การสังเคราะห์เมทัลโลพอร์ไฟรินที่มีคาลิกซ์[4]เอรีนและคาลิกซ์[4]พิร์โรลเพื่อเป็นไอโอโนฟอร์ใน อิเล็กโทรดแบบเลือกจะเพาะต่อแอนไอออน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

$$
\text { ปีการศึกษา } 2554
$$

ลิขสิทธิ์ของจุัาลงกรณ์มหาวิทยาลัย บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธตตแต่ป่การศกษษา 2554 ที่หหบร่รารในคลังบัญญาจุฬาง (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่สงผ่านทางบัณฑิตวิทยาลัย

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry

Department of Chemistry
Faculty of Science
Chulalongkorn University
Academic Year 2011
Copyright of Chulalongkorn University

By
Field of Study
Thesis Advisor
Thesis Co-advisor

Miss Nattaporn Labung
Chemistry
Associate Professor Buncha Pulpoka, Ph.D.
Professor Thawatchai Tuntulani, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Science

THESIS COMMITTEE
(Professor Supot Hannongbua, Dr.rer.nat.)

(Associate Professor Buncha Pulpoka, Ph.D.)

Thesis Co-advisor
(Professor Thawatchai Tuntulani, Ph.D.)
...Examiner
(Assistant Professor Worawan Bhanthumnavin, Ph.D.)
.External Examiner
(Gamolwan Tumcharern, Ph.D.)

ณัฐภรณ์ ลาบึง : การสังเคราะห์ เมทัลโล พอร์ไฟรินที่มีคาลิกซ์[4]เอรีนและคาลิกซ์ [4]พิร์ โรลเพื่อเป็นไอโอโนฟอร์ในอิเล็กโทรดแบบเลือกจะเพาะต่อแอนไอออน. (SYNTHESIS OF METALLOPORPHYRIN CONTAINING CALIX[4]ARENE AND CALIX[4]PYRROLE AS IONOPHORES IN ANION SELECTIVE ELECTRODES) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ. ดร.บัญชา พูลโภคา, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม : ศ.ดร. ธวัชชัย ตันฑุลานิ, 121 หน้า.

ในงานวิจัยนี้เป็นการสังเคราะห์ สารประกอบ เมทัลโล พอร์ไฟรินที่มีหน่วยคาลิกซ์ [4]เอรี่น (ML1) และคาลิกซ์[4]พิร์โรล (ML2) เป็นองค์ประกกอบในโมเลกุล แต่มีเพียงโมเลกุล ML1 เท่านั้นที่ ใช้เป็นไอโอนอฟอร์ในเมมเบรนอิเล็กโทรด โมเลกุณ ML1 สังเคราะห์จากการทำปฏิกิริยาเมทัล เลชันของโลหะทรานซิชันกับโมเลกล 11 ที่สังเคราะห์จากการรวมตัวกันของสารประกอบคาลิกซ์ [4]เอรีนที่มีหมู่ไดไพโรลมีเทนสองหมู่ (4) กับเบนซาลดีไฮด์ โดยมีกรดเป็นตัวเร่งปฏิกิริยา และนำ โมเลกุล ML1 ($\mathrm{ZnL} 1, \mathrm{CuL} 1, \mathrm{CoL} 1, \mathrm{FeL} 1$ แลละ SnL 1$)$ ที่สังเคราะห์ได้ไปไช้เป็นไอโอโนฟอร์ใน การศึกษาการตอบสนองทางเคมีไฟฟ้าของแอนเอออนแต่ละตัวและการเลือกจำเพาะต่อแอน ไอออนของเมมเบรนที่เตรียมได้จากสารประกอบเมทัลโลพอรีไฟริน พบว่าเมมเบรนอิเล็กโทรดที่มี $\mathrm{ZnL} 1, \mathrm{CuL1}, \mathrm{CoL1}$ และ FeL 1 ทำหน้าที่เป็นไออใอในฟอร์ในอิเล็กโทรดแบบเลือกจำเพาะต่อแอน ไอออน สามารถเลือกจับกับไดอใอไดดํได้ดีที่สุด แต่มีเปอร์คลอใรตและไทโอไซยาเนตที่เป็นไอออน รบกวน และเมมเบรนอิเล็กโทรดที่มี SnL 1 หน้าที่เป็นไอโอโนฟอร์ในอิเล็กโทรดแบบเลือกจำเพาะ ต่อแอนไอออนสามารถเลือกจับกัษซาลิซิเลต์ได้ดีที่สุดุ โดยมีไอโอไดด์เป็นไอออนรบกวน

Chulalongkorn University

สาขาวิชา เคมี \qquad ลายมือชื่อนิสิต
สาขาวิชา \qquad เคมี \qquad ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา 2554 ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม
\# \# 5272648123 : MAJOR CHEMISTRY
KEY WORDS: METALLOPORPHYRIN / ANION SELECTIVE ELECTRODES
NATTAPORN LABUNG : SYNTHESIS OF METALLOPORPHYRIN CONTAINING CALIX[4]ARENE AND CALIX[4]PYRROLE AS IONOPHORES IN ANION SELECTIVE ELECTRODES. ADVISOR : ASSOC. PROF. BUNCHA PULPOKA, Ph.D., CO-ADVISOR : PROF. THAWATCHAI TUNTULANI, Ph.D., 121 pp.

This thesis reported the synthesis of metalloporphyrins containing calix[4]arene (ML1) and calix[4]pyrrole (ML2) However, only ML1 was used as ionophores in anion selective electrodes. NH1 was synthesized by metallation of L1 and metal salts. The L1 was obtained from the acid catalyzed condensation of benzaldehyde and 1,3-calix[4] arene-bis-dipyrromethane (4). Compound ML1 (ZnL1, CuL1, CoL1, FeL1 and SnL1 was used as ionophore in ion selective electrodes. The potentiometric response of anions for ionophores (ZnL1, CuL1, CoL1 and FeL1) showed the selectivity toward iodide with perchlorate and thiocyanate as interference ions. Moreover, the potentiometric response of anions for ionophores SnL1 exhibited selectivity toward for salicylate more than other anions, with iodide as an interference ion.

