ผลกระทบของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินต่อน้ำท่าบริเวณลุ่มน้ำยมระหว่างปี พ.ศ. 2531-2552 โดยใช้แบบจำลองอุทกวิทยา SWAT

นางสาวสุภัทรา กิติชูชัยฤทธิ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาโลกศาสตร์ ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2555 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

IMPACTS OF LAND USE CHANGES ON RIVER RUNOFF IN YOM BASIN DURING 1988-2009 USING SWAT HYDROLOGIC MODEL

Ms.Supattra Kitichuchairit

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Earth Sciences Department of Geology Faculty of Science Chulalongkorn University Academic Year 2012 Copyright of Chulalongkorn University

Thesis Title	IMPACTS OF LAND USE CHANGES ON RIVER RUNOFF IN
	YOM BASIN DURING 1988-2009 USING SWAT HYDROLOGIC
	MODEL
Ву	Ms. Supattra Kitichuchairit
Field of Study	Earth Sciences
Thesis Advisor	Assistant Professor Sombat Yumuang, Ph.D.
Thesis Co- advisor	Assistant Professor Srilert Chotpantarat, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

..... Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr. rer. nat.)

THESIS COMMITTEE

..... Chairman

(Associate professor Montri Choowong, Ph.D.)

...... Thesis Advisor

(Assistant Professor Sombat Yumuang, Ph.D.)

...... Thesis Co- advisor

(Assistant Professor Srilert Chotpantarat, Ph.D.)

..... External Examiner

(Assistant Professor Sunya Sarapirome, Ph.D.)

สุภัทรา กิติฐชยฤทธิ์: ผลกระทบของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินต่อน้ำท่าบริเวณลุ่มน้ำยมระหว่าง ปี พ.ศ. 2531-2552 โดยใช้แบบจำลองอุทกวิทยา SWAT .(IMPACTS OF LAND USE CHANGES ON RIVER RUNOFF IN YOM BASIN DURING 1988-2009 USING SWAT HYDROLOGIC MODEL) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.สมบัติ อยู่เมือง, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ.ดร. ศรีเลิศ โชติพันธ-รัตน์, 198 หน้า.

พื้นที่ลุ่มน้ำยม เป็นพื้นที่ลุ่มน้ำที่มีขนาดใหญ่ลุ่มน้ำหนึ่ง ของประเทศไทย ลุ่มน้ำยมประสบปัญหาภัยแล้งอยู่ บ่อยครั้ง เนื่องจากไม่มีแหล่งเก็บน้ำขนาดใหญ่ในบริเวณลุ่มน้ำ อีกทั้งมีการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน จากป่า ไม้ที่อุดมสมบูรณ์ในอดีตเป็นพื้นที่เกษตรกรรมและซุมชนอยู่อาศัยมากขึ้น การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินนี้ ส่งผลกระทบต่อระบบทางอุทกวิทยาโดยการเปลี่ยนแปลงองค์ประกอบของระบบอุทกวิทยา เช่น การซึม การระเหย เป็นสาเหตุให้ส่งผลกระทบต่อปริมาณน้ำท่าโดยรวมในพื้นที่ลุ่มน้ำ

ในการวิจัยนี้ได้ศึกษาผลกระทบของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินต่อน้ำท่าในลุ่มน้ำยม ในช่วงเวลา 22 ปี โดยประยุกต์ใช้เทคโนโลยีโทรสัมผัสร่วมกับระบบสารสนเทศภูมิศาสตร์เพื่อวิเคราะห์การเปลี่ยนแปลงการใช้ ประโยชน์ที่ดินในเชิงพื้นที่ และใช้แบบจำลองทางอุทกวิทยา SWAT ในการศึกษาปริมาณน้ำท่าจากการเปลี่ยนแปลง การใช้ประโยชน์ที่ดินดังกล่าว

ในการศึกษาวิเคราะห์การเปลี่ยนแปลงของพื้นที่ครั้งนี้ทำการศึกษาระหว่างปี พ.ศ.2531-2552 พบว่า พื้นที่ป่า ไม้ที่เปลี่ยนเป็นพื้นที่เกษตรกรรมทั้งหมดประกอบด้วย นาข้าว พืชไร่ ไม้ยืนต้น เป็นพื้นที่ 1,359.09 ตร.กม. คิดเป็นร้อย ละ 5.68 ของพื้นที่ลุ่มน้ำ พื้นที่ป่าเปลี่ยนเป็นพื้นที่แหล่งน้ำ 40.21 ตร.กม. คิดเป็นร้อยละ 0.17 นอกจากนี้พบว่าพื้นที่ เมืองมีการขยายตัวเพิ่มขึ้น โดยเปลี่ยนจากพื้นที่ป่าและพื้นที่เกษตรกรรมในปี พ.ศ. 2531 ไปเป็นพื้นที่เมืองในปี พ.ศ. 2552 เป็นพื้นที่ 26 และ 309.97 ตร.กม. คิดเป็นร้อยละ 0.01 และ 1.29 ของพื้นที่ลุ่มน้ำทั้งหมดตามลำดับ สำหรับ ผลกระทบของการเปลี่ยนแปลงการใช้ที่ดินต่อน้ำท่าในลุ่มน้ำยม โดยใช้แบบจำลองอุทกวิทยา SWAT ตั้งแต่ปีพ.ศ. 2531-2552 พบว่าที่สถานี Y14 ปริมาณน้ำท่าเพิ่มขึ้นโดยเฉลี่ย1,835.95, 1,648.65 และ 1,620.70 ล้านลูกบาศก์เมตร ต่อปี และที่สถานี Y20 พบว่าปริมาณน้ำท่าเพิ่มขึ้น 1,176.25, 1,090.27 และ 671.42 ล้านลูกบาศก์เมตรต่อปี เมื่อ ปริมาณป่าลดลง 1,979.67, 1,141.69 และ1,741.171 ตร.กม. และพื้นที่เมืองเพิ่มขึ้น 66.48, 125.6 และ104.22 ตร. กม. ในปีพ.ศ.2538, 2546 และ 2552 ตามลำดับ

ปริมาณน้ำท่าที่เพิ่มขึ้น โดยมีความสัมพันธ์กับปริมาณป่าที่ลดลงและพื้นที่เมืองที่เพิ่มขึ้น โดยเฉพาะอย่าง ยิ่งทางตอนบนของพื้นที่ลุ่มน้ำ ซึ่งอาจเป็นสาเหตุหนึ่งของการเกิดน้ำท่วมในทางตอนล่างของพื้นที่ลุ่มน้ำ ผลการศึกษานี้ สามารถนำไปประยุกต์ใช้กับพื้นที่ลุ่มน้ำอื่น และประยุกต์ใช้กับการวางแผนการใช้ประโยชน์ที่ดิน รวมถึงวางแผนการใช้ ทรัพยากรน้ำอย่างยั่งยืน

ภาควิชา <u>ธรณีวิทยา</u>	ลายมือชื่อนิสิต
สาขาวิชา <u>โลกศาสตร์</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา <u>2555</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

5272596123 : MAJOR EARTH SCIENCES

KEYWORDS : GIS AND REMOTE SENSING / LAND USE CHANGE / SWAT MODEL / YOM RIVER BASIN

SUPATTRA KITICHUCHAIRIT: IMPACTS OF LAND USE CHANGES ON RIVER RUNOFF IN YOM BASIN DURING 1988-2009 USING SWAT HYDROLOGIC MODEL. ADVISOR: ASST. PROF. SOMBAT YUMUANG, Ph.D., CO- ADVISOR: ASST. PROF. SRILERT CHOTPANTARAT Ph.D., 198 pp.

Yom river basin is one of largest basin in Thailand. The Yom does not have any large reservoirs to collect a large amount of water in rainy season. Therefore, the basin typically experienced floods in rainy season (May–October) and drought in the dry season (November - April). Land use change may affect surface and groundwater hydrology associated with hydrological factors such as interception, infiltration and evaporation, and thus causes changes in especially total runoff in the river.

The objective of this research project is to determine the hydrological impacts of land use changes in the Yom river over a 22-year period using an integration of remote sensing, geographic information system (GIS), and SWAT hydrological modeling to quantify contributions of such changes.

Through the interpretation of satellite images between 1981 and 2009, the forest changes to agriculture about 1359.088 km² (or 5.675%), the forest land changes to water body about 40.208 km² (0.168%), the forest land changes to urban and build-up land 26 km² (0.10%) and the agriculture changes to urban and build-up land 26 km² (0.10%) and the agriculture changes to urban and build-up land 309.965 (1.29%) km². For the contributions of land use changes on hydrological components, the average simulated yearly runoff at station Y14 were increased 1,835.95, 1,648.65 and 1,620.70 MCM/Year and station Y 20, the average simulated yearly runoff were increased 1,176.25, 1,090.27 and 671.42 MCM/Year, when the forest land was decrease 1,979.67, 1,141.69 and 1,741.171 km², urban and build-up land was increase 66.48, 125.6 and 104.22 km² in year 1995, 2003 and 2009, respectively

Increased runoff occurred in the long term discharge, especially in the upper part of the basin, which may cause more floods in the lower part of the basin. The approach applied in this study could be applied to other watersheds, which have been highly changed and would essential for sustainable water resources management.

Department : <u>Geology</u>	Student's Signature
Field of Study : Earth Sciences	Advisor's Signature
Academic Year : 2012	Co- advisor's Signature

ACKNOWLEDGEMENTS

I sincerely thank my Advisor, Assistant Professor Dr. Sombat Yumuang and Assistant Professor Dr. Srilert Chotpantarat, Department of Geology, Faculty of Science, Chulalongkorn University for their supports, encouragements, critically advises and reviews of thesis.

I sincerely gratify the Geo-Informatics and Space Technology Development Agency (Public Organization) (GISTDA), and Royal Thai Survey Department, for their permission to use essential data for this research.

I thank to Mr. Katawut Wiyasusri, Miss Wilairat Khositchaisri, Mr. Pawee Klongwessa, Miss Satika boonkaewwan and Mr. Jaturon Kornkul, and all of my friends for their support throughout my thesis with their valuable suggestions.

Finally, I would like to thank my parents for their support and encouragement throughout my study at the university.

CONTENTS

ABSTRACT IN THAI	V	
ABSTRACT IN ENGLISH		
ACKNOWLEDGEMENTS	/i	
CONTENTS	/ii	
LIST OF TABLES	<i< td=""></i<>	
LIST OF FIGURES	<ii< td=""></ii<>	
CHAPTER I INTRODUCTION 1	1	
1.1 Rationale 1	1	
1.2 Objectives	3	
1.3 Location of the study area	3	
1.4 Expected outputs 7	7	
1.5 Research methodology 7	7	
1.5.1 Preparation	7	
1.5.2 Field investigation 8	3	
1.5.3 Laboratorial studies 8	3	
1.5.4 Synthesis, discussion and conclusion)	
CHAPTER II LITERATURE REVIEW 1		
2.1 Geo-Informatics 1	10	
2.1.1 Remote sensing 1	10	
2.1.2 Geographic information system 1	15	
2.1.3 Global positioning system 1	18	
2.1.4 Use of Geo-Informatics in land use changes assessment 1	19	
2.2 SWAT Model description 2	20	
2.2.1 Overview of hydrological model	20	

viii

			Page
	2.2.2	SWAT Model	22
2.3	Previou	us investigations on land use changes assessment	26
CHAPTER III	METHO	DOLOGY AND DATA PREPARATION	29
3.1	Phases	s of land use changes mapping analysis in Remote	
	Sensin	g and GIS-based detection techniques	29
3.2	Thema	atic data preparation from Remote Sensing and GIS	
	technie	ques	30
3.3	Elevati	on	32
3.4	Hydrol	ogy	33
3.5	Soil pr	operties	34
3.6	Geolog	ду	35
3.7	Meteor	rology	36
3.8	Land u	ISE	37
	3.8.1	Data sources	39
	3.8.2	Data processing	40
	3.8.3	Accuracy assessment	43
3.9	Runoff	Simulation	45
	3.9.1	Modeling the effects of land use changes on river runoff	45
	3.9.2	Sensitivity analysis	46
	3.9.3	Model calibration and validation	47
CHAPTER IV ANALYSIS AND RESULTS			50
4.1	Land ι	use classification in the year 1988, 1995, 2003 and 2007	
	in The	Yom River Basin	50
4.2	Dynam	nic spatial patterns of land use changes in the Yom River	
	Basin		56

ix

	4.2.1	Land use changes in Upper Part of Yom Sub-basin	60
	4.2.2	Land use changes in Mae Khuan Sub-basin	68
	4.2.3	Land use changes in Nam Pi Sub-basin	76
	4.2.4	Land use changes in Mae Ngao Sub-basin	84
	4.2.5	Land use changes in Middle Part of Yom Sub-basin	92
	4.2.6	Land use changes in Mae Kham mee Sub-basin	100
	4.2.7	Land use changes in Mae Ta Sub-basin	108
	4.2.8	Land use changes in Huay Mae Sin Sub-basin	116
	4.2.9	Land use changes in Mae Mok Sub-basin	124
	4.2.10	Land use changes in Mae Ram Phan Sub-basin	132
	4.2.11	Land use changes in Lower Part of Yom Sub-basin	140
4.3	Result	of Runoff Simulation	148
	4.3.1	Scenario 1: 1988 land use and 1988-1989 climates	149
	4.3.2	Scenario 2: 1995 land use and 1995-1996 climate	150
	4.3.3	Scenario 3: 2003 land use and 2002-2003 climate	151
	4.3.4	Scenario 4: 2009 land use and 2008-2009 climate	152
	4.3.5	Scenario 5: 1988 land use and 2008-2009 climate	153
	4.3.6	Scenario 6: 1995 land use and 2008-2009 climate	154
	4.3.7	Scenario 7: 2003 land use and 2008-2009 climate	155
	4.3.8	Scenario 8: 2009 land use and 1988-1989 climate	156
CHAPTER V	DISCUS	SIONS AND CONCLUSIONS	157
5.1	Discus	ssions	157
	5.1.1	Dynamic spatial patterns of land use changes	
		processes in the Yom River Basin during 1988-2009	157

Page

	5.1.2	Relationship between land use changes in the Yom	
		River Basin and River runoff during 1988-2009	163
5.2	Conclu	usions	171
REFERENCES			174
APPENDIX			180
BIOGRAPHY			198

LIST OF TABLES

Table		Page
1-2	Sub-basin of Yom Basin (Department of Water Resources (DWR),	
	2011)	5
2-1	Spectral resolution of Landsat 7ETM+ and 5TM sensors (Geoscience	
	Australia, 2009)	14
2-2	The quality of remote sensing data (Geoscience Australia, 2009).and	
	invented in this thesis	15
3-1	input data themes that were pre-processed and invented in this thesis.	31
3-2	Elements of Image Interpretation (Jensen and Kiefer, 2007)	38
3-3	Land use and land cover classification system (Land Development	
	Department, LDD) used in remote sensing data interpretation in the	
	Yom River Basin,	39
3-4	The remote sensing data attributes and accessing periods that were	
	used in this study.	40
3-5	List of all general parameter changes during calibration process	47
4-1	Land use classification in the Yom River Basin by Landsat 5TM	
	satellite images in the year 1988, 1995, 2003 and 2009	50
4-2	Comparative land use class 1 in the Yom River Basin in the year 1988,	
	1995, 2003 and 2009	58

LIST OF FIGURES

Figure		Page
1-1	The location of the Yom river basin	4
1-2	Sub-basin of Yom Basin (Department of Water Resources (DWR),	
	2011)	6
2-1	Process of Remote Sensing (Canada Centre for Remote Sensing,	
	2008)	11
2-2	Radiometric resolution of Satellites characteristics	14
2-3	Spatial Data in GIS Database (Indiana University, 2005)	17
3-1	Color-coded DEM of the study area	32
3-2	Hydrological measurement stations of the Royal Irrigation Department	
	(RID) Thailand located in the Yom river basin	33
3-3	Color-coded DEM of the study	34
3-4	Geology map of the Yom river basin	35
3-5	Meteorology Station of the Thailand Meteorology Department (TMD)	
	located in the Yom river basin	36
3-6	Primary ordering of image elements fundamental to the analysis	
	process	38
3-7	a) unsupervised classification.	
	b) Iterative Self-Organizing Data Analysis Technique (ISODATA)	41
3-8	Supervised classification	42

.

Figure

Page

4-1	Graphs showing the areal distributions of land use categories	
	in the Yom River Basin during 1988-2009.	51
4-2	Land use Classification of land use categories in Yom River Basin in 1988.	52
4-3	Land use Classification of land use categories in Yom River Basin in 1995.	53
4-4	Land use Classification of land use categories in Yom River Basin in 2003.	54
4-5	Land use Classification of land use categories in Yom River Basin in 2009	55
4-6	Method for land use changes analysis.	57
4-7	Graph showing trend (in percentage) of land use changes in the Yom	
	River Basin during 1988 to 2009	59
4-8	Change detection map of Upper Yom Sub-basin from 1988 to 1995	64
4-9	Change detection map of Upper Yom Sub-basin from 1995 to 2003	65
4-10	Change detection map of Upper Yom Sub-basin from 2003 to 2009	66
4-11	Change detection map of Upper Yom Sub-basin from 1988 to 2009	67
4-12	Change detection map of Mae Khuan Sub-basin from 1988 to 1995	72
4-13	Change detection map of Mae Khuan Sub-basin from 1995 to 2003	73
4-14	Change detection map of Mae Khuan Sub-basin from 2003 to 2009	74
4-15	Change detection map of Mae Khuan Sub-basin from 1988 to 2009	75
4-16	Change detection map of Nam Pi Sub-basin from 1988 to 1995	80
4-17	Change detection map of Nam Pi Sub-basin from 1995 to 2003	81
4-18	Change detection map of Nam Pi Sub-basin from 2003 to 2009	82
4-19	Change detection map of Nam Pi Sub-basin from 1988 to 2009	83
4-20	Change detection map of Mae Ngao Sub-basin from 1988 to 1995	88
4-21	Change detection map of Mae Ngao Sub-basin from 1995 to 2003	89
4-22	Change detection map of Mae Ngao Sub-basin from 2003 to 2009	90
4-23	Change detection map of Mae Ngao Sub-basin from 1988 to 2009	91

Figure		Page
4-24	Change detection map of Middle Part of Yom Sub-basin from 1988 to	
	1995	96
4-25	Change detection map of Middle Part of Yom Sub-basin from 1995 to	
	2003	97
4-26	Change detection map of Middle Part of Yom Sub-basin from 2003 to	
	2009	98
4 - 27	Change detection map of Middle Part of Yom Sub-basin from 1988 to	
	2009	99
4-28	Change detection map of Mae Kham mee Sub-basin from 1988 to 1995	104
4-29	Change detection map of Mae Kham mee Sub-basin from 1995 to 2003	105
4-30	Change detection map of Mae Kham mee Sub-basin from 2003 to 2009	106
4-31	Change detection map of Mae Kham mee Sub-basin from 1988 to 2009	107
4-32	Change detection map of Mae Ta Sub-basin from 1988 to 1995	112
4-33	Change detection map of Mae Ta Sub-basin from 1995 to 2003	113
4-34	Change detection map of Mae Ta Sub-basin from 2003 to 2009	114
4-35	Change detection map of Mae Ta Sub-basin from 1988 to 2009	115
4-36	Change detection map of Huay Mae Sin Sub-basin from 1988 to 1995.	120
4-37	Change detection map of Huay Mae Sin Sub-basin from 1995 to 2003.	121
4-38	Change detection map of Huay Mae Sin Sub-basin from 2003 to 2009.	122
4-39	Change detection map of Huay Mae Sin Sub-basin from 1988 to 2009.	123
4-40	Change detection map of Mae Mok Sub-basin from 1988 to 1995	128
4-41	Change detection map of Mae Mok Sub-basin from 1995 to 2003	129
4 - 42	Change detection map of Mae Mok Sub-basin from 2003 to 2009	130
4 - 43	Change detection map of Mae Mok Sub-basin from 1988 to 2009	131
4-44	Change detection map of Mae Ram Phan Sub-basin from 1988 to 1995	136
4-45	Change detection map of Mae Ram Phan Sub-basin from 1995 to 2003	137

xiv

Figure		Page
4-46	Change detection map of Mae Ram Phan Sub-basin from 2003 to 2009	138
4-47	Change detection map of Mae Ram Phan Sub-basin from 1988 to 2009	139
4-48	Change detection map of Lower Part of Yom Sub-basin from 1988 to	
	1995	144
4-49	Change detection map of Lower Part of Yom Sub-basin from 1995 to	
	2003	145
4-50	Change detection map of Lower Part of Yom Sub-basin from 2003 to	
	2009	146
4-51	Change detection map of Lower Part of Yom Sub-basin from 1988 to	
	2009	147
4-52	Observed and Simulated monthly runoff at station Y14 during 1988-	
	1989	149
4-53	Observed and Simulated monthly runoff at station Y20 during 1988-	
	1989	149
4-54	Observed and Simulated monthly runoff at station Y14 during 1995-	
	1996	150
4-55	Observed and Simulated monthly runoff at station Y20 during 1995-	
	1996	150
4-56	Observed and Simulated monthly runoff at station Y14 during 2002-	
	2003	151
4-57	Observed and Simulated monthly runoff at station Y20 during 2002-	
	2003	151
4-58	Observed and Simulated monthly runoff at station Y14 during 2008-	
	2009	152
4-59	Observed and Simulated monthly runoff at station Y20 during 2008-	
	2009	152

xv

Figure		Page
4-60	Observed and Simulated monthly runoff at station Y14 land use map	153
	1988 and 2008-2009 climates	
4-61	Observed and Simulated monthly runoff at station Y20 land use map	153
	1988 and 2008-2009 climates	
4-62	Observed and Simulated monthly runoff at station Y14 land use map	154
	1995 and 2008-2009 climates	
4-63	Observed and Simulated monthly runoff at station Y20 land use map	154
	1995 and 2008-2009 climates	
4-64	Observed and Simulated monthly runoff at station Y14 land use map	155
	2003 and 2008-2009 climates	
4-65	Observed and Simulated monthly runoff at station Y20 land use map	155
	2003 and 2008-2009 climates	
4-66	Observed and Simulated monthly runoff at station Y14 land use map	156
	2009 and 1988-1989 climates	
4-67	Observed and Simulated monthly runoff at station Y20 land use map	156
	2009 and 1988-1989 climates	
5-1	Changes detection in the Yom River Basin during 1988 – 1995	159
5-2	Changes detection in the Yom River Basin during 1995 - 2003	160
5-3	Changes detection in the Yom River Basin during 2003 - 2009	161
5-4	Changes detection in the Yom River Basin during 1988 - 2009	162
5-5	comparison simulated runoff between different land use 1988, 2009	
	under the same precipitation period 2008-2009 at station Y14	165

xvi

Figure

Page

5-7	comparison simulated runoff between different land use 1988, 2009	
	under the same precipitation period 2008-2009 at station	
	Y14	166
5-8	comparison simulated runoff between different land use 1988, 2009	
	under the same precipitation period 2008-2009 at station Y20	167
5-9	comparison simulated runoff between different land use 1988, 1995,	
	2003 and 2009 under the same precipitation period 2008-2009 at	
	station Y14	167
5-10	comparison simulated runoff between different land use 1988, 1995,	
	2003 and 2009 under the same precipitation period 2008-2009 at	
	station Y20	168
5-11	The relationship between simulated runoff and decreasing of forest	
	land and increasing urban & build-up land at station Y14	169
5-12	The relationship between simulated runoff and decreasing of forest	
	land and increasing urban& build-up land at station Y20	170

CHAPTER I

INTRODUCTION

Because of the imbalance of nature, the effects in the watershed and natural resources, especially water, are likely to become more severe and more frequent at the moment. The volume and timing of river runoff in the watershed is not consistent with the demand for water in the basin, severe flooding in the rain season and prolonged drought during the dry season. In addition to meteorological changes, land use change is a major force altering the hydrologic processes over a range of temporal and spatial scales. Land use change can affect the runoff generation and concentration by altering hydrological factors such as interception, infiltration and evaporation, and thus causes changes in the frequency and intensity of flooding. A better understanding and assessment of land use change impacts on watershed hydrologic process is great importance for predicting flood potential and the mitigation of hazard, and has become a crucial issue for planning, management, and sustainable development of the watershed.

