacetime reduces to the standard Kerr black hole, with the 
usual inner and outer horizons. 

2	 2• 	 In the specific case of n = I, we have JL = r~ + a , so then 'H = JJL - a , and the horizon 
exists only when a < .jIi; in fact, the horizon shrinks to zero area in the extreme limita ~ .Jii. 
So the case n = I is somewhat different from n > I. 

• 	 On the other hand, in the case of n ~ 2, for JL > 0 a unique positive solution for 'H always 
exists for all a. Indeed, 'H E (0, JL I/(n + 1)]. 
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B. Separation of variables 

In this article, we will focus on scalar field emission from the Myers-Perry black hole. The 
relevant excitations can be described by the Klein-Gordon equation 

(6) 


Here, the metric determinant factorizes nicely into 4-dimensional and n-dimensional pieces. Specif­
ically, with conventions as in Eq. (3), we have 

h = (~ sine) x (rn cosne) x OJ sinn
-

i e) , (7) 

with the trailing factor arising from the unit n-sphere. 
Similar to the Kerr-Newman black hole in four dimensions, the Myers-Perry solution enjoys 

a hidden symmetry due to the existence of a Killing-Yano tensor.35 In view of this, we can use the 
separation of variables ansatz36

. 
37 

iw1 imcp<1>(1, r, e, cp, el , ... , en) = e- e Rjfm(r) Slm(e) Yjn(e l , ... , en). (8) 
'L 

Here, the yjn(e I, . .. , On) are the quite standard hyper-spherical harmonics defined on the unit 
n-sphere, which satisfy the differential equation38 

(9) 


The important observation is that for the n-sphere the Laplacian eigenvalues are - j(j + n - I). 
In 4 dimensions (n ~ 0), these hyperspherical harmonics reduce to trivial constants (andj ~ 0). In 
5 dimensions (n ~ I), they are simply sines and cosines. If one wishes an explicit rendition of the 
Laplacian on the n-sphere then, with coordinates as in Eq. (3), we have 

(10) 

We mention in passing that when you choose coordinates to write the n-sphere metric recursively, 
as in Eq. (4), then the Laplacian can also be expressed recursively 

I n I 1a ( ax)f"l.s"x=. I - sin- 01 - +-'-2-f"l.sn-'X. (I I) 
SlOn- BI ael iJe I SIO BI 

In contrast to the hyper-spherical hannonics defined on the hyper-sphere sn. the spheroidal 
imcpharmonics S(m(B) e an: ddined on the two angular variables associated with the "usual" 4­

dimensional part of the spacetime. They are the appropriate generalization of the standard spherical 
harmonics Y(m(e. ¢). The spheroidal hannonics satisfy the differential equation l2 

\ d [ n d ] ( m)2 j(j +n- I) }. - sin (I cos (1- - wa sin (I - -.- - + A'(m Slm(O) = O_{ SlO (I cosn 0 dO dB SIO (I cos2 (I J 

(12) 

Note that going to 4 dimensions corresponds to setting n ~ 0 and selling j ~ O. in which case 
this differential equation reduces to that for the Kerr (or Kerr-Newman) geometry as given in 
Ref. I. I. These spheroidal harmonics are very closely related both to the Heun functions.39--42 and to 
the hyper-spherical harmonics.38.43 

The separation constant Ajfm in this spheroidal differential equation is positive. To see this let 
us define a new variable by du = sin ecos no dO, then 

d du d n d - = -- = sin8cos 8- (\3)
d(l dfJ du du 

Therefore, 

I d [ dS(lI)] d [ 2 dS(lI)]----- sinecos"e-- = - (sinOcosne) -- . (14)
sin e cosn 0 de dO du du 

http:harmonics.38.43
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Then the angular equation (12) for the spheroidal harmonics becomes 

d [ . 2d5(8)] [(. m)2 j(j+n-I) ]
-- (Sin 8 cosn 8) -- = wa Sin 8 - -.- + 2 - Ajim 5(8). (15)
du du sm8 cos 8 

Multiplying the above equation by 5(e) and integrating both sides over u yields 

J d [ ? dS(8)]5(fn- (sin 8 cosn 8)" -- du 
du du 

m)2 j(j + n- I) ]
= J[(wasinH - -.- + 2 - Ajem 52(8) duo ( 16)

Sin f) cos 8 

Integrate the left hand side by parts, using periodicity to discard boundary tenns, and then rearrange 
to obtain 

m)2 j<J+ n- I )]
Ajim 52(8) du = wa sin 8 - -.- + 2 52(8) duf J[( Sin 8 cos 8 

2 (d5(f}»)2]+ (sinf)cosnf}) ~ duo (17)J[ 
Now the right hand side of this equation is manifestly positive, as is the factor J52 du on the left 
hand side. Therefore, the separation constant Ajfm is guaranteed to be positive. 

C. Effective potential 

We now construct the effective potential, starting from the radial part of the variable-separated 
Klein-Gordon equation.12-

14 We have 

[(r2+a 2)w-maf j(j + n - l)a 2 
} _{I d [n d]

- - r n - + "-'-----'-----=- :.....;.:--r-=-2--'---- - Ajem Rj(m(r) = O. (18) 
rn dr dr n 

Let us now define a new radial mode function 

(19) 

It is now a quite standard calculation to show that the radial Teukolsky equation (the Regge-Wheeler­
like equation governing the radial modes), is given by Refs. 12-14 

{:; - Ujlm(r)} Rjlm(r) = 0, (20) 

where r. is the standard "tortoise coordinate" 

r2 + a2 

dr = --- dr. (21 )• nCr) 

Note that the tortoise coordinates can be expressed as 

(22) 

where the exact expressions for the coefficients An and functions Bn(r) depend on the number of 
extra dimensions n. However, we can quite generally observe that as r ~ rH we have r. ~ - 00, 

and as r ~ 00 we have r. ~ 00. So the region r> rH outside the black hole, (the domain of outer 
communication), maps into the entire real line - 00 ::: r. ::: + 00 in tenns of the tortoise coordinate. 
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The Teukolsky potential (sometimes called the Regge-Wheeler-Teukolsky potential). is now 
seen to be 

~(r) [ j(j + n - l)a2 n(n - 2)~(r) n~/(r)
Ujlm(r) = 2 Ajem + + + -­

(r2 + a2) ,2 4,2 2, 

(23) 

Note that for j = n = 0 this reduces to the Teukolsky potential for the ordinary Kerr black hole in 4 
dimensional space-time. (See Ref. I I.) For purposes of calculation, we now define quantities 

a 
w(r) = -2--" (24) 

a + r­

and more specifically 

a 
nH = --. (25) 

a 2 + r~ 
Here, w (r) is related to frame dragging, while nH is the "angular velocity" of the event horizon. I I 
We can now re-express the Teukolsky potential as 

(26) 

with 
2~(r) [ j(j + n - l)a

Vj(m(') = 2 Ajim + ::........:.---­
(,2 +a2) r2 

n(n - 2)~(r) n~/(r) 3r2~(r) [r~(r)l/J
+ +--- +--- (27)

4r2 2r (r2 + a 2)2 r2 + 0 2 ­

D. Positivity properties 

To show positivity of Vjfm(r), we start by noting that ~(r) > 0 outside the horizon (that is for r 
> rH). This is standard for n = 0, and trivial for n = I. For n ::: I, we generically re-express ~(r) as 

2~(,) =,2 + a _ rl-nJ.t 

= ,2 + a2 _ (r/rH)I-n (r~ + a 2) 

::: (r~ + 0 2) (I - (rH/rr-I). (28) 

Since r ::: rHo we can see that ~(r) ::: 0 for n ::: I. Using this result, we make the following 
observations. First. for n ::: I we have 

[r ~(r)l' 3r2~(r)
-'---=---=- - ex [r ~(r)J'(r2 + 0 2) - 3r2~(r)
r2 + a2 (,2 + 0 2)2 

=02(r2 + a2) + r~1 [(n + l)r2 + (n - 2)02] 

2= 02~(r) + ~I [en + I)r2 + (n - 1)0 ] 
r 

::': O. (29) 

Note that the equivalent result for n = 0 was already derived in Ref. II for the Kerr-Newman 
spacetime. Second. for n ::': O. we also have 

n(n - 2)~(r) n~/(,) I 

4r2 + ~ ex n{(n - 2)~(r) + 2r~ (r)} 
l= n{(n + 2),2 + (n - 2)a2 + nw - n). (30) 
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Now for n ::: 2 this quantity is certainly positive. For n = O. this quantity is identically zero. For 
n = I, this quantity reduces to 3r 2 

- a 2 + JJ- = 3r 2 
- r~ ::: 0 (provided the horizon exists). In all 

situations, the relevant quantity is non-negative. Thus, by now combining these results with the fact 
that Ajlm > 0, and the fact that both n ::: 0 andj::: 0, we can conclude that Vjfm(r) is always positive 
for all values of j, e, m, and r . 

E. Super-radiance 

Now note that the effective potential is 

Ujrm(r) = Vjfm(r) - (w - mw)2; (31) 

However, the quantity w - mw can under suitable circumstances change sign. This is the harbinger 
of super-radiance. Some rather-general analyses can be found in Refs. 44 and 45, while a specific 
analysis closely related to the current situation can be found in Ref. 11. The key point is that super­
radiance is a phenomenon in which the reflected wave is larger in its amplitude than the incident 
wave. From mathematical point of view, super-radiance is a phenomenon in which Irl > I, where r 
is the reflection coefficient. Super-radiance will occur once w - mw changes sign in the domain of 
outer communication which. given the asymptotic behaviour of w, occurs whenever 0 < w < mQH. 
that is. m > m. == wIQH. Once super-radiance occurs, the bound on the greybody factor becomes a 
bound on the spontaneous emission amplitude. A detailed discussion of this particular issue can be 
found in Ref. 11. 

III. ANALYTIC BOUND FOR SCALAR TRANSMISSION 

From Ref. 15 (see also Refs. 16-19 for further developments and applications), we have the 
extremely general result that 

where 

(32) 

(33) 

for any positive function h(r.). Equivalently, 

J[h'(r.)]2 + [Vjlm(r.) - (w - mw)2 + h2(r.)]2 
~ = ~-------------------------------	 (34)

2h(r.) 

We shall now use the positivity properties of Ajfm and V jfm , together with the super-radiant/non­
super-radiant distinction, to systematically analyse this bound in various cases. In particular 

• The modes m < m. == wlQH are not super-radiant. 
• The modes m ::: m. == wl0. H are super-radiant. 

In situations where super-radiance occurs, in addition to the greybody factor "Fjlm, there is a 
closely related spontaneous emission rate which satisfies the bound" 

r jlm 	 ::: w sinh2 (i: !J dr.) . (35) 

IV. 	NON-SUPER-RADIANT MODES (m < m.) 

It is convenient to split the discussion of non-super-radiant modes into three sub-cases: 
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• 	m =0 zero-angular-momentum modes: This is the most fundamental case, and most straightfor­
ward case to analyze. This case provides a useful template for the more complicated situations . 

• 	m =1= 0 nonzero-angular-momentum modes: These are most conveniently further split into two 
sub-cases 

- m < 0 negative-angular-momentum modes. 

- mE (0, m.) low-lying positive-angular-momentum modes . 


A. Zero angular momentum modes (m = 0) 

We choose h(r.) = w > °and m =0, then 

6(r) [ . j(j + n - \)02 n(n - 2)6(r) 
Ujt .m=o(r) = ( )2 A,£.m=O + J + 4 2 

r2 + 0 2 	 r- r 

nt,'(r) 3r2t,(r) [rt,(r»)'] 2+--- + -w 	 (36)
2r (r2 + 0 2)2 r2 + 0 2 . 