จุฬาลงกรณ์มหาวิทยาลัย

Chulalongiorn University

Department:	Chemistry	Student's Signature..
Field of Study	Chemistry	Advisor's Signature.
Academic Year	2011	Co-advisor's Signatu

ACKNOWLEDGEMENTS

This thesis could not be completed without suggestions, inspiration and encouragement of my thesis advisor, Associate Professor Buncha Pulpoka and Professor Dr. Thawatchai Tuntulani. Moreover, I would like to thank Associate Professor Dr.Tirayut Vilaivan, Assistant Professor Dr.Worawan Bhanthumnavin and Dr. Gamolwan Tumcharern for their valuable suggestion and comments as thesis examiners. In addition, I am grateful to Associate Professor Dr. Nongnuch Muangsin for determinating X-ray crystal structure of my synthesized compound.

I would like to thank The National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials (NCE-PPAM) for financial support.

I also thank Supramolecular Chemistry Research Unit (SCRU), Environmental Analysis Research Unit (EARU), Organic synthesis Research Unit (OSRU) for the research facility.

Finally, I would like to thank so much my family, my friends and others for thier care, encouragement, motivation during my graduate study.

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

Page

ABSTRACT (THAI) iv
ABSTRACT (ENGLISH) V
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF SCHEMES xvi
LIST OF ABBREVIATIONS xvii
CHAPTER I INTRODUCTION 1
1.1 Ion Selective Electrodes 1
1.2 Ionophores of Anion/Selective Electrodes 5
1.2.1 Porphyrin-based Anion Sensors 5
1.2.2 Calix[4]pyrrole based anion Sensors 11
1.2.3 Calix[4]arene based anion Sensors. 13
1.3 Objectives and scope of the research 18
CHAPTER II EXPERIMENTAL 6
2.1 General Procedures 19
2.1.1 Analytical instrument 19
2.1.2 Meterials 20
2.2 Synthesis of ionophores 21
2.2.1 Synthesis of Metalloporphyrin-calix[4]arene (ML1) 21
2.2.1.1 Synthesis of triethyleneglycol ditosylate (1) 21
2.2.1.2 Synthesis of 2-(8-tosyltriethyleneglycol) benzaldehyde (2) 22
2.2.1.3 Synthesis of 1,3-calix[4]-dibenzaldehyde (3) 23

Page

2.2.1.4 Synthesis of 1,3-calix[4]arene- bis-dipyrromethane (4) 25
2.2.1.5 Synthesis of porphyrin-calix[4]arene (L1) 26
2.2.1.6 Synthesis of Metalloporphyrin-calix[4]arene (ML1) (ZnL1, CuL1, CoL1, FeL1 and SnL1)..... 27
2.2.2 Synthesis of Metalloporphyrin-calix[4]pyrrole (ML2) 31
2.2.2.1 Synthesis of 5-phenyldipyrromethane (5) 31
2.2.2.2 Synthesis of $2 \rightarrow(($ triethylenglycol $)$ bezadehyde $)$ acetophenone (6) 32
2.2.2.3 Synthesisof5, 15-di(2-(2-
(triethyleneglycol)acetophenone)phenyl)
-10,20-diphenylporphyrin (7) 33
2.2.2.4 Synthesis of 5,15-di(2-(2-(triethyleneglycol)
-bis-dipyrrocthyl)phenyl)-10,20-diphenylporphyrin 34
2.3 Preparation of PVC membrane electrodes. 35
2.4 Potential measurement 36
2.5 Selectivity measurements 36
2.6 Effects of pH 36
2.7 Reversibility of the PVC membrane potential. 37
2.8 Complexation studies 37
2.8.1 UV-vis spectrophotometric studies of $\mathbf{Z n L} 1$ with anions 37
2.8.2 NMR Spectroscopic studies of $\mathbf{Z n L} 1$ with $\mathrm{Bu}_{4} \mathrm{NF}$ 37
CHAPTER III RESULTS AND DISCUSSION 38
3.1 Synthesis and characterization of ionophores 38
3.1.1 Synthesis and characterization of metalloporphyrin-calix[4]arene (ML1) 38
Page
3.1.1.1 Synthesis and characterization of 1,3-calix[4]-dibenzaldehyde (3) 38
3.1.1.2 Synthesis and characterization of 1,3-calix[4]arene-bis-dipyrromethane (4) 40
3.1.1.3 Synthesis and characterization of porphyrin-calix[4]arene (L1) 41
3.1.1.4 Synthesis and characterization of Metalloporphyrin-calix[4]arene (ML1) 42
3.1.2 Synthesis and characterization of
Metalloporphyrin-calix[4]pyrrole (ML2) 45
3.1.2.1 Synthesis and characterization of 5,15-di(2-(2-(triethyleneglycol)acetophenone) phenyl)-10,20-diphenylporphyrin (7) 45
3.1.2.2 Synthesis and characterization of
5,15-di(2-(2-(triethyleneglycol)-bis-dipyrroethyl) phenyl)-10,20-diphenylporphyrin (9) 46
3.2 X-ray study of Copper(II) porphyrin-eatix[4]arene (CuL1) 47
3.3 Potentiomatic studies of ionophores
(ZnL1, CuL1, CoL1, FeL1 and SnL1) 49
3.3.1 EMF responses of the ISE, prepared for
ZnL1, CuL1, CoL1 and FeL1 49
3.3.2 Effect of solution buffer for iodide responses of membrane electrode based on $\mathbf{Z n L} 1$ using 25% cationic additives 51
3.3.3 Selectivity coefficients of PVC membrane electrode based on ZnL1, CuL1, CoL1 and FeL1 using 25% mol of cationic additives 52
3.3.4 Selectivity coefficients of PVC membrane electrode base on $\mathrm{ZnL1}$ and CuL 1 using $15 \%, 25 \%$ and $35 \% \mathrm{~mol}$ of cationic additives 54
3.3.5 Potentiometric studies of ionophore (SnL1) 55
3.3.5.1 EMF responses of SnL1 using $25 \% \mathrm{~mol}$ of anionic additives 55
3.3.5.2 Effect of inner filling solution for salicylate responses of membrane E 56
3.3.5.3 Selectivity coeffieients of PVC membrane electrode based on SnL1 58
3.3.6 Reversibility of the potentiometric iodide response for membrane electrode based on ZnL1 using 25\% cationic additives 59
3.3.7 Effect of pH of the potentiometric iodide response for membrane electrode based on $\mathbf{Z n L 1}$ using 25\% cationic additives. 60
3.4 Complexes studies of $\operatorname{Zinc}($ II) porphyrin-calix[4]arene (ZnL1) with anions in solution. 61
3.4.1 Complexe studies of Zinc(II) porphyrin-calix[4]arene (ZnL1) with $\mathrm{Bu}_{4} \mathrm{NF}$ 62
$3.5{ }^{1} \mathrm{H}$ NMR studies of $\mathrm{Zinc}($ II $)$ porphyrin-calix[4]arene (ZnL1) with $\mathrm{Bu}_{4} \mathrm{NF}$ 63
CHAPTER IV CONCLUSION 65
REFERENCES 67
APPENDICES 73
Appendix A 74
Appendix B 92
VITAE 121