1.1 Rationale

At the present, it is common to observe an increasing vulnerability of global water resource to manmade and natural phenomena. Including many other factors climate change and population growth increase rapidly the vulnerability of the global water resource. The demand of technologies that help to develop a sustainable water system and the study of changes of hydrological process using various types of models have also been growing fast for past few decades. A number of researches and studies have been made to deal with global water related issues. However the problems still exist.

The Yom River is one of the outstanding streams of the area. It is typically flooded in August and September during each rainy season (May–October), the basin is very dry

through the November-to-April dry season (Geo-Informatics and Space Technology Development Agency (GISTDA), 2005).

Apart from the pronounced monsoon climate mentioned above, geographical and hydrological features, deforestation, and particularly urbanization are claimed as major causes. With urban development, impervious surface areas (e.g. roads, sidewalks, driveways, parking areas, rooftops) decrease infiltration and increase the rate and volume of surface runoff (Fitzpatrick *et al.*, 2005). Thus, urbanized areas would become a potentially greater cause of water inundation under conditions of high rainfall intensity. Without research to support these claims, however, conflicts and debate about how to make appropriate decisions to mitigate the flooding problem remains. Understanding the role and impacts of land use changes in hydrological cycle could play a significant role in alleviating the flooding problem.

The study of the impacts of land use changes on river runoff is a very complex because the factors that determine river flow vary both spatially and temporally. These problems can be addressed by using a Geographic Information System (GIS) that is efficient for spatial data analysis together with remote-sensing data, which can provide widely, regularly updated, and reliable data. Then, hydrological models can be used to help further understand and predict changes in river flow behavior.

The SWAT (Soil and Water Assessment Tool) model is a hydrological model that physically based distributed watershed models have higher accuracy in analyzing the impact of land management practices on water, sediment, and agricultural chemical yields in large complex watersheds. Adapting this kind of model can help to achieve more accurate and reliable prediction of streamflow and achieve good representations of the hydrologic processes occurring in the system. It is also one of the suitable watershed models for long-term impact analysis. Nowadays the model is widely used in many parts of United States and Europe and other parts of the world (Bingner 1996, Peterson and Hamlett 1998; Srinivasan et al. 1998; Arnold et al. 1998; Neitsch et al. 2001; Benaman et al. (2005).

1.2 Objectives

The purposes of this study are

- To study the pattern of land use changes in the Yom basin in 1988-2009.
- To study the impact of land use and land cover changes on river run off in the Yom river basin.

1.3 Location of the study area

The Yom River basin is located in the north of Thailand, cover area about 23,948 Sq.km. The location of the watershed is between the southern latitude of 14 degrees 50 minute to 18 degrees 25 minute, and between longitude 99 degrees 16 minute to 100 degrees 40 minute. The Yom River watershed covers 11 provinces, which are Nan, Phayao, Kamphaeng Phet, Lampang, Phrae, Tak, Sukhothai, Phitsanulok, Phichit, Uttaradit and Nakhon Sawan (Figure 1-1). The Yom River flows in a north-to-south direction, is 735 km in length, and the elevation of the river ranges from 360 to 20 m above mean sea level at the watershed outlet at Chumsang District Nakhon Sawan Province (Department of Water Resources (DWR), 2011).

Geographically, the basin is divided into two characteristic parts, the upper and lower river basins. Most of the upper basin is mountainous, with 51% forest cover containing the only large teak forest remaining in the country (GISTDA, 2005), and 49% agriculture (in the river valleys) and urban areas. The lower basin is essentially the river's floodplain, and is well suited for cultivation. Therefore, the land use in the lower basin is mostly agriculture and urban with 26% forest (Srethasirote, 2007). The average annual precipitation in the study area is 1160 mm (ranges from 1000 to 1600 mm) and the average annual air temperature ranges from 25 to 28 °C (Royal Irrigation Department (RID), 2009). The climate is dominated

เหนือ าะวันตก วันออ Payao Lampang Nan Phrae Uttaradit Sukhothai Tak Phitsanulok Phetchabun Phichit KamphaengPhet NakhonSawan

by the tropical southwest monsoon, with over 90% of the annual precipitation occurring between May and October.

Figure 1-1 the location of the Yom river basin

	ld. Sub- Basin.	Sub-watershed name.	Catchment area. (Sq.km.).	Coverage area (district / province).			
	08.02	Upper Yom River	1,978	A. Chiangkam, A. Pong, A. Dokkamtai, A. Chiangmuan			
				(Phayao), A, Songkawe (Nan) A. Song (Phrae)			
	08.03	Khuan River	858	A. Pong (Nan), A. Muang Nan Thawangpha (Nan)			
	08.04	Pee River	636	A. Chiangmuan (Phayao), A. Ban Luang (Nan)			
	08.05	Ngao River	1,644	A. Ngao, A. Mae Mah (Lampang)			
	08.06	Middle Yom River	2,884	A. Maung Phrae, A. Rongkaung, A. Nong Muang Kai			
	08.07	Kam mee River	444	A. Maung Phrae, A. Rongkaung, A. Song, A. Nongmuangkai,			
				A. Denchai, A. Soongmen			
	08.08	Tha River	518	A. Long (Phrae)			
Γ	08.09	Huay Mae Sin	522	A. Wangchin (Phrae), A. Lublae (Uttaradit)			
		River					
Γ	08.10	Mohk River	1,333	A. Turn (Lampang), A. Tungsaleum (Sukhothai)			
Γ	08.11	Ram Phan River	895	A. Bantak (Tak), A. Tungsaleum, A. Bandanlanhoi, A. Muang,			
				A. Srisuchanalai, A. Srisumrong, A. Sawankaloke (Sukhothai)			
				A. Prankatai (Kampaengphet)			
Γ	08.12	Lower Yom River	11,906	A. Long, A. Wangchin (Phrae), A. Bantak (Tak), A.			
				Bandanlanhoi, A. Muang, A. Srisuchanalai, A. Srisumrong, A.			
				Sawankaloke, A. Srinakorn, A. Kongkailad, A. keereemas, A.			
				Pichai, A. Propiram, A. Bangrakam, A. Bangkratoom, A.			
				Prankratai, A. Maung, A. Lankrabur, A. Saingam, A.			
				Saithongwattana, A. Wachirabaramee, A. Samngam, A. P			
				hopratubchang, A. Sapanhin, A. Photaleh, A. Choomseang			

Table 1-2 Sub-basin of Yom Basin (Department of Water Resources (DWR), 2011).

Figure 1-2 Sub-basin of Yom Basin (Department of Water Resources (DWR), 2011).

1.4 Expected outputs

The expected outputs of this thesis consist of:

- Land use and land use change maps during 1988-2007 in Yom River Basin.
- Relationships between hydrological impacts that caused land use changes in the Yom River Basin.

1.5 Research methodology

To accomplish the aims of this thesis, the research involves four sequential steps are designed. Each of which is described as follows:

1.5.1 Preparation

This step includes:

- Literature review of the related researches in the study area, western Thailand, and other countries.
- Acquisition and study of the previous basic data acquisition, i.e. satellite images of medium resolution (Landsat 5TM), topographic map, land use map, and soil map to understand the topography, land use, and agronomy of the study area as general background information.
- Intensive comprehension on the conceptual framework of land use changes, deforestations and CLUE-s model especially the criteria to evaluate land use changes occurrence.

1.5.2 Field investigation

The field investigation and direct observation were carried out as follows:

- Reconnaissance to understand and recognize the limitation in the study area for preparing the data and related plan that would be used in further steps of the field investigation.
- Intermediate field investigation to conduct ground-truth to inspect the correctness of the analyzed results from the remote sensing image analysis and interpretation.

1.5.3 Laboratorial studies

The laboratorial analysis is conducted as follows:

- Thematic (GIS and remote sensing) data preparation. These inventory data consist of topography (slope, elevation), land use and land cover. Software of geographic information system (GIS) and remote sensing (ArcGIS 9.3 and ERDAS IMAGINE 8.7) are applied in developing, manipulating, and analyzing the digital data.
- Interpretation of medium resolution satellite images (Landsat 5TM) that were acquired during 1988-2009. This sub-step was conducted to develop the new data (e.g. deforestation). These inventory data were also checked from ground-truth information from brief field traverses to inspect the accuracy in the intermediate field investigation.
- Impact of Land use changes analysis on river runoff in the Yom river basin is conducted using SWAT model. SWAT version 2009 is used thought ArcGIS 9.3 Interface. The influences of the land use changes were quantified by comparing the SWAT output of the 8 scenario. The precipitation data were used for each model run to determine if changes in river runoff were indeed due to changes in

land use. Differences in river runoff, and the associated changes in model parameters, were therefore associated with changes in land use.

1.5.4 Synthesis, discussion and conclusions

This step includes:

 Synthesizing, discussing and concluding land use changes detection and impact of land use changes on river runoff in the Yom river Basin During 1988-2009.

CHAPTER II

LITERATURE REVIEW

This chapter describes the applications of the remote sensing, geographic information system (GIS) and Global positioning system (GPS) in land use changes are briefly reviewed. Besides, the SWAT model description and the previous investigations from the related technical literatures are also presented.

2.1 Geo-Informatics

The geo-informatics is included remote sensing (RS), geographic information system (GIS), and global positioning system (GPS). They are defined as multi-disciplinary science of geo-informatics to measure, record, process, analyze, represent, and visualize geo-spatial data.

2.1.1 Remote sensing

Remote Sensing can be defined as the instrumentation, techniques and methods to observe the Earth's surface at a distance and to interpret the images or numerical values obtained in order to acquire meaningful information of particular objects on earth. Three definitions of remote sensing are given below:

Remote Sensing is defined as "instrument-based techniques employed in the acquisition and measurement of spatially organized (for the Earth, most commonly geographically distributed) data/information on some properties (spectral; spatial; physical) of an array of target points (pixels) within the sensed scene that correspond to features, objects, and materials, doing this by applying one or more recording devices not in physical, intimate contact with the item(s) under surveillance; techniques involve amassing knowledge pertinent to the sensed scene (target) by utilizing electromagnetic radiation, force fields, or acoustic energy sensed by recording cameras, radiometers and scanners, lasers, radio frequency receivers, radar systems, sonar, thermal devices, sound detectors, seismographs, magnetometers, gravimeters, scintillometers, and other instruments" (NASA, 2010)

Remote sensing is the science and art of obtaining information about an object, area, or phenomenon under investigation (Lillesand et. al., 2008).

Remote sensing is a tool or technique similar to mathematics. Using sensors to measure the amount of electromagnetic radiation (EMR) exiting an object or geographic area from a distance and then extracting valuable information from the data using mathematically and statistically based algorithms is a scientific activity". It functions in harmony with other spatial data-collection techniques or tools of the mapping sciences, including cartography and geographic information systems (GIS) (Clarke, 2001; Jensen et. al., 2007).

Figure 2-1 Process of Remote Sensing (Canada Centre for Remote Sensing, 2008). Note: A) Energy source to illuminate the target; B) Interaction of the radiation with the earth's atmosphere; C) Radiation-target interactions; D) Data reception; E) Data transmision; F) Data processing; G) Data application

Basic concept of remote sensing focus on the facts that everything on the Earth above 0 Kelvin generates electromagnetic energy. An object reflects, absorbs sunlight or emits its own internal energy according to its atomic and molecular vibration. Human eyes are restricted to see only visible reflected light (wavelength between 0.4-0.7 μ m). Remote sensing uses sophisticated equipment to record invisible light such as infrared, thermal infrared and microwave radiation.

Remote sensing system may be classified into two systems, passive remote sensing and active remote sensing. (Jensen and Kiefer, 2007)

Passive remote sensing is sensors detect natural radiation that is emitted or reflected by the object or surrounding area being observed. Reflected sunlight is the most common source of radiation measured by passive sensors. Examples of passive remote sensors include film photography, infrared, charge-coupled devices, and radiometers.

Active remote sensing is emits energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target. RADAR is an example of active remote sensing where the time delay between emission and return is measured, establishing the location, height, speeds and direction of an object.

Generally, remote sensing works on the principle of the inverse problem. While the object or phenomenon of interest (the state) may not be directly measured, there exists some other variable that can be detected and measured (the observation), which may be related to the object of interest through the use of a data-derived computer model. The common analogy given to describe this is trying to determine the type of animal from its footprints. For example, while it is impossible to directly measure temperatures in the upper atmosphere, it is possible to measure the spectral emissions from a known chemical species (such as carbon dioxide) in that region. The frequency of the emission may then be related to the temperature in that region via various thermodynamic relations (Lillesand et. al., 2008).

The quality of remote sensing data consists of its spatial, spectral, radiometric and temporal resolutions as shown in Table 2-3 (Jensen and Kiefer, 2007).

Spatial resolution

The size of a pixel that is recorded in a raster image – typically pixels may correspond to square areas ranging in size length from 1 to 1,000 meters (3.3 to 3,300 ft).

Spectral resolution

The wavelength width of the different frequency bands recorded – usually, this is related to the number of frequency bands recorded by the platform. Current Landsat collection is that of eight bands (Table 2-2), including several in the infra-red spectrum, ranging from a spectral resolution of 0.07 to 2.1 μ m. The Hyperion sensor on Earth Observing-1 resolves 220 bands from 0.4 to 2.5 μ m, with a spectral resolution of 0.10 to 0.11 μ m per band.

Radiometric resolution

The number of different intensities of radiation the sensor is able to distinguish. Typically, this ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up to 16,384 intensities or "shades" of color, in each band. It also depends on the instrument noise (Figure 2-11).

Temporal resolution

The frequency of flyovers by the satellite or plane, and is only relevant in time-series studies or those requiring an averaged or mosaic image as in deforesting monitoring. This was first used by the intelligence community where repeated coverage revealed changes in infrastructure, the deployment of units or the modification/introduction of equipment. Cloud cover over a given area or object makes it necessary to repeat the collection of said location.

Figure 2-2 Radiometric resolution of Satellites characteristics.

Table 2-1 Spectral resolution of Landsat 7ETM+ and 5TM sensors (Geoscience Australia, 2009).

Band Number	Spectral Range (in Microns)	EM Region	Generalised Application Details				
U 0.45 - 0.52 Visible Blue		Visible Blue	Coastal water mapping, differentiation of vegetation from soils				
2	0.52 - 0.60	Visible Green	Assessment of vegetation vigour				
3	0.63 - 0.69	Visible Red	Chlorophyll absorption for vegetation differentiation				
4	0.76 - 0.90	Near Infrared	Biomass surveys and delineation of water bodies				
5	1.55 - 1.75	Middle Infrared	Vegetation and soil moisture measurements; differentiation between snow and cloud				
6	10.40- 12.50	Thermal Infrared	Thermal mapping, soil moisture studies and plant heat stres measurement				
7	2.08 - 2.35	Middle Infrared	Hydrothermal mapping				
8	0.52 - 0.90 (panchromatic)	Green, Visible Red, Near Infrared	Large area mapping, urban change studies				

Satellite	Sensors	Subsensors	Swath width	Bands	Spatial Resolution	Altitude	Orbit	Repeat
Landsat 5	Multispectral scanner, (MSS)		185 Km	1-5&7 +6	30 - 129 m	705 Km	Sun Synchronous	16 days or 233 orbits.
	Thermatic Mapper, TM							
Landsat 7	Enhance Thermatic Mapper Plus, (ETM+)		185 Km	1-5&7+6+8	15 - 60 m	705 Km	Sun Synchronous	16 days or 233 orbits.
Terra, EOS-AM1	Advanced Spaceborne Thermal Emission and Relfection Radiometer (ASTER)	Visible and Near Infrared(VNIR)	60 Km	1 to 3	15 Km	705 Km	Sun Synchronous	16 days
		Shortwave Infrared (SWIR)	60 Km	4 to 9	30 Km			
		Thermal Infrared (TIR)	60 Km	10 to 14	90 Km			
	Moderate Resolution Imaging Spectroradiometer (MODIS)		2330 Km	1 to 36	250 -1000 m			
Aqua, EOS-PM1	Moderate Resolution Imaging Spectroradiometer (MODIS)		2330 Km	1 to 36	250 -1000 m	705 Km	Sun Synchronous	16 days.
ALOS, Advanced Land Observing Satellite	Panchromatic Remote Sensing Instrument for Steromapping (PRISM)		35-70 Km		2.5 m	692 Km	Sun synchronous	46 days
	Advanced Visable and Near Infrared Radiometer type 2 (AVNIR-2)		70 Km	1 to 4	10 m			
	Phased Array type L-band Synthetic aperture radar (PALSAR)		30 - 70 Km	Radar	10 - 100 m			
NOAA	Advanced Very High Resolution Radiometer (AVHRR)		2399 Km	1 to 5		833 Km	Sun synchronous	9 days
Radarsat-1	Synthetic Aperture Radar (SAR)			Radar				24 days
Resourcesat-1	Linear Imaging and Self Scanning sensor (LISS- III)		141Km	2 to 4	23.5 m	817 Km		24 days
	Advanced Wide Field Sensor (AWiFS)		740km		56 m			5 days

Table 2-2 The quality of remote sensing data (Geoscience Australia, 2009).

2.1.2 Geographic information system

Geographic information system (GIS), a new technology, is becoming essential tools for analyzing and graphically transferring knowledge about the world. There are many definitions about geographic information system. For example, the United States Geological Survey-USGS (2007) defined as "a computer system capable of capturing, storing, analyzing, and displaying geographically referenced information; that is, data identified according to location. Practitioners also define a GIS as including the procedures, operating personnel, and spatial data that go into the system". While Briggs (2010) noted that geographic information system can be defined as "a software systems with capability for input, storage, manipulation/analysis and output/display of geographic information information". Skrdla (2005), however; defines the meaning of the geographic information system as "management of information with a geographic component primarily stored in vector form with associated attributes."

GIS uses spatial-temporal (space-time) location as the key index variable for all other information. Just as a relational database containing text or numbers can relate many different tables using common key index variables, GIS can relate otherwise unrelated information by using location as the key index variable. The key is the location and/or extent in space-time.

Any variable that can be located spatially, and increasingly also temporally, can be referenced using a GIS. Locations or extents in Earth space-time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude, latitude, and elevation, respectively. These GIS coordinates may represent other quantified systems of temporal-spatial reference (for example, film frame number, stream gage station, highway mile marker, surveyor benchmark, building address, street intersection, entrance gate, water depth sounding, POS or CAD drawing origin/units). Units applied to recorded temporal-spatial data can vary widely (even when using exactly the same data, see map projections), but all Earth-based spatial-temporal location and extent references should, ideally, be relatable to one another and ultimately to a "real" physical location or extent in space-time (Bettinger and Wing, 2004).

Related by accurate spatial information, an incredible variety of real-world and projected past or future data can be analyzed, interpreted and represented to facilitate education and decision making. This key characteristic of GIS has begun to open new avenues of scientific inquiry into behaviors and patterns of previously considered unrelated real-world information.

Traditionally, there are two broad methods used to store data in a GIS for both kinds of abstractions mapping references: Spatial data and Attribute data (Clarke, 2001). Sutton et al. (2009) explains that spatial data is usually represented on maps as one of two type of spatial primitive: raster data and vector data Raster data are stored as a grid of values, or pixel or fixed size cells having digital values, covering a certain area, provided by satellite images, scanned maps and digital terrain modeling. Raster data display information that is continuous across an area.

Vector data is stored as a series of x,y coordinate pairs inside the computer's memory. Vector data is used to represent points features represent spatial data existing at a single location, lines represent linear features and polygon features represent enclosed homogeneous areas or regions. A polygon is a series of line segments connected to form an enclosed area.

Figure 2-3 Spatial Data in GIS Database (Indiana University, 2005).

Attribute data is an object's description which may be graphical, such as a symbol, point, line or polygon, or it could be test describing specific nature of an object, i.e. number of inhabitants, production volume, and population density. The attribute data is stored in a relational database, with the spatial data kept in a standard hierarchical database (Clarke, 2001).

2.1.3 Global positioning system

Global positioning system (GPS) has permitted convenient, inexpensive, and accurate measurement of absolute location. GPS has greatly enhances the usefulness of remote sensing data. These instruments now are inexpensive, easy to use, and can be employed in almost any area on the earth's surface.