Then 

T ::: sech2 (-.!.. fOO IVI dr.)
2w -00 

= 	sech2 (-.!.. foo IV (r)1 r2 + 0

2 
dr) 

2w Th t,(r) 

_ 2 [-.!.. fOO 1_1_{ . - n(n - 2)6(r)j(j + n \)0
2 

- sech 2 2 Ajt.m=O + 2 + 4 2
2w T. r + 0 r r 

3r2Mr) n6'(r) [r6(r»)'}1 ]-	 ----::--::: + -- + dr . (37)
(r2 + 0 2)2 2r r2 + 0 2 

For n ::: 1 and r ::: rH, in view of the positivity properties of the separation constant and effective 
potential, we can replace fl " '! dr ~ !f- ..dr!. Therefore, 

00 2211 1 [{ j(j + n - J)0 n(n - 2)6(r)
T::: sech 2w ~+2 Ajl.m=O+ 2 + 4 2T. 	 r 0 r r 

3r2Mr) n6'(r) [rt,(r)]'} 1 
- +--+ dr 	 (38)

(r2 + 0 2)2 2r r2 + 0 2 . 

1
We would like to integrate this equation term by term. Start by considering the first term 

00 
00 Ajt,m=O Ajl,m=O r 1 A,l,m=O 0 

-2--2 dr = --- arctan - = --- arctan - (39) 
Til r + 0 0 0 Til 0 rH 

For the last two integrals, we can show that they can be simplified as follows: 

00 I [ 3r2t,(r) [r6(r)]'] [00 r2t,(r)1--- + dr= dr (40) 
T" r2 + 0 2 (r2 + 02)2 r2 + 02 

Til (r2 + 02)3 ' 

This can be explicitly integrated (for instance, by using Mathematica) and we arrive at 

00 r2Mr) dr=...!!...._n(n-2)(r~+02) 2FI(I,n+2,n+4,_02) 
[ T" (r2 + a2)3 8rH 8(n + 2)r~ 2 2 r~ 

2
0 \ 0 - + - arctan-. 	 (41)

24'H(r~ + a ) 2a 'H 

Here, 2FI (ZI, Z2, Z3, 24) is the hypergeometric function . Let us now consider the j-dependent integral 

OOj(j+n_I)02 j(j+n-l) j(j+n-I) 0 
'---'-----dr = - arctan -. (42)[ T" r2(r2 + 0 2) rH a rH 
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We can also integrate the n-dependent terms as 

J
oo I [n(n-2)t-(r) nt-'(r)] _n2(r~+a2) (n+2 n+'!. a2)
- -- +-- dr- 2F, 1-- ---­
r2 + a2 4r2 2r 4(n + 2)r 3 '2' 2 ' r2 

rn H H 

n(n - 2) n a
+ + - arctan-. (43)

4rH a rH 

Finally, combining the results from Eqs. (39), (41 )-(43), we obtain 

(44)Tjlm=O ::: sech212~rH !jt.m=ol, 

where we define 

n(2n - 3) .. a 2 

!,f.m=O= 8 +}(J+n-I)+ 2 2
4(rH +a ) 

2n+1 )rH a 
+ -2- - j(j + n - I) + Ajl.m=O -; arctan rH( .... 

n(r~ + a 2
) (n + 2 n + 4 a 

2 
)+ 82 2 F, I, -2-' -2-' -"2 . (45) 

rH rH 

For a consistency check, consider the limit a ~ 0 (with both n = 0 and j = 0), 

2 
. . [ a (I .) rH a ]11m !j=O.t .m=O = 11m - 2 + - + Aj=O.l.m=O - arctan­

a ..... 0 a ..... 0 4(rH + a2) 2 a rH 

(46) 

This is the same result as for the Kerr black hole (the Kerr-Newman black hole for Q= 0), as is to 
be expected. 

B. Non-zero angular momentum mode (m :/= 0) 

From the basic inequality, we have 

(47) 

for all h(r.) > O. By now using the triangle inequality 

lal + Ibl ::: Ja 2 + b2 
, (48) 

we have 

Tjlm 
2 [[00 lii'(r.)1 + IDjlm(r.) + P(r.)1 ]

::: sech _ dr.00 2h(r.) 

> sech -_-dr. + _ dr•.
2 [[00 lii'(r.)1 [00 IDjlm(r.) + ii 2

(r.)1 ] 

- 00 2h(r.) 00 2h(r.) 
(49) 

Provided that ii'(r.) is monotone, we have 

/ 

00 Ih~(r.)1 dr. = 

_002h(r.) I
! I ;'(00) 
2 n h(-oo) 

_11 h(oo)
2 n h(-oo) 

c ii'() O· 
or r. > , 

~ ii'() 0 
or r. < . 

(50) 
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Let us now rewrite the potential as 

Uj(m = Vie.m - (w - m w(r»2. (51 ) 

This fonn of potential is exactly the same as for the 4-dimensional Kerr-Newman black hole, and 
thus we simply choose 

h(r.) = her) = w - mw(r). (52) 

Note that this choice for her) is always monotonic as a function of r. However, we can see that her) is 
positive if and only if w > m0.H. This condition is satisfied for m < wmH, (that is. m < m.), where 
the mode does not suffer from super-radiant instability. 

1. Negative-angular-momentum modes (m < 0) 

Note that in this case, for her) defined in Eq. (52), 


h((0) h(00) w 

(53)h(-oo) = h(rH) = w - m0. H = -1---m-0.-H-/w- < L 

"L 

Then 

I I [h( (0) ] I I- In -_-- = -In(1 - m0.H/w). (54)
2 h(-oo) 2 

Note also that in this case we have w - mrlH > her) > w, so

-100 
.00 IUj(m+h2(r)ld JVj(ml /00 Vjlmd'--''------'- r. - dr. < r •. (55) 

/ -00 2h(r) -00 2h(r) -00 2w 

Then 
00 

vjlm<o }Tjl.m<O ~ sech2 {I-tnO - m0. H/w) +1 -_.-dr. , (56)
2 -00 2w 

~ sech2 {~tno - m/m.) + _I-Ijt.m<o} . (57)
2 2wrH 

It is easy to see that this result is very similar to the result we have for m = 0, with the replacement 
Ajr. m=0 - Ajt. m< o. We can write down Ijrm explicitly as 

n(2n - 3) . . a2 

fjlm = 8 + J(J + n - I) + 4(r~ + a2 ) 

+ (2n + I _ j(j +n_I) + Alm(aW») rH arctan ~ 
2 J a rH 

n(r~ + a
2

) (n + 2 n + 4 a
2 

)+ 8 2 2FI I, -2-' -2-' -2 . (58) 
r rH H 

2. Low-lying positive-angular-momentum modes (m E (0, m.)) 

Recall that for m. > m > 0, her) is positive and monotonic as a function of r, for this situation 
we first consider 

h(oo) h(oo) w 
(59)h(-oo) = h(rH) = w - mrlH = -)---m-rl-H-/-w > L 

Then, we have 

I I [h( (0) ] I I- In -_-- = --In(1 - mrlH/w). (60)
2 h(-oo) 2 
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Note also that in this case we have w - mrlH < her) < w, so 

f 
oo IUjrm + h2

(r)l d _ foo IVjcm>old 
r.­r.< 

-00 2h(r) -00 2h(r) 

foo VjCm>o d 
r •. 

-00 2(w - mrlH) 
(61 ) 

Then, we arrive at the result 

(62) 

?: sech2 {-~ In(l - m/m.) + I Ij(.m>o} , (63)
2 	 2rHw(l - m/m.) 

where Ijt . m > 0 is defined by Eg. (58). 

V. SUPER-RADIANT MODES (m ~ m.) 

It is a good strategy to split the super-radiant modes into two sub-classes depending on the 
relative sizes of w2 and (w - mrlH)2. Note that w2 = (w - mrlHf when m = 2wlrlH = 2m •. This 
suggests that it might be useful to split the super-radiant modes as follows: 

• mE [m., 2m.) . 

• mE [2m •• 00). 

A. 	 low-lying super-radiant modes (m E [m., 2m.» 

In this region, we have w2 > (w - mrlH)2 and we choose 

her) = max [w - mw-(r), mr2H - wJ. (64) 

We can see that her) > 0 and monotone decreasing as we move from spatial infinity to the horizon, 
and become a Hat horizontal line near the horizon. Note that her) ?: mr2H - w everywhere. By using 
her) as defined in Eq. (64), we have 

f OO W(r)ldr. = Ilnh(r)l~ = In ( w ) = -In(m/m. - I). (65) 
-00 her) /I mr2H - w 

It is now straightforward to show that 

roo Vjlm d fOO Vj(m d I Ijlm Ijlm

i-oo 2h(r) r. ~ -00 2(mr2 H - w) r. = 2(mr2H - w)rH = 2w(m/m. - J)rH' 
(66) 

where Ijlm is defined in Eq. (58)_ The last integral we need to perform is 

low /00 h(r)2 - (w - mw-(r»2
1m 	 = dr•. (67) 

-00 2h(r) 

Note that with our choice of her), the integrand in above integral is zero over much of the relevant 
range. To be more precise, we are interested only in 

'0 (w - mr2 )2 - (w - mw-(r»2 r2 + a2 
i ow = H 	 dr. (68) 
m'H 2(mr2H - w) fj,1

The upper limit of integration ro is defined by the condition 

(69) 

or we can write down ro explicitly as 

ro = (70) 
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Notice that the upper limit ro > rH for mE [m., 2m.). Then 

2m fro r2 + a 
f!OW = (Q H - w(r»(mw(r) + m0. H - 2w) --- dr. (71 )

2(m0. H - w) rli l!,. 

However, for the relevant domain of integration we have 

0::::: (mw(r) + m0. H - 2w) ::::: 2(m0. H - w). (72) 

Then we can conclude that 

ro r2 + a 2 fro rn-I(r - r )(r + r )
f~OW :'S m (0. H - w(r» --- dr = m0. H H I H dr. (73)f 

, rH l!,. rH r n - l (r 2 + a2) - r~- (r~ + a2) 

This integral is finite. and one can evaluate it exactly for each value of n. (The integrand is in fact 
finite as r ~ rH by the I'H6pitai rule.) By now combining all these results. we have 

h2 { II (/ I) Ijf.mElm •. 2m,) flOW}T j(.mElm •. 2m.) ::: sec -- n m m. - + + m . (74)
2 2rHw(m/m. - I) 

B. Highly super-radiant modes (m ~ 2m.) 

In this region. we have (w - m0.H)2 > w2, so we can choose 

her) = max (mw(r) - w . wI . (75) 

It is not difficult to see that her) is both positive and monotone decreasing as we move from the 
horizon to spatial infinity. Note also that her) ::: w for the relevant domain. By using Eq. (75), we 
have 

00 Ih'(r)1 (m0. H - w)
--dr. = Ilnh(r)l~ = In = In(m/m. -1)_ (76) 

/ -00 her) /I w 

We also obtain 

00 Vjim dr < roo Vj(m dr = Ijtm 

/ -00 2h(r) • - Loo 2w • 2wrH' 
(77) 

where fjlm is defined in Eq. (58) as for the previous cases. Finally, we are left with the integral 

high (w - mw(r))2/00 h(d ­
1m = dr• . (78) 

-00 2h(r) 

Again the integrand is zero over much of the domain of integration. That is, we are only interested 
in 

(79) 

Here, the lower bound of integration, ro, is now defined by 

mw(ro) = 2w, (80) 

implying 

ro = aj :'va - I. (81) 

Recall that m ::: 2m. in this region, we have 

. 
ro::: a - - I = a (82) 

wa ~ 
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The integral l~igh is finite . (In fact, Ihe integrand is finite as r -+ ro, and falls of as II?- as r -+ 00.) 