LIST OF TABLES

Table
Page

2.1 Membrane composition ($\% \mathrm{w} / \mathrm{w}$) of the constructed electrodes for
anions 35
3.1 Characteristics of iodide responses of membrane type A ($\mathbf{Z n L 1}, \mathbf{2 5 \% m o l}$ of TDMACl) in each aqueous solution52

3.2 Characteristics of salicylate responses of membrane type E (SnL1,
$25 \% \mathrm{~mol}$ of KTpClPB) in each imer filling solution 57

จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure Page
1.1 Schematic diagram of a membrane electrode measuring circuit and cell assembly 2
1.2 Determination of the Nicolskii coefficients according to the separate solution method (SSM) 4
1.3 Determination of the Nicolskii coefficients according to the fixed interference method (FIM) 5
1.4 The structure of porphymin 6
1.5 Structures of ionophores Rh-TPP, Rh-tBTPP. Rh-OEP, Jacobsen's ligand 7
1.6 Structures of new ionophores manganese(III) porphyrin complexes 7
1.7 Structures of platinum porphyrine complexes as ionophores 8
1.8 Structures of $\left.\mathrm{Sn}(\mathrm{IV})[\text { [TPP]Cl }]_{2} ; \mathrm{B}\right) \mathrm{Sn}(\mathrm{IV})[\mathrm{OEP}] \mathrm{Cl}_{2}$ 9
1.9 The calibration curves for the emf response towards phthalate 9
1.10 Possible mechanisms by which an anion can interacted with metalloporphynrins doped into the polymer membrane of an anion- selective electrodes 10
1.11 Conformations of calix[4]pyrrole 11
1.12 Conformations of calix[4]pyrrole binding with chloride 12
1.13 Structures of compound $\mathbf{1 0}$ binding with F^{-} 12
1.14 Structures of receptor 11 binding with F^{-} 13
1.15 Conformations of calix[4]arene 14
1.16 Structures of compound $\mathbf{1 2}$ binding with NO_{3} 14
1.17 Structures of compound $\mathbf{1 3}$ binding with F^{-} 15
1.18 Structures of receptor $\mathbf{1 4}$ binding with dicarboxylate 16
1.19 Structures of conpound 15 and compound 16 17
Figure Page
1.20 Structures of desired ionophores 18
3.1 UV-vis spectra of L1, ZnL1, CuL1, FeL1, CoL1 and SnL1 in THF.. 43
3.2 ORTEP representation of crystal structure of copper(II) porphyrin- calix[4]arene $\mathbf{C u L 1}$ a) side view of $\mathbf{C u L 1}$, and b) below view ofCuL1.48
3.3 Calibration curves of anions responses for type A ($\mathbf{Z n L} \mathbf{L}$) 49
3.4 Calibration curves of anions responses for type B ($\mathbf{C u L 1}$) 50
3.5 Calibration curves of anions responses for type C (CoL1) 50
3.6 Calibration curves of anions responses for type D (FeL1) 51
3.7 Calibration curves of membrane A responses for I^{-} 52
3.8 Selectivity coefficients of membrane electrodes base on $\mathbf{Z n L 1}$ (type A), CuL1 (type B), CoL1 (type C), and FeL1 (type D) 53
3.9 Selectivity coefficients of membrane electrodes base on $\mathbf{Z n L} 1$ (type A, F and G), and CuLI (type B, H, I and J) 54
3.10 Calibration curves of anions responses for type $E(\mathbf{S n L} 1)$ 56
3.11 Calibration curves of salicylate respenses for type E (SnL1), difference concentrations of I^{-}and Cl^{-}of the inner filling solution. Measurements carried out in glycine buffer pH 3.5 57
3.12 Selectivity coefficients of membrane electrodes based on SnL1, anionic additives (TpClPB) $0 \%, 15 \%, 25 \%$ and 35% mol relative to the ionophore amount 58
3.13 The reversibility of emf iodode response for membrane electrode based on $\mathbf{Z n L 1}$ using $25 \% \mathrm{TDMACl}$ at different concentrations between $1 \times 10^{-4} \mathrm{M}$ and $1 \times 10^{-3} \mathrm{M}$. 59
3.14 Effect of pH of the potentiometric iodide response for membrane electrode based on $\mathbf{Z n L} 1$ using 25% cationic additives. At $1 \times 10^{-4} \mathrm{M}$ and $1 \times 10^{-3} \mathrm{M}$ concentration of I 60