A Global positioning system receiver consists of a portable receiving unit sensitive to signals transmitted by a network of earth-orbiting satellites. These satellites are positioned in orbits such that each point on the earth's surface will be in view of at least four, and perhaps as many as twelve, satellites at any given time. A system of 24 satellites is positioned at an altitude of about 13,500 miles, to circle the earth at intervals of 12 hours, spaced to provide complete coverage of the earth's surface (Earth Science Australia, 2010).

These satellites continuously broadcast signals at two carrier frequencies within the L-band region of the microwave spectrum. Although at ground level these signals are very weak, they are designed so that they can be detected even under adverse condition (e.g. severe weather or interference from other signals). The frequency of each of these carrier signals is modulated in a manner that both identify the satellite that broadcasts the signal and gives the exact time that the signal was broadcast. A receiver therefore can calculate the time delay for the signal to travel from a specific satellite, and then accurately estimate the distance from the receiver to specific satellite (Bettinger and Wing, 2004).

One reason that it is possible to employ such a weak signal is that the time and identification information each satellite transmits is very simple, and the receiver can listen for long periods to acquire it accurately. Because a receiver is always within range of multiple satellites, it is possible to combine positional information from three or more satellites to accurately estimate geographic positional on the earth's surface. A network of ground stations periodically recomputed and uploads new positional data to the GPS satellites (Earth Science Australia, 2010).
2.1.4 Use of Geo-Informatics in land use changes assessment

The geo-informatics is powerful tools to derive accurate and timely information on the spatial distribution of land use changes over medium to large. A past and present study conducted by organizations and institutions around the world, mostly, has concentrated on the application of land use changes.

Remote Sensing Technology involves the use of a sensor that is not in physical contact with its subject of interest. This electromagnetic reflectance is recorded by the sensors in terms of their wavelength of energy, as described by the electromagnetic spectrum (Lillesand et al., 2008). The electromagnetic wave lengths are then converted to a digital format and transmitted back to a computer for processing and interpolation. Satellites such as the Landsat Thematic Mapper (TM) series can capture wide swaths of the Earth's surface (185 km, or 115 mile) and, thus, have the potential to record vast amounts of information over a short time period (Geoscience Australia, 2009). The advantages provided by the much finer spatial resolution of the second generation satellites (e.g. Landsat TM, SPOT) are now well recognized. In favorable circumstances, thematic maps can be prepared at a scale of 1:50000 and revised at a scale of 1:25000 or possibly larger (Howard, 1991). In addition, the finer resolution data of these second generation satellites provides a record of the surface texture of forests, which in classification of the images can be combined with their spectral characteristics. Further, the spectral inclusion of the midinfrared in Landsat TM sensing is helping to improve the classification of land use and land cover (Adams and Gillespie, 2006).

GIS provides a flexible environment for collecting, storing, displaying and analyzing digital data necessary for change detection. Remote sensing imagery is the most important data resources of GIS. Satellite imagery is used for recognition of synoptic data of earth's surface. Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data have been broadly employed in studies towards the determination of land use changes, the starting year of Landsat program, mainly in forest and agricultural areas. The rich archive and spectral resolution of satellite images are the

most important reasons for their use. And GPS has permitted convenient, inexpensive, and accurate measurement of absolute location. And GPS has greatly enhances the usefulness of remote sensing data. These instruments now are inexpensive, easy to use, and can be employed in almost any area on the earth's surface. The frequency of each of these carrier signals is modulated in a manner that both identify the satellite that broadcasts the signal and gives the exact time that the signal was broadcast. A receiver therefore can calculate the time delay for the signal to travel from a specific satellite, and then accurately estimate the distance from the receiver to specific satellite. The results of this analysis from the geo-informatics technology in the study area. This information is essential for a feasible and sustainable land use plan (Wang et al., 2010).

2.2 SWAT Model description

2.2.1 Overview of hydrological model

Hydrological models are tools that describe the physical processes controlling the transformation of precipitation to stream flows. There are different hydrological models designed and applied to simulate the rainfall runoff relationship under different temporal and spatial dimensions. The focus of these models is to establish a relationship between various hydrological components such as precipitation, evapotranspiration, surface runoff, ground water flow and soil water movement (infiltration). Many of these hydrological models describe the canopy interception, evaporation, transpiration, snowmelt, interflow, overland flow, channel flow, unsaturated subsurface flow and saturated subsurface flow. These models range from simple unit hydrograph based models to more complex models that are based on the dynamic flow equations.

Simulation programs implementing watershed hydrology and river water quality models are important tools for watershed management for both applied and operational research purposes. A hydrological model represents the water cycle of a drainage basin and studies the response of this basin to climatic and physical conditions (Renaud, 2004). Three different categories of hydrological models can be distinguished: physically process based, empirical and statistically based. Physically process based models are described by mathematically formulated fundamental physical laws, where each basin is represented by a concept; a reservoir for instance. They are useful for inferring the distribution, magnitude, and past, present 14 and future behavior of a process with limited observations (Hermance, 2003). These equations can relate the changes of water properties into the reach to those across the surface.

HEC-HMS (Fleming and Neary, 2004) is a classical conceptual semi-distributed rainfall-runoff model. It uses the soil moisture accounting (SMA) algorithm for runoff generation, the Clark Unit Hydrograph for the transformation of direct runoff, two linear reservoirs to consider interflow and base flow transformation and the kinematic wave for river routing. Snow melt is calculated externally using the degree day method. Potential evapotranspiration is estimated using the Priestley-Taylor method.

The model WaSiM-ETH (Schulla, 1997) is a more complex process-based fully distributed hydrological model for the simulation of hydrological fluxes on a rectangular grid. Besides the digital elevation model input data grids for soil properties and land use are required. Soil water balance and runoff generation is modelled using a modified variable saturated area approach (top-model). The kinematic wave is used in combination with a single linear storage for discharge routing. Evapotranspiration is calculated after Penman-Monteith and snow melt using a temperature index- approach.

In addition to categorizing both soil erosion and hydrological models with respect to the way they are being synthesized, another distinction is the difference between distributed and global models. In distributed models, the watershed is one single entity and in global models, many units represent the variability of hydrological parameters on the surface. Spatial variability is handled by dividing a drainage basin into smaller geographical units, such as sub basins, land cover classes, elevation zones or a combination of them. The so called hydrological response units (HRUs) represent areas where the modeling has been simplified and where the hydrological response is supposed to be homogeneous.

In recent years, distributed watershed models are increasingly used to study alternative management strategies in the areas of water resources allocation, flood control, impact of land use change and climate change, and finally environmental pollution control. Many of these models share a common base in their attempt to incorporate the heterogeneity of the watershed and spatial distribution of topography, vegetation, land use, soil characteristics, rainfall and evaporation.

2.2.2 SWAT Model

SWAT (Soil and Water Assessment Tool) is spatially distributed physically based model. The physically based distributed watershed models have higher accuracy in analyzing the impact of land management practices on water, sediment, and agricultural chemical yields in large complex watersheds. Adapting this kind of model can help to achieve more accurate and reliable prediction of stream flow and achieve good representations of the hydrologic processes occurring in the system. It is also one of the suitable watershed models for long-term impact analysis.

The major model components of SWAT are weather, hydrology, soil temperature, plant growth, nutrients, pesticides, and land management. One of the many advantages of SWAT is that it can be used to model watersheds with less monitoring data. It can also be used to assess predictive scenarios using alternative input data such as climate, land-use practices, and land cover on water movement, nutrient cycling, water quality, and other outputs.

For simulation SWAT needs basic input digital data of topography, land use/cover, soil properties and the weather and land management of a study area. They are used as an input for analysis of hydrological simulation of evapotranspiration, runoff and ground water recharge. To enable to deal with type of soils and soil properties without difficulty, SWAT divides the soil profile into multiple layers.

SWAT is designated to predict the impact of management on water sediment, nutrient and pesticide yields in ungauged watersheds (Arnold et al., 1994). It is physically based model and uses readily available inputs. It is an efficient tool for handling large amount of information in databases and computing. It can be used to predict and assess long term impacts on the hydrology of a watershed. It helps for simulating a high level of spatial detail by partitioning larger watersheds into smaller sub watersheds.

The major model components of SWAT are weather, hydrology, soil temperature, plant growth, nutrients, pesticides, and land management. One of the many advantages of SWAT is that it can be used to model watersheds with less monitoring data. It can also be used to assess predictive scenarios using alternative input data such as climate, land-use practices, and land cover on water movement, nutrient cycling, water quality, and other outputs.

For simulation SWAT needs basic input digital data of topography, land use/cover, soil properties and the weather and land management of a study area. They are used as an input for analysis of hydrological simulation of evapotranspiration, runoff and ground water recharge. To enable to deal with type of soils and soil properties without difficulty, SWAT divides the soil profile into multiple layers.

SWAT simulates the hydrologic cycle based on the water balance equation:

$$SW_{t} = SW + \sum_{i=1}^{t} (R_{i} - Q_{i} - ET_{i} - P_{i} - QR_{i})$$

Where:

- *SWt* is the final soil water content (mm)
- *SW* is the initial soil water content on day *i* (mm *H2O*)
- *t* is the time (days)
- *Ri* is the amount of precipitation on day *i* (mm *H2O*)
- *Qi* is the amount of surface runoff on day *i* (mm)
- *ETi* is the amount of evapotranspiration on day *i* (mm H2O)
- *Pi* is the amount of water entering the vadose zone from the soil profile on day *i* (mm *H*2*O*)
- and *QRi* is the amount of return flow on day *i* (mm *H2O*)

The SWAT model is widely used in the United States and in some European countries to solve water management problems. It has been used for a variety of applications, including water balance calculation, sediment transport and stream-aquifer interaction Guen, (2005). SWAT was integrated in GIS with ArcGIS 9.3. The different types of data required by the model were added, allowing the model to run. The calibration permitted the prediction of the behavior of the basin depending on different conditions. Sophocleous et al (2000). SWAT was combined with MODFLOW (Modular Three Dimensional Finite Difference Ground Water Flow Model). The results showed that SWAT distorted the shape of the watershed by using a mean distance of overland flow to the stream during transport processes. However, the study demonstrated that SWAT:

- Was capable of operating on a watershed scale with several sub-basins
- Allowed topographical, land use and management differences
- Was capable of simulating several management practices
- Could simulate long periods of time
- Could be calibrated through field testing

A study by Flay (2000) had the aim of understanding nitrate and phosphate dynamics in agricultural basins. It analyzed the ability of SWAT to model the effect of changes of land use patterns and practices. This study concluded on the main assets and drawbacks of SWAT. Major shortcomings:

- Extensive data input requirements
- Difficulties of selecting appropriate parameters for calculation
- Subjectivity of selecting coefficients
- Limitations in simulating short-term events

Despite the complexity of the model, major benefits include: SWAT is applicable to decision-making in land management and is able to model the impacts on water quality and

quantity such as cropping patterns, fertilizer applications, pesticide applications and timing and amount of irrigation.

An important issue to consider in the prediction of hydrology, sediment yield and water quality is uncertainties in the predictions. The main sources of uncertainties are:

(I) Simplifications in the conceptual model. For example, the simplifications in a hydrologic model, or the assumptions in the equations for estimating surface erosion and sediment yield, or the assumptions in calculating flow velocity in a river,

(II) Processes occurring in the watershed but not included in the model. For example, wind erosion, soil losses caused by landslides,

(III) Processes that are included in the model, but their occurrences in the watershed are unknown to the modeler or unaccountable; for example, reservoirs, water diversions, irrigation, or farm management affecting water quality,

(IV) Processes that are not known to the modeler and not included in the model. These include dumping of waste material and chemicals in the rivers, or processes that may last for a number of years and drastically changes the hydrology or water quality such as constructions of roads, bridges, tunnels and dams, and

(V) Errors in the input variables such as rainfall and temperature.

Among the above mentioned models, the physically based distributed model SWAT is a well-established model for analyzing the impact of land management practices on water, sediment, and agricultural chemical yields in large complex watersheds. It is one of the watershed models for long term impact analysis. It is widely applied in many parts of United States and many other countries.

2.3 Previous investigations on land use changes assessment

The previous investigations on land use changes assessment have been studied in many parts of the world. Some important literatures have been briefly reviewed below in chronological order to be the background information.

Scott N. Miller et al. (2002) Modeled and estimated of the trends and direction of hydrologic watershed response due to land cover change are predicated on the chosen hydrologic model is sensitive to changes in the landscape, the input data are adequate and accurate and that observed changes are not artificial and River in Sonora, Mexico, and southeast Arizona. the model is responding to changes in cover correctly in the San Pedro River in Sonora, Mexico, and southeast Arizona, Mexico, and southeast Arizona. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response.

PIKOUNIS M. (2003) Investigates the hydrological effects of specific land use changes in a catchment of the river Pinios in Thessaly ,through the application of the Soil and Water Assessment Tool (SWAT) on a monthly time step. The model is used to simulate the main components of the hydrologic cycle, in order to study the effects of land use changes. All three scenarios resulted in an increase in discharge during wet months and a decrease during dry periods. The deforestation scenario was the one that resulted in the greatest modification of total monthly runoff.

Olan V.(2005) Distributed parameter model SWAT (Soil and Water Assessment Tool) was tested on monthly basis for estimating surface runoff from the Upper Nan River Basin, to determine the impacts of land use changes. The network of streams in the basin was

delineated from the DEM data. Land uses data for the year 1977, 1994 and 2001 which shown significant land use changes in the watershed are utilized to classify the basin hydrologic response units (HRUs) for each case study. The comparison of each runoff series shows the impact of land use changes. Besides, three scenarios postulating changes in land uses, reforestation, agricultural and the urban expansions, are modeled and then used to assess the consequences on surface runoff. The results demonstrated that impacts on runoff can be clearly detected, and hence verify the applicability of using SWAT model in the planning and management of water resource of the river basin.

P. Thanapakpawin (2006) Conflicts between upland shifting cultivation, upland commercial crops, and lowland irrigated agriculture cause water resource tension in the Mae Chaem watershed in Chiang Mai, Thailand. They assess hydrologic regimes of the Mae Chaem River with land use changes. Three plausible future forest-to-crop expansion scenarios and a scenario of crop-to-forest reversal were developed based on the land cover transition from 1989 to 2000, with emphasis on influences of elevation bands and irrigation diversion. Basin hydrologic responses were simulated using the Distributed Hydrology Soil Vegetation Model (DHSVM).

Yu-Pin Lin (2006) developed an approach for simulating and assessing land use changes and their effects on land use patterns and hydrological processes at the watershed level is essential in land use and water resource planning and management. The study provided a novel approach that combines a land use change model, landscape metrics and a watershed hydrological model with an analysis of impacts of future land use scenarios on land use pattern and hydrology. The proposed models were applied to assess the impacts of different land use scenarios that include various spatial and non-spatial policies in the Wu-Tu watershed in northern Taiwan. Analysis results revealed that future land use patterns differed between spatial policies. The variability and magnitude of future hydrological components were significantly and cumulatively influenced by land use changes during the simulation period, particularly runoff and groundwater discharge.

B. Schmalz and N. Fohrer (2009) investigate how specific landscape features influence the SWAT model behavior. To access differences occur between landscapes features in comparison to mountainous or low mountain range catchments in the mesoscale catchments St[°]or, Treene and Kielstau are located in Northern Germany. The results showed groundwater and soil parameters were found to be most sensitive in the studied lowland catchments and they turned out to be the most influential factors on simulated water discharge. The most sensitive parameter was the threshold water level in shallow aquifer for baseflow (GWQMN). In contrast, many studies of mountainous or low mountain range catchments show that the most sensitive parameters were the surface runoff parameters.

Zhi Li et al. (2009) assessed the impacts of land use change and climate variability on surface hydrology (runoff, soil water and evapotranspiration) in an agricultural catchment on the Loess Plateau of China during 1981-2000. Results indicated that SWAT proved to be a powerful tool to simulate the effect of environmental change on surface hydrology. The integrated effects of the land use change and climate variability decreased runoff, soil water contents and evapotranspiration. Both land use change and climate variability decreased runoff.

Pakorn Petchprayoon (2009) explore the impacts of LULC change, particularly urbanization, in the Yom River's discharge behavior and contribute to discussions regarding the nature of this impact in relation to floods in the Yom watershed in central–northern Thailand over a 15-year period using an integration of remote sensing, Geographic Information System, statistical methods, and hydrological modeling. The results demonstrated the impacts of changes in LULC on peak river discharge, hence flooding behaviour, of a major river in central–northern Thailand.

CHAPTER III

METHODOLOGY AND DATA PREPARATION

The sources of input data and the steps in image processing used remote sensing are comprehensively explained hereafter. These are the most cumbersome and time consuming steps of GIS and remote sensing techniques in this research. The prepared and processed thematic data that were used in this thesis will be mainly explained in this chapter. Meanwhile, phases of land use mapping analysis in GIS-based land use change detection techniques are also reviewed. Whereas, the detailed statistic analysis of the land use database and the parameter maps will be explained in the following chapter.

3.1 Phases of land use changes mapping analysis in Remote Sensing and GIS-based detection techniques

The following phases can be distinguished in the process of land use change analysis using GIS (Van Westen, 1993 and 1994 cited in Yumuang, 2005). They are listed in logical order or sequence though sometimes they may be overlapping (Figure 3-1) as follow:

• Preliminary phase:

Phase 1: Defining of objective of study and the methods of analysis which will be applied.

• Data collection phases:

Phase 2: Collection of existing data (collection of existing maps and reports with relevant data)

Phase 3: Image interpretation (interpretation of images and creation of new input maps)

Phase 4: Data base design (design of the database and definition of the way in which the data will be collected and stored)

Phase 5: Fieldwork (to verify the image interpretation) Phase 6: Laboratory analysis

• GIS work:

Phase 7: Data entry (digitizing of maps and attribute data)
Phase 8: Data validation (validation of the entered data)
Phase 9: Data manipulation (manipulation and transformation of the raw data in a form which can be used in the analysis)
Phase 10: Data analysis and modeling (analysis of data for preparation of land use change maps)
Phase 11: Presentation of output maps (final production of land use change maps and adjoining report)

An ideal Remote Sensing and GIS for land use analysis combines conventional GIS procedures with image processing capabilities and a relational data base. Map overlaying, modeling, and integration with satellite images are required, thus a raster system is preferred. The program should be able to perform spatial analysis on multiple-input maps and connected attribute data tables for map overlay, reclassification, and various other spatial functions.

3.2 Thematic data preparation from Remote Sensing and GIS techniques

Remote sensing data can be readily merged with other sources of geo-coded information as a GIS. This allows the overlapping of several layers of information with the remotely sensed data, and the application of a virtually unlimited number of forms of data analysis.

The input data used for land use changes detection in this thesis consists of several spatial data categories from the available resources (as shown in Table 3-1), being digitized from available maps and prepared from image interpretation, and from field investigation

data. These input data will be further used to analyze the dynamic behavior of land use by the statistical analysis in the Chapter 4.

The brief techniques and thematic maps of the input data produced in this thesis, namely, elevation (slope and hill shade), hydrology, soil properties, land use, and meteorology are consequently presented as below.

Main themes	Year	Sub-themes	Typs	Data preparation methodology
Soil Group	2001	Soil texture	Shape file	Derived from 1:50,000 scale digital map of Land Development Department (LDD)
	2004	Sub-basin	Shapefile	Derived from digital map of Water Resources Department
Hydrology	112	Steam	Shape file	Derived from digital map of Water Resources Department
	5.	Hydro Station	Attribute DATA	Royal Irrigation Department
DEM	1.00,00	Digital Elevation Model (DEM)	Grid	Derived from elevation data with GIS
Meteorology	1980 to 2009	Precipitation	Table .DAT	Interpolated from existing rainfall information of the observation stations of Thai Meteorological Department (TMD) Royal Irrigation Department
		Temperature Max-Min	Table	Interpolated from existing rainfall information of the observation stations of Thai Meteorological Department (TMD)
		relative humidity	Table	Interpolated from existing rainfall information of the observation stations of Thai Meteorological Department (TMD)
		Solar Radiation	Table	Interpolated from existing rainfall information of the observation stations of Thai Meteorological Department (TMD)
		Wind Speed	Table	Interpolated from existing rainfall information of the observation stations of Thai Meteorological Department (TMD)
		Meteorology Station	Attribute DATA	Interpolated from existing rainfall information of the observation stations of Thai Meteorological Department (TMD)
Land use	1988, 1995, 2003,2009	Land use	Shapefile	Derived from interpretation of remote sensing imageries and field investigation

Table 3-1 input data themes that were pre-processed and invented in this thesis.

3.3 Elevation

Instead of using a discrete elevation map such as contour points, it is more advantageous to work with a continuous map. Regarding this advantage, the contour data was converted into a color-coded continuous map (Digital Elevation Model-DEM). DEM is used to create a slope, aspect and landform topographic shape. In order to increase visual interception of DEM, it had been chosen to convert into a color-coded DEM (Figure 3-1).

Figure 3-1 Color-coded DEM of the study area.

3.4 Hydrology

Analysis of water quantity use data from 23 measurement stations located in the Yom River basin from the Royal Irrigation Department (RID) Thailand. This study was conducted in two hydrology station ; Y.20 located in Song District, Phrea Province in the upper part of the basin, Y.14 in Si Satchanalai District, Sukhothai Province in the central-lower part of the basin.

Figure 3-2 Hydrological measurement stations of the Royal Irrigation Department (RID) Thailand located in the Yom river basin.

3.5 Soil properties

The soil properties, was collected in a form of soil group 63 unit map of the study area prepared by compiling data from the available reports, publications, and analogue map of Land Development Department. The compiled analogue maps were transformed into digital image, via digitizing and edit using ArcMap GIS version 9.3 software. (as shown in Figure 3-6)

Figure 3-3 Color-coded DEM of the study area.

3.6 Geology

The Lower Yom River Basin is underlain by Pre-Cambrian Sedimentary and metamorphic rock (PE), Cambrian Sedimentary and metamorphic rock (E), Triassic Igneous rock (Trgr), Permian Ratburi Group (Pr), the younger unconsolidated sediments of Terrace deposits (Qt) and the sediments of Quaternary age also form in the alluvial fan as alluvial fan deposits (Qaf)

Figure 3-4 Geology map of the Yom river basin.