After assembling all results we have, we finally obtain 

2 { 1 I jtm ?:. 2m. high}Tj l .m ?:. 2m. ::: sech 2In(m/m. - I) + 2rHw + 1m . (83) 

VI. SUMMARY OF THE GENERAL CASE 

Collecting the results for the low-lying and highly super-radiant modes. together with the 
non-super-radiant modes. we have the following bounds for the transmission probabilities: 

sech2 {i InO - m/m . ) + 2,:, wIj fm I for m < 0; 

form = 0; 

forO<m<m.; (84) 

2 { I I high}sech 2: In(m/ m. - I) + 2'I/w Ijtm + 1m form::: 2m • . 

Here, m. is the "critical" azimuthal angular momentum defined by m. = wlnH • while the quantity 
Ijem is defined in Eq. (58). 

VII. FOUR-DIMENSIONAL CASE n = 0 

When n = 0 the Myers-Perry spacetime reduces to the usual Kerr spacetime. Furthermore. 
the separation constant and effective potential reduce to those discussed in Ref. II . Ultimately. the 
bounds on the greybody factors reduce (as they should) to those of Ref. II. 

VIII. FIVE-DIMENSIONAL CASE n =1 

Let us now take a look at a special case with only one extra dimension n = I. These are 
the (3+1+1)-dimensional [five-dimensional) Myers-Perry black holes. In this case, we have the 
simplification 

2/:;. -+ r2 + a - /L . (85) 

A brief computation, starting from Eq. (58), now yields 

r=1 = (_3__ ~ + / _ anH) + (~ _ / __3_ + A'(m) rH arctan (!:.) . (86)
Jim 8anH 8 4 2 8anH J a rH 

Interestingly, l~oW has a very simple bound in five-dimensional space-lime. For n = \ , we have 

(87) 


Let us now consider l~igh; this also takes a simpler form in five-dimensional space-time 

1.00ma 
1 high I = - [ 2w-mru(r) ] dr. (88) 

m n=1 '0 2w (r-rH)(r+rH) 

For the relevant domain of integration, 2w > mru(r), then we can conclude that 

f. "" 1 high l I ma jro+rH
< ma dr = -In ---. (89) 

m n=1 - 'u (r-rH)(r+rH) rH To-rH 
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Collecting results, we finally deduce a quite explicit bound for scalar emission from five-dimensional 
simply rotating Myers-Perry black holes. The bound is given by 

sech2 {.!.In(1 - m/m.) + _I_/,,=I} for m < 0;2 UI/W ,(m 

sech2 \-I- r=l} for m = 0;uuto jfm 

for 0 < m < m.; 

sech2 {-! In(m/m. -
l/m.-I/je:,,1 + w :::. (ro - rfl )} for m. ~ m < 2m.;I) + 2Tl/w(m 

sech2 {.!.In(m/m. -1)+ _1_r=1 + rna In ~} for m :: 2m •. 2 2TI/W ,fm TH '0-'11 

(90) 
Here, Ij't:,,1 is as given in Eq. (86). 

IX. DISCUSSION 

In this article, we have established certain rigorous bounds on the greybody factors (mode 
dependent transmission probabilities) for the Myers-Perry black holes . We have also obtained 
(mutatis mutandis) certain rigorous bounds on the emission rates for the super-radiant modes. In the 
absence of exact results (the relevant differential equations seem highly resistant to explicit analytic 
solution), quantitative bounds along these lines seem to be the best one can do. 
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A dilaton is a theoretical particle. which results from the Plank mass raised to a dynamical field. In 
this paper. the rigorous bounds on the transmission probabilities for charged black holes. coupled 
to a dilaton field in various dimensions, are calculated. The results show that in the absence of the 
cosmological constant, the black holes in (2 + I) dimensions have only one event horizon. Moreover. 
the charges of the black holes can increase the transmission probabilities. However, for the black 
holt::s in (3 + I) dimensions. the charges of the black holes can filter Hawking radiation . 

KEYWORDS: dilaton, transmission probability, (2 + 1) dimensions, (3 + 1) dimensions 

1. Introduction 

According to Stephen Hawking, black holes can emit radiation, which became known as Hawking 
radiation [1]. This phenomenon was predicted by the quantum field theory in curved spacetime. The 
gravitational potential surrounding the black hole can modify Hawking radiation. Therefore, Hawking 
radiation is not considered as blackbody radiation because some of the radiation is reflected back into 
the black hole and the rest is transmitted to the spatial infinity. The transmission probability is of 
interest because it is a characteristic property of black hole, which depends only on mass, angular 
momentum, and charge of the black hole. In this paper, the rigorous bounds on the transmission 
probabilities for the charged dilatonic black holes in (2 + 1) and (3 + 1) dimensions are derived. 

2. The Charged Dilatonic Black Holes in (2 + 1) Dimensions 

The charged dilatonic metric in (2 + I) dimensions is given by [2,3] 

(I) 

where 
fer) = -2Mr + 8A? + 8Q2. (2) 

For M > 8Q VA, this spacetime describes a black hole with two event horizons 

M ± .vM2 - 64Q2A 
(3)r± = 8A 

We are only interested in A =O. In this case, the black hole has only one event horizon located at 

(4) 
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The Schrbdinger-like equation is given by 

2 
[ 

d22 + w - Vcr)] u(r) =0, (5)
dr, 

where 
2r 

dr. =-dr (6)
fer) 

and 

5M2 ~) 1 ( 2 J 2) 1 6gt.
VCr) = - + 2m-M - - 4MQ + 8m-Q 2" + -3. (7)( 8 r r r 

The (2 + 1) charged dilatonic potential is plotted with m = 1 and M = 2 for Q = 1,2 as shown in 
Fig. I. It can be seen that the potential for Q = 2 is higher than that of Q = I. The coordinate r. can 
explicitly be written as 

'L 

(8) 

When r ~ rh, r. ~ 00 and when r ~ 00 , r. ~ -00. The general and robust bounds on the trans­
mission probability can be found in [4]. They are applied to generic systems [5-7] and black hole 
greybody factors [3,8] . The lower bounds on the transmission probabilities are given by [4,8-10] 

(9) 


where 

~(h')2 + (w2 - V - h2l 
{} = 2h (10) 

for some positive function h. We set h =w, then 

sech2 [_I ('>0 Vdr.]T 
2w Loo 


6Q4
2 [ I Lrh {(5M2 2) 1 ( 2 2 2) I } 2r ]= sech - -- + 2m M - - 4MQ + 8m Q - + - -dr 
2w 8 r r2 r3 fer)00 

2 
Irmax 

= sech2 [(5M + 16m ) In - rhl - -3M] . (11)
16w rmin 16w 

.. 

,. 

0" a · , 

Fig. 1. The (2 + I) charged dilatonic potential with m = 1 and M = 2 for Q = 1,2. 
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where rmin - ril -t 0 and rmax » rh oThe dependence of the transmission probability on the energy 
of an emitted particle is plotted with m ::: I , M ::: 2 and Q ::: 1,2 as shown in Fig. 2. The dependence 
of the transmission probability on the charges of the black hole is plotted with m ::: I, M = 2 and 
w =30. as shown in Fig. 3. Both the graphs show that the transmission probability increases with Q. 

3. The Charged Dilatonic Black Holes in (3 + 1) Dimensions 

The charged dilatonic metric in (3 + I) dimensions is given by [3, II] 

where 

( 12) 

(13) 

with 

r+ = 2M and r_ 
_ 
-

Q2 
M. ( 14) 

By the coordinate transformation 

r_ + ~4R2 +r: 
r= ---'---­

2 
(15) 

J 
_ . ",,:," _..-- ' _ , r -' .~ - ."".-, _.- .-. • - • 

1 .. 
02 . . . "I 

o ..10 

Fig. 2. The transmission probability versus the energy of an emitted particle with m = I, M =2 and Q = 1,2. 
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Fig. 3. The transmission probability versus the charges of the black hole with m = I, M ::: 2 and w = 30. 
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the metric (12) can be rewritten as 

( 16) 

where 
2r+ 

F(R) ::: 1 - --~== (17) 

r_ + ~4R2 + ~ 

and 
4R2 

H(R) = 2 7 . (18)
4R + r= 

Introducing the tortoise coordinate 
dR 

(19)dR. = -F(-R-)H-(R-) ' 

the equation of motion is given by 

(20) 

where 

VCR) =F(R) [H(R) ~(F(R)H(R» + l(l +2 I)]. (21)
R dR R 

The (3 + I) charged dilatonic poten£ial is plotted with I =0, r+ = 4, and r_ = 0.5 as shown in Fig. 
4. If r_ = 0, we obtain R ::: r, and the (3 + I) charged dilatonic potential VCR) is reduced to the 
Schwarzschild potential [12] 

(22) 

The comparison between the (3 + 1) charged dilatonic potential and the Schwarzschild potential is 
shown in Fig. 5. The lower bound on the transmission probability for L= °is 

T ~ sech2 [_1 (00 V(R)dR.] 
2wLoo 

i 
.00> I 

o0G4 : 

0 .., 

'0 

Fig. 4. The (3 + I) charged dilatonic potential with { =0, r+ =4, and r_ =0.5. 
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(23) 

for r_ ={:. O. If r_ =0, the transmission probability for l =0 becomes 

T 2: sech2 (_1_), (24)
4wr+ 

which is the transmission probability for the Schwarzschild black hole [12]. The transmission prob­
ability is plotted with r+ = 4 and r_ = 2,0.5,0 as shown in Fig. 6. The graph shows that the trans­
mission probability decreases as r_ increases. This indicates that the charges behave as good barriers 
to resist the tunneling of the uncharged scalar particles. This is in agreement with [3] as it should be 'L 

because in this paper, we have just rewritten the metric in terms of the new variable R instead of r. 

4. Conclusion 

In this paper, we have calculated the rigorous bounds on the transmission probabilities for the 
charged dilatonic black holes in (2 + I) and (3 + I) dimensions. For the charged dilatonic black holes 
in (2 + I) dimensions, we are only interested in the absence of the cosmological constanl. The results 

0007 

0006 

0.,. 
. . ... .. . ".'>

,00< . 

, 00' 

'001 

0001 : 

'. " 

Fig. 5. The comparison between the (3 + 1) charged dilatonic potential and the Schwarzschild potential with 
1= 0, r+ =4, and r_ =0.5 . 
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Fig. 6. The transmission probability versus the energy of an emitted particle with r+ =4 and r_ =2,0.5,0. 
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show that the black hole has only one event horizon instead of two event horizons as in the case of 
the presence of the cosmological constant. The results also show that the transmission probability 
increases with the charge of the black holes. This result contrasts with the case of the presence of the 
cosmological constant. 

For the charged dilatonic black holes in (3 + I) dimensions, we have transfonned the coordinates 
to rewrite the metric in terms of the new variables. The results show that the charges act as a good 
barrier. 
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Abslract. Black hole grey body factors carry some quantum black hole Intormation. StudYing grey body factors may lead .. to understanding the quantum nature of black holes . However, solving for exact grey body factors in many black hole 
systems is impOSSible. One way to deal with this problem IS to place some rigorous analytic bounds on the greybody 
factors In this paper. we calculate f1gorous bounds on the grey body factors for spin zero hawking radlalion for non-zero­
angular momentum mode from the Kerr-Newman black holes . 