Figure

Page
3.15 UV-vis spectra of Zinc(II) porphyrin-calix[4]arene (ZnL1) (5.0 $\mu \mathrm{M})$ with various tetrabutylammonium salts (100 equiv.) 61
3.16 The job's plot of the complexation of $\mathbf{Z n L 1}$ with $\mathrm{Bu}_{4} \mathrm{NF}$ in $\mathrm{CH}_{3} \mathrm{CN}$ 62
$3.17{ }^{1} \mathrm{H}$ NMR titration spectra of $\mathbf{Z n L 1}$ with $\mathrm{Bu}_{4} \mathrm{NF}$ in a mixture $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{CN}=1: 9(\mathrm{v} / \mathrm{v})$ at $9.00-6.00 \mathrm{ppm}$ 63
$3.18 \quad{ }^{1} \mathrm{H}$ NMR titration spectra of $\mathbf{Z n L 1}$ with $\mathrm{Bu}_{4} \mathrm{NF}$ in a mixture $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{CN}=1: 9(\mathrm{v} / \mathrm{v})$ at 4.00-0.05 64ppm.
A-1 ${ }^{1} \mathrm{H}$ NMR spectrum of 1 75
A-2 A-2 IR spectrum of 1 75
A-3 A-3 ${ }^{1} \mathrm{H}$ NMR spectrum of 2 76
A-4 ${ }^{13} \mathrm{C}$ NMR spectrum of 2 76
A-5 IR spectrum of 2 77
A-6 ${ }^{1} \mathrm{H}$ NMR spectrum of 3 77
A-7 ${ }^{13} \mathrm{C}$ NMR spectrum of 3 78
A-8 MALDI-TOF mass spectrum of 3 78
A-9 IR spectrum of 3 79
 79
A-11 ${ }^{13} \mathrm{C}$ NMR spectrum of 4 80
A-12 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} 1$ 80
A-13 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} 1$ 81
A-14 MALDI-TOF mass spectrum of $\mathbf{L} 1$ 81
A-15 IR spectrum of L1 82
A-16 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n L} 1$ 82
A-17 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n L} 1$ 83
A-18 MALDI-TOF mass spectrum of $\mathbf{Z n L} 1$ 83
A-19 IR spectrum of $\mathbf{Z n L} 1$ 84
A-20 MALDI-TOF mass spectrum of CuL1 84
Figure Page
A-21 IR spectrum of CuL1 85
A-22 MALDI-TOF mass spectrum of CoL1 85
A-23 IR spectrum of CoL1 86
A-24 MALDI-TOF mass spectrum of FeL1 86
A-25 IR spectrum of FeL1 87
A-26 ${ }^{1}$ H NMR spectrum of $\operatorname{SnL} 1$ 87
A-27 ${ }^{13} \mathrm{C}$ NMR spectrum of SnL1. 88
A-28 MALDI-TOF mass spectrum of SnL1. 88
A-29 IR spectrum of SnL1 89
A-30 ${ }^{1}$ H NMR spectrum of 5 89
A-31 ${ }^{1}$ H NMR spectrum of $6 \ldots \ldots . . .$. 90
A-32 IR spectrum of 6 90
A-33 MALDI-TOF mass spectrum of 7 and 8 91

LIST OF SCHEMES

Scheme Page
3.1 Synthetic patway of 1,3-calix[4]-dibenzaldehyde (3) 38
3.2 The synthesis of 1,3-calix[4]arene-bis-dipyrromethane (4) 40
3.3 The synthesis of free base porphyrin-calix[4]arene (L1) 41
3.4 The synthesis of Metalloporphyrin-calix[4]arene (ML1) (ZnL1,
CuL1, CoL1, FeL1 and SnL1) 42
3.5 The synthesis of 5,15-di(2-(2-9 (triethyleneglycol)aeetophenone)phenyl)-10,20-diphenylporphyrin (7) 45
3.6 The synthesis of 5,15-di(2-(2-(triethyleneglycol)-bis- dipyrroethyl)phenyl)-10,20-diphenylporphyrin (9) 46

จุฬาลงกรณ์มหาวิทยาลัย

LIST OF ABBREVIATIONS

HCl	Hydrochloric acid
$\mu \mathrm{L}$	Microliter (s)
TFA	Trifloroacetic acid
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Methylene chloride
$\mathrm{CH}_{3} \mathrm{COOH}$	Acetic acid
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium carbonate
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Sodium carbonate
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium sulfate
NaHCO_{3}	Sodium hydrogencarbonate
NaOH	\longrightarrow Sodium hydroxide
NaBr	Sodium bromide
NaCl	Sodium chloride
NaI	Sodium iodide
KF	Potassium fluoride
NaClO_{4}	Sodium perchlorate
KSCN	Potassium thiocyanate
NaSal	Sodium salicylate
NaOAc	1 Sodium acetate
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	จุฬาลงกรSodium dihydrogenphosphate
NaNO_{3}	CHULALONGKORN Sodium nitrate
NaNO_{2}	Sodium nitrite
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	Sodium hydrogenphosphate
mL	Milliliter (s)
mg	Milligram (s)
kg	Kilogram
EA	Elemental Analysis
$\lambda_{\text {abs }}$	Absorption wavelength
EtOAc	Ethyl acetate
CHCl_{3}	Chloroform

CHAPTER I

INTRODUCTION

1.1 Ion Selective Electrodes

The ion selective electrode (ISE) is a potentiometric chemical sensor composing of a membrane whose potential demonstrates the activity of the ion to be defined in a solution (the analyte). Membranes of ISEs consist either of liquid electrolyte solution or glassy or solid that usually have insignificant electron conductivity under the conductions of measurements. ISEs have many undoubted advantages such as low cost, portable and suitable for direct determinations and sensing of ions in solution. ${ }^{(1)}$

The beginning of ion selective electrodes (ISEs) is connected to the search for biological membrane models. In 1906 Cremer found that a thin glass membrane separating the two electrodes of a galvanic cell made the electromotive force (EMF) of this cell dependent on hydrogen ion concentration. After more than sixty years of study of liquid membrane electrodes was produced which, the first liquid membrane electrodes provided the means for the determination of the activity of Ca^{2+} ions in solution. ${ }^{(2)}$

The main demand for an organic liquid membrane was that it should be insoluble in water, low volatility, interacted reversibly with the ion of interest and presented some degree of charge conduction which, hypothetically, occurred by the transport of ions by organic molecules. ${ }^{(3)}$

Probably the most essential advance in liquid membrane electrodes, other than the original discovery, occurred in 1970 when it was exhibited that the organic liquid of the liquid membrane ion selective electrodes (ISEs) could be immobilized into poly(vinyl chloride), PVC, to make a polymer film with sensing properties. These was
possible because the reagents and organic liquids used for preparing the liquid membrane were, commonly, excellent plasticizers for PVC. Then plasticizers lower the glass transition temperature of PVC producing fructify homogeneous and flexible films with good mechanical stability. PVC-based membrane electrodes all contain an important reagent which selectively binds the interested ion. This reagent is generally referred as an ionophore or ion carrier. Considerable research has been carried out on these types of membranes and there were many reports of sensors for verious ions and species. ${ }^{(1,2)}$

The typical PVC membrane ion selective electrode was shown in Figure 1.1. The membrane can be casted onto a glass slide surface, cut as a disc and glued onto the end of a tube. A suitable inner filling solution was then added. These were the configuration which ordinarily used in commercial polymer membrane electrodes although some producers have modified the electrode for easiness of use.