3.7 Meteorology

In this study, rainfall data were received from observation stations of Thai Meteorology Department during 1st January 1988 to 31st December 2009. Analysis of rainfall used data from 34 rain measurement stations located in the Yom river basin and nearby. Stations were located in Kamphaeng Phet , Lampang Province, Nakhon Sawan, Nan , Phichit, Phitsanulok, Phrae, Sukhothai, Tak, Uttaradit and Payoa.

Figure 3-5 Meteorology Station of the Thailand Meteorology Department (TMD) located in the Yom river basin.

3.8 Land use

The land use classification system presented in this study includes only the more generalized first and second levels. The system satisfies the three major attributes of the classification process as outlined by Land Development Department (LDD) (2003) in conjunction with U.S. Geological Survey (USGS) (2007):

- It gives names to categories by simply using accepted terminology
- It enables information to be transmitted; and
- It allows inductive generalizations to be made.

The classification system is capable of further refinement on the basis of more extended and varied use. At the more generalized levels it should meet the principal objective of providing a land use and land cover classification system for use in land use planning and management activities. Attainment of the more fundamental and long-range objective of providing a standardized system of land use and land cover classification for national and regional studies will depend on the improvement that should result from widespread use of the system.

A systematic study of image interpretation usually involves several basic characteristics of features shown on an image. The elements of image interpretation are tone, color, size, shape, texture, pattern, site, height and association (Table 3-2). These are routinely used when interpreting a satellite images as shown in Figure 3-8 (Jensen and Kiefer, 2007). This study used satellite images Landsat 5TM in the years 1988, 1995, 2003 and 2009 representing the land use and then they were classified as 6 land use categories as shown in Table 3-3.

No.	Interpretation elements	General characteristics				
1	tone/ color	Relative brightness of black and white image and hue for colored				
		pictures				
2	size	Relative dimension of different objects				
3	shape	Form also height of an object (in 3D)				
4	texture	Relates to the frequency of tonal change and is expressed as				
		coarse, fine, smooth or rough, even or uneven, etc				
5	pattern	Spatial arrangement of objects and implies characteristic				
	repetition of certain forms or relationship. It can be described as					
		concentric, radial, check board, etc				
6	site	Occurrence of an object to a particular easily identifiable feature				
7	height	z-elevation, slop, aspect, volume				
8	association	Close relationship/links of different or combination of objects.				

Table 3-2 Elements of Image Interpretation (Jensen and Kiefer, 2007).

Figure 3-6 Primary ordering of image elements fundamental to the analysis process.

Table 3-3 Land use and land cover classification system (Land Development Department,LDD) used in remote sensing data interpretation in the Yom River Basin,

	LU_CODE					
	Level I	Level II				
А	Agricultural land	A01 Paddy field				
		A02 Field crops				
		A03 Perennial crops				
F	Forest land	F00 Forest land				
W	Water Bodies	W00 Water bodies				
U	Urban and built-up land	U00 Urban and built-up land				

3.8.1 Data Sources

Remote sensing data used in this study comprises of Landsat 5TM satellite images in the year 1988, 1995, 2003 and 2007. These data will be used for land use change analysis and input for trend extrapolation to calculate land use requirements future year that will be further presented in Chapter 4. Table 3-4 showed the remote sensing data attribute and accessing periods that were used in this study.

Imaga tupo	Path/Row	Acquisition	Format	Source	
image type		date		Source	
Landsat 5TM	Path 130 Row 47	2531-04-06	Image File	Geo-Informatics and Space	
Satellite Image	Band 5:4:3 (R:G:B)			Technology Development	
resolution 25 m.	Path 130 Row 48	2538-04-26		(GISTDA)	
	Band 5:4:3 (R:G:B)	2546-11-10			
	Path 130 Row 49				
	Band 5:4:3 (R:G:B)	2552-12-12			

Table 3-4 The remote sensing data attributes and accessing periods that were used in this study.

3.8.2 Data Processing

Satellite imagery was analyzed using the program ERDAS Imagine version 8.7 to obtain the results for land use classification and grid interpolation. This study used ArcMap GIS version 9.3 for analyzing previous secondary data and classifying results. Digital data analysis techniques employed in this study involved the following two steps. The first step, image classification is the process of making quantitative decision from image data, grouping pixels of the image into classes to represent different physical object. The second step, the procedures of the classification consisted of unsupervised classification and supervised classification.

Unsupervised classification was performed using algorithm called the Iterative Self-Organizing Data Analysis Technique or ISODATA (Tou and Gonzalez, 1974 cited in Lillesand et. al., 2008). Performed an unsupervised classification with 30 clusters

b) Iterative Self-Organizing Data Analysis Technique (ISODATA).

Source: Adapted from F.F. Sabins (2007) cited in Lillesand et. al. (2008)

In unsupervised classification any individual pixel was compared to each discrete cluster to see which one it was closest to. A map of all pixels in the image, classified as to which cluster each pixel was most likely to belong, was produced (in black and white or more commonly in colors assigned to each cluster) as shown in Figure 3-6. This must be interpreted by the user as to what the color patterns may mean in terms of classes that were actually presented in the real world scene; this required some knowledge of the scene's feature/class/material content from general experience or personal familiarity with the area imaged (Lillesand et. al., 2008).

The supervised classification performed by the method of Maximum likelihood was to delineate a given pixel to the class that generated from the spectral signature analysis. For avoiding bias, each training area was not least than 30 pixels distributed around study area. In this study, land use was classified into 7 categories. The random samplings were rechecked by field observation convincing the correct classification as shown in Figure3-7.

Figure 3-8 Supervised classification.

Source: Adapted from F.F. Sabins (2007) cited in Lillesand et. al. (2008)

Maximum likelihood classification (MLC) technique was employed to perform the classification of an unknown pixel. This technique had been found to be the most accurate procedure in quantitatively evaluate both the variance and correlation of the category spectral reflectance patterns. In this study land use was classified into seven categories based on vegetation characteristics and field investigation.

3.8.3 Accuracy assessment

A complete accuracy test of a classification map would be a verification of the class of every pixel. Obviously this is impossible and indeed defeats the purpose of the image classification. Therefore, representative test areas must be used instead to estimate the map accuracy with as little error as possible. Classified image accuracy consists of two accuracy types. Firstly, overall accuracy which represents the accuracy of the entire product and secondly, user's accuracy (or map accuracy) which a map user is interested in the reliability of the map in how well the map represents what be really on the ground.

Overall accuracy is the accuracy of total number of correctly classified pixels, defined as:

Overall accuracy =
$$\sum_{i=1}^{k} x_{ij} / N$$
 (Equation 3-1)

where

 x_{ii} = a value of the contingency matrix for an element in column i row j

k = the number of classes

N = the total number of sampling cells

- i = class ith as classified by classified image
- j = class j^{th} as classified by ground truth

The Kappa coefficient (\hat{k} or KHAT) is a measure of the difference between the actual agreement between reference data and an automated classifier and the chance agreement between the reference data and a random classifier (Lillesand et. al, 2008). Conceptually, \hat{k} can be defined as

$$\hat{k} = \frac{N\sum_{i=1}^{r} x_{ii} - \sum_{i=1}^{r} (x_{i+} \cdot x_{+i})}{N^2 - \sum_{i=1}^{r} (x_{i+} \cdot x_{+i})} \dots (Equation 3-2)$$

where

- r = number of rows in the error matrix
- x_{ii} = number of observations in row *i* and column *i* (on the major diagonal)
- x_{i+} = total of observations in row *i* (shown as marginal total to right of the matrix)
- x_{+i} = total of observations in row *i* (shown as marginal total at bottom of the matrix)
- *N* = total number of observations included in matrix

Qualitative classification of overall accuracy value and Kappa coefficient value as degree of agreement (USGS, 1971 and 2007)

< 0	Less than chance agreement
0.01-0.40	Poor agreement
0.41-0.60	Moderate agreement
0.61-0.80	Substantial agreement
0.81-1.00	Almost perfect agreement

3.9 Runoff Simulation

3.9.1 Modeling the effects of land use changes on river runoff

The differences between river runoff response before and after land use changes were examined under similar precipitation conditions by using SWAT hydrological model. SWAT (Soil and Water Assessment Tool) is a semi-distributed model capable to simulate runoff, nutrients and other agricultural chemicals as well as sediment yield in large complex watersheds with varying soils, land use, and management conditions. Evapotranspiration is calculated here after Penman-Monteith, snow melt with the degree day method, infiltration based on the SCS curve number method, runoff transformation using a surface runoff lag method and flood routing is calculated with the variable storage method. Here, SWAT version 2009 is used.

To capture the potential effects of land use changes on runoff, the model was run for 22-years study period (1988-2009). Annual runoff of 1988-1989 and land use map of 1988 were used for model calibration and annual runoff of 2008 -2009 and land use map of 2009 were used for model validation. The precipitation data were used for each model run to determine if changes in river runoff were indeed due to changes in land use. Differences in river runoff, and the associated changes in model parameters, were therefore associated with changes in land use. The influences of the land use changes were quantified by comparing the SWAT output of the 8 scenario as follows:

- Scenario 1 : 1988 land use and 1988-1989 climate (calibration)
- Scenario 2 : 1995 land use and 1995-1996 climate (calibration)
- Scenario 3 : 2003 land use and 2002-2003 climate (validation)
- Scenario 4 : 2009 land use and 2008-2009 climate (validation)

- Scenario 5 : 1988 land use and 2008-2009 climate
- Scenario 6 : 1995 land use and 2008-2009 climate
- Scenario 7 : 2003 land use and 1988-1989 climate
- Scenario 8 : 2009 land use and 1988-1989 climate

3.9.2 Sensitivity analysis

In order to make calibration processes, it was crucial to find out the sensitive parameters using sensitivity analysis. Sensitivity analysis is important for a model to reduce the number of model parameters for calibration and to examine the more sensitive parameters, which in turns determines the main causes of river runoff from different practices and physical conditions.

Results of sensitivity analysis showed that sensitive parameters for the watershed were curve number (CN2), soil evaporation compensation factor (ESCO), Base flow alpha factor (ALPHA_BF/Days), Threshold water depth in the shallow aquifer for flow (GWQMN/mm), Available water capacity (SOL_AWC /mm water/mm soil), Threshold depth of water in shallow aquifer for "REVAP" to occur (REVAPMN/mm) and Groundwater "REVAP" coefficient (GW_REVAP/mm). These parameters were used for calibration.

CN2 determines the partitioning of precipitation between surface runoff and infiltration as a function of soil hydrologic group, land use, and antecedent moisture condition (Mishra and Singh 2003). ESCO adjust the depth distribution for evaporation from soil to account for the effect of capillary action, crusting, and cracking (Neitsch et al. 2002). GWQMN are correlated to base flow and that could be the reason for their higher ranking in the sensitivity analysis. ALPHA_BF is a direct index of groundwater flow response to changes in recharge. REVAPMN are Decreased to lowest suggested value by calibration tips in order to reduce base flow. The maximum amount of water that will be removed from the aquifer via revap is correlated by the REVAP coefficient (GW_REVAP) and the potential evapotranspiration (Neitsch et al., 2005).

3.9.3 Model calibration and validation

Model calibration is often important in hydrologic modeling studies, since uncertainty in model predictions can be increased if models are not properly calibrated. Calibration is tuning of model parameters based on checking results against observations to ensure the same response over time. This involves comparing the model results, entered with the use of historic meteorological data, to recorded stream flows. In this process, model sensitive parameters varied until recorded flow patterns are accurately simulated. Model calibration can be done manually or by a combination of manual and automatic. For this study manual calibration was applied. The calibration was carried out using the output of the sensitivity analysis of the model and by changing the sensitive parameter at a time while keeping of the rest of the parameters constant. Initial values were already assigned by the model itself and parameters which are then optimized manually. Calibration was performed until the predicted and observed results were visibly close. The parameter changes during calibration process was showed in Table 3-6.

Parameter	code	Units	Original	Change
Initial SCS curve number for moisture condition II	CN2	-	-	*0.5-0.6
Soil evaporation compensation factor	ESCO	-	0.95	0.05
Available water capacity of the soil layer	SOL_AWC	mm/mm	-	*1.4-1.8
Base flow alpha factor	ALPHA_BF	days	0.048	0.08
Threshold depth of water in shallow aquifer for return flow to occur	GWQ_MN	mm	0	20
Threshold depth of water in shallow aquifer for "REVAP" to occur	REVAPMN	mm	1	0
Groundwater "REVAP" coefficient	GW_REVAP		0.02	0.03

Table 3-5 List of all general parameter changes during calibration process.

Calibration and validation of SWAT model is typically performed with data collected at the hydrological stations of the Yom River. This study was conducted in two hydrology station; Y.20 located in Song District, Phrea Province in the upper part of the basin, Y.14 in Si Satchanalai District, Sukhothai Province in the central–lower part of the basin. SWAT was executed for a total simulation period of 22 years, which includes 1988-1996 as a calibration period and 2002-2009 as a validation period. The simulated flow was calibrated manually using the separated observed surface flow gauged at the outlet of the sub watershed. It was calibrated temporally by making delicate adjustments to ensure best fitting of the simulated flow curves with the gauged flow curves. Manipulation of the parameter values were carried out within the allowable ranges recommended by SWAT developers.

The methods of quantitative assessment for the goodness of model fit are the Coefficient of determination (R^2 , R-square) of monthly discharges. The Coefficient of determination is also reported for quantifying the volume errors, and bias is the percent error in total stream discharge.

 $R^2 = SSR/SST$ (Equation 3-2)

where SSR is the sum-of-squares of the residuals,

and SST is the total sum-of-squares is the sum of the squares of the distances from a horizontal line through the mean of all Y values.

The goodness-of-fit statistics was used in describing the model's performance relative to the observed data. The goodness of fit that was quantified by the coefficient of determination (R^2) between the observations and the final best simulations. Coefficient of determination (R^2) coefficient values close to zero it indicates that the model performance was unacceptable or poor and the model performance as satisfactory if the correlation coefficient was greater than 0.5.

The regression coefficient (R^2) was 0.85 and 0.84, respectively for the calibrated results, these show that the model performance was good and in the acceptable limit. The purpose of the validation was to observe visually how much the simulated pattern seems to be the measured one. The remaining reserved data from 2008-2009 was used for model validation. The process continues till simulation of validation-period stream flows confirm that the model performs satisfactorily.

After the model is validated, the application of statistical on Figure 15 shows that the regression coefficient (R^2) resulted 0.69 and 0.77, respectively. These results indicated that the model performance is very good and highly acceptable.

CHAPTER IV

ANALYSIS AND RESULTS

This chapter mainly presents the results of overall analysis, including analysis of land use changes, result of relationship between land use changes and river runoff in the Yom River Basin. The first part of this chapter explained the result of dynamic spatial patterns of land use changes. The second part is relationship between land use changes and river runoff in the Yom River Basin. All of the results in this chapter will be further discussed and finally concluded in Chapter 5.

4.1 Land use classification in the year 1988, 1995, 2003 and 2007 in The Yom River Basin

According to the land use classification processes by Landsat 5TM satellite images, there were 6 land use categories were identified, namely, paddy field, field crops, perennial, forest, urban and built-up land, and water bodies. The trends of land use changes of the area during 1988-2009 were presented in Table 3-8 and Figure 3-11. The areal distributions and locations of land use categories were presented in the Figure 3-12 to 3-17.

Table 4-1 Land use classification in the Yom River Basin by Landsat 5TM satellite images in the year 1988, 1995, 2003 and 2009.

LAND USE	1988	1988	1995	1995	2003	2003	2009	2009
	(Sq.km)	(%)	(Sq.km)	(%)	(Sq.km)	(%)	(Sq.km)	(%)
Paddy Field	6237.16	26.04	6904.51	28.83	6118.47	25.55	6334.18	26.45
Field Crop	2791.91	11.66	2999.03	12.52	3914.12	16.34	3458.88	14.44
perennial	892.17	3.73	603.70	2.52	611.94	2.56	1166.55	4.87
Forest	13133.61	54.84	12562.77	52.46	12308.98	51.40	11710.94	48.90
Urban	701.88	2.93	768.36	3.21	893.96	3.73	998.18	4.17
Water	191.42	0.80	109.78	0.46	100.68	0.42	279.43	1.17
Total	23948.15	100.000	23948.15	100.00	23948.15	100.00	23948.15	100.00

Figure 4-1 Graphs showing the areal distributions of land use categories

in the Yom River Basin during 1988-2009.

Figure 4-2 Land use Classification of land use categories in Yom River Basin in 1988.

Figure 4-3 Land use Classification of land use categories in Yom River Basin in 1995.

Figure 4-4 Land use Classification of land use categories in Yom River Basin in 2003.

Figure 4-5 Land use Classification of land use categories in Yom River Basin in 2009.

4.2 Dynamic spatial patterns of land use changes in the Yom River Basin

The combination bands (R:G:B = 5:4:3) of Landsat 5TM in 1988, 1995, 2003 and 2009 with supervised classification process were used for land use classification. The classification of land use categories in the Yom River Basin was presented in Chapter 3.7.3. This part showed dynamic spatial patterns of land use changes that were interpreted from Landsat 5TM satellite images in the year 1988, 1995, 2003 and 2009.

Change detection technique was calculated cross-tabulated areas between two datasets. This approach used the Tabulate Areas tool in ArcMap GIS version 9.3 to produce a cross-tabulation table and Microsoft Excel for graphing. This was used to compare and calculate coincident areas. As an example, using Tabulate Area, one could calculate the area of each land use category in each zoning district. The first input was a land use raster, and the second was zoning (ESRI, 2010).

Detecting of land use changes in the Yom River Basin was conducted by import map of land use in the year 1988, 1995, 2003 and 2009 into GIS database as raster format to overlay with land use map for all 4 years by using tabulate area, the Raster Calculation and intersection technique and intersection in spatial analysis. Land use area for each type was calculated and compared the changing during year 1988 to 1995, year 1995 to 2003 and 2003 to 2009 with the application of cross classification (Figure 4-1).

Figure 4-6 Method for land use changes analysis.

Estimation of land use changes was employed on three independent classification results with different time, which were classified results of Landsat 5TM in the year 1988, 1997 and 2007. The change estimation technique is used for identifying the "from-to" change of land use and quantifying the different rates and magnitude of change. The formula to calculate the annual change of land use was:

$$\Delta = \left(\frac{A_2 - A_1}{A_1} \times 100\right) / \left(T_2 - T_1\right) \dots (Equation 4-1)$$

where

 Δ = Average annual rates of change (%)

 $A_1 = Amount of land use category in time 1 (T_1)$

$$A_2$$
 = Amount of land use category in time 2 (T₂)

Land use maps were derived from classification of Landsat 5TM image in the year 1988, 1995, 2003 and 2009. In this study, the images were reclassified in 4 classes (90 x 90 m raster grid resolution) as shown in Figure 4-2. The results of the comparison study on land use changes during 1988 to1995, 1995 to 2003, and 2003 to 2009

The result revealed that the change detection for the land use classification in the year 1988, 1997 and 2007, it could be seen that agricultural land, and urban and built-up land were increasing over time, whereas forest land tended to decrease. Besides, water bodies tended to increase in the year 1997 and decrease in the year 2007 because Thap Salao dam was constructed. The trends of land use changes of the area during 1988-2007 were presented in Table 4-1 and Figure 4-3.

	1988		1995		2003		2009	
LAND USE	(Sq.km)	(%)	(Sq.km)	(%)	(Sq.km)	(%)	(Sq.km)	(%)
Paddy Field	6237.16	26.04	6904.51	28.83	6118.47	25.55	6334.18	26.45
Field Crop	2791.91	11.66	2999.03	12.52	3914.12	16.34	3458.88	14.44
perennial	892.17	3.73	603.70	2.52	611.94	2.56	1166.55	4.87
Forest	13133.61	54.84	12562.77	52.46	12308.98	51.40	11710.94	48.90
Urban	701.88	2.93	768.36	3.21	893.96	3.73	998.18	4.17
Water	191.42	0.80	109.78	0.46	100.68	0.42	279.43	1.17
Total	23948.15	100.000	23948.15	100.00	23948.15	100.00	23948.15	100.00

Table 4-2 Comparative land use class 1 in the Yom River Basin in the year 1988, 1995, 2003 and 2009.

Figure 4-7 Graph showing trend (in percentage) of land use changes in the Yom River Basin during 1988 to 2009.

4.2.1 Land use changes in Upper Part of Yom Sub-basin

4.2.1.1 Land use changes in Upper Part of Yom Sub-basin during 1988 to 1995 Agricultural land was increased with an area of 93.4km² or 4.42 of the sub-basin area , paddy field1 14.95 km² or 0.71%, field crop 71.80 km² or 3.40% and perennial 7.27 km² or 0.34%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 109.24 km² or 5.17% of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 93.4 km² or 4.42 %, followed by water bodies area with an area of 8.10 km² or 0.38 % and urban and built-up land with an area of 7.12 km² or 0.34 %, respectively.

Urban and built-up land was increased with an area of 18.01 km² or 0.85 % of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 10.88 km² or 0.52%, followed by forest land 7.12 km² or 0.34 %, respectively.

Water body area was increased with an area of 8.10 km² or 0.38% of the sub-basin area. The most of water body area were transformed form forest land.

4.2.1.2 Land use changes in Upper Part of Yom Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 202.53 km² or 9.58 % of the subbasin area, paddy field1 18.57 km² or 0.88 %, field crop 171.71 km² or 8.13 % and perennial 12.25 km² or 0.58 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 233.97 km² or 11.07 % of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 202.53 km² or 9.58 %, followed by water bodies area with an area of 3.48 km² or 0.16 % and urban and built-up land with an area of 27.96 km² or 1.32 %, respectively.

Urban and built-up land was increased with an area of 65.56 km^2 or 3.10 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 37.60 km^2 or 1.78 %, followed by forest land 27.96 km^2 or 1.32 %, respectively.

Water bodies area was increased with an area of 3.48 km^2 or 0.16 % of the subbasin area. The most of water bodies area were transformed form forest land

4.2.1.3 Land use changes in Upper Part of Yom Sub-basin 2003 to 2009

Agricultural land was increased with an area of 119.06 km² or 5.63% of the subbasin area, paddy field1 4.60 km² or 0.22%, field crop 95.45 km² or 4.52% and perennial 20.01km² or 0.95%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 126.22 km² or 5.97% of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 119.06 km2 or 5.63% followed by water bodies area with an area of 3.37 km² or 0.16% and urban and built-up land with an area of 2.79 km² or 0.13%, respectively.