Ke~'words: grey body factors . Kerr-Newman black holes, rigorous bounds. 
PACS: 04700y, 04 62+v, 04 .70.Bw 

INTRODUCTION 

Classically, a black hok can absorb everything entering it even light. However, this picture was changed when 
we took into account quantum effects. In 1974, Stephen Hawking discovered that a black hole could indeed emit 
radiation. This radiation hecame known as "Hawking radiation" [I] Some black hole information is contained in the 
greybody factor. Therefore. understanding the greybody factors may lead to understanding the universe. However, 
in most systems, solving the equation for the greybody factors is very complicated. Instead of finding exact 
solutions, we place some rigorous analytic bound on the greybody factors. In this paper, we calculate ngorous 
bounds on the grey body factors for spin zero hawkmg radiation for non-zero-angular momentum mode from the 
Kerr-Newman black holes . 

KERR-NEWMAN BLACK HOLE 

The Kerr-Newman metric is given by [2.3) 

, ~ ( . )2 sin' (} [ J1 Lds-=-- dt-asm 1 0d; +-- adt-(rl+a1 )d; +-dr1 +Ld0 2
, (I)

L L ~ 

where 
(2) 

Here a is the angular momentum per unit mass of the black holes, M is the black hole mass, Q is the black hole 

electric charge. r_ is the inner event hOflzon, and ". is the outer event horizon . The horizon radii are given by 

(3) 

In this work , we arc interested in scalar acitatlon to the Kerr-Newman black holes . The equation or motion takes 
the form 

{:' -U,m(r>}R,m(r) =0 (4) 

where the tortoise coordinate 1: is defined by 
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2 2r2 +a r' +a
dr. :0 ---dr:o dr (5)

,\ (r - r. )(r - r_) 

and th~ effl:ctivc potential U ,,,,(r) is givcn by 

~ r (r~)' 3r2~] ( ma )2 
U",,(r) = . I 2: A'm{{l(tJ) +-:--1 - 2 1 I - eJ--:-- . (6)2

(r +a ) L r +11 (r +11 ) r +0 

Here 
(7) 

where ( is the angular momentum quantum number, m is the aZimuthal quantum number, (tJ IS the energy of an 
emlt1ed particle , and If 'm is given by r4] 

U({2 _m 2 )
H :0 ---'--:;---'­

'm 4(2 _I . (8) 

We can ,,vrite 

(9) 

where 
a 

UJ= -,--, 
a- +r­

(10) 

and 

, ~ [ (r~)' 3r 
2 ~ 

~ 'm(r)::( 2 2) 2 A.,,,,(aw)+-Z-­l -( 2 2)2 
r +0 r +0 r +a 

] 
· (I I) 

RIGOROUS BOUNDS ON GREYBODY FACTORS 

Because of impossibility of finding exact solutions, we calculate the rigorous bounds on the greybody factors 
instead These bounds can be lound in [5]. They are applied to generic systems in [6-8] and to black hole greybody 
factors [9, 10] These bounds are given by [I I, 12] 

T 2 sech2 ([Bdr.) , (12) 

where 

9:: J[h'(r)f +[U,m(r)+h(r)2]1 . 
(13 )

2h(r) 

Using the triangle inequality, we obtain 

T'm 2 sech' [~lln h(ct:) 1+ ~ j 1U.",(r) + h(r)2 Idr.] ( 14)
2 h( -<:I) 2 _ 2h(r) 

Here, h(r) is any positive function . In this work, we choose Il( r) = (v - mUJ Therefore, 

T.", 2 scch 2 [~lln h(<X' ) 1+ f V,m dl:]. (15)
2 h( -ee) _ < 2(t} 

We are interested in the non-zero-angular-momentum modes (m,t 0 ). We shall divide the non-zero-angular­
momentum modes into two cases: negative-angular-momentum modes m < °and low-lying positive-angular­
momentum modes In E (O,{:)/ 0.,) . 

Negative-Angular-Momentum Modes 

In this case, we obtain 

(l')O{\6{;- 2 



where 

and 

(16) 

( 17) 

( 18) 

/ 

; 
o~ </~o~,-----------,\------------~\,--~ -----, 
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FIGURE I. The I>ounds on the greybodv factors as a functIon of (tJ with a = 2.Q =2J =2. m =-I and M =3 
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FIGURE 3. The bounds on the greybody factors as a function of Q with = l.a = 2.1: = 2.m = -I and .1,1 = 3(!J 

Fig 1 shows the rigorous bound on the greybody factors as a function of frequency . We can see thar-lhe bound 
increases with increasing Irequency until it reaches the maximum and after that it decreases with increasing 
frequency Fig. 2 shows the rigorous bound on the greybody factors as a function of angular momentum. The graph 
indicates that the bound decreases when the angular momentum lI1creases. Fig. 3 shows the rigorous bound on the 
greybody factors as a lunction of electric charge. The graph states that the bound decreases with increasing the 
electric charge. 

Low-Lying Positive-Angular-Momentum Modes 

In this case. we obtain '( Iarctan(a I r, ) ~. 
/I. aw) +'"I 'm a I,. JllJl 

sech 2 --In(I-(O.lliJl+ • ( 19)
2 2r, (0 - mO,)I 
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FlGL R[ 4. The bounds 011 the greybody factors as a function of IJJ wtth a = 0.2,Q = 0.21, { = 2.m =I and M =0.3 
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Fig. 4 shows the rigorous bound on the grey body factors as a function of fTequency Unlike the negative-angular­
momentum modes, we can see that the bound Increases With increasing frequency . Fig. 5 shows the rigorous bound 
on the greybody factors as a function of angular momentum. The graph indicates that the bound decreases when the 
angular momentum IIlcreascs. Fig 6 shows the rigorous bound on the greybody factors as a function of electric 
charge. The graph states that the bound decreases with increasing the electric charge. 

CONCLUSIONS 

In this paper, we have obtained the rigorous bounds on the grey body factors for spin zero Hawking radiation 
from the Kerr-Newman black holes. The results show that the bounds increase with increasing frequency but with 
decreasing angular momentum and electric charge. 
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Rigorous Bounds on Greybody Factors: Scalar Emission 
ofNegative Angular Momentum Modes from Myers-Perry 

Black Holes 

Tritos Ngampitipan, Petarpa Boonserm, Auttakit Chatrabhuti, and Matt Visser 

Abstract-When taking into account the quantum effects, a 
black hole can emit the so-called Hawking radiation. This 
Hawking radiation propagates in a curved spacetime due to the 
presence of a black hole. In this pa~r, the Myers-Perry black 
hole is considered, which is an uncharged, rotating black hole 
occurring in higher dimensions. Sc:alar Hawking radiation 
emitted from the Myers-Perry black hole is studied. The 
rigorous bounds on the grey body factors for massless scalar 
field of negative-angular-momentum modes are also derived. 

Index Termf-Greybody factor, hawking radiation, 
myers-perry black hole, rigorous bound. 

L INTRODUCTION 

The existence of black holes has been predicted by 
Einstein's general theory of relativity . The first solutions of 
the Einstein's field equation were discovered by Karl 
Schwarzschild. His solutions predicted the presence of 
Schwarzschild black holes, which are the uncharged, 
non-rotating black holes. The second type of black hole was 
obtained by solving the Einstein's field equation in 
conjunction with Maxwell's equation. This was done by Hans 
Reissner and Gunnar Nordstrom . Their solutions represented 
the Reissner- Nordstrom black holes, which are the charged, 
non-rotating black holes. The third set of solutions of the 
Einstein's field equation was discovered by Roy Kerr [I]. His 
solutions described the Kerr black holes, which arc the 
uncharged, rotating black holes. The Kerr solutions were 
general ized to higher dimensions by Myers and Perry [2], [3]. 
Their results led to the prediction ofMyers-Perry black holes, 
which are the uncharged, rotating black holes in higher 
dimensions . 

When studying the quantum effects of black holes, 
Stephen Hawking showed that black holes can emit thermal 
radiation which became known as Hawking radiation [4]. 
The curvature of spacetime due to the presence of a black 
hole acts as the gravitational potential barrier. The scattering 
of Hawking radiation from this potential can be viewed as 
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one-dimensional scattering problem in quantum mechanics 
The term 'greybody factor ' can be defined as the 
transmission probability . 

In this paper, the rigorous bounds on the greybody factors 
for massless scalar field of negative-angular -momentum 
modes emitted from a Myers-Perry black hole will be 
derived 

[I MYERS-PERRY SPACETIME 

The Myers-Perry spacetime can be described by the metric 
[2], [3], [5] 

ds2 L 
= -dt2+ -drz + LdOz + (r2 + a Z )sin2 Odtp2 

.1 

+ r~L (dt-asin2 Odtp)Z +r2 cos2 Odn~, (I) 

where 

Here dn~ is the metric on the unit n-sphere sn which is 

given by 

(3) 

The solutions of .1(r) = 0 provide the location of the 

black hole event horizons. In this paper, we focus on 
massless scalar field emitted from the Myers-Perry black hole 
The equation of motion of this scalar field can be described 
by the Klein-Gordon equation 

0p(F9 gP" ov<D) =0, (4) 

where 

F9 = (LsinO) x (rn cos" 0) x (D sinn-iO; J. (5) 

This Klein-Gordon equation governs how the scalar field 
<I> propagates in the Myers-Perry background. We use the 
separation of variables in this form 
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cD(t,r,B,rpA,·· "BJ 

(6) 

where 	 S(m(B)e,mQ> are the spheroidal harmonics and 

Yjn(BI,,,,,BJ are the hyper-spherical harmonics The 

spheroidal harmonics satisfy 

I 1 d [sinBcosnB~]-((i)aSinB---!!!--)21sinBcosn 
() d() dB SlOB 

j(j+n-l)+X (B)=O (7)}s
2 B I(m (m

COS . 

while the hyper-spherical harmonics satisfy 

where t:.. 
S" 

IS the LaplaCian. Then, the radial Teukolsky 

equation is obtained [6]-[8] 

(9) 

where the tortoise coordinate r. is defined by 

r2 +a2 

dr.=--dr 	 (10) 
t:..(r) 

The relationship between the tortoise coordinate and the 
ordinary coordinate is plotted as shown in Fig. I . 

-I ordiIlAI~' roordill.lf' I' 

-2 

Fig. I Tortoise coordinate as a function of ordmary coordinate 

Here the Teukolsky potential Ujlm(r) is given by [5] 

where 

( 12) 

This Teukolsky potential can be expressed In another form 
as 

( 13) 

where 

2
V (r)= t:..(r) [A +j(j+n-l)a +n(n-2)t:..(r) 

JIm 	 lem(2 2)2 2 4 2r +a r r 

2
+nt:..'(r) _ 3r t:..(r) + [rt:..(rJl] . (14) 

2r (r2+a 2f r2+a2 

The potential Vjimer) IS plotted as shown in Fig. 2 for five 

and six dimensions which correspond to n = I and n = 2, 

respectively . 
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Fig. 2. The polential V"m(r) for n = I and n = 2. 