Figure 1.1 Schematic diagram of a membrane electrode measuring circuit and cell assembly. ${ }^{(1)}$

The potentiometry with ion selective electrodes (ISEs), it was usually the EMF of cell of the following general type that is measured. ${ }^{(2)}$

$\underset{\left(\mathrm{Hg} / \mathrm{Hg}_{2} \mathrm{Cl}_{2}\right)}{\underset{\text { reference electrode } 1}{ }} \|$ solution 1 \mid membrane \mid solution 2 $\|$| reference electrode 2 |
| :---: |
| $(\mathrm{Ag} / \mathrm{AgCl})$ |

The solution 1 (the analyte) contained the ion to be measured. The actual potentiometric system consisted of internal reference electrode 2 , inner filling of the ISE, and the membrane. The reference electrodes, electrodes of the second kind (silver/silver chloride electrode, calomel electrode) were normally used.

The EMF responding to only one type of ions can be described by the Nernst equation ${ }^{(1,4)}$:

$$
\begin{equation*}
E_{\mathrm{M}}=E^{0}+\left(R T / \mathrm{Z}_{\mathrm{I}} F\right) \overline{\ln \mathrm{a}_{1}(\mathrm{aq})} \tag{1}
\end{equation*}
$$

Where E_{M} is the membrane potential, E° incorporates all potential contributions of the measuring cell that are constant for this measurement and is unique for each measured ion. While a_{1} and z_{1} are the activity and the charge of the measured ion, respectively, and the symbols R, T and F are the universal gas constant, the absolute temperature and the Faraday constant, respectively.

The selectivity is one of the most important characteristics of a potentiometric sensor. It often defined whether a credible measurement in the analyte sample is possible. The theoretical selectivity description allows researchers to identify the key parameters for optimizing the performance of potentiometric sensors, for example adjusted weighting parameters (i.e., absolute membrane concentrations) or choosing different plasticizers.

The determination of selectivity coefficients ${ }^{(1,4)}$, can be performed using two different methods defined from Nicolskii coefficients of ion selective electrodes (ISEs) so-called separate solution method (SSM) and fixed interference method (FIM). The separate solution method (SSM) associated the measurement of two separate solutions, each contained a salt of the determined ion only. The Nicolskii coefficient was then calculated from the two observed potential values shown in eq 2

$$
\begin{equation*}
K_{\mathrm{IJ}}^{\mathrm{pot}}=\frac{a_{I}}{a_{J}^{z_{J} / Z_{J}}} \exp \left\{\frac{E_{J}-E_{I}}{R T} Z_{I} F\right\} \tag{2}
\end{equation*}
$$

Where $K_{\mathrm{IJ}}^{\text {pot }}$ was the selectivity coefficient, E_{I} and E_{J} were the potential response of the primary ion and the interference ion, respectively, a_{I} and a_{J} were the activity of the primary ion and the interference ion, respectively, and z_{I} and z_{J} were the charge of the primary ion and the interference ion, respectively.

Figure 1.2 Determination of the Nicolskii coefficients according to the separate solution method (SSM). ${ }^{(1)}$

พาลงกรณ์มหาวิทยาลัย

For the fixed interference method (FIM) ${ }^{(1,4)}$, calibration curves of the primary ion, I, were determined by using adjusted primary ion in the solution contained a constant concentration of interfering ions, J , in the solution until a Nernstian slope to the primary ion is observed. This linear response part was extrapolated to the emf for the background interference only and a primary ion activity, $\mathrm{a}_{\mathrm{I}}(\mathrm{DL})$, at the detection limit, which together with the interfering ions activity in the background, $a_{J}(B G)$ as seen in eq 3.

$$
\begin{equation*}
\log K_{I, J}^{\text {pot }}=\log \left(\frac{a_{l}(D L)}{a_{J}(B G)^{Z_{I} / Z_{J}}}\right) \tag{3}
\end{equation*}
$$

\log al
Figure 1.3 Determination of the Nicolskii coefficients according to the fixed interference method (FIM).

1.2 Ionophores of Anion Selective Electrodes

Ionophores or ion-carriers were important reagents in the membrane electrode. It acted as complexing agent often composed of marcroclyclic structures and transition metal complexes exhibited potentiometric selectivity toward particular ions. The emf response of the membrane based on complexes was believed to occur from binding to the axial position of the metal center. Metal complexes composing of different ligands for examples, cobyrinate ${ }^{(5)}$, phthalocyanine ${ }^{(6)}$, salophen ${ }^{(7)}$, salen ${ }^{(8)}$, and porphyrin ${ }^{(9)}$ have been reported to be good ionophores for anions.

1.2.1 Porphyrin Based Anion Sensors

The porphyrin ${ }^{(10)}$ was a macroclyclic molecule, which showed a very important role in the metabolism of living organisms. It contained four pyrrole rings linked via methane bridges as shown Figure 1.4.

Figure 1.4 The structure of porphyrin ${ }^{10}$

The porphyrin ring displayed aromatic characters and was very stable. Porphyrin and metalloporphyrin derivatives displayed many key roles in essential biological process such as storage, photosynthesis and oxygen transport, for example, cobalt complex in Vitamin B 12 , magnesium complex in chlorophyll and iron complex in haemoprotien. The porphyrin ring with Lewis acid such as zinc could become produce selective redox active reagents for anions. Metalloporphyrin exhibited potentiometric anions selectivity

Pietrzak et al. ${ }^{(11)}$ synthesized ionophores based on rhodium(III) porphyrins and rhodium(III) salophens as doped polymer membrane electrodes which were selective to nitrite as shown in Figare 1.5 that both anionic additives or cationic additives in the polymer membrane gave highest response to nitrite. The detection limit was in the order of $5 \times 10^{-6} \mathrm{M}$ and selectivity order for the membrane was $\mathrm{NO}_{2}{ }^{-}>\mathrm{SCN}^{-}>\mathrm{Sal}^{-}>$ $\mathrm{ClO}_{4}{ }^{-}>\mathrm{Br}^{-}>\mathrm{NO}_{3}^{-}>\mathrm{CH}^{-} \sim \mathrm{F}^{-}$. ONGKORN UNIVERSITY
a)

b)

c)

Figure 1.5 Structures of ionophores (a) rhodium(III) 5,10,15,20-tetraphenylporphyrin chloride (Rh-TPP) when $\mathrm{R}=\mathrm{H}$, or (Rh-tBTPP) when $\mathrm{R}=$ tert-butyl; (b) rhodium(III) 2,3,7,8,12,13,17,18-octaethylporphyrin chloride (Rh-OEP); (c) rhodium(III) (S,S)-(+)N, N^{\prime}-bis(3,5-di-tert-butylsalicylidene)-1, 2-cyetohexanediamine(Jacobsen's ligand). ${ }^{(11)}$