Urban and built-up land was increased with an area of 12.40 km² or 0.59%, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 9.61km² or 0.45%, followed by forest land 2.79km² or 0.13%, respectively.

Water bodies area was increased with an area of 3.37km² or 0.16% of the sub-basin area. The most of water bodies area were transformed form forest land

4.2.1.4 Land use changes in Upper Part of Yom Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 142.80 km² or 6.76 % of the subbasin area, paddy field 13.37 km² or 0.63 %, field crop 116.62 km² or 5.52 % and perennial 12.81 km² or 0.61 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 161.61 km² or 7.65 % of of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 142.80 km² or 6.76 %, followed by water bodies area with an area of 4.99 km² 0.24 % and urban and built-up land with an area of 13.82 km² or 0.65 %, respectively.

Urban and built-up land was increased with an area of 34.52 km^2 or 1.63 %, of the land use area. Furthermore, the most of urban and built-up land was transformed form agricultural land 20.70 km² or 0.98 %, followed by forest land 13.82 km² or 0.65 %, respectively.

Water bodies area was increased with an area of 4.99 km² 0.24% of the sub-basin area. The most of water bodies area were transformed form forest land

4.2.2 Land use changes Mae Khuan Sub-basin

4.2.2.1 Land use changes in Mae Khuan Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 18.15 km^2 or 2.09 % of the sub-basin area, paddy field 2.43 km² or 0.28%, field crop 13.86 km² or 1.59% and perennial 1.86 km² or 0.21%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 19.45 km² or 2.24% of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 18.15 km² or 2.09 % followed by water bodies area with an area of 0.04 km² or 0.005% and urban and built-up land with an area of 1.26km² or 0.14%, respectively.

Urban and built-up land was increased with an area of 4.79 km^2 or 0.55%, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 3.53 km² or 0.41%, followed by forest land 1.26 km² or 0.14%, respectively.

Water bodies area was increased with an area of 0.04 km² or 0.005% of the subbasin area. The most of water bodies area were transformed form forest land

4.2.2.2 Land use changes in Mae Khuan Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 77.49 km² or 8.91% of the sub-basin area, paddy field 12.61 km² or 1.45%, field crop 64.40 km² or 7.41% and perennial 0.48 km² or 0.06%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 86.57 km² or 9.96% of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 77.49 km2 or 8.91% followed by water bodies area with an area of 1.04 km² or 0.12% and urban and built-up land with an area of 8.04 km² or 0.92%, respectively.

Urban and built-up land was increased with an area of 21.81 km^2 or 2.51%, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 13.77 km^2 or 1.58%, followed by forest land 8.04 km^2 or 0.92%, respectively.

Water bodies area was increased with an area of 1.04 km² or 0.12% of the sub-basin area. The most of water bodies area were transformed form forest land.

4.2.2.3 Land use changes in Mae Khuan Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 80.98 km² or 9.31% of the sub-basin area, paddy field 3.99 km² or 0.46 %, field crop 72.89 km² or 8.38 % and perennial 4.10 km² or 0.47%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 82.42 km² or 9.48% of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 80.98 km2 or 9.31% followed by water bodies area with an area of 0.15 km² or 0.02% and urban and built-up land with an area of 1.28 km² or 0.15%, respectively.

Urban and built-up land was increased with an area of 3.69 km^2 or 0.42%, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 2.41 km² or 0.28%, followed by forest land 1.28 km2 or 0.15%, respectively.

Water bodies area was increased with an area of 0.15 km2 or 0.02% of the subbasin area. The most of water bodies area were transformed form forest land.

4.2.2.4 Land use changes in Mae Khuan Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 58.71 km^2 or 6.75 % of the subbasin area, paddy field 6.75 km^2 or 0.78 %, field crop 49.98 km^2 or 5.75 % and perennial 1.98 km^2 or 0.23 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 63.01 km² or 7.25 % of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 58.71 km² or 6.75 %, followed by water bodies area with an area of 0.45 km² or 0.05 % and urban and built-up land with an area of 3.85 km² or 0.44 %, respectively.

Urban and built-up land was increased with an area of 10.96 km^2 or 1.26%, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 7.11km^2 or 0.82%, followed by forest land 3.85 km^2 or 0.44 %, respectively.

Water bodies area was increased with an area of 3.48 km^2 or 0.16 % of the subbasin area. The most of water bodies area were transformed form forest land.

Figure 4-15 Change detection map of Mae Khuan Sub-basin from 1988 to 2009

4.2.3 Land use changes Nam Pi Sub-basin

4.2.3.1 Land use changes in Nam Pi Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 34.78 km^2 or 5.29 % of the land use changes, paddy field 2.52 km² or 0.38%, field crop 31.15 km^2 or 4.74 % and perennial 1.11 km² or 0.17%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 36.93 km^2 or 5.62% of the land use changes. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 34.78 km^2 or 5.29 %, followed by water bodies area with an area of 1.36 km^2 or 0.21% and urban and built-up land with an area of 0.78 km^2 or 0.12 %, respectively.

Urban and built-up land was increased with an area of 8.15 km^2 or 1.24%, of the land use changes. Furthermore, the most of urban and built-up land was transformed form agricultural land 7.37 km² or 1.12%, followed by forest land 0.78 km2 or 0.12 %, respectively.

Water bodies area was increased with an area of 1.36 km2 or 0.21% of the land use changes. The most of water bodies area were transformed form forest land.

4.2.3.2 Land use changes in Nam Pi Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 9.73 km² or 1.48% of the land use changes, paddy field 3.41 km² or 0.52%, field crop 6.32 km² or 0.96%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 17.86 km² or 2.72% of the land use changes. Furthermore, the most of forest land was transformed to be agricultural land (paddy field and field crop) with an area of 9.73 km2 or 1.48%, followed by water bodies area with an area of 0.36 km² or 0.06 % and urban and built-up land with an area of 7.77km² or 1.18%, respectively.

Urban and built-up land was increased with an area of 52.39 km^2 or 7.97%, of the land use changes. Furthermore, the most of urban and built-up land was transformed form agricultural land 44.62 km² or 6.79%, followed by forest land 7.77km2 or 1.18 %, respectively.

Water bodies area was increased with an area of 0.36 km2 or 0.06 % of the land use changes. The most of water bodies area were transformed form forest land.

4.2.3.3 Land use changes in Nam Pi Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 80.08 km² or 12.19% of the land use changes, paddy field 1.22 km² or 0.19%, field crop 73.73 km² or 11.22 % and perennial 5.31 km² or 0.81%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 81.18 km^2 or 12.35% of the land use changes. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 80.08 km^2 or 12.19%, followed by water bodies area with an area of 0.52 km^2 or 0.08 % and urban and built-up land with an area of 0.41 km^2 or 0.06%, respectively.

Urban and built-up land was increased with an area of 2.18 km² or 0.33 %, of the land use changes. Furthermore, the most of urban and built-up land was transformed form agricultural land 1.78 km² or 0.27%, followed by forest land 0.41 km² or 0.06%, respectively.

Water bodies area was increased with an area of 3.48 km² or 0.16 % of the land use changes. The most of water bodies area were transformed form forest land.

4.2.3.4 Land use changes in Nam Pi Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 38.23 km^2 or 5.82 % of the sub-basin area , paddy field 2.49 km² or 0.38 %, field crop 33.86 km^2 or 5.15 % and perennial 1.89 km^2 or 0.29 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 42.31 km² or 6.44 % of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 38.23 km² or 5.82 %, followed by water bodies area with an area of 0.74 km² or 0.11 % and urban and built-up land with an area of **3.34** km² or 0.51%, respectively.

Urban and built-up land was increased with an area of 23.30 km² or 3.55 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 19.96 km² or 3.04 %, followed by forest land **3.34** km² or 0.51%, respectively.

Water bodies area was decreased with an area of 88.01 km² or 0.36% of the subbasin area. Furthermore, the most of water bodies area were transformed form forest land.

4.2.4 Land use changes Mae Ngao Sub-basin

4.2.4.1 Land use changes in Mae Ngao Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 73.84 km² or 4.22 % of the land use changes, paddy field 71.32 km² or 4.07 %, field crop 0.01km² or 0.0005 % and perennial 2.51 km² or 0.14 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 102.92 km2 or 5.88 % of the land use changes. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 73.84 km2 or 4.22 %, followed by water bodies area with an area of 1.21 km² or 0.07 % and urban and built-up land with an area of 27.88 km² or 1.59 %, respectively.

Urban and built-up land was increased with an area of 29.79 km^2 or 1.70 %, of the land use changes. Furthermore, the most of urban and built-up land was transformed form forest land 27.88 km2 or 1.59 %, followed by agricultural land 1.91 km² or 0.11 %, respectively.

Water bodies area was increased with an area of 1.21 km² or 0.07 % of the land use changes. The most of water bodies area were transformed form forest land.

4.2.4.2 Land use changes in Mae Ngao Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 87.71 km² or 5.01 % of the land use changes, paddy field 4.38 km² or 0.25 %, field crop 83.33 km² or 4.76 % .The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 96.61 km² or 5.52% of the land use changes. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 87.71 km2 or 5.01 %, followed by water bodies area with an area of 0.08 km² or 0.004 % and urban and built-up land with an area of 8.83 km² or 0.50%, respectively.

Urban and built-up land was increased with an area of 22.08 km² or 1.26 %, of the land use changes. Furthermore, the most of urban and built-up land was transformed form agricultural land 13.25 km² or 0.76 %, followed by forest land 8.83 km² or 0.50%, respectively.

Water bodies area was increased with an area of 8.83 km² or 0.50% of the land use changes. The most of water bodies area were transformed form forest land.

4.2.4.3 Land use changes in Mae Ngao Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 79.56 km² or 4.54 % of the land use changes, paddy field 7.05 km² or 0.40 %, field crop 59.04 km² or 3.37 % and perennial 13.47 km² or 0.77%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 85.70 km² or 4.90% of the land use changes. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 79.56 km² or 4.54 %, followed by water bodies area with an area of 1.04 km² or 0.06 % and urban and built-up land with an area of 5.10 km² or 0.29 %, respectively.

Urban and built-up land was increased with an area of 16.13 km² or 0.92 %, of the land use changes. Furthermore, the most of urban and built-up land was transformed form agricultural land 11.03 km² or 0.63, followed by forest land 5.10 km² or 0.29 %,, respectively.

Water bodies area was increased with an area of 5.10 km2 or 0.29 % of the land use changes. The most of water bodies area were transformed form forest land.

4.2.4.4 Land use changes in Mae Ngao Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 80.76 km² or 4.61 % of the sub-basin area, paddy field 27.46 km² or 1.57 %, field crop 48.62 km² or 2.78 % and perennial 4.68 km² or 0.27 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 95.60 km² or 5.46 % of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 80.76 km2 or 4.61 %, followed by water bodies area with an area of 0.73 km² 0.04 % and urban and built-up land with an area of 14.11 km² or 0.81 %, respectively.

Urban and built-up land was increased with an area of 22.95 km² or 1.31 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form forest land 14.11 km² or 0.81 %, followed by agricultural land 8.83 km² or 0.50 %, respectively.

Water bodies area was increased with an area of 0.73 km2 0.04 of the sub-basin area. The most of water bodies area were transformed form forest land.

Figure 4-20 Change detection map of Mae Ngao Sub-basin from 1988 to 1995

4.2.5 Land use changes Middle Part of Yom Sub-basin

4.2.5.1 Land use changes in Middle Part of Yom Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 146.61 km² or 4.77 % of the subbasin area, paddy field 40.98 km² or 1.33%, field crop 73.81 km² or 2.40 % and perennial 31.82 km^2 or 1.04%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 176.86 km² or 5.75 % of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 146.61 km² or 4.77 %, followed by water bodies area with an area of 15.02 km² or 0.49% and urban and built-up land with an area of 15.23 km² or 0.50 %, respectively.

Urban and built-up land was increased with an area of 86.87 km^2 or 2.83 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 71.64 km² or 2.33%, followed by forest land 15.23 km² or 0.50 %, respectively.

Water bodies area was increased with an area of 3.48 km² or 0.16 % of the subbasin area. The most of water bodies area were transformed form forest land.

4.2.5.2 Land use changes in Middle Part of Yom Sub-basin 1995 to 2003

Agricultural land was increased with an area of 94.18 km^2 or 3.06 % of the subbasin ara, paddy field 14.62 km^2 or 0.48 %, field crop 56.66 km^2 or 1.84 % and perennial 22.90 km^2 or 0.75%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 108.44 km² or 3.53% of the sub-basin ara. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 94.18 km² or 3.06 %, followed by water bodies area with an area of 8.51 km² or 0.28 % and urban and built-up land with an area of 5.75 km² or 0.19%, respectively.

Urban and built-up land was increased with an area of 62.43 km^2 or 2.03%, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 56.68 km² or 1.84%, followed by forest land 5.75 km2 or 0.19%, respectively.

Water bodies area was increased with an area of 8.51 km2 or 0.28 % of the subbasin area. The most of water bodies area were transformed form forest land.

4.2.5.3 Land use changes in Middle Part of Yom Sub-basin 2003 to 2009

Agricultural land was increased with an area of 150.64 km² or 4.90 % of the subbasin ara, paddy field 8.53 km² or 0.28 %, field crop 111.03 km² or 3.61 % and perennial 31.08 km^2 or 1.01 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 168.13 km² or 5.47% of the sub-basin ara. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 150.64 km² or 4.90 %, followed by water bodies area with an area of 7.80 km² or 0.25 % and urban and built-up land with an area of 9.69 km² or 0.32 %, respectively.

Urban and built-up land was increased with an area of 69.03 km^2 or 2.25 %, of the sub-basin ara. Furthermore, the most of urban and built-up land was transformed form agricultural land 59.34 km² or 1.93 %, followed by forest land 23.38 km² or 0.10%, respectively.

Water bodies area was increased with an area of 9.69 km^2 or 0.32 % of the subbasin ara. The most of water bodies area were transformed form forest land.

4.2.5.4 Land use changes in Middle Part of Yom Sub-basin 1988 to 2009

Agricultural land was increased with an area of 127.79 km^2 or 4.16 % of the subbasin ara, paddy field 21.66 km^2 or 0.70 %, field crop 77.91 km^2 or 2.53 % and perennial 28.21 km^2 or 0.92 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 148.30 km² or 4.82 % of of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 127.79 km2 or 4.16 %, followed by water bodies area with an area of 10.48 km² or 0.34 % and urban and built-up land with an area of 10.04 km² or 0.33 %, respectively.

Urban and built-up land was increased with an area of 72.46 km² or 2.36 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form forest land 10.04 km² or 0.33 %, followed by agricultural land 62.42 km² or 2.03 %, respectively.

Water bodies area was increased with an area of 10.48 km2 or 0.34 % of the subbasin area. The most of water bodies area were transformed form forest land.

Figure 4-24 Change detection map of Middle Part of Yom Sub-basin from 1988 to 1995

Figure 4-26 Change detection map of Middle Part of Yom Sub-basin from 2003 to 2009

4.2.6 Land use changes Mae Kham mee Sub-basin

4.2.6.1 Land use changes in Mae Kham mee Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 18.72 km² or 4.14 % of the sub-basin area, paddy field 6.47 km² or 1.43 %, field crop 6.22 km² or 1.37% and perennial 6.03 km² or 1.33 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 22.48 km² or 4.97 % of of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 18.72 km2 or 4.14 %, followed by water bodies area with an area of 0.15 km² or 0.03 % and urban and built-up land with an area of 3.61 km² or 0.80 %, respectively.

Urban and built-up land was increased with an area of 15.81 km^2 or 3.50%, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 12.20 km² or 2.70%, followed by forest land of 3.61 km² or 0.80 %, respectively.

Water bodies area was increased with an area of 3.48 km² or 0.16 % o of the subbasin area. The most of water bodies area were transformed form forest land.

4.2.6.2 Land use changes in Mae Kham mee Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 25.19 km² or 5.57 % of the sub-basin area, paddy field 0.91 km² or 0.20 %, field crop 22.44 km² or 4.96 % and perennial 1.84 km² or 0.41 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 27.10 km² or 5.99 % of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 25.19 km2 or 5.57 %, followed by urban and built-up land with an area of 1.91 km² or 0.42 %, respectively.

Urban and built-up land was increased with an area of 11.69 km^2 or 2.58 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 9.79 km² or 2.16%, followed by forest land 1.91 km2 or 0.42 %, respectively.

Water bodies area were not transformed form during this period.

4.2.6.3 Land use changes in Mae Kham mee Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 52.1 km² or 11.52 % of the sub-basin area, paddy field 2.05 km² or 0.45 %, field crop 44.46 km² or 9.83 % and perennial 5.59 km² or 1.24%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 56.29 km² or 12.44% of of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 52.1 km2 or 11.52 %, followed by water bodies area with an area of 0.50 km² or 0.11 % and urban and built-up land with an area of 3.69 km² or 0.82 %, respectively.

Urban and built-up land was increased with an area of 13.64 km^2 or 3.02 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 9.95 km^2 or 2.20 %, followed by forest land 3.69 km^2 or 0.82 %, respectively.

Water bodies area was increased with an area of 3.69 km2 or 0.82 % of the subbasin area. The most of water bodies area were transformed form forest land.

4.2.6.4 Land use changes in Mae Kham Mee Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 30.72 km² or 6.79 % of the subbasin area, paddy field 3.09 km² or 0.68 %, field crop 23.33 km² or 5.16 % and perennial 4.31 km² or 0.95 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 33.90 km^2 or 7.49 % of the sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 30.72 km^2 or 6.79 %, followed by water bodies area with an area of 0.19 km^2 or 0.04 % and urban and built-up land with an area of 2.99 km^2 or 0.66 %, respectively.

Urban and built-up land was increased with an area of 13.62 km^2 or 3.01 %, of the sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 10.64 km^2 or 2.35 %, followed by forest land 2.99 km^2 or 0.66 %, respectively.

Water bodies area was increased with an area of 0.19 km² or 0.04 % of the subbasin area. The most of water bodies area were transformed form forest land.

4.2.7 Land use changes Mae Ta Sub-basin

4.2.7.1 Land use changes in Mae Ta Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 12.46 km² or 2.41 % of sub-basin area , paddy field 8.88 km² or 1.72 %, field crop 3.41 km² or 0.66 % and perennial 0.17 km² or 0.03 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 14.51 km² or 2.81% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 12.46 km² or 2.41 %, followed by water bodies area with an area of 0.10 km² or 0.02 % and urban and built-up land with an area of 1.94 km² or 0.38 %, respectively.

Urban and built-up land was increased with an area of 3.59 km^2 or 0.70%, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 1.94 km^2 or 0.38%, followed by agricultural land 1.65 km^2 or 0.32%, respectively.

Water bodies area was increased with an area of 0.10 km2 or 0.02 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.7.2 Land use changes in Mae Ta Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 9.98 km² or 1.93 % of sub-basin area, paddy field 8.42 km² or 1.63%, field crop 1.36 km² or 0.26 % and perennial 0.20 km² or 0.04 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 10.93 km² or 2.12 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 9.98 km² or 1.93 %, followed by water bodies area with an area of 0.10 km² or 0.02 % and urban and built-up land with an area of 0.85 km² or 0.16 %, respectively.

Urban and built-up land was increased with an area of 2.38 km^2 or 0.46 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 1.53 km^2 or 0.30%, followed by forest land 0.85 km^2 or 0.16 %, respectively.

Water bodies area was increased with an area of 0.10 km2 or 0.02 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.7.3 Land use changes in Mae Ta Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 53.14 km² or 10.30 % of of sub-basin area, paddy field 13.73 km² or 2.66%, field crop 38.22 km² or 7.41 % and perennial 1.19 km² or 0.23%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 56.00 km² or 10.85% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 53.14 km² or 10.30 %, followed by water bodies area with an area of 0.84 km² or 0.16 % and urban and built-up land with an area of 2.02 km² or 0.39 %, respectively.

Urban and built-up land was increased with an area of 3.45 km^2 or 0.67%, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 2.02 km² or 0.39 %, followed by agricultural land 1.43 km² or 0.28%, respectively.

Water bodies area was increased with an area of 0.84 km² or 0.16 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.7.4 Land use changes in Mae Ta Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 23.14 km^2 or 4.49 % of sub-basin area, paddy field 10.09 km^2 or 1.96 %, field crop 12.58 km^2 or 2.44 % and perennial 0.47 km^2 or 0.09 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 25.00 km² or 4.85 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 23.14 km2 or 4.49 %, followed by water bodies area with an area of 0.31 km² or 0.06 % and urban and built-up land with an area of 1.55 km² or 0.30 %, respectively.

Urban and built-up land was increased with an area of 3.09 km^2 or 0.60 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 1.55 km² or 0.30 %, followed by agricultural land 1.54 km² or 0.30%, respectively.

Water bodies area was increased with an area of 0.31 km² or 0.06 % of sub-basin area. The most of water bodies area were transformed form forest land.

Figure 4-35 Change detection map of Mae Ta Sub-basin from 1988 to 2009

4.2.8 Land use changes Huay Mae Sin Sub-basin

4.2.8.1 Land use changes in Huay Mae Sin Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 24.79 km² or 4.64 % of sub-basin area, paddy field 5.24 km² or 0.98%, field crop 4.00 km² or 0.75 % and perennial 15.55 km² or 2.91%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 25.82 km² or 4.84% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 24.79 km² or 4.64 %, followed by water bodies area with an area of 0.17 km² or 0.03 % and urban and built-up land with an area of 0.87 km² or 0.16%, respectively.

Urban and built-up land was increased with an area of 2.57 km^2 or 0.48%, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 1.69 km^2 or 0.32%, followed by forest land 0.87 km^2 or 0.16%, respectively.

Water bodies area was increased with an area of 0.17 km² or 0.03 % of the land use changes. The most of water bodies area were transformed form forest land.

4.2.8.2 Land use changes in Huay Mae Sin Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 28.51 km² or 5.34 % of sub-basin area, paddy field 3.77 km² or 0.71 %, field crop 10.43 km² or 1.95 % and perennial 14.31 km² or 2.68 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 29.88 km² or 5.60% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 28.51 km² or 5.34 %, followed by water bodies area with an area of 0.17 km² or 0.03 % and urban and built-up land with an area of 1.20 km² or 0.22%, respectively.