III RIGOROUS BOUNDS ON GREYBODY FACTORS 

We can model the scattering of the massless scalar field 
from the Teukolsky potential as one-dimensional scattering 
problem in quantum mechanics . The term 'greybody factor' 
in black hole systems can be defined as the 'transmission 
probability' In general situations, finding exact greybody 
factors is difficult due to complicated potentials. Therefore, 
in this paper, some rigorous bounds will be placed on 
greybody factors , These bounds were first developed in [9] 
Their further developments can be found in [10]-[ 13] and 
their applIcations can be found in [14]-[J9] For the radial 
Teukolsky equation in (9), the rigorous bounds on the 
greybody factors are given by 

2[S'" li1'er·)ld '"f IUjtm(r.)+iiZ(r·)l d 1(15)T.{ ~ sech _ r. + _ r. ' 

I m -00 2h(r.) _ 2h(r.)
'X) 

for any positive functions her.) . In this paper, we choose 

h(r.) = her) = (i) - nw(r), ( 16) 
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where m < O. In this case, we obtain 

ii'(r.) = 2mar~(r} > 0 ( 17) 

(r2 +a2) 

Then, we obtain the first mtegral 

where 

( 19) 

and rH is the event horizon radius Since m- mD.H > 

her) > m , we have an mequality 

oo IUjim +h
2
(r)l 

dr.-
_ OOJ IVjlm Id 

r. < 
JOO VjCmd 

r. (20) 
J 
-<n 2h(r) ~ 2h(r) 2m-00 

Using (14), we can write 

Using ( 10), we can change the variable r. to r 

"' ~(r) [x +j(j+n-l)a
2JVj[m<odr.=~ OOJ 

2m . 2m (2 2)2 Jlm<O r2 
_ 00 r" r +a 

n(n-2)~(r) n~' (r)
+ +-­

4r2 2r 

_ 3r2~(r) +[r~(rn]r2+a2 dr . (22) 
(r2+a2)2 r2+a2 ~(r) 

The above equation can be simplified to 

""J Vj1m<od 
r.

2m 

Therefore, 

2 

=~ j(j+n-l)a"'J-1-[x
2 2 2 jlm<O + 2 m r +a r 

'II 

n(n - 2)~(r) n~' (r)
+ +-­

4r2 2r 


3r2~(r) [rMr)]' Jd 
- + r
(rZ +a2)2 r2 +a2 

(23) 

Tj 1 m<02: SeChZ [!ln(1-m/m.)+_1_lr 0]' (24) , 

where 

I n(2n-3) 
j (m <0 8= 

2n+ 1+ - ­( 2 

2 2mrH / ,m< 

. . 1 a2 

+ j () + n - ) + -4-(r--;:~'-+-a--:z'-) 

. . )r a - j() +n-l) + X 1m (am) -.l!..arctan­
/ a r 

H 

(25) 

Here the hypergeometric function 2FI(a, b, c, z) IS defined 
by 

"" (a) (b) zn
F (a b c z) = '\' n • (26)

21 I', ~ 
. =0 (C)n n! 

The bounds on the grey body factors are plotted as shown 
in Fig. 3. 
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Fig. J. The bounds on (he grey body factors for II = I and II = 2. 

In the limit a~O and n=j"=O the quantity I . 
, }f m<O 

reduces to 

(27) 

which is the result for the Schwarzschild black hole [ 14] 

IV. CONCLUSION 

In this paper, the rigorous bounds on the greybody factors 
for massless scalar field of negative-angular-momentum 
modes emitted from the Myers-Perry black hole have been 
established To obtain these bounds, the appropriate function 
h(r.) has been chosen . . The number of dimens ions of 
spacetime, the angular momentum of the black holes , and the 
mass of the black hole have been determined to have effects 
on these bounds. Note that for n =0, these bounds reduce to 
bounds for Kerr black holes. For outlook, we can choose 
other forms of h(r.) in order to derive better bounds . 
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Conservation of Flux in S uperradiance Phenomenon 

Petarp~ Boonserm, Tritos Ngampitipan, and Matt Visser 

Abstract-For a usual occurrence of wave scat1uing, the 
amplitude of the reflected wave is less than that of the incident 
wave because the incident wave loses energy to the reflective 
obstacle. However, for the so-called superradiance phenomenon, 
the amplitude of the reflected wave is more than that of the 
incident wave since the incident wave extracts energy from the 
reflective obstacle. In this paper, a simple toy model of 
superradiance is presented. The results show that for the case of 
superradiance, we derive a conservation of flux instead of the 
conservation of probability. 

Index Terms-Consen'ation, flux, probability, 
superradiance. ~ 

I. INTRODUCTION 

The phenomena of scattering can be described by the 
interaction of wave with a reflective physical obstacle. In a 
general situation, the incident wave loses some of its energy 
to the obstacle, resulting in the amplitude of the reflected 
wave being less than that of the incident wave. However, in 
some systems, the incident wave gains energy from the 
obstacle instead oflosing energy. Therefore, the amplitude of 
the reflected wave becomes greater than that of the Incident 
wave. This unusual phenomenon is called superradiance 
Matters of superradlance in literature can be found in 

[ 1]-[20] 
Despite a long scientific history, superradiance still 

generates some degree of confusion Part of the confusion 
comes from a lack of understanding of the differences 
between fluxes and probabilities In this paper, a simple toy 
model of superrad iance is presented to clarify the concept. 

II . SUPERRADIANCE 

In non-relativistic quantum mechanics, superradiance does 
not take place [21] To see this, consider the SchrOdinger 

equation 

Assuming the solution 
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(2) 

The Schrodinger equation becomes 

tz2 
-o~lj/(x) == [V(x) - w)ljI(x) (3)
2m 

On the other hand, in the relativistic regime we have the 
Klein-Gordon equatIOn 

l-(o, - im-(xW +a! - Vex)Jlj/(t,x) == 0 . (4) 

For a neutral scalar field, we assume the solution 

(5) 

The Klein-Gordon equation becomes 

o;lj/(X) = [V(x) - {w -m-(x )f]lj/(x) (6) 

In this case, superradiance can occur. We see that the term 

[w -m-(x)f is responsible for superradiance For a charged 

scalar field, we obtain 

where q is the charge of the scalar field The term 

[w-m-(x)-q<l>(X)]2 is also responsible for superradiance 

III. FLUXES IN SUPERRADIANCE PHENOMENON 

In ordinary phenomena of wave scattering, we are fami liar 
with the term 'probability' through both ' reflection 
probability' and 'transmission probability' . For a more 
general situation, including the case of superradiance, it is 
preferable to calculate the quantities in terms of fluxes rather 
than probabilities. The general conservation law can be 
described by 

F,.enected + Ftransmitted = 1- F dissipatcd . (8) 

In this paper, we are interested in cases of non-dissipation, 

where Fdissipated = O. The general cases, including dissipation, 

can be found in [21) In ordinary cases, jfthe transmitted flux 

is non-negative F.... ~ 0 , it can be reduced tonsmined 

transmission probability FlnnSmined == T Moreover, the 

reflected flux also reduces to reflection probability 
F = R . Therefore (8) becomes r• neeted 
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R+T=l (9) to 

This is the familiar conservation law of probabilities On (20) 
the other hand, in the case of superradiance, we have 

F"ansmin<d < 0 , It cannot he interpreted as the transmission Solving the equations, we obtain 
probability Thus, in any sItuation, we should work with 
quantities in terms of fluxes rather than probabilities k 

l+r=-=-(l-r) (21 )
k, 

IV. Toy MODEL FOR SUPERRADIANCE 
Rearranging it gives

Consider the Klein-Gordon equation in 1+ I dimensions 

r=_k,-k_ = _ (UJ-O)-(OHO)=+O . (22)l-(a, - ilU(X)/ + c2a~ - Vex)JIf/(t,x) = 0 ( 10) 
k+ +k_ (UJ-O)+(UJ+O) w 

Assuming the solution If/(t, x) = e-;wt If/(X) , we obtain Since the reflection amplitude IS normalization 
independent, the result is valid . The reflected flux is given by 

0
2 

Frefle<:t<d =1 r 1
2 
=-2 (23)

Now, we simplify the problem by letting V(x) ~ 0 and UJ 

taking 
However, the transmission amplitude depends on the 

( 12) normalization. For the relativistic Klein-Gordon equation, lU(X) = lliign(x) , 
the normalization factor is 

where 0 is a constant. Moreover, we set c =1 . Therefore, 
(I I) becomes (24 ) 

a;If/(X) = -[w - Osign(x)]21f/(X) (13) 

Therefore, the normalized solutions to (13) are given by 
The solutions to ( 13) are given by 

e1k x ik x - re- ­
+ for x<ofor x < 0 (14) fiIkJ .j2KI (25)If/(x) =for x> 0 teik,x 

for x>O
,J2IkJwhere r is the reflection amplitude, I is the transmission 

amplitude. and 
The continuity of the wave function leads to 

(15) 
l+r t 

Note that .j2KI- ftlk:T 
(26) 

( 16) The continuity of the derivative of the wave function leads 
to 

Thus, we obtain k k 
~21~-' (l-r)= ~21~, 1t · 

(27) 

( 17) 

Solving the equations, we obtain 

Assuming that wave moves from left to right and crosses 


l+r _ k_ l-rthe border at the origin, we have 
.j2KI- k, .j2KI ' (28) 

( 18) 
Rearranging it gives 

The continuity of the wave function leads to 
k, - k_ (UJ-O)-(w+Q) o 

r = ---- = --'---....;.....-=------=- +-. (29) 
l+r=t . ( 19) k+ + k_ (UJ-Q)+(UJ+Q) UJ 

The continuity of the derivative of the wave function leads Substituting in (26), we obtain 
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(27)t= ffEJ(l+ .0)=
Vlk~1 {U 

The reflected flux is given by 

(28) 

c=Jw-O[w+O]= ~ w+O w w 

Therefore, the transmitted flux is given by 

.02 

1t 12 = 1 - -2 ;?: 0 . 
{U 

(30) 

We see that 

Frefleeted + 1t 12 == 1 . (31 ) 

In this case, we can write 

F =It 12>0transmitted -' 

On the other hand, If 1{U 1< In I, we have 

(32) 

(33) 

The transmitted flux is given by 

.02 

(34)ItI2=--1 . 
(U2 

We see that 

(35) 

In this case, we can write 

(36)Ftransmined =-I t f ~ 0 . 

We summarize both the cases by 

.02 

Ftransmined =sign(k.kJltf=1--2 . (37) 
(J) 

Thus, we can write 

(38)Frefleeted + Ftransmitted = 1 . 

Using (17), this can be rewritten as 

1r 12 +sign(k.kJ 1t 12= 1. (39) 

Explicitly, this is not a conservation of probability, but 

rather, a conservation of flux 

Y CONCLUSION 

Superradiance is a phenomenon of scattering in which the 
amplitude of the reflected wave is more than that of the 
incident wave because the incident wave extracts energy 
from the reflective obstacle. In this paper, a simple toy model 
of superradiance has been presented In the case of 
superradiance, we have achieved the conservation of flux 
instead of the conservation of probability The concept of 
conservation of probability is only valid in the absence of 
superradiance So, in any situation (both with and without 
superradiance) we can write the conservation offlux 

Frefleeted + Ftransmined = 1 (40) 

ifthere is no dissipation. This can be rewritten as 

(41 ) 
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ABSTRACT 

From the quantum point of view, black holes are unstable and emit so­
called Hawking radiation. Specifically, the Myers-Perry black holes are 
generalized rotating Kerr black holes in higher-dimensions, popular in 
both Kaluza-Klein and braneworld scenarios, which might in principle 
be detected through their Hawking radiation . One specific black hole 
characteristic is the greybody factor, defined in terrns of the transmis­
sion probability of Hawking rarnation back-scattered from the black hole 
gravitational potential barrier. In this paper, some rigorous bounds on 
the grey body factor for spin-zero Hawking radiation emitted in the zero­
angular-momentum mode from the Myers-Perry black holes are calcu­
lated. This calculation serves as a templat~ for other angular momentum 
modes. 
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1. Introduction 

Classically anything and everything, even light, which enters a black hole 
cannot escape. As a consequence, no one can (directly) see the black hole. 
However from the quantum point of view, black holes are unstable and emit 
so-called Hawking radiation, see ref. (Hawking (1975» . When Hawking radia­
tion propagates in the black hole spacetime, it is modified by the curvature of 
spacetime resulting from that black hole. In particular, when Hawking radia­
tion is back scattered from the black hole gravitational potential barrier, only 
the transmitted radiation can be observed from spatial infinity. This modified 
Hawking radiation, therefore, can be thought of as greybody radiation. The 
quantity known as the greybody factor is defined in terms of the transmission 
probability. 