Khorasani et al. ${ }^{(12)}$ synthesized new ionophores, 5,10,15,20-tetrakis(4aminophenyl)porphine manganese(III) chloride $\left(\mathrm{Mn}\left(\mathrm{TNH}_{2} \mathrm{PP}\right) \mathrm{Cl}\right)(\mathbf{1}), 5,10,15,20-$ tetratolylporphine manganese(III) chloride (Mn(TTP)Cl) (2), 5,10,15,20tetrakis(pentafluorophenyl)porphine manganese(III) chloride ($\left.\mathrm{Mn}\left(\mathrm{TF}_{5} \mathrm{PP}\right) \mathrm{Cl}\right)$ (3), and two previously reported thiocyanate ionophores, octabromo-5,10,15,20tetraphenylporphine manganese(III) chloride $\left(\mathrm{Mn}\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cl}\right)$ (4), and 5,10,15,20tetraphenylporphine manganese(III) chloride (Mn(TPP)Cl) (5) in PVC membrane electrodes. They found that electrodes recognized thaiocyanate and exhibited a wide linear range 10^{-7} to $10^{-1} \mathrm{M}$ of SCN^{-}in phosphate buffer pH 4.5 . The detection limit was in the order of $5 \times 10^{-8} \mathrm{M}$ and a wide pH range $3-8$. It could be applied to determine SCN^{-}in urine samples.

$1 \mathrm{X}=\mathrm{H}, \mathrm{Y}=p$-aminophenyl,
$\mathrm{Mn}\left(\mathrm{TNH}_{2} \mathrm{PP}\right) \mathrm{Cl}$
$2 \mathrm{X}=\mathrm{H}, \mathrm{Y}=p$-tolyl, $\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}$
$3 \mathrm{X}=\mathrm{H}, \mathrm{Y}=$ pentafluorophenyl,
$\mathrm{Mn}\left(\mathrm{TF}_{5} \mathrm{PP}\right) \mathrm{Cl}$
$4 \mathrm{X}=\mathrm{Br}, \mathrm{Y}=$ phenyl, $\mathrm{Mn}\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cl}$
$5 \mathrm{X}=\mathrm{H}, \mathrm{Y}=$ phenyl, $\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}$
Figure 1.6 Structures of new ionophores manganese(III) porphyrin complexes. ${ }^{(12)}$

Lvova et al. ${ }^{(13)}$ reported that they prepared platinum porphyrin core as ionophores for iodide selective electrodes as shown in Figure 1.7. Pt (II) porphyrins acted as neutral carriers with cationic additives (TDMACl).

Figure 1.7 Structures of platinum porphyrine complexes as ionophores. ${ }^{(13)}$

Santos et al. ${ }^{(14)}$ reported the synthesis of ionophores $5,10,15,20$ -tetraphenyl(porphyrinato)-tin(IV) $=\left(\mathrm{Sn}(\mathrm{IV}) \quad[\mathrm{TPP}] \mathrm{Cl}_{2}\right)$ and $2,3,7,8,12,13,17,18-$ octaethyl(porphyrinato)tin(IV) (Sn(IV)[OEP]Cl2) (Figure 1.8) via metallation of the free porphyrin ($\mathrm{H}_{2}[\mathrm{TPP}]$ or $\mathrm{H}_{2}[\mathrm{OEP}]$) using SnCl_{2}. It was found that polymer membrane doped with $\mathrm{Sn}(\mathrm{IV})[\mathrm{TPP}] \mathrm{Cl}_{2}$ and $\mathrm{Sn}(\mathrm{IV})[\mathrm{OEP}] \mathrm{Cl}_{2}$ selectively recognized phthalate ion more than other anions using cationic additives (TOABr) and anionic additives (NaTPB and KTFPB) as shown in Figure 1.9. Both ionophores 8 and 9 were found to operate via a neutral mechanism.

8

9

Figure 1.8 Structures of $\operatorname{Tin}(I V)$ porphyrine complexes as ionophores A) $\mathrm{Sn}(\mathrm{IV})$ $\left.[\mathrm{TPP}] \mathrm{Cl}_{2} ; \mathrm{B}\right) \mathrm{Sn}(\mathrm{IV})[\mathrm{OEP}] \mathrm{Cl}_{2} .{ }^{(14)}$

จุาลงกรณั่ \log [phthalate] $ล$ ลย

Chulalongkorn University

Figure 1.9 The calibration curves for the emf responses toward phthalate of membranes prepared with (O$) \mathrm{Sn}(\mathrm{IV})[\mathrm{TPP}] \mathrm{Cl}_{2}$ and $\left.\bigcirc\right) \mathrm{Sn}(\mathrm{IV})[\mathrm{OEP}] \mathrm{Cl}_{2}$ no ionic additives. ${ }^{(14)}$

Sensing mechanisms of metalloporphyrin ${ }^{15}$ as ionophores in membrane electrodes containing cationic, anionic or no ion additives are shown in Figure 1.10.

Chulalongkorn University

Figure 1.10 Possible mechanisms by which an anion can interacted with metalloporphynrins doped into the polymer membrane of an anion-selective electrodes. ${ }^{(15)}$

In many cases, possible sensing mechanisms of metalloporphyrins based polymer membranes can occur via coordination to axial ligand with metal center porphyrin ring. When the metal ion is in +2 oxidation state (Figure 1.10 A), such as zinc, cobalt and copper, the total charge is zero. The metalloporphyrin can act as neutral carriers. When the metal ion is in +3 oxidation state as shown Figure 1.10 B and C , for instance $\mathrm{Mn}(\mathrm{III})$, $\mathrm{In}(\mathrm{III})$, $\mathrm{Co}(\mathrm{III})$ or $\mathrm{Fe}(\mathrm{III})$ porphyrins can undergo two
possible mechanisms. In the case of B , anion as an axial ligand resulted in a negative charged complex, and case C exhibited a charge carrier mechanism. Moreover, when the metal ion is in +4 oxidation state (i.e., $\operatorname{Sn}(\mathrm{IV})$ and $\mathrm{Pt}(\mathrm{IV})$ porphyrins) they operated via charge mechanism as seen in Figure 1.10 D. In addition, the interaction of water molecules as exial ligands of the metal center porphyrin can be controlled by the pH of the sample solution as shown in Figure 1.10 E .