Urban and built-up land was increased with an area of 2.54 km^2 or 0.48 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 1.34 km^2 or 0.25%, followed by forest land 1.20 km^2 or 0.22%, respectively.

Water bodies area was increased with an area of 0.17 km² or 0.03 % of the land use changes. The most of water bodies area were transformed form forest land.

4.2.8.3 Land use changes in Huay Mae Sin Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 51.55 km² or 9.65 % of sub-basin area, paddy field 4.41 km² or 0.83%, field crop 27.65 km² or 5.18% and perennial 19.49 km² or 3.65 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 53.68 km² or 10.05% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 51.55 km² or 9.65 %, followed by water bodies area with an area of 1.02 km² or 0.19 % and urban and built-up land with an area of 1.11 km² or 0.21%, respectively.

Urban and built-up land was increased with an area of 4.55 km^2 or 0.85%, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 3.44 km^2 or 0.64%, followed by forest land 1.11 km^2 or 0.21%, respectively.

Water bodies area was increased with an area of 1.02 km² or 0.19 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.8.4 Land use changes in Huay Mae Sin Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 33.85 km^2 or 6.34 % of sub-basin area, paddy field 4.44 km² or 0.83 %, field crop 13.21 km² or 2.47 % and perennial 16.20 km² or 3.03 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 35.33 km^2 or 6.62 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of of 33.85 km^2 or 6.34 %, followed by water bodies area with an area of 0.41 km^2 or 0.08 % and urban and built-up land with an area of 1.07 km^2 or 0.20 %, respectively.

Urban and built-up land was increased with an area of 3.12 km² or 0.58 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 1.07 km2 or 0.20%, followed by agricultural land 2.06 km² or 0.39 %, respectively.

Water bodies area was increased with an area of 0.41 km2 or 0.08 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.9 Land use changes Mae Mok Sub-basin

4.2.9.1 Land use changes in Mae Mok Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 41.32 km² or 3.71 % of sub-basin area, paddy field 23.15 km² or 2.08 %, field crop 5.89 km² or 0.53 % and perennial 12.28 km² or 1.10%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 65.37 km² or 5.87 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 41.32 km2 or 3.71 %, followed by water bodies area with an area of 1.86 km² or 0.17% and urban and built-up land with an area of 22.20 km² or 1.99 %, respectively.

Urban and built-up land was increased with an area of 37.50 km^2 or 3.37%, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 22.20 km² or 1.99 %, followed by agricultural land 15.30 km² or 1.37%, respectively.

Water bodies area was increased with an area of 1.86 km² or 0.17% of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.9.2 Land use changes in Mae Mok Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 41.02 km² or 3.68 % of sub-basin area, paddy field 17.25 km² or 1.55 %, field crop 15.26 km² or 1.37% and perennial 8.51 km² or 0.76%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 56.91 km² or 5.11% of of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 41.02 km² or 3.68 %, followed by water bodies area with an area of 1.28 km² or 0.11 % and urban and built-up land with an area of 14.61 km² or 1.31 %, respectively.

Urban and built-up land was increased with an area of 22.11 km² or 1.98%, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 14.61 km² or 1.31 %, followed by agricultural land 7.49 km² or 0.67 %, respectively.

Water bodies area was decreased with an area of 14.61 km² or 1.31 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.9.3 Land use changes in Mae Mok Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 54.4 km² or 4.88 % of sub-basin area, paddy field 12.26 km² or 1.10 %, field crop 25.93 km² or 2.33 % and perennial 16.21 km² or 1.46 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 16.21 km² or 72.84% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 54.4 km² or 4.88 %, followed by water bodies area with an area of 13.62 km² or 1.22 % and urban and built-up land with an area of 4.82 km² or 0.43 %, respectively.

Urban and built-up land was increased with an area of 12.62 km^2 or 1.13 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 7.80 km² or 0.70 %, followed, by forest land 4.82 km2 or 0.43 %, respectively.

Water bodies area was increased with an area of 13.62 km^2 or 1.22 % of sub-basin area. The most of water bodies area were transformed form forest land.
4.2.9.4 Land use changes in Mae Mok Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 44.94 km² or 4.03 % of sub-basin area, paddy field 17.79 km² or 1.60 %, field crop 15.19 km² or 1.36 % and perennial 11.97 km² or 1.07 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 64.28 km² or 5.77 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 44.94 km² or 4.03 %, followed by water bodies area with an area of 5.00 km² or 0.45 % and urban and built-up land with an area of 14.34 km² or 1.29 %, respectively.

Urban and built-up land was increased with an area of 24.53 km² or 2.20 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 14.34 km2 or 1.29 %, followed by agricultural land 10.19 km² or 0.91 %, respectively.

Water bodies area was increased with an area of 5.00 km2 or 0.45 % of sub-basin area. The most of water bodies area were transformed form forest land.

Figure 4-40 Change detection map of Mae Mok Sub-basin from 1988 to 1995

Figure 4-42 Change detection map of Mae Mok Sub-basin from 2003 to 2009

Figure 4-43 Change detection map of Mae Mok Sub-basin from 1988to 2009

4.2.10 Land use changes Mae Ram Phan Sub-basin

4.2.10.1 Land use changes in Mae Ram Phan Sub-basin during 1988 to 1995

Agricultural land was increased with an area of 292.02 km^2 or 10.54 % of sub-basin area, paddy field 118.57 km² or 4.28 %, field crop 161.44 km² or 5.83 % and perennial 12.01 km² or 0.43 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 312.84 km² or 11.29% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 292.02 km² or 10.54 %, followed by water bodies area with an area of 5.80 km² or 0.21 % and urban and built-up land with an area of 15.02 km² or 0.54 %, respectively.

Urban and built-up land was increased with an area of 45.13 km² or 1.63 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 30.11 km² or 1.09%, followed by forest land 15.02 km2 or 0.54 %, respectively.

Water bodies area was increased with an area of 5.80 km2 or 0.21 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.10.2 Land use changes in Mae Ram Phan Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 183.13 km² or 6.61 % of sub-basin area, paddy field 110.54 km² or 3.99%, field crop 65.23 km² or 2.35 % and perennial 7.36 km² or 0.27 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 191.02 km² or 6.89 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 183.13 km² or 6.61 %, followed by water bodies area with an area of 3.31 km² or 0.12% and urban and built-up land with an area of 4.57km² or 0.17%, respectively.

Urban and built-up land was increased with an area of 40.29 km^2 or 1.45 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 35.71 km^2 or 1.29%, followed by forest land 4.57km^2 or 0.17%, respectively.

Water bodies area was increased with an area of 3.31 km² or 0.12% of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.10.3 Land use changes in Mae Ram Phan Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 201.95 km² or 7.29 % of of sub-basin area, paddy field 22.79 km² or 0.82%, field crop 151.13 km² or 5.45 % and perennial 28.03 km² or 1.01 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 213.71 km² or 7.71% of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 201.95 km2 or 7.29 %, followed by water bodies area with an area of 3.54 km² or 0.13% and urban and built-up land with an area of 8.22 km² or 0.30%, respectively.

Urban and built-up land was increased with an area of 73.05 km^2 or 2.64%, of subbasin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 64.82 km² or 2.34%, followed by forest land 8.22 km² or 0.30%, respectively.

Water bodies area was increased with an area of 3.54 km² or 0.13% of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.10.4 Land use changes in Mae Ram Phan Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 224.80 km² or 8.11 % of sub-basin area, paddy field 88.15 km² or 3.18 %, field crop 121.84 km² or 4.40 % and perennial 14.81 km² or 0.53%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 238.11 km² or 8.59 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 224.80 km² or 8.11 %, followed by water bodies area with an area of 4.21 km² or 0.15 % and urban and built-up land with an area of 9.10 km² or 0.33%, respectively.

Urban and built-up land was increased with an area of 51.26 km^2 or 1.85 %, of subbasin area. Furthermore, the most of urban and built-up land was transformed form forest land 9.10 km² or 0.33%, followed by agricultural land 42.16 km² or 1.52 %, respectively.

Water bodies area was increased with an area of 4.21 km² or 0.15 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.11 Land use changes Lower Part of Yom Sub-basin

4.2.11.1 Land use changes in Lower Part of Yom Sub-basin during 1988 to 1995 Agricultural land was increased with an area of 1069.36 km² or 10.59 % of sub-basin area, paddy field 156.10 km² or 1.55 %, field crop 845.60 km² or 8.38 % and perennial 67.66 km² or 0.67%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 1093.24 km² or 10.83 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 1069.36 km² or 10.59 %, followed by water bodies area with an area of 6.21 km² or 0.06 % and urban and built-up land with an area of 17.67 km² or 0.17 %, respectively.

Urban and built-up land was increased with an area of 342.02 km^2 or 3.39 %, of sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 324.36 km^2 or 3.21 %, followed by forest land 17.67 km^2 or 0.17 %, respectively.

Water bodies area was increased with an area of 6.21 km2 or 0.06 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.11.2 Land use changes in Lower Part of Yom Sub-basin during 1995 to 2003

Agricultural land was increased with an area of 265.51 km² or 2.63 % of sub-basin area, paddy field 134.64 km² or 1.33 %, field crop 91.62 km² or 0.91 % and perennial 39.25 km² or 0.39 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 282.39 km² or 2.80 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 265.51 km² or 2.63 %, followed by water bodies area with an area of 4.85 km² or 0.05 % and urban and built-up land with an area of 12.03 km² or 0.12%, respectively.

Urban and built-up land was increased with an area of 259.21 km² or 2.57%, of sub-basin area. Furthermore, the most of urban and built-up land was transformed form agricultural land 247.18 km² or 2.45%, followed by forest land 12.03 km² or 0.12%, respectively.

Water bodies area was increased with an area of 4.85 km^2 or 0.05 % of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.11.3 Land use changes in Lower Part of Yom Sub-basin during 2003 to 2009

Agricultural land was increased with an area of 284.04 km² or 2.81 % of sub-basin area, paddy field 55.95 km² or 0.55%, field crop 106.66 km² or 1.06 % and perennial 121.43 km² or 1.20%. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 304.69 km^2 or 3.02 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 284.04 km^2 or 2.81 %, followed by water bodies area with an area of 6.06 km^2 or 0.06% and urban and built-up land with an area of 14.58 km^2 or 0.14 %, respectively.

Urban and built-up land was increased with an area of 283.28 km² or 2.81 %, of sub-basin area. Furthermore, the most of urban and built-up land was transformed form forest land 14.58 km² or 0.14 %, followed by agricultural land 268.70 km² or 2.66%, respectively.

Water bodies area was increased with an area of 6.06 km² or 0.06% of sub-basin area. The most of water bodies area were transformed form forest land.

4.2.11.4 Land use changes in Lower Part of Yom Sub-basin during 1988 to 2009

Agricultural land was increased with an area of 538.75 km² or 5.34 % of sub-basin area, paddy field 119.31 km² or 1.18 %, field crop 347.24 km² or 3.44 % and perennial 72.20 km² or 0.72 %. The most of agricultural land was transformed form forest land.

Forest land was decreased with an area of 559.04 km² or 5.54 % of sub-basin area. Furthermore, the most of forest land was transformed to be agricultural land (paddy field, field crop and perennial) with an area of 538.75 km² or 5.34 %, followed by water bodies area with an area of 5.65 km² or 0.06 % and urban and built-up land with an area of 14.64 km² or 0.14 %, respectively.

Urban and built-up land was increased with an area of 293.69 km² or 2.91 %, of sub-basin area. Furthermore, the most of urban and built-up land was transformed form forest land 14.64 km2 or 0.14 %, followed by agricultural land 279.05 km² or 2.76%, respectively.

Water bodies area was increased with an area of 5.65 km2 or 0.06 % of sub-basin area. The most of water bodies area were transformed form forest land.

Figure 4-48 Change detection map of Lower Part of Yom Sub-basin from 1988 to 1995

Figure 4-49 Change detection map of Lower Part of Yom Sub-basin from 1995 to 2003

Figure 4-50 Change detection map of Lower Part of Yom Sub-basin from 2003 to 2009

Figure 4-51 Change detection map of Lower Part of Yom Sub-basin from 1988 to 2009

4.3 Result of Runoff Simulation

To capture the potential effects of land use changes on runoff, the precipitation data were used for each model run to determine if changes in river runoff were indeed due to changes in land use. Differences in river runoff, and the associated changes in model parameters, were therefore associated with changes in land use.

The influences of the land use changes were quantified by comparing the SWAT output of the 8 scenario in the section 3.8.1. Figure 4-46 to 4-51 showed the simulated runoff from SWAT model for scenario 1-4 with input land use maps of year 1988, 1995, 2003 and 2009 at station Y20 and Y14.

To simulate the differences between river runoff before and after land use changes, the model parameters derived during the start of the study period were compared with those derived at the end of the study period to simulate runoff under the same precipitation regimes. The simulated runoff during the start period (year 1988–1989)and the end period (year 2008–2009), when land use map of 2009 was replaced by land use map of 1988, 1995 and 2003 at station Y14 and station Y20 were show in Figure 4-52 to 4-59

4.3.1 Scenario 1: 1988 land use and 1988-1989 climates

Figure 4-52 Observed and Simulated monthly runoff at station Y14 during 1988-1989

Figure 4-53 Observed and Simulated monthly runoff at station Y20 during 1988-1989

4.3.2 Scenario 2: 1995 land use and 1995-1996 climate

Figure 4-54 Observed and Simulated monthly runoff at station Y14 during 1995-1996

Figure 4-55 Observed and Simulated monthly runoff at station Y20 during 1995-1996

4.3.3 Scenario 3: 2003 land use and 2002-2003 climate

Figure 4-56 Observed and Simulated monthly runoff at station Y14 during 2002-2003

Figure 4-57 Observed and Simulated monthly runoff at station Y20 during 2002-2003

4.3.4 Scenario 4: 2009 land use and 2008-2009 climate

Figure 4-58 Observed and Simulated monthly runoff at station Y14 during 2008-2009

Figure 4-59 Observed and Simulated monthly runoff at station Y20 during 2008-2009

4.3.5 Scenario 5: 1988 land use and 2008-2009 climate

Figure 4-60 Observed and Simulated monthly runoff at station Y14

land use map 1988 and 2008-2009 climates

Figure 4-61 Observed and Simulated monthly runoff at station Y20

land use map 1988 and 2008-2009 climates

Figure 4-62 Observed and Simulated monthly runoff at station Y14

land use map 1995 and 2008-2009 climates

land use map 1995 and 2008-2009 climates

4.3.7 Scenario 7: 2003 land use and 2008-2009 climate

Figure 4-64 Observed and Simulated monthly runoff at station Y14

land use map 2003 and 2008-2009 climates

Figure 4-65 Observed and Simulated monthly runoff at station Y20

land use map 2003 and 2008-2009 climates

4.3.8 Scenario 8: 2009 land use and 1988-1989 climate

Figure 4-66 Observed and Simulated monthly runoff at station Y14

land use map 2009 and 1988-1989 climates

Figure 4-67 Observed and Simulated monthly runoff at station Y20

land use map 2009 and 1988-1989 climates

CHAPTER V

DISCUSSION AND CONCLUSION

5.1 Discussion

In this part, the results of the study methods as previously mentioned were discussed in two categories. Firstly, dynamic spatial patterns of land use changes processes results were proposed and discussed. Secondly, relationship between land use changes in the Yom River Basin and River runoff during 1988-2009. Finally, conclusion and recommendation in this research were summarized and proposed.

5.1.1 Dynamic spatial patterns of land use changes processes in the Yom River Basin during 1988-2009

In this research, the combination bands (R=5, G=4, B=3) of Landsat 5TM satellite imageries in the year 1988, 1995, 2003 and 2009 with supervised classification process were used for land use classification. The results revealed that land use categories in the Yom River Basin were classified as 6 land use categories, namely, paddy field, field crops, perennial , forest, urban and built-up land, and water bodies.

Change detections of land use in Yom River Basin during 1988 to 1995 were analyzed using overlay technique in ArcMap GIS version 9.3 The results revealed that the total change areas were 2460.315 km² (10.27% of total areas). The most proportion of change areas was forest land that was decreased 1979.67 km² or 80.46% of total change areas), whereas agricultural land, urban and built-up land, and water bodies were increasing from 1988 to 1995(Figure 5-1) Change detections of land use in the Yom River Basin during 1995 to 2003 were analyzed using overlay technique. The results revealed that the total change areas were 1610.632 km² (6.73% of total areas). The most proportion of change areas was forest land that was decreased 1141.69 km² or 4.77% of total change areas), whereas agricultural land, urban and built-up land, and water bodies were increasing from 1995 to 2003(Figure 5-2)

Change detections of land use in the Yom River Basin during 2003 to 2009 were analyzed using overlay technique in. The results revealed that the total change areas were 1741.171 km² (7.27% of total areas). The most proportion of change areas was forest land that was decreased 1300.867 km² or 5.43 %of total change areas , whereas agricultural land, urban and built-up land, and water bodies were increasing from 2003 to 2009(Figure 5-3)

Change detections of land use in the Yom River Basin during 1988 to 2009 were analyzed using overlay technique. The results revealed that the total change areas were 1931.16 km² (8.06 % of total areas). The most proportion of change areas was forest land that was decreased 1466.50 km² or 6.12 % of total change areas, whereas agricultural land, urban and built-up land, and water bodies were increasing 1,359.09 km², 23.38 km² and 40.21 km² or 5.67%, 0.10% and 0.17%, respectively. (Figure 5-4)

Figure 5-1 Changes detection in the Yom River Basin during 1988 - 1995

Figure 5-2 Changes detection in the Yom River Basin during 1995 - 2003

Figure 5-3 Changes detection in the Yom River Basin during 2003 - 2009

Figure 5-4 Changes detection in the Yom River Basin during 1988 - 2009
The largest land use changes over the study period in terms of actual area were decrease in forest cover, expanse of agriculture and increase in urban area, this was mainly due to commercial and industrial growth (Department of Environmental Quality Promotion (DEQP), 2007).

The land characteristics (soil texture, topography, and mean annual precipitation) effected the deforestation in the Yom River basin watershed during 1988 to 2009. The agricultural land was observed to be related with the decreasing forest land. It can be explained that agricultural because this terrain covered high fertility soils and area the rainfall of which increased. The study area was appeared agricultural land such as corn, sugarcane, cassava, rice, chili, soy, tobacco, para rubber and teak.

Land use changes in the Yom River Basin have largely featured agricultural transformations in different altitude zones. The highland pioneer shifting cultivation has been replaced by expanded permanent fields producing commercial horticultural crops. While some midland rotational agriculture fallow shifting cultivation systems remain, others have been replaced by rained permanent plots producing subsistence and commercial field crops. Irrigated paddy has expanded where terrain allows, and lowland agriculture has increased dry-season water use for irrigated rice, cash crops and fruit orchards.

5.1.2 Relationship between land use changes in the Yom River Basin and River runoff during 1988-2009

The results of the calibrated SWAT model at Y20 and Y14 during the start period (year 1988–1989) are shown the regression coefficient (R^2) was 0.85 and 0.84, respectively. For the calibrated results, these show that the model performance was good and in the

acceptable limit. The results of the validated SWAT during the end period (year 2008–2009) model shows that the regression coefficient (R2) resulted 0.69 and 0.77, respectively. These results indicated that the model performance is very good and highly acceptable.

To simulate the differences between river runoff before and after land use changes, the model parameters derived during the start of the study period were compared with those derived at the end of the study period to simulate runoff under the same precipitation regimes. An increase and decrease in river runoff for the simulated years using the model parameters to reflect the change in LULC was apparent in Figure 5-5 to 5-8.

The Runoff during the start period (year 1988–1989), when land use map of 1988 was replaced by land use map of 2009, was increased with 131.57-169.61 MCM/Year or 22.53 - 25.86 % at station Y20 and 522.55-730.93 MCM/Year or 34.39 - 77.89 % at station Y14, respectively (Figure 5-5, 5-6). The simulated runoff during the end period (year 2008–2009)), when land use map of 1988 was replaced by land use map of 2009, was increased with 406-425 MCM/Year or 25- 98 % at station Y20 and 840-1170 MCM/Year or 47-154 % at station Y14, respectively (Figure 5-7, 5-8).

The simulated runoff during the end period (year 2008–2009), when land use map of 2009 was replaced by land use map of 1988, 1995 and 2003 at station Y14 were decreased 1668.7-2003.2, 1505.9-1791.4, 1451.6-1789.8 MCM/Year, respectively (Figure 5-9). At station Y 20, the simulated runoff were decreased 795.51 - 1556.98, 738.69 - 1441.858, 52.66 - 1286.18 MCM/Year, respectively (Figure 5-10).

The comparison runoff result of the 4 land use data (of year 1988, 1995, 2003 and 2009) and their respective observed discharge data has revealed that the land use

changes in year 1988, 1995, 2003 and 2009 has caused a significant change in the simulated average monthly of the Yom River Basin. The lowest and the highest simulated runoff obtained from the land use data of 1988, 2009, respectively, indicated that the change in the land use impacted on the amount of runoff of the area in these 2 periods.

The results (Figure 5-5 to 5-10) have clearly shown that the difference in the quantity of the runoff in the 2 periods was resulted from the difference in the land use of the area. The main differences were observed in the amount of forest land, agricultural land and urban and build-up land. The total extents of forest land, agricultural land and urban and build-up land in the land use data of year 1988 were 54.84%, 41.43% and 2.93%, respectively. The forest land in the land use data of year 2009 reduced to 48.9% whereas agricultural land and urban land grown to 45.76% and 4.17%, respectively.

Simulated runoff of station Y.14

Figure 5-5 comparison simulated runoff between different land use 1988, 2009 under the same precipitation period 2008-2009 at station Y14

Figure 5-6 comparison simulated runoff between different land use 1988, 2009

under the same precipitation period 2008-2009 at station Y20

Figure 5-8 comparison simulated runoff between different land use 1988, 2009

under the same precipitation period 2008-2009 at station Y20

Figure 5-9 comparison simulated runoff between different land use 1988, 1995, 2003 and 2009 under the same precipitation period 2008-2009 at station Y14

Figure 5-10 comparison simulated runoff between different land use 1988, 1995, 2003 and 2009 under the same precipitation period 2008-2009 at station Y20

When considering only the drainage area of station Y14 and Y20 (Figure 5-11 to 5 - 12), this indicated that the three land use classes were the main reasons to the decrease and the increase of the amount of simulated runoff. In general, a decrease in forest land of an area causes an increase in runoff of the area due to a decrease in evapotranspiration. On the other hand an increase in bare land causes an increase in discharge due to high surface runoff.