In this paper some rigorous bounds are calculated for the grey body factors 
for spin-zero Hawking radiation, emitted in the zero-angular-momentum mode 
from Myers-Perry black holes. 

2. Myers-Perry Black Holes 

The Myers-Perry black holes are the generalization of four-dimensional Kerr 
black holes to (4 + n) dimensions. The (4 + n)-dimensional Myers-Perry black 
holes can be described by the (4 + n)-dimensional Myers-Perry metric (Myers 
et al. (1986», (Emparan et aI. (2008» 

ds2 = -dt2+ ~ dr2+~de2+(T2+a2) sin2 edq?+ Tn~l~ (dt-asin2 ed4)2+r2 cos2 ()dfl;., 

(1) 
where 

(2) 

and dfl~ is the metric on n-sphere which is given by 

(3) 

Here Jl is a free parameter that determines the mass and angular momentum 
of the black hole. In particular, the mass and angular momentum of the black 
hole are defined by 

M - (n + 2)An+2 and J = ~MBH' (4)
BH - 1611"C Jl n + 2 
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where An+2 is the area of an (n + 2)-dimensional unit sphere which is given by 

271'(n+.3)/2 
(5)An+2 = q(n + 3)/2]' 

The event horizon is located at rH which can be found from ~(rH) = O. We 
are interested in spin zero (scalar field) Hawking radiation emitted from Myers­
Perry black holes. The equation of motion for scalar fields on the Myers-Perry 
black hole background takes the form ­

(6) 

By separation of variables, 

<P(t, r, B, </J,B 1, ... , On) = e-iwteim¢ Rjlm(r)Slm(B)Yjn(Bl ..... Bn), (7) 

the radial equation is given by (Boonserm et al. (2014b)) 

[:; - Ujlm(r)] Rj{m(r) = O. (8) 

Here r. is the tortoise coordinate given by 

r2 + n2 

dr. = ~dr. (9) 

This can explicitly be expressed as 

l
r r2 + a2 

r. = rH ~(r) dr ~ An In(r - rH) + B,,(r). (10) 

• The quantity Ujlrn (r) is the Teukolsky potential given by 

~(T) [ j(j + n - 1)a2 11(11 - 2)~(T) 1I~'(r) 
Aim + + + - ­(r2+a2)2 J r2 4r2 2r 

_ 3r2~(r) + (r~(r))'l- (w _~)2 (ll) 
(r2+a2)2 r2+a2 r2+a2 

Here AJim is the separation constant. In this work, we are interested in the 
zero-angular-momentum mode (m = 0). Therefore, the Teukolsky potential 
becomes 
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We can rewrite the Teukolsky potential as 

(13) 

where 

.0.(r) [, . j(j + n - 1)a2 n(n - 2).0.(r) 
2 2)2 /\J [, "' = O + 2 + 4 2 

( r: + a r r 

+ n.0.'(r) _ 3r2.0.(r) + (r.0.(r))'] (14) 
2r (r 2 +a2)2 r2+a2 . 

Figures 1 and 2 shows the potential Vjl ,m=o(r) in five (n = 1) and six (n = 2) 
dimensions. 

0 15 . 

01 , 

, 

J '" r 

,J 

'~II-----;--" ~: - ,. " ".
, -----:; ~~" ---;;-
Figure 1: The Myers-Perry potential fo r n = I. 

3. Rigorous Bounds on Greybody Factors 

In general, the exact greybody factors are impossible to obtain even for the 
Schwarzschild black hole, which is by far the Simplest case. Thus, it is of interest 
to develop new methods in calculating the grey body factors. One of them is to 
place some rigorous bounds on the grey body factors . The relevant bounds were 
first developed in Visser (1999). They were further developed in Boonserm et 
al. (2008a), Boonserm et al. (2009), Boonserm (2009) , Boonserm et al. (2010a) 
and Boonserm et aL (20lOb). These bounds have been specifically applied to 
black hole systems (Boonserm et al. (2008b), Ngampitipan et al. (2013a), 
Ngampitipan et aL (2013b) , Boonserm et al. (2013) and Boonserm et aI. 
(2014a)) . General and robust bounds on the greybody factors are given by 

Malaysian Journal of Mathematical Sciences 5 
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" 

I• o. 

" -... 

Figure 2: The Myers-Perry potential for n = 2. 

(Visser (1999), Boonserm et al. (2008a) and Boonserm et al. (2009)) 

(15)Tjtm 2: sech2 (!: '!9dr.) , 
where 

(16) 


and h(r.) is any positive function. We choose h(r.) = w and consider the 
m = 0 case. Then, 

> 2 [~1°O I_l~ {A . j(j + n - 1)a
2 

n(n - 2)~(r)T sech 2 2? ji.m=O + ') + 4 2 
W rH r + a- r- r 

nS(r) 3r2~(r) (r~(r)'}ldl+--- + r (17)
2r (r2 + a2)2 r2 + a2 . 

We can show that the argument of the absolute value is positive for r > rH. 

Thus, we can write 

T > 2 [1 loo 1 {A j(j+n-1)a2 n(n-2)~(r)
sech -2 - 2- -2 jf,m=O + 2 + 4 2

w.rHr+a r r 

n~'(r) 3r2~(r) (r~(r))'} d 1+--- + r (18) 

1

2r (1'2 + a2)2 T2 + a2 . 

Performing the first integral, we obtain 

00 Ajf,m=O d Aji,m=O t 1'100 A]l m=O a 
2 2 r = arc an- , arctan- (19) 

TH r + a a a rH a TH 
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By integrating by parts , we can show that 

2 2('X) _ 1_ [_ 3r 6(r) + (r6(r))'] dr = J OG r il(r ) dr (20)
J'H r2+a2 (r2+a2)2 r2 +a2 
rH (r2+a2)3 ' 


This integral can be explicitly performed and gives 

n n(n-2)(r~+a2 ) (n+2 n+4 a2 
) 

8rH - 8(n + 2)r~ 2 
F, 1, -2- ' - 2- ' - r~ 

2a 1 a 
- (2 2)+-arctiin-, (21)

4rH r H + a 2a rH 
'L 

Here 2F, (.o I' Z2 , .03, 24) is the hypergeometric function, The j-dependent inte­
gral yields 

1
00 j(j + n - 1)a2 
_ j(j + n - 1) _ j(j + n -- 1) . , ~ 


2 (2 2) dr - arctan , (22) 

'H r r + a rH a rH 


Calculating the n-dependent integral, we obtain 

1 2 2rOO _ 1 _ [n(n - 2)6(r) + n6 (r)] dr n
2 (r~ + a) (n + 2 n+ 4 a ) 

JrH r2 + a 2 4r2 2r 4{n + 2)r~ 2 
F, 1, -2-' -2-' - r~ 

n(n - 2) n Q+ + - arctan - , (23)
4TH a rH 

Collecting all the results, we obtain 

1 
Tj l, m=o 2': sech

2 12wTH Ij i ,m=o I, (24) 

Here 

n(2n - 3) '(' ) n (r~ + a
2

) F ( n + 2 n + 4 a
2 

)
8 + J J + n - 1 + 8r~ 2 ' 1, - 2- ' -2- ' - r~ 

2 
a [2n + 1 ] rH a+ (2 2) + - - - j(j + 'f! - 1) + >'ji ,m=O - arctan -(25)

4 + a 2 a T'Hr H 

In the limit a -t 0, n = 0 and j = 0, we obtain 

2 
, ,[ a (1 ) rH a ] 1hm 1)'=u i m=U = hm - (2 2) + -2 + >')'=U l m = O - arctan - == -2+>'J'=0 l m=O,
a~O ' , 0 ..... 0 4 r

H 
+ a ' , a , TH ' , 

(26) 
Figures 3 and 4 show the bounds on the grey body factors as a function of w 
in five (n = 1) and six (n = 2) dimensions, respectively, Figures 5 and 6 show 
the bounds on the grey body factors as a function of the black hole angular 
momentum in five (n. = 1) and six (n = 2) dimensions, respectively. 
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Figure 3: The bounds on the grey body factors as a function of w for n = 1. 

4. Conclusion 

In this paper, we have obtained rigorous bounds on the grey body factors 
for spin-zero Hawking radiation emitted in the zero-angulaI-momentum mode 
from the Myers-Perry black holes. Qualitatively, the bounds seem to decrease 
in higher dimensions. In five dimensions corresponding to n = 1, the bounds 
decrease when increasing the black hole angular momentum. In six dimensions 
corresponding to n = 2, the bounds increase to reach the maximum and staIt 
to decrease when increasing the black hole angulaI momentum. 
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Figure 6: The bounds on the greybody factors as a function of the black hole angular momentum 
for n = 2. 
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Abstract 

Quantum mechanics is the theory that describes dynamics of small objects such as atom and 

molecule. In this paper, Schrodinger's wave mechanics, a part of quantum mechanics, is studied. The central 

equation of this wave mechanics is the Schrodinger's equation. Solving this equation, quantum system 

dynamics can be described. In this work, the quantum scattering problem in one dimension is studied. Wave 

functions are obtained by exactly solving the Schrodinger's equation in case of the delta function potential 

and the rectangular potential. The transmission and reflection probabilities are calculated from the obtained 

wave functions. Lower bounds on the transmission probabilities are presented. Finally, the lower bounds on 

the transmission probabilities are applied to the delta function potential and the rectangular potential 

problems The results show that the exact transmission probabilities satisfy the lower bounds on the 

transmission probabilities. 
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A~Ul~L'lilJllU 1 tJUA. f'1. 1925 Y1'l~5~L;lllJLV~~(1fll'iV1~(111~L'lilnuuU1fi(ii'IJ1l~U1l1mvliitlf11L{j(ii~U V1'l~5{fL~vni1nflf11iUl{ 
f11ilU~lJ VlllJU'i::-mf'11C1(ii1 i'i~11~'iln~1\J'1Jll~n(1f'11C1(ii1A111\Jvi'lJllClll~uU1V11~ U\J,)V11~U'im~ vnilnflflla~{UJYI~n'li L(iiU 