1.2.2 Calix[4]pyrrole Based Anion Sensors

Calixpyrroles was employed as anion receptors because it possesses high affinity and selectivity for specific anions. ${ }^{(16)}$ Calix[4]pyrrole can bind chloride, fluoride, and phosphate anion in organic solutions. ${ }^{(17)}$

Calix[4]pyrrole is very flexible because the pyrrole unit can rotate around the interpyrrole bonds. Calix[4]pyrrole exists in four conformations cone, partial cone, 1,2 -alternate and 1,3 -alternate as shown in Figure $1.11^{(18)}$, but 1,3-alternate conformation was more preferable than others. However, the cone conformation is the most favorite form when calix[4]pyrroles form 1:1 complexes with small anions ${ }^{(19)}$ as seen in Figure 1.12.

1,3-alternated

Partial cone

Cone

Figure 1.11 Conformations of calix[4]pyrrole. ${ }^{(18)}$

Figure 1.12 Conformation of calix[4]pyrrole binding with chloride. ${ }^{(19)}$

In 2009, Yoo et al. 202 synthesized a new calix[4]pyrrole containing dipyrrolylquinoxaline as a chromogenic sensor. When it bound fluoride, acetate, and dihydrogen phosphate anions, the molecule exhibited colorimetric responses. ${ }^{1} \mathrm{H}$ NMR titration of receptor 10 upon adding fluoride, signal of protons NH of calix[4]pyrrole moiety showed downfield shifted, stemming from H-bonding interactions as shown in Figure 1.13.

Figure 1.13 Structures of compound 10 binding with F^{-}. ${ }^{(20)}$

Panda et al. ${ }^{(21)}$ reported that synthesis metalloporphyrin stapped calix[4]pyrrole as a receptor for anions. The compound $\mathbf{1 1}$ was found to bind fluoride selectivity. (see Figure 1.14).

Figure 1.14 Structures of receptor 11 binding with $\mathrm{F}^{-(21)}$

1.2.3 Calix[4]arene Based Anion Sensors

Calixarenes were cavity-possessed macrocylic molecules synthesized from base catalyzed condensation of formaldehyde and p-tert-butylphenol. In many cases, calix[4]arenes have acquired chemist interests as host molecules in supramolecular chemistry. Therefore, modification at the lower and upper rims of calix[4]arene by attaching groups with different binding abilities enables them to form inclusion complexes with a widely diversity of guest species.

At room temperature in the solution, calix[4]arene existed in four conformations cone, partial cone, 1,2-alternate and 1,3-alternate as shown in Figure $1.15 .{ }^{(23)}$

Figure 1.15 Conformations of calix[4]arene. ${ }^{(23)}$

The calix[4]arene derivatives can form complexes with anions via H-bond interactions at hydroxyl groups (Figure 1.16). The nitrate ion was encapsulated inside the cavity of 1,8-naphthalimide based calix[4]arene. ${ }^{(24)}$

Figure 1.16 Structures of compound 12 binding with $\mathrm{NO}_{3}{ }^{-(24)}$

Lee et al. ${ }^{(25)}$ synthesized a novel calix[4]arene containing two coumarin signaling units (13) for binding of anions. It was found that compound $\mathbf{1 3}$ acted as a PCT-based chemosensor upon addition of F^{-}. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the amide N-H of $\mathbf{1 3}$ disappeared upon adding with F^{-}. Similarly, the OH protons are upfield shifted with possible H -bonding with F^{-}as shown in Figure 1.17.

Figure 1.17 Structures of compound 13 and compound 13 binding with $\mathrm{F}^{-(25)}$

In 2008, Singh et al. ${ }^{(26)}$ reported that the receptor 14 posessing cone conformation of calix[4]arene based dipodal has formed complexs with dicarboxylate anions for example glutarate, malonate, pimelate, succinate, adipate, and suberate. The complexation of receptor 14 and pimelate by comparing the ${ }^{1} \mathrm{H}$ NMR spectrum displayed signals of protons in $\mathrm{N}-\mathrm{H}$ and OH , the both acted downfield shifts. In this regard, the binding mode for the encapsulation of pimelate in receptor $\mathbf{1 4}$ was proposed as shown in Figure 1.18.

14

Figure 1.18 Structures of receptor 14 binding with dicarboxylate. ${ }^{(26)}$

Moreover, Dudič et al. ${ }^{(27)}$ synthesized calīxarenes containing two Zn (II) porphyrins units (see Figure (1.19) which can interact with 1,4diazabicyclo[2.2.2]octane (DABCO) by two different pathways. The complexation studied showed quite diverse behaviour of thiacalixarene diamide $\mathbf{1 6}$ when compared with the corresponding calix[4]arene 15. A plausible explanation of this phenomenon stemmed from differences in the cavity size. The larger cavity of thiacalixarene $\mathbf{1 6}$ fitted the steric requirements of DABCO , which resulted in the complexation in intramolecular $1: 1$ stoichiometry. In contrast, the smaller cavity of compound $\mathbf{1 5}$ preferred the $2: 1$ complex.

Figure 1.19 Structures of conpound $15\left(X=\mathrm{CH}_{2}, \mathrm{R}=\mathrm{H}\right)$ and compound $16(\mathrm{X}=\mathrm{S}$, $\mathrm{R}=\mathrm{H}) .{ }^{(27)}$

1.3 Objectives and scope of the research

In this research, synthesis of metalloporphyrins containing calix[4]arene and calix[4]pyrrole as ionophores in polymer membrane anion selective electrodes are carried out. The synthesized compounds are then used to fabricate membrane ISEs. Studies of potentiometric response of the ISEs towards anions $\left(\mathrm{ClO}_{4}{ }^{-}, \mathrm{SCN}^{-}, \mathrm{I}^{-}, \mathrm{OAc}^{-}\right.$, $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{HCO}_{3}{ }^{-}$and salicylate) are carried out.

Figure 1.20 Structures of desired ionophores.