Trend of decreasing forest land and increasing of Runoff and Urban & Build-up land at Station Y 14

Figure 5-11 The relationship between simulated runoff and decreasing of forest land and

increasing urban& build-up land at station Y14

Trend of decreasing forest land and increasing of Runoff and Urban & built-up land at station Y20

Figure 5-12 The relationship between simulated runoff and decreasing of forest land and increasing urban& build-up land at station Y20

On the basis of the results presented in this study, increasing of the river runoff exhibited relation to the decrease of forest land. Land use changes can affect river runoff, implying changes in the hydrological characteristics of the watershed. Several others have reported changes in watershed characteristics (e.g. discharge) associated with changes in Land use. For example, Pikounis M. *et al.* (2003) also found that the deforestation scenario

was the one that resulted in the greatest modification of total monthly runoff by investigates the hydrological effects of specific land use changes in a catchment of the river Pinios in Thessaly on monthly time step. Olan V. (2005) studied the effect of land use changes on surface runoff in the Upper Nan River Basin, Thailand. Three scenarios postulating changes in land use, reforestation, agricultural and the urban expansion are modeled and then used to assess the consequences on surface runoff. The results demonstrated that impacts on runoff can be clearly detected. These results support the idea that the increasing runoff was directly related to the decrease of forest land in the watershed.

5.2 Conclusion

In this research, three data input, which were thematic (GIS and remote sensing) data preparation, field investigation, and laboratory analysis were carried out to investigate dynamic spatial patterns of land use changes and to identify the impact of land use and land cover changes on river run off in the Yom river basin.

This research used the temporal Landsat-5 TM imageries covered the Yom River Basin, acquired during 1988-2009, and were chosen to create the false color composite (Bands R=5, G=4, B=3) for the land use classification system with supervised classification process. According to the study, that Yom River Basin were 6 land use categories that was identified as paddy field, field crops, perennial, forest, urban and built-up land and water bodies. Field investigations were used to test for accuracy against the land use interpretation. The total overall accuracy assessments of land use classifications in 1988, 1995, 2003 and 2009 were 76.60%, 72.98%, 86.08 and 82.11%, respectively.

Change detection of land use in the Yom River Basin during 1988-2009 was analyzed using overlay technique in ArcMap GIS version 9.3. The results revealed that the total change area was 1931.16 km² (8.06 % of total areas). The most proportion of change area was forest land (decrease 1422.6 km² or 5.94% % of total change area) whereas agricultural land, urban and built-up land and water bodies were increasing over time.

To simulate the differences between river runoff before and after land use changes, the model parameters derived during the start of the study period were compared with those derived at the end of the study period to simulate runoff under the same precipitation regimes.

The Runoff during the start period (year 1988–1989), when land use map of 1988 was replaced by land use map of 2009, was increased with 131.57-169.61 MCM/Year or 22.53 - 25.86 % at station Y20 and 522.55-730.93 MCM/Year or 34.39 - 77.89 % at station Y14, respectively The discharge during the end period (year 2008–2009), when land use map of 1988 was replaced by land use map of 2009, was increased with 406-425 MCM/Year or 25- 98 % at station Y20 and 840-1170 MCM/Year or 47-154 % at station Y14, respectively.

A slight increase occurred concurrently in the long-term discharge with changes in land use, especially a decrease in forest land and an increase in urban areas. The relatively small increase in the areal coverage of urban areas may have had a disproportionally large impact on discharged behavior (mean and extreme flows) due to the location of these land use changes adjacent to the banks of the Yom River.

The Lower Yom River Basin is underlain by alluvial fan and floodplain deposits. The contributions of land use changes on hydrological components, increased runoff occurred

in the long term discharge, especially in the upper part of the basin, which may cause more floods in the lower part of the basin.

The Yom River Basin has been characterized by urbanization along the river over the last decade and may continue to experience extensive landscape change in the future, the potential for increased discharge and urban flooding is probable. The approach applied in this study could be applied to other watersheds, which have been highly changed and would essential for sustainable water resources management.

Satellite remote sensing is useful in classifying, studying land use changes and detection of change in the Yom River basin. The area was subjected to urbanization and this was mainly at the expense of agricultural area. Higher resolution satellite imagery would be helpful in identifying subclasses on land use/land cover, especially in urban areas.

REFERENCES

<u>ภาษาไทย</u>

- ทรัพยากรน้ำ, กรม. ศูนย์ป้องกันวิกฤตน้ำ. <u>รายงานสถานการณ์อุทกภัย</u>. [ออนไลน์]. 2549. แหล่งที่มา http://mekhala.dwr.go.th [2553, เมษายน 28]
- นิพนธ์ ตั้งธรรม. <u>การจำลองแบบการจัดการลุ่มน้ำและระบบสิ่งแวดล้อม</u>. กรุงเทพฯ : ศูนย์วิจัยป่าไม้ คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, 2549.
- ป่าไม้, กรม. <u>รายงานประจำปี 2544 กรมป่าไม้ กระทรวงเกษตรและสหกรณ์</u>. กรุงเทพฯ : สไตล์ครีเอทีฟ เฮ้าส์, 2545.
- สมบัติ อยู่เมือง. <u>การประเมินศักยภาพของตะกอนไหลถล่มและน้ำปนตะกอนท่วมบ่า ในปี 2544</u> <u>บริเวณพื้นที่น้ำก้อ อำเภอหล่มสัก จังหวัดเพชรบูรณ์ ภาคกลางของประเทศไทย,</u> วิทยานิพนธ์ ปริญญาดุษฎีบัณฑิต, สาขาวิชาธรณีวิทยา ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2548.

<u>English</u>

- Adams, J.B., and Gillespie, A.R. <u>Remote Sensing of Landscapes with Spectral Images</u>. Cambridge University, 2006.
- Ahmed, K., Mercier, J. R. and Verheem, R. <u>Strategic Environmental Assessment Concept</u> <u>and Practice</u>. Washington : World Bank, 2005.
- Bettinger, P. and Wing, M.G. <u>Geographic Information Systems: Application in Forestry and</u> <u>Natural Resources Management</u>. New York : McGraw-Hill, 2004.
- Braimoh, A.K. and Vlek, P.L.G. <u>Modeling land-use change in the Volta Basin of Ghana</u>. Ecology and Development 14, 2004.
- Braimoh, A.K. and Vlek, P.L.G. Land Use and Soil Resources. New York : Springer, 2008.
- Briassoulis, H. <u>Analysis of Land Use Change: Theoretical and Modeling Approaches</u> [Online]. 2000. Available from:

http://www.rri.wvu.edu/WebBook/Briassoulis/contents.htm. [2010, May 30]

- Briggs, R. <u>Geographic information system Fundamentals</u>. [Online]. 2010. Available from: http://www.utdallas.edu/~briggs/gisc6381.html [2010, October 29]
- Clarke, K. C. <u>Getting started with geographic information systems</u>. London : Prentice Hall, 2001.
- Delang, C. O. <u>Deforestation in Northern Thailand : The Result of Hmong Farming Practices</u> <u>or Thai Development Strategies</u>. Society and Natural Resources 15, 2002.
- Di Gregorio, A. Land Cover Classification System (LCCS) version 2: Classification <u>Concepts and User Manual</u>. Rome : FAO Environment and Natural Resources Service Series, 2005.
- Earth Science Australia. <u>Global Positioning Systems</u>. [Online]. 2010. Available from: http://earthsci.org/education/fieldsk/gps/gps.html [2010, October 29]
- EEA. <u>Europe's environment</u>. [Online]. 1998. Available from: http://www.eea.europa.eu/publications [2011, May 30]
- Engelsman, W. <u>Simulating land use changes in urbanizing area in Malaysia</u>. Doctoral dissertation, Department of Environmental Sciences Faculty of Environmental Sciences Wageningen University, 2002.
- Gao, J., Liu, Y. and Chen, Y. Land cover changes during agrarian restructuring in Northeast China. <u>Applied Geography</u> 26 (2006): 312-322.

Garson, G.B. <u>Logistic Regression</u>. [Online]. 2011. Available from: http://faculty.chass.ncsu.edu/garson/PA765/logistic.htm [2011, June 3]

- Geoscience Australia. <u>Earth Observation and Satellite Imagery</u>. [Online]. 2009. Available from: http://www.ga.gov.au/remote-sensing/satellites-sensors/landsat [2010, May 16]
- Geo-Informatics center for Thailand. Introduction to GIS and GIS for everyone. [Online]. 2009. Available from: http://www.gisthai.org/download/ Intro GIS.pdf. [2010, May 30]
- Gonzales, C.A.I. <u>Assessing the Land Cover and Land Use Change and Its Impact on</u> <u>Watershed Services in a Tropical Andean Watershed of Peru</u>. Master's Thesis, Department of Biological and Environmental Science University of Jyväskyl, 2009.

Gorr, W. L., and Kurland, K.S. <u>Learning and Using Geographic Information Systems</u>. Canada : Thomson Course Technology, 2008.

Heathcote, I. W. Integrated Watershed management. 2nded.. New York : Wiley, 2009.

- Howard, J.A. <u>Remote Sensing of Forest Resources. Theory and application</u>. London, UK: Champman and Hall, 1991.
- Hunsa Vathananukij. Sustention <u>Model for Water Resource Management</u> www.wrrc.dpri.kyotou.ac.jp/~aphw/APHW2004/proceedings/JSD, 2003
- Jeffrey J. Clark,Peter R. Wilcock. Effects of land-use change on channel morphology in northeastern Puerto Rico. <u>Geological Society of</u> <u>America Bulletin</u> 2000; 112; 1763-1777
- Jensen, J.R., and Kiefer, R.W. <u>Remote Sensing of the environment</u>. 2nd edition. Pearson Prentice Hall,Inc, 2007.
- J. R Cowden, D. Watkins, and T. E. Croley II. Investigating Urban Land Use Effects onRunoff by Using the Distributed Large Basin RunoffModel.TheWorldEnvironmental and Water Resources Congress2006, May 21-25, 2006.
- Jaroslaw Chormanski, Tim Van de Voorde, Tim De Roeck, Okke Batelaan, Frank Canters. Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover. <u>Sensors 2008</u>, 8, pp.910-932.
- Jirattinart Thungngngern. <u>a study of flood alleviating of Yom River Basin</u> Using Existing natural retention area, Sukhothai Province, 2004.
- Lambin, E.F. <u>Environmental Modelling: Finding Simplicity in Complexity</u>. London, UK : John, W. and Mulligan, M. (eds.), 2004.
- Langner, A.J. <u>Monitoring Tropical Forest Degradation and Deforestation in Borneo,</u> <u>Southeast Asia</u>. Doctoral dissertation, GeoBio Center of the Ludwig- Maximilian University of Munich, Germany, 2009.
- Lanly, P.J. <u>Deforestation and forest degradation factors</u>. [Online]. 2003. Available from: http://www.fao.org/docrep/article/wfc/xii/ms12a-e.htm [2010, August 24]

- Lillesand, T. M., Kiefer, R. W. and Chipman, J. W. <u>Remote Sensing and Image</u> <u>Interpretation</u>. Hoboken, N.J : John Wiley & Sons, 2008.
- Martin, R.M. <u>Deforestation and forest degradation factors</u>. [Online]. 2008. Available from: http://www.fao.org/docrep/011/i0440e/i0440e02.htm [2010, August 8]
- Mengistu, D. A. <u>Remote sensing and gis-based Land use and land cover change detection</u> in the upper Dijo river catchment, Silte zone, Southern Ethiopia. Docteral dissertation, Department of Geography and Environmental Studies Addis Ababa University, 2008.
- Mertens, B. and Lambin, E.F. Spatial modelling of deforestation in Southern Cameroon: Spatial disaggregation of diverse deforestation processes. <u>Applied Geography</u> 17 (December 1996): 143-68.
- Müller, D. <u>From agricultural expansion to intensification: Rural development and</u> <u>determinants of land-use change in the Central Highlands of Vietnam</u>. Docteral dissertation, Tropical Ecology Support Programme Institute of Rural Development Göttingen University, Germany, 2004.
- National Aeronautics and Space Administration. <u>Remote Sensing Tutorial</u>. [Online]. 2009. Available from: http://rst.gsfc.nasa.gov [2010, May 12]
- National Aeronautics and Space Administration. <u>Earth Observatory</u>. [Online]. 2010. Available from: http://earthobservatory.nasa.gov [2010, October 16]
- Noe, C., 2003. <u>The Dynamics of Land use Changes and their Impacts on the Wildlife</u> <u>Corridor between Mt.Kilimanjaro and Amboseli National Park, Tanzania</u>. Docteral dissertation, Department of geography Dar Es Salaam University, 2003.
- Olan Vesurai. <u>The impact of land use changes on runoff in the upper Nan</u> Basin using <u>SWAT hydrological model</u>, 2005.
- Orékan, O. A. V. Simulating Land-Use Change in the Southern Upper Oueme Catchment in Benin, <u>Journals Scientific National CBRST</u> (December 2005).
- Orékan, O. A. V. <u>Implementation of local land-use and land-cover changes model for central</u> <u>Benin using socio-economic and satellite data</u>. Doctoral dissertation, Department of Geography University of Bonn, 2007.

- Pan, X.Z., and Zhao, Q.G. Measurement of Urbanization process and the paddy soil loss in Yixing city, China between 1949 and 2000. <u>Catena</u> 69 (May 2006): 65-73.
- Pontius, R.G. and Schneider, L.C. Land-cover change model validation by an ROC Method for the Ipswich watershed, Massachusetts, USA. <u>Agriculture Ecosystems &</u> <u>Environment</u> 85 (2001): 239-248
- Rodenberg, E. <u>Survey and GIS Summit: Introduction to GIS</u>. [Online]. 2006. Available from: http:// proceedings.esri.com/library/userconf/eric_rodenberg_intro.pdf [2010, November 28]
- Serneels, S. and Lambin, F.E.Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. <u>Agriculture Ecosystems and Environment</u> 85 (2001): 65-81.
- Skrdla, M. P. Introduction to GIS., Nebraska, USA : Lincoln, 2005.
- Sombat Yumuang. <u>Evaluation of Potential for 2001 debris flood in the vinicity of Namko area</u>, <u>Amphoe Lom Sak, Changwat Phetchabun, Central Thailand.</u> Docteral dissertation, Faculty of Science Chulalongkorn University, 2005.
- Srilert Chotpantarat. The effect of land use change on floods inPhetchaburi riverbasin, Faculty of Engineer Chulalongkorn University. 2002
- Sukanda Jotikapukkana. <u>Wildlife, human, and domestic animal use of buffer zone area-</u> <u>Consequences for management strategies, Huai Kha Kaeng Wildlife Sanctuary</u> (<u>Thailand</u>). Master's Thesis, The Swedish Biodiversity Centre, 2007.
- SWALIM. <u>Field Survey Manual: Landform Soil Soil Erosion Land Use Land</u> Cover. Nairobi, Somalia : Somalia Water and Land Information Management, 2007.
- Sutten, T., Dassau O.,and Sutton M. <u>A Gentle Introduction to GIS</u>. Eastern Cape : Department of Land Affairs, 2009.
- Thapa, R.B. and Murayama, Y. Urban mapping, accuracy,& imageclassification: A comparison of multiple approaches in Tsukuba City, Japan. <u>Applied Geography</u> 29 (October 2009): 135-144.

- Trisurat, Y., Alkemade, R., and Verburg, P.H. Projecting Land-Use Change and Its Consequences for Biodiversity in Northern Thailand. <u>Environmental Management</u>. 45 (February 2010): 626–639.
- UNEP. <u>Report of the Ad Hoc Technical Expert Group on Forest Biological Diversity.</u> <u>Subsidiary Body for Scientific, Technical and Technological Advice</u>. Seventh Meeting, Montreal, 2001.
- UNFCCC. <u>Modalities and procedures for afforestation and reforestation activities under the</u> <u>clean development mechanism in the first commitment period of the Kyoto Protocol</u>. UNFCCC/SBSTA, 2003.
- United States Geological Survey. <u>Geographic Information Systems</u>. [Online]. 2007. Available from :_http://egsc.usgs.gov/isb/pubs/gis_poster [2010, November 28]
- Verburg, P.H., and Veldkamp, A. Projecting land use transitions at forest fringes in the Philippines at two spatial scales. <u>Landscape Ecology</u> 19 (2004): 77-98.
- Verburg, P.H. and Veldkamp, A. The role of spatially explicit models in land-use change research: a case study for cropping patterns in China. <u>Agriculture, Ecosystems and Environnement</u> 85 (June 2001): 177-190.
- Wang, G. Integrated Watershed Management : China-Wide Analysis and a case study in the Min river basin, Fujian, China. Docteral dissertation, Faculty of Graduate Studies British Columbia University, 2009.
- Wang, S.Y., Liu, J.S. and Ma, T.B. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. <u>Land Use Policy</u> 27 (April 2010): 313–323.
- Watson, B.M., Ghafouri, M., and Selvalingam S. <u>Application of SWAT to model the Water</u> <u>Balance of the Woady Yaloak River Catchment, Australia.</u> /Sessio n%2OD/Watson.pdf, 2003.
- Zhi Li, Wen-zao Liu, Xan-chang Zhang. Impacts of land use change and climate variability on hydrology in an agricultural catchment on Loess Plateau of China. Journal of Hydrology, 337(2009) pp. 35-42

APPENDIX

FIELD INVESTIGATION

Field investigation was an essential part of verify the image interpretation process, as it was important to be confident of the validity of the desk-based assessment. The aim of field investigation was to confirm as many of the land use patterns as possible in the Yom River Basin.

Most of the field investigation was done by travelling in a vehicle for this reason a set of intensive 400 + 1200 ground truth point was organized to localize different land cover and land use categories in order to refine the aforementioned classification. These is some example photography from field investigation. The picture below showed the location of photography.

Lat 16°46'48" Long 99°34'14"

Lat 16°55'30" Long 99°35'20"

Long 100°04'19"

Lat 16°45'06"

15°52'38"

16°41'18"

99°36'03"

Long

Lat

Long

Lat

15°52'38"

Lat 17°12'10" Long 99°32'13" Lat 17°24'54" Long 99°30'17"

Lat 17°32'47" Long 99°32'06"

Lat 17°28'39"

Long 99°37'36"

Lat 17°41'17"

Long 99°45'32"

Lat 18°00'02"

Long 99°46'18"

Lat 18°03'32" Lat 18°04'53" Long 100°13'55" Long 100°12'57"

Long 100°07'26"

Lat 18°08'01"

Long 99°38'20"

Lat 17°58'43"

17°58'35"

99°38'12"

18°04'48"

100°12'55"

Lat

Long

Lat

Long

Long 100[°]20'05"

Lat 18[°]09'07"

100°19'24" Long

Lat 18°08'47"

100°19'32" Long

Lat

Long

18[°]09'45"

100°22'30"

18°08'53" Lat

18°07'12" Lat 100°17'46" Long

18°07'58" Lat 100°19'05" Long

	method and	
at	18°14'19"	

100°19'11" Long

Long

Lat

18°13'17"

100°18'55"

100°22'49" Long

Lat

Lat

Long

18°11'29"

100°17'37"

18°11'40" Lat 100°22'21"

Long

100°16'48" Long

100°16'50" Long

19[°]09'25" Lat

> 100°17'22" Long

19[°]09'29" Lat

100°23'54" Long

19°22'57"

19°10'00" Lat 100°19'09" Long

99°53'00" Long

100°08'42"

Lat

18°18'46" Lat 100°25'33" Long

Lat 17°33'04" Long 99°46'16" Lat 17°34'52" Long 99°52'35"

Lat 17°34'35"

Long 99°51'22"

Lat 17°33'47" Long 99°48'47"

Lat 17°18'47" Long 99°49'35"

Lat 17°03'26" Long 99°46'32"

Long 100°15'49"

Long 100°21'41"

99[°]46'48"

Long

Long 100°20'13"

Lat 18°21'18"

18°05'59"

99[°]46'59"

Long

The Example of index table form field investigation

FileName	Latitude	Longitude
I:\3_3_2555\20120302_101205.jpg	18.13267	100.1201
I:\3_3_2555\20120302_101212.jpg	18.13282	100.1196
I:\3_3_2555\20120302_103042.jpg	18.21347	100.2016
I:\3_3_2555\20120302_103055.jpg	18.20886	100.2019
I:\3_3_2555\20120302_103124.jpg	18.21334	100.204
I:\3_3_2555\20120302_103128.jpg	18.21334	100.204
I:\3_3_2555\20120302_103132.jpg	18.21334	100.204
I:\3_3_2555\20120302_103823.jpg	18.21953	100.2297
I:\3 3 2555\20120302 103829.jpg	18.21953	100.2297
I:\3_3_2555\20120302_103909.jpg	18.22269	100.2349
I:\3_3_2555\20120302_103919.jpg	18.21935	100.2356
I:\3_3_2555\20120302_104338.jpg	18.22974	100.2606
I:\3 3 2555\20120302 104350.jpg	18.23128	100.2614
I:\3 3 2555\20120302 104356.jpg	18.23142	100.2618
I:\3 3 2555\20120302 104432.jpg	18.23321	100.2584
I:\3 3 2555\20120302 104435.jpg	18.22942	100.2633
I:\3 3 2555\20120302 104526.jpg	18.23389	100.2656
I:\3 3 2555\20120302 104638.jpg	18.23321	100.2726
I:\3 3 2555\20120302 104646.jpg	18.23321	100.2726
I:\3 3 2555\20120302 104703.jpg	18.22941	100.2726
I:\3 3 2555\20120302 104722.jpg	18.23253	100.2694
I:\3 3 2555\20120302 104746.jpg	18.23186	100.2695
I:\3 3 2555\20120302 104844.jpg	18.22595	100.2724
I:\3 3 2555\20120302 104900.jpg	18.21757	100.2726
I:\3 3 2555\20120302 104905.jpg	18.21757	100.2726
I:\3 3 2555\20120302 104908.jpg	18.21883	100.2727
I:\3 3 2555\20120302 105012.jpg	18.22274	100.2713
I:\3 3 2555\20120302 105040.jpg	18.22176	100.2698
I:\3 3 2555\20120302 105045.jpg	18.22176	100.2698
I:\3 3 2555\20120302 105118.jpg	18.22037	100.2709
I:\3 3 2555\20120302 105133.jpg	18.21594	100.2699
I:\3 3 2555\20120302 105146.jpg	18.21561	100.2699
I:\3 3 2555\20120302 105152.jpg	18.20813	100.27
I:\3 3 2555\20120302 105227.jpg	18.21428	100.2564
I:\3 3 2555\20120302 105255.jpg	18.2133	100.2592
I:\3 3 2555\20120302 105311.jpg	18.2127	100.2566
I:\3 3 2555\20120302 105520.jpg	18.20477	100.2595
I:\3 3 2555\20120302 105535.jpg	18.19806	100.2587
I:\3 3 2555\20120302 105612.jpg	18.20272	100.2595
I:\3 3 2555\20120302 105621.jpg	18,19989	100.2607
I:\3 3 2555\20120302 105641.jpg	18.20165	100.2604
I:\3 3 2555\20120302 105649.jpg	18.20128	100.2599
I:\3 3 2555\20120302 105746.jpg	18.19481	100.2598
I:\3 3 2555\20120302 105749.jpg	18.19481	100.2598
I:\3 3 2555\20120302 105755.jpg	18.19447	100.2606
I:\3 3 2555\20120302 105824.ipg	18.1931	100.2601
I:\3 3 2555\20120302 105830.ipg	18.19274	100.256
I:\3 3 2555\20120302 105840.ipg	18.18787	100.2557
I:\3 3 2555\20120302 110206.ipg	18.18556	100.2548
I:\3 3 2555\20120302 110217.jpg	18.18556	100.2548