~ Q 

L1tl1L\J1l1 lm'lluLu1mutJ011(hdj~naI'l1C1(Jl1LlJV1~nc6ffillUfll'I 1925 ;~l~uY1UmlJ1ClJV11-3WaI'l1C1(;l1L';'U ~'LL'vIU-3'IJtl~ 
1111f1lfl w<1mu llJLlJ'U(;)lJ LiJu;u l'U~tJ'lJll~L~V1~nc6 vill'v11vlUqJ'vI1Pi11ilLfl'U'ii-3"'1lJ1'i(lil5U1[JY1(l1'l1"'(Jl1'IJ1l~'i::UU'lJU1(iiL~n '1 

lvl LL 'U1V11~~Cltl~L~UnilnMla,df\~u L(iiULll1l11'U 'UL 'ill~~L~1l1LUtJ011f-hL{j~n(11'11C1(Jl1A~UmUUflf'1 1926 ~~1I~lJ1V1'l~5 
{flJ1~lmLlJ1fi(ii'1Jll~l(iillU'illmi Vl'l~5-d'ilGU1UW(1f'11C1(Jl1'lJll~il'4ml'l~ii'IJ'U1(iiL~n '1 vl,)Ufl~llllJ~tJ'1Jll~CllJ()1'if\~tJ CllJ()1~{f 

L~Vnl1alJ nWUL 'H) ti·n~ ili~-3LtJU"'lJ()1,)lii-31111~U~ ri1(J111U1JtJ~CllJn1'){f~::111rilY1~~~1'U'IJ11-311'4f1lA LL(1::Yl~ni'UfI~'U'Ull~~::UU 
1lJUY1. f'1 . 1927 LL~n u1l1u 1~,j'LClUlll1 (h~~CltJ~'lJtJ~'!JlJl(ii1Jil~Yl-3niuA~'U~-3LtJUril(J111U'lJll~CI~()1'i"L'iil~-3L~il1~::LLCI(ii~ii~ 



1~ VCl1U mH'\1C1~-lfllvU~lJLuUVl~~5mitl5U1vtl'llnQnmU'Uv~V~mPl'Uu1~L~n~lJv~111L.;\Utill U(;)lLtl~l L'1iU 

u~mflltJ'j::~ullJLi'l~i'l"'~vv::(;)vlJ L uUlllu ni'lf'11C1(;)1P1ltlU~lJLUU'i1n~lU'Uu~Vj~n~'UU~'UU~LL~~ Li'lL'Dtl1 Cl1'lM~~IU1 ~IU1 

~~Vl~ Yii'llC1lJl Utlnll1 nil' nl'lf'11C1(;)-lPll tlU~lJEJ~Luu'nn~lU'Utl~Lflij LL~::;h'jYl (Jl~ltJ 

U'l!W1nl'ln'l:: L~~YllJflltlU~lJlu 1 iJ~LtJUnl)Ul11lJnl'j'UL'itl~~L~tl1lJ1tl5U1tJU'l!"'lnl'jm::L~Jlu 1 lj~ nl'l 

U'i:: ~ n(l11-iiCllJnl'l't! L)u~~L~tl{L 'tiUil''tiIV 1 ~ClllJ1'l(lLtl~tJULVitJUfIlllJLL(I1 nl1il~'i::vdlJU'iln!)nl'iru LL UU~~L~lJLLI'l::LLUUfIluU~lJ 

1~ U'l!",l nl'l m:: L~JLn~~UL~tl~lin'1l'Uv~u~i11P1 (n~lJ'lJu~tl~mfl~ijlJll'l LLI'l::f111lJLh vilnu) ~~'l1nU~Llru",~~ltlu~5n 
U~L I ru",~~~ijVilimU~nU.1 1~nu1~v~ fil'\'ili~~ lUI'in uJUUtlVn':hfilVi~mU'lllJ'Uv~Uvil'l:: tl~mfl 1 UU'llnQnl'iruLL tJtJ~JL~lJ 
vl1mflv::YI::~'.huvrJ"'lJ~ 111ijv~mfl~11~CI::';;tlUn~UlJ1Li'lV mhJhn(l11lJ lwJ'lln!)nl'lruLLUUflltlU~lJ v::ijtl'4fl1f1U1J~lU 
CI:: ';;tlun~ulJl1~ ()~LLiillYi~~~lU'illJ'Uu~u~mPlL"'~lJuv::lJ1 nnl1Vi~~~lU I'l n Un(l11lJ lUYll~(I1 'i ~nUillJ 01 ~Iin'lf'U v~v'4i11 PI 

~~vlnu~Llru",~~~filYiIimu~nuuvvnll fi lYi Ii~"ltJ'illJ1tl U~5nu~LI ru",~~~ fi1VilimuI'lnUlJ1 nnl1filYiIimU'illJ tl'4111P1 

'il::I1::';;uunliuvr~"'lJV11umru'Uv~tl'ilnQf)1'iruLLUU~~L~lJ tl~l"1 'lR(;lllJ 1 UU'ilnQn1'iruLLUUfIluU~lJ u'4mflul~~lUv::YI::~ 
~lU1til U'ilnQf)1'lruL'!iuil'L~vnllU'iln!lf)1'lru'qV1~llJ~~ (LYi't!'ivli11, 2556) nl'li'in~1",1vnl'iVhfllllJL,]1hU'iln!lnl'lruYl1~ 
fIl vU~lJlu~n~ru::L '!iuil' ~IU LL~ILLI1i LM VIi tl ~nunl'lA1ulrufi1f1l1lJti1 'il:: L UU'lJ u~nl'l~~ ~lULLi'l::Alf1l1lJU1 'il:: LtJu'Utl~nl'i 

CI::';;vuvr~~u 
1UU'l!",lnl'i m:: L~~YI1~fIl tlU~lJlUI jjGj Yi~~~lu~nuv::ijfilLL(I1n(Jh~nu1tJ1tJLL.1i'l::'l::UU hw1UU1~'l::UU Yi~~~lU 

I'l n eJij 'lULLuuhjiu-nUU ClllJl'i(lfilulru"'lt.1mil~ULLliu(;l'i ~'Uv"fIl1lJ,i1'il::L uu'Utl "nl'l~"~lUM u~1~l'in(l11lJ 1UU1~'i::UU, 
Vi 1i~l'lnujj~tlLLuuiu-nmJlJln'ilUf)'i:: vi'~lliClllJ1'i O",lt.1mili'lVLL11U(;l'i ~'lJv~ fIl1lJU1 'il:: L tJu'Uv~nl'i ~~,.hu1~ lun'lruL '!iuil' tll'il 

Illtl~"nrhlJltlUL~~~lLi'l'U"'1ufi1lJluULLuutl'l::lJlru lUn'lruvlliJlllv"nl'ifll1lJLLliUEhL~~~ILi'l'U Visser (J 999) lvlU1LClUvnl'i",1 

'UtlUL'U(;l~1~'Utl~fIl1lJU1'il::LtJu'Utl"nl'i~~~lU1Ui1'l!"'lnl'in'l::L~~Yll~fIltlU~lJlu 1 lj~ i5nl'Sil'v::'!ilu1 Un1'ililf111lJL ih1 v 

'i::uulu L~~f1rui11Yi. Hi luUYlfI11lJil' 'il::uli5nl'S~~mhllJ1U'i:: vf)(;l1inui1ru"'lYiIi~~lul'inuLLuuYl~r'iiuLVli'l~lLLi'l::YiIi~~lU. ~ 

2. f)1'jVllV1"niufl~uluilCYVll 1 ii~ 

lUUYlfIlllJil' L'l1C1uhi'if)~1f)of'11C1(111fl~U'lJv~'!jL'lv~~L"tl-l YioPl1C1(111'Uu~u'4mflViij'Uul~L~f) 'l 111lJ1'iOv5U1V1~ 

vlIVCllJnl'S'tfL'lu~"L"tl-l 

d 2/i 2 (x) 
-- If/ 2 + V(X)If/(X) = EIf/(x) (21) 

2m dx 

lvw~ If/(x) fivYl~r'iiuPI~u V(x) fivYi~muf'inu E fivYiIi~~lU'lllJ'Uv~v~mPl LLi'l:: m fitllJ1i'l'Uv~v~mf'l 'r4vULL'lnvGU1U 

Y'l1i~~lUvi'lu'Uv~v~mPl y.rilu~l1v~vlhJ1VYi~~~luf'inu LL~::'r4vuViCl1lJv5U1UY'lIi~nU'lllJ'lJv~v~mfl L'l1C11lJ1'HlLiiuUCllJnl'l 

't!L'jv~~L~vfl"'lJ1~~~il' (LVi't!'iv1m, 2556) 

(22) 

lunl'lLLnCllJf)1'lL~v"'lYl" r'iiUfl~U L'mil L UUIll tl~Y1'llufi1'(jlimu~f) eJ 1UUYlfIl1lJmvlL~vni'in~l'W~~~lU~nuLLuuYl"Mu 

L~oIII1LLo::Yi 1i~~lUI'lf)ULL UU~L"'~VlJ~lJilln 

2.1 YHi"nUAnVLLUtJV1.:JniuLIi\~~l 



Vex) = m,(x) (23) 

t~l.J~ a ~t)f'ilF1~~\Jlnm1:; 5(x) ~t)Y1~n-u\JLmwll;~ul.JllJl~l.J 

c5(X)={oo L~t) 
o Llit) 

X-:f-O 

x=O 
(24) 

6(x) 

x 

W'iJl'H\Jln'iru E > 0 L'ilijullJmlJlruj;h~ '1 ~~d 
2 2mE ma 

k = -11-2- Un:; ko - h2 (25) 

d2f11(x) 2m 
----'-dx--:-2 "":'" + -,,-2 [E - ac5(x)]fII(x) = 0 (26) 

(27) 

v 

~l~t)\J~a~~lJnl'i~~a 

'III(X)=Aella+Be- '1cx Liia x<O 
fII(x) = lla (28){ '112 (x) = Ce Liia x > 0 

Vl~niuF1~1.Ji'iF111lJ~m~u~~ x =0 ~~J1.J fill (0) = 1f12 (0) liufia 

A+B=C (29) 

L~a~'iJlnY1Ii'~~l1.J~mJi'i~lLtJ1.Jmr1.J~~ x = 0 ~~J1.Ju~n1.J6~u~Yl~ni1.Jf'l~1.J~~'W~mila~~~~d li1.J~u 

(2.10)d :X)j,=o' -d :X)!,=o_ =c 
1~1.J~ Cl' 0 L'il~llJl'iml1f;' Chn~Un1'iL~U1.JijlJn1'i (26) hllj~~d 



(211) 

'd 2 
()' ,f ~2X dx + felj/(x)dx = f2koo(x)lf/(x)dx (212) 

- I -I 

(213) 

d~X)lx:o. - d~X)lx=o =2kof//(O) (214) 

LLV1U~lJn1'j (28) ,,~1U~lJn1'j (214) ~::1~ 

ike -ikA + ikB =2ko(A + B) (215) 

L''ili'lllJl'imLni'llJn1'j (29) ml:;~lJn1'j (215) L~ul~f'il B u,,:; C 1u~tJ'Uu~ A 

kA ikA
B=_o_ LL":; C=-­ (216)

ik - ko ik -ko 

rn llJ'lJ1~:; LtJu'U iN nl'il'1~tilULL":: n1'i~::Y1vUiif'il"~~ 

(2 .1 ?) 

e e
T = u,,:; R = 0 (218)

k 2 +e k 2+k2o 0 

"(lii'V'l5~LiJultJvnlJn!ltl\~fn~rnllJtil~:;ltJu~nal'Ml1 T + R = I 
2.2 l'/i;I~,n'lJAnULLUU~L'H~V1J1pHl1n 

V'lii'~~lul'i'nvLLUU~L'vI~ tJlJlJlJ\nnii'iuu\J\J"~~. ~ 

Vo ,liv IX IS, a 
Vex) = 0 (219){ ,lit) IX I> a 



• • 

V(x) 