FileName	Latitude	Longitude
I:\3 3 2555\20120302 110322.jpg	18.17591	100.2493
I:\3 3 2555\20120302 110333.jpg	18.1765	100.25
I:\3 3 2555\20120302 110343.jpg	18.17845	100.2497
I:\3 3 2555\20120302 110431.jpg	18.18191	100.2518
I:\3 3 2555\20120302 110435.jpg	18.17975	100.2518
I:\3 3 2555\20120302 110454.jpg	18.18109	100.2493
I:\3 3 2555\20120302 110522.jpg	18.16756	100.2495
I:\3 3 2555\20120302 110535.jpg	18.17582	100.2513
I:\3 3 2555\20120302 110741.jpg	18.17307	100.2456
1:\3 3 2555\20120302 110805.jpg	18,16999	100.2452
1:\3 3 2555\20120302 110808.jpg	18.17177	100.2452
L\3_3_2555\20120302_110831.jpg	18,16927	100.2392
1\3_3_2555\20120302_110835 ipg	18 16927	100 2392
1:\3_3_2555\20120302_110924 ipg	18 17138	100.2002
1:\3_3_2555\20120302_110929 ing	18 17138	100.2454
1:\3_3_2555\20120302_110932 ipg	18 17138	100.2404
1:\3_3_2555\20120302_110035 ing	18 17138	100.2454
$1.3_2 = 2555 \times 20120302 = 1109303.$ jpg	18 17138	100.2454
1:\3_3_2555\20120302_110339.jpg	18 18/80	100.2404
1.\3_3_2555\20120302_111309.jpg	19 19/6	100.2490
1.\5_5_2555\20120302_111403.jpg	10.1040	100.2554
1.\5_5_2555\20120302_111555.jpg	10.19057	100.2540
1.\5_5_2555\20120302_111551.jpg	10.19004	100.2000
1.\5_5_2555\20120302_111609.jpg	10.19100	100.2006
1.\5_5_2555\20120302_112654.jpg	10.2337	100.2049
1.\5_5_2555\20120302_112054.jpg	10.23403	100.2049
1.\3_3_2555\20120302_112057.jpg	10.22904	100.2045
1.\5_5_2555\20120302_112755.jpg	10.23159	100.2019
1.\3_3_2555\20120302_112604.jpg	10.22970	100.2017
1.\5_5_2555\20120302_112606.jpg	10.23124	100.2594
1.\3_3_2555\20120302_112812.jpg	18.23124	100.2594
1:\3_3_2555\20120302_112817.jpg	18.23124	100.2594
1.\3_3_2555\20120302_112912.Jpg	18.22596	100.2553
1:\3_3_2555\20120302_112916.jpg	18.21442	100.255
1:\3_3_2555\20120302_112919.jpg	18.21442	100.255
1:\3_3_2555\20120302_113031.jpg	18.22276	100.252
1:\3_3_2555\20120302_113035.Jpg	18.22276	100.252
1:\3_3_2555\20120302_113332.jpg	18.21917	100.2378
1:\3_3_2555\20120302_113349.jpg	18.21917	100.2378
1:\3_3_2555\20120302_113526.jpg	18.22204	100.2459
1:\3_3_2555\20120302_113553.jpg	18.22204	100.2459
1:\3_3_2555\20120302_113618.jpg	18.22204	100.2459
I:\3_3_2555\20120302_113625.jpg	18.22204	100.2459
I:\3_3_2555\20120302_114141.jpg	18.22202	100.237
I:\3_3_2555\20120302_114144.jpg	18.22202	100.237
I:\3_3_2555\20120302_114408.jpg	18.2238	100.2387
I:\3_3_2555\20120302_114423.jpg	18.22372	100.2441
I:\3_3_2555\20120302_114426.jpg	18.22372	100.2441
I:\3_3_2555\20120302_114429.jpg	18.22338	100.2393
I:\3_3_2555\20120302_114512.jpg	18.22294	100.2398
I:\3_3_2555\20120302_114516.jpg	18.22294	100.2398
I:\3_3_2555\20120302_114707.jpg	18.22125	100.2327
I:\3_3_2555\20120302_114713.jpg	18.22115	100.2323

FileName	Latitude	Longitude
I:\3 3 2555\20120302 115955.jpg	18.18435	100.1805
I:\3 3 2555\20120302 121056.jpg	18.15986	100.1417
I:\3 3 2555\20120302 121233.jpg	18.15895	100.1428
I:\3 3 2555\20120302 121236.jpg	18.15895	100.1428
I:\3 3 2555\20120302 121610.jpg	18.152	100.1282
I:\3 3 2555\20120302 121619.jpg	18.14914	100.1275
I:\3 3 2555\20120302 123159.jpg	18.14183	100.13
1:\3 3 2555\20120302 123206.jpg	18.14131	100.1257
I:\3_3_2555\20120302_123417.jpg	18.13111	100.1088
I:\3 3 2555\20120302 123421.jpg	18,12965	100.1153
I:\3_3_2555\20120302_123424 ipg	18 12965	100 1153
1\3_3_2555\20120302_123428 ipg	18 12965	100 1153
I:\3_3_2555\20120302_123437 ipg	18 13026	100 1153
1\3_3_2555\20120302_134806 ipg	17 56396	100 0354
1\3_3_2555\20120302_134843 ing	17 56138	100.0299
1\3_3_2555\20120302_134903 ing	17 5556	100.0200
I:\3_3_2555\20120302_134919 ing	17 55454	100.0040
1:\3_3_2555\20120302_135029 ing	17 54551	100.0044
1:\3_3_2555\20120302_135033 ing	17.54551	100.0207
1:\3_3_2555\20120302_135047 ipg	17.54531	100.0207
1.\3_3_2555\20120302_135122 ipg	17.55554	100.0344
$1.3_{2}2555(20120302_{135122})$	17.55992	100.0231
1:\3_3_2555\20120302_135134 ing	17.55305	100.034
1.3_{2}^{2}	17.50100	100.0353
1.3_{2}^{2}	17 57940	100.0351
1:\3_3_2555\20120302_140253 ing	17 57024	99 57515
I:\3_3_2555\20120302_140727 ing	17.57.024	99 55166
I:\3_3_2555\20120302_140816 ipg	17 55036	99 53662
I:\3_3_2555\20120302_140817 ipg	17 55036	99 53662
$1.3_3_{2555} = 120002_{100} = 140820$ ing	17 55036	99 53662
1\3_3_2555\20120302_140930 ipg	17 5506	99 54021
1\3_3_2555\20120302_140942 ing	17 54982	99 53993
1:\3_3_2555\20120302_140945 ing	17 54982	99 53993
1\3_3_2555\20120302_141317 ing	17 52919	99 5168
1\3_3_2555\20120302_141329 ing	17 53278	99 51848
1\3_3_2555\20120302_141508 ipg	17 5227	99 52245
1\3_3_2555\20120302_141512 ipg	17 52239	99 52236
1\3_3_2555\20120302_141520 ipg	17 51937	99 51968
I:\3_3_2555\20120302_141625.jpg	17 50726	99 5228
1\3_3_2555\20120302_141933 ing	17 49549	99 51591
I:\3_3_2555\20120302_141938 ipg	17 4951	99 51574
I:\3_3_2555\20120302_142219 ipg	17 48145	99 50985
I:\3 3 2555\20120302 142304.jpg	17.4798	99.50997
I:\3 3 2555\20120302 142326.jpg	17.47958	99.50986
I:\3 3 2555\20120302 142342.jpg	17.48088	99.50907
I:\3 3 2555\20120302 142432.jpg	17,47986	99.51288
I:\3 3 2555\20120302 142435.ing	17.47986	99.51288
I:\3 3 2555\20120302 142517.ipg	17.47981	99.51434
I:\3 3 2555\20120302 142547.ipg	17.48055	99.50773
I:\3 3 2555\20120302 142613.jpg	17.47976	99.50464
I:\3 3 2555\20120302 142617.jpg	17.47976	99.50464
I:\3_3_2555\20120302_142641.jpg	17.48193	99.52042

FileName	Latitude	Longitude
I:\3 3 2555\20120302 142655.jpg	17.482	99.52076
I:\3 3 2555\20120302 142731.jpg	17.48159	99.52217
I:\3 3 2555\20120302 142843.jpg	17.48121	99.51987
I:\3 3 2555\20120302 142849.jpg	17.48121	99.51987
I:\3 3 2555\20120302 143028.jpg	17.48118	99.52469
I:\3 3 2555\20120302 143934.jpg	17.47831	99.52587
I:\3 3 2555\20120302 144108.jpg	17.47993	99.51687
I:\3 3 2555\20120302 144123.jpg	17.47993	99.51687
I:\3 3 2555\20120302 144504.jpg	17.47912	99.5159
I:\3 3 2555\20120302 144511.jpg	17.47912	99.5159
I:\3 3 2555\20120302 144553.jpg	17.48184	99.51938
I:\3 3 2555\20120302 144559.jpg	17.48184	99.51938
I:\3 3 2555\20120302 144635.jpg	17.48175	99.52336
I:\3 3 2555\20120302 144726.jpg	17.48127	99.51999
I:\3 3 2555\20120302 144821.jpg	17.47877	99.51979
I:\3 3 2555\20120302 144825.jpg	17.47877	99.51979
I:\3 3 2555\20120302 144847.jpg	17.47866	99.52108
I:\3 3 2555\20120302 144857.jpg	17.47866	99.52108
I:\3 3 2555\20120302 145002.jpg	17.48126	99.51992
I:\3 3 2555\20120302 145018.jpg	17.48104	99.50582
I:\3 3 2555\20120302 145032.jpg	17.47998	99.51567
I:\3 3 2555\20120302 145100.jpg	17.48059	99.50788
I:\3 3 2555\20120302 145106.jpg	17.48059	99.50788
I:\3 3 2555\20120302 145118.jpg	17.48059	99.50788
I:\3 3 2555\20120302 145123.jpg	17.48059	99.50788
I:\3 3 2555\20120302 145151.jpg	17.48042	99.51479
I:\3 3 2555\20120302 145427.jpg	17.47978	99.49928
I:\3 3 2555\20120302 145647.jpg	17.48097	99.49858
I:\3 3 2555\20120302 150212.jpg	17.45987	99.47931
I:\3 3 2555\20120302 150240.jpg	17.44907	99.47997
I:\3 3 2555\20120302 150430.jpg	17.45389	99.48081
I:\3 3 2555\20120302 150456.jpg	17.45356	99.47977
I:\3 3 2555\20120302 150500.jpg	17.45327	99.48033
I:\3 3 2555\20120302 151226.jpg	17.42149	99.45572
I:\3 3 2555\20120302 151335.jpg	17.41481	99.44906
I:\3 3 2555\20120302 151339.jpg	17.41475	99.45376
I:\3 3 2555\20120302 151358.jpg	17.40828	99.45322
I:\3 3 2555\20120302 151404.jpg	17.41399	99.44712
I:\3 3 2555\20120302 151533.jpg	17.41144	99.45307
I:\3 3 2555\20120302 151536.jpg	17.41144	99.45307
I:\3 3 2555\20120302 151539.jpg	17.41144	99.45307
I:\3 3 2555\20120302 151553.jpg	17.41144	99.45307
I:\3 3 2555\20120302 151558.jpg	17.41144	99.45307
I:\3 3 2555\20120302 151613.jpg	17.41144	99.45307
I:\3 3 2555\20120302 152202.jpg	17.38268	99.44262
I:\3_3_2555\20120302_152259.jpg	17.37533	99.43951
I:\3 3 2555\20120302 152304.jpg	17.36879	99.43954
I:\3_3_2555\20120302_152914.jpg	17.3469	99.43032
I:\3_3_2555\20120302_153444.jpg	17.33507	99.44724
I:\3_3_2555\20120302_153449.jpg	17.33507	99.44724
I:\3_3_2555\20120302_153545.jpg	17.33294	99.46102
I:\3_3_2555\20120302_153548.jpg	17.33294	99.46102

FileName	Latitude	Longitude
I:\3_3_2555\20120302_153745.jpg	17.33043	99.46167
I:\3_3_2555\20120302_153800.jpg	17.33043	99.46167
I:\3_3_2555\20120302_153804.jpg	17.33043	99.46167
I:\3 3 2555\20120302 153812.jpg	17.33043	99.46167
I:\3 3 2555\20120302 153921.jpg	17.33008	99.45991
I:\3 3 2555\20120302 154524.jpg	17.31028	99.44878
I:\3 3 2555\20120302 160047.jpg	17.31514	99.46545
I:\3 3 2555\20120302 160056.jpg	17.3153	99.46988
I:\3 3 2555\20120302 160104.jpg	17.31542	99.47099
I:\3 3 2555\20120302 160200.jpg	17.32038	99.46694
I:\3 3 2555\20120302 160204.jpg	17.32038	99.46694
I:\3 3 2555\20120302 160209.jpg	17.32056	99.4661
1:\3_3_2555\20120302_160215.jpg	17.32075	99.4692
1:\3_3_2555\20120302_160902 ipg	17 32989	99 51972
I:\3_3_2555\20120302_161411 ing	17 34008	99 51799
I:\3_3_2555\20120302_161440 ing	17 34077	99 52513
1:\3_3_2555\20120302_161515 ing	17 34125	99 51955
1:\3_3_2555\20120302_161548 ing	17 33883	99 5243
1:\3_3_2555\20120302_1616111 ing	17 33935	99 52456
1:\3_3_2555\20120302_161736 ing	17 33626	99 52458
I:\3_3_2555\20120302_161753 ing	17 33626	99 52458
1:\3_3_2555\20120302_161805.jpg	17 33971	99 51738
1:\3_3_2555\20120302_161849 ing	17 33608	99 52414
1:\3_3_2555\20120302_161853 ing	17 33608	99 52414
1:\3_3_2555\20120302_161902_ipg	17 3455	99 51999
1:\3_3_2555\20120302_161912 ing	17 3455	99 51999
1:\3_3_2555\20120302_161919 ipg	17 34525	99 52357
1:\3_3_2555\20120302_161937 ing	17 33975	99 5232
1:\3_3_2555\20120302_162034 ipg	17 34468	99 51945
1:\3_3_2555\20120302_162052 ipg	17 34439	99 5217
1:\3_3_2555\20120302_162501_ipg	17 33877	99 51339
1\3_3_2555\20120302_162521 ipg	17 33946	99 51284
1:\3_3_2555\20120302_162554 ipg	17 3435	99 50911
1:\3_3_2555\20120302_162728 ipg	17 33896	99 51024
1\3_3_2555\20120302_162740 ipg	17 34335	99 50997
1:\3_3_2555\20120302_162814.jpg	17.34269	99.50973
1:\3_3_2555\20120302_162925 ipg	17 3409	99 49787
1:\3_3_2555\20120302_162935.jpg	17.34071	99.50553
1:\3_3_2555\20120302_163220.jpg	17.33571	99.50194
1:\3_3_2555\20120302_163241.jpg	17.33585	99.50085
I:\3 3 2555\20120302 163252.jpg	17.33585	99.50049
I:\3 3 2555\20120302 163408.jpg	17.34017	99.49364
I:\3 3 2555\20120302 163445.jpg	17.33984	99.49252
1:\3_3_2555\20120302_163522.jpg	17.33984	99,49252
I:\3 3 2555\20120302 163752.jpg	17.33975	99.48935
1:\3_3_2555\20120302_163920.jpg	17.33503	99.47516
1:\3_3_2555\20120302_164006.jpg	17.32723	99.47591
I:\3 3 2555\20120302 164330.ipg	17.32992	99.47948
I:\3 3 2555\20120302 164335.ipg	17.32992	99.47948
I:\3 3 2555\20120302 164349.ipg	17.32992	99.47948
I:\3 3 2555\20120302 164403.ipg	17.32983	99.47912
I:\3_3_2555\20120302_164419.jpg	17.32983	99.47912

FileName	Latitude	Longitude
I:\3_3_2555\20120302_164644.jpg	17.31994	99.47442
I:\3 3 2555\20120302 164648.jpg	17.31994	99.47442
I:\3 3 2555\20120302 165714.jpg	17.28919	99.4539
I:\3 3 2555\20120302 165719.jpg	17.28919	99.4539
I:\3 3 2555\20120302 165723.jpg	17.28978	99.44956
I:\3 3 2555\20120302 170407.jpg	17.2612	99.46881
I:\3 3 2555\20120302 170417.jpg	17.25546	99.4804
I:\3 3 2555\20120302 170419.jpg	17.25546	99.4804
L\3 3 2555\20120302 170427.jpg	17.25514	99.48048
1\3_3_2555\20120302_170707 ing	17 25468	99 47856
I:\3_3_2555\20120302_171831 ipg	17 22241	99 47986
1:\3_3_2555\20120302_171833 ipg	17 22241	99 47986
1:\3_3_2555\20120302_171841 ing	17 22241	99 47986
1:\3_3_2555\20120302_172149 ing	17 2088	99 49114
1:\3_3_2555\20120302_172151 ing	17 2088	00.40114 00.40114
1:\3_3_2555\20120302_172153 ing	17 2088	00.40114 00.40114
1:\3_3_2555\20120302_172538 ing	17 10300	00 / 8800
$1.3_2 = 2555 \times 20120302 = 172350.$ jpg	17 18/01	00 /0328
1:\3_3_2555\20120302_173104.jpg	17.10491	99.49320
1.\5_5_2555\20120302_175109.jpg	17.10491	99.49320
1.\5_5_2555\20120302_175112.jpg	17.10472	99.40070
1.\3_3_2555\20120302_175110.jpg	17.10472	99.40070
1.\3_3_2555\20120302_175119.jpg	17.10472	99.40070
1.\3_3_2555\20120303_100345.jpg	17.10409	99.50424
1:\3_3_2555\20120303_100348.jpg	17.16409	99.50424
1:\3_3_2555\20120303_100433.jpg	17.10232	99.49932
1:\3_3_2555\20120303_100440.jpg	17.15936	99.50249
1:\3_3_2555\20120303_100654.jpg	17.14985	99.50942
I:\3_3_2555\20120303_100657.jpg	17.14985	99.50942
1:\3_3_2555\20120303_100855.jpg	17.14218	99.51302
1:\3_3_2555\20120303_101424.jpg	17.11234	99.51584
I:\3_3_2555\20120303_102619.jpg	17.09067	99.51834
I:\3_3_2555\20120303_102709.jpg	17.08452	99.52287
I:\3_3_2555\20120303_102752.jpg	17.07805	99.52352
I:\3_3_2555\20120303_102754.jpg	17.07805	99.52352
I:\3_3_2555\20120303_102820.jpg	17.07946	99.51945
I:\3_3_2555\20120303_102851.jpg	17.08063	99.52581
I:\3_3_2555\20120303_102906.jpg	17.07581	99.53024
l:\3_3_2555\20120303_102910.jpg	17.07581	99.53024
I:\3_3_2555\20120303_103028.jpg	17.06979	99.53205
l:\3_3_2555\20120303_103134.jpg	17.0646	99.52933
l:\3_3_2555\20120303_103329.jpg	17.0541	99.53017
I:\3_3_2555\20120303_103530.jpg	17.04486	99.5301
I:\3_3_2555\20120303_104909.jpg	17.04093	99.53125
I:\3_3_2555\20120303_105102.jpg	17.03477	99.53363
I:\3_3_2555\20120303_105710.jpg	17.01153	99.55185
I:\3_3_2555\20120303_105800.jpg	16.99939	99.54941
I:\3_3_2555\20120303_111519.jpg	16.5479	99.56905
I:\3_3_2555\20120303_111737.jpg	16.54561	99.57163
I:\3_3_2555\20120303_112620.jpg	16.50956	99.56884
I:\3_3_2555\20120303_112745.jpg	16.49724	99.57531
I:\3_3_2555\20120303_112751.jpg	16.49724	99.57531
I:\3_3_2555\20120303_112807.jpg	16.50479	99.57541

FileName	Latitude	Longitude
I:\3_3_2555\20120303_113558.jpg	16.48444	100.0014
I:\3_3_2555\20120303_120201.jpg	16.45284	100.0687

BIOGRAPHY

Ms. Supattra Kitichuchairit was born in Saraburi, Thailand on September 2, 1985. In 2007 she received a Bachelor degree of Science in Geo-informatics Technology from Department of Geology, Faculty of humanities and social science, Burapha University. After then she entered the Earth Sciences program, Department of Geology, Faculty of Science, Chulalongkorn University for a Master of Science degree study.