----~Or_------~--------~O~--. X 
-a a 

~\l l)ruln'iru E> Vo > 0 i)liJEJ11J1.HlJIruQjl~ 'l ~~d 

k l __ 2mE 2 2m(E - Vo) 2 2mVo ' 2 
tl 2 q = tl 2 iin~ ko =~ =k- - q (220) 

(221) 

(222) 

(223) 

~ 

rl1(ii utJ'lJ v~ (\1J n1 'i il1aliifiv 

Aetla + Be-thlfIt(X) = Li:iv x <-a 

IfI(X) = 1f12(X) = Ce,qx + De-up LiJv -a ~ x ~ a (224) 
{ 

IfIJ(x) = Ee'kx ii:iu x > a 

w~n-a\JI'l~1.Jjjflll1Jvim~u~~ x =-a ~~,ru IfIt ( -a) =1f12(-a) ,rufiu 

Ae-ika + Be,ka =Ce-;qa + Deiqa 
(225) 

w~n-u1.JI'l~1.J£J~iiml1J~m~v~~ x =a ~-l,ru 1f12(a) =1f13(a) ,rufiu 

Eeika =Ceiqa + De-iqa (2 .26) 

L~v~'iI1n'(j~~-lluf'i'mJiifhBU(ii~ ~~,ruU'1~\Jlj'Uu-lW'lf)-UUf'1~ui:iml1Jvim~v~Yi~(;)L...,cildi'tiw1u ~ x =-a ~~1v) 

A -,ka B ika - q C -tqa q D iqae - e -- e -- e (227)
k k 

Eeika = i Ceiqa _ 9... De-,qa (228)
k k 



(229) 

(230) 

c.J(1~'\15ildJuhJvmJn!)tl~-rn~f111lJtil'il~d'Ju~n~111l11 T + R = I 
ii'l\-1-r'U'\1~~~ lUf'1 n u~lhtJ LL 'U'U~i'UimJlJ1n~u fl1'l LLn(1lJfl1'lmc.J(1L!l(1VLLlJU(Jl 'l ~tll'illlJi11lJl'lmNvi' ~J~tlJ tll~[J

v 

LY1f1Uflfl1'ltJ'l~lJlrulJ1'lil[J1Ufl1'l\-11rilf1l1lJUl'il~Luu'tm-ln1'l~J~lUU(1~fl1'l(1~oXtlU LWll'ltllfl1 (2556) lvi'ulL(1um YlflUflfl1'l 

tJ'l~lJlrufilLL'U'UV)'ULU(1~LflUlJl'lil(J1\Jfl1'llnfi1L''''~lJu1ufl'lru~')'j~m\JPlnuijfhlJlnnll'\1~mu'nlJ (V(x) > E) 114 

'UVlfllllJd'il~U1La\Jtlii n LVI f1Ufl\-1~-l~-l'!htllUfl1'l fil\JlrufllllJU1\1~L UU'!Jtl-lfl1 'l~-lth\JLLn~ fl1'm~oXtl\J1 Un'l ru~'\1~-l J1U'lllJiiril 

lJlnnl1'\1~mUPlnu (E > V(x») t1'ufitlnl'j\-11'lJtl'UL'lJ(Jl~lJ'!Jtl-lfllllJU1\1:auU'!Jtl-lfl1'l~-lthu 

3. fl1'l\-11'!J tJ'U L'!J til <i1 'l'!J tJ'l 1'1111.1\l1 \l:a\)U'!J tJ'l nl 'j~'l r-hu 

1uoXl-umj' LU\Jfl1'l\hL(1\Jmdtl\-11~lU""~~'lJtl-l'UYlfllllJ (Visser, 1999; Boonserm and Visser, 2008; Boonserm, 

2009) ~~L~(Jln'Ufl1'i\-11'!Jtl'UL'lJtIl~1-l'lJtl~fIl1lJ\l1il~LU1J'lJtl-lfl1'i~~~l\J Yi\ll'irul(1lJfl1'i'lJL'itl~~L~tl'i1'IJ 1 jj~ 
2 

d lf1(x) +e(X)If/(X) =0 (3J) 
dx1 

2 2m
k (x)=t1[E-V(x)] (32) 

LL":: V(x) fitl'\1~-l-ll'IJf'1nU~~L-ul~rilf1-l~L~tl x iirilLu\J'Ulnm1\J!1l""~tl"'Utl..ru~ 
V(x~±oo)~V_ (33) 

Liitl X~ -00 

(34) 

k = J2m(E - V±oo) 
(35);:." Ii 

fIl1lJUl il~ LZI 'IJ'!J tl~ fl1'la::oXtl'IJLL"~ fl1'i ~~c,h'IJiiri1v)-liiFltl 



(36) 

1~[JHn!lfl1'iCl~~mIFn1lJti1v~\tJu (T + R = I) v~hl 
Ia 12 - I.0 12 = I (3.7) 

~lIiw,.,ti~l~ ') vtllJl'1i'i~[J~Clu\J1ll \'i1rllJlJ~fi1I1ltltJlu~tl 
e"p( ~) e-'QJ(X) 

If/(x)=a(x) ~+b(x) ~ (38) 
'\Irp'(x) \jrp'(x) 

1~[J~ rp'(x) i= 0 l\o~ rp(x) \tJ\J~WIUv~~ a(x) \lo~ b(x) \UU~11.J1Ul;U~iClU fi1I1ltltJd~Cl~~\'li1~fi1I1ltltJ1UrllJfI1'i (34) 

lnCl x iifi1luutJlf)ClUUIllVl~ClotJClU\J~ t7ufitl 

rp'(x ~:bx:» ~ kj;oo a(x ~ -(0) ~ a a(x ~ co) ~ I b(x ~ -(0) ~.O b(.x ~ co) ~ 0 (39) 

11.Jvi11.JCl~\~[Jlnu tlU~\J~'UCl~Y1~n-U\.Jf)~UlurllJfI1'i (38) ~Cl~riL-U1~tlU~U6'!Jtl.JY1~MUf)~1.Jl1.JrllJfI1'i (34) LfiCl x iifi1LuutJln 
, 'V ", 

d [ a(x) ] iQJ(x) d [ b(x) ] - ,,,,(x) _ 0- e +- e- (310) 
dx Jrp'(x) d.x Jrp'(x) 

v1~JuCl~~1.J6'!Jtl~Vl~n-nuf)~1.Jl1.JrllJf)1'j (38) jjrhv1~~ 

d~x) = iJrp'(x) [a(x)ei"'(X) -b(x)e-'QJ(~)J (311) 

da(x) = _1_[rp"(x)b(x)e-2i,,(X) +i {k2 (x) - tp'(X)2} {a(x) +b(x)e-2'QI(X)}] 

dx 2rp'(x) 


(313) 
db(x) = _I_[rp"(x)a(x)e2i 

Q/(X) _; {e (x) - tp'(X)2}{b(x)+ a(x)e2'Q/(X)}] 

dx 2rp'(x) 


dla(x)l= 1 [a'(X)da(X)+a(x)da'(X)] (3.14) 
dx 21 a( x) I dx dx 

,l1mllJfI1'i (313) v~1v1 

d Ia(x) I 1 -~-[rp.(x) {a' (x)b(x)e-2 
f(P(X) +a(x)b' (x)e2iQl(X)} 

dx 21 a(x) 12rp (x) (3 .15) 

+i {k2 (x) ~ rp'(X)2} {a' (x )b(x )e-2i 
"'(x) +a(x)b' (X)e2if'(X)}] 

= 



d la(x)1 = I ,1 Re([rp"(X)+i{e(X)-m,(x)2}]a'(x)b(x)e-2;'P(X')
dx 2Ia(x)12rp(x) 't' 

~1n'il~lJnl'j~U~l1Jl""~ tJ1J';l...,~u1il1.rl1Jl~~.v'il1.J1(i) 1 

Re(AB) ~ IA II B I 

d Ia(x) IS; 9(x) Ib(x) I 
dx 

[<p~x)f +[k 2(x)-{ql(x)}2J
9(x) - ---'-----------=­

21<p'(x)1 

L"ilUU11JVl~n'l1lJ1""lJ;~ii~lU1m~1Jvvl~;f hex) == Irp'(x) I vl~J1J 

[h'(X)]2 +[k2(X) _h2(X)J 
9(x) = ---'----------=­

2h(x) 

dla(x)1 S;9(x)~a2(x)-1 
dx 

XI 

[COSh-I Ia(:c) II: S; f9(x)dx 
X, 

., 

COSh-I Ia IS; f 9(x)dx 

n sech'[I9(x)dx1 

(316) 

(317) 

(318) 

(319) 

(320) 

(321) 

(322) 

(3.23) 

(324) 

(325) 

(326) 

ljuVif1f"~ltJ'U11iiv'Uu~u"1Jm"i (326) fiv~1~1~~~LiJtJlt.J1~'Uu~~lfl111JUlv:atJ1J'Uv~f11'j~~~ltJ vl~JlJv"1Jn1"i;f~~h1~1 


( . 
~ 



4. m'itl'i~~n(l)1~LYlAilA1lJn''i''',Yl'HlilJA~lJ1lJYla'''''tJAmhLuu\ii1'' '1 

4.1 	Yla,,·ntJAnrJLLU\J'w.JniULVlft9i, 

~1 n il ~lJ nl~ (3 26) 'UvUL'tlVl ~ 1~'Uv~Pl11lJUI~~Luu'U il~ n"ci ~t.hlJi11".,-ruwa~~ lU~nULLuuYl~ n-o\J LVl nlii1iifi1 

(41) 

L~iln h(x) = k ~~,f\J 

>: >sech' [ 1J[-2~:(X)]' ill]=sech' [1 H~:(X) Iill]=sech' [1 k,~(X) ill]=sech' [~ ] 

(42) 

L~mll~nLllnmLli\JVl~~ffiv1\Jln~lJfm (2.17) lJlLmVUlVlvunU'UilUl'UVI~,~1uil~lJn1'l (42) d lv1t.JnaYi51ii'~u~Vl~lu~tlvi 3 

0.• 
0.7 

0.6 

0.5 

T 0.4 

0.3 

0.2 

0.1 ......,..~,.............,......-rr-.......,--.-,.,.-.-----r--.,..., 

0.6 0.8 1 1.2 1.4 1.6 1.8 2 

k 
exadT 

- bOInIDgT 

~tI~ 3 n 'l1~ LL~Vl~nl'llmVUlVlVUm1l.JU1\J~lUlJ1fiN n1'l"'~C.hU~lUlJCJnlllnVLLlilJ(I)'j ~ nu'U tJUl'lJ(I)~'~llJmru,"a~·m..l~nUllUU 

Yl~n-olJlVln~' 

n'j1yjffiv1u~Vl~11CJmilnVLlliU(ll'S" (217) iiR11J1nni1f'i1'lJtJUL'U(I)~1"~tI"i1n!l1uil~l.Jn1"i (4.2) tTlJfiuil~l.Jm'i (3.26) LUlJv~" 

uunvlnd "itl~ 3 lv1ll~Vl"11 1un"iru'lJu~CJmil(lvLUiu(I)"i" m1l.J~l.J~U5"i~",11~mll.J,hv~lUlJ'lJu~m"iri.:u.hlJlln~filYia",nU 
~ 

'lJ u~u\1J11f1L ",iiilununu llJm ru1Ju"fi,'U ilUl1J(Il~'" tTl..Iflu m llJU1v~ ltJl..I'!Jil~n1"iri~c.huiif'illJ1n;fl..luJul'la~~ll..1'Uu~il\1i11f1jj 
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