CHAPTER II

EXPERIMENTAL SECTION

2.1 General Procedures

2.1.1 Analytical instrument

UV-vis absorption spectra were measured with a Varian Cary 50 UV-Vis spectrophotometer. MALDI-TOF mass spectra were recorded on Bruker Daltonic by using 2-cyano-4-hydroxy cinnamic acid (CCA) as a matrix. Crystal Data was obtained by Bruker Smart CCD diffractometer. Nuclear magnetic resonance (NMR) spectra were recorded on a Varian Mereury Plus (400 MHz) for ${ }^{1} \mathrm{H}$ and a Bruker Auance 400 $(100 \mathrm{MHz})$ for ${ }^{13} \mathrm{C}$. In all eases, samples were dissolved in deuterated chloroform except titration of Zn (II) porphyrin-calix[4]arene with tetrabutylammonium fluoride which was dissolved in deuterated acetonitrile. The chemical shifts were recorded in part per million (ppm) using a residual proton or carbon signals in deuterated solvents as internal reference. Infrared spectra were obtained on a Nicolet Impact 400 FT-IR spectrophotometer (Thermo Fisher Scientific company, USA. Elemental analysis was obtained by CHNS/O Analyzer, Perkin Elmer PE2400 Series II.

2.1.2 Meterials

All materials were standard analytical grade, purchased from Merck, Fluka, Sigma-Aldrich, Lab scan, BDH or Carlo Erba and used without further purification. Commercial grade solvents such as dichloromethane, methanol, ethyl acetate, hexane and acetone were distilled before use. Dimethylformamide and acetonitrile were dried over calcium hydride and freshly distilled under nitrogen atmosphere prior to use. Thin layer chromatography (TLC) was performed on silica gel plates (Kieselgel $60 \mathrm{~F}_{254}, 1 \mathrm{~mm}$, Merck). Colymn chromatography was carried out using silica gel (Kieselgel 60, 0,063-0.200 mm, Merck). Tridodecylmethylammonium chloride (TDMACl), high molecular weight polyvinyl chloride (PVC), o-nitrophenyloctyl ether (o-NPOE) potassium tetrakis(4-chlorophenyl)borate $(\mathrm{KTpCIPB})$ and tetrahydrofuran (THF) were obtained from Fluka with Selectophore ${ }^{\circledR}$ grade. Aqueous solutions were prepared with ultrapure water from Milli-Q (Bedford, MA, USA) water purification system (Millipore). Acetate buffer pH 4.0 , phosphate buffer pH 7.4 , glycine- HCl pH 3.5 and 4 -morpholinoethanesulfonic acid (MES) pH 5.5 were used in potentiometric measurements. Calix 14$]$ arene was prepared following literature procedures. ${ }^{(28)}$
(28)

จุฬาลงกรณ์มหาวิทยาลัย

2.2 Synthesis of ionophores

2.2.1 Synthesis of Metalloporphyrin-calix[4]arene (ML1)

2.2.1.1 Synthesis of triethyleneglycol ditosylate (1) ${ }^{(29)}$

A solution mixture of anhydrous triethyleneglycol ($3.0 \mathrm{~g}, 28 \mathrm{mmol}$), triethylamine (11.8, 85 mmol$)$ and a catalytic amount of DMAP in 50 mL of freshly distilled dichloromethane was chilled to $0{ }^{\circ} \mathrm{C}$ with an ice bath. The solution of tosylchloride ($11.86 \mathrm{~g}, 62 \mathrm{mmol}$) in freshly distilled dichloromethane (100 mL) was then added dropwise. The reaction mixture was stirred at room temperature under nitrogen atmosphere for 4 hours. After the reaction was complete, the solution of 3 M hydrochloric acid was added until the pH of the solution reached 1 . Then the mixture was extracted with dichloromethane $(100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed using a rotary evaporator. The residue was dissolved in a minimum amount of dichloromethane and methanol was added to precipitate triethyleneglycol ditosylate (1) as a white solid (9.1 g, 71\%yield).

Characteristic data for $\mathbf{1 :}{ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.79$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{ArHSO}_{2}$), $7.34\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{ArHSO}_{2}\right), 4.13(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{SO}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}$), $3.6513\left(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{SO}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $3.52\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{SO}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right)$

IR spectrum ($\left.\boldsymbol{v}, \mathrm{cm}^{-1}\right): 3063(\mathrm{CH}$, st (aromatic)), 2947, $2874(\mathrm{CH}$, st), 1595, 1452 ($\mathrm{C}=\mathrm{C}, \mathrm{st}$), 1356, 1170 ($\mathrm{S}=\mathrm{O}, \mathrm{st}$).

2.2.1.2 Synthesis of 2-(8-tosyltriethyleneglycol)benzaldehyde (2)

The synthetic procedure was adapted from the previously reported documents. ${ }^{(29)}$ A solution of triethyleneglycol ditosylate (1) (9.16 g, 20 mmol) in acetonitrile $(100 \mathrm{~mL})$ was added/dropwise to a solution mixture of salicylaldehyde $(1.05 \mathrm{~mL}, 10 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.82 \mathrm{~g}, 100 \mathrm{mmol})$ in freshly distilled acetonitrile $(50 \mathrm{~mL})$. The reaction mixture was refluxed with stirring under nitrogen atmosphere for 18 hours. After cooling to room temperature, the solvent was removed under reduced pressure to give a yellow viscous oil. The residue was dissolved in dichloromethane $(100 \mathrm{~mL})$ and extracted with water $(2 \times 100 \mathrm{~mL})$ The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by a rotary evaporator. The residue was purified by column chromatography (silica gel, EtOAc : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=10: 90$) to give 2-(8-tosyltriethyleneglycol)benzaldehyde (2) as a colourless oil ($2.5 \mathrm{~g}, 61 \%$ yield).

Characteristic data for 2: ${ }^{1} \mathbf{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=10.43$ (s, 1H, ArCHO), 7.75 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, o-\mathrm{ArHCHO}$), 7.72 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $o-\mathrm{ArHSO}_{2}$), 7.49 (dd, $\left.J=1.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{ArHCHO}\right), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $m-\mathrm{ArHSO}_{2}$), $6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{ArHCHO}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $m-\mathrm{ArHCHO}), 4.17\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SO}_{2} \mathrm{OCH}_{2}\right), 4.09\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$,
$3.82\left(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.62\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.54(\mathrm{t}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=189.7,161.2,144.9,135.9$, $132.9,129.8,128.1,127.9,125.1,120.9,113.0,70.8,70.7,69.5,69.3,68.7,68.3,21.6$

IR spectrum (v, $\left.\mathrm{cm}^{-1}\right): 3066(\mathrm{CH}$, st (aromatic)), $2867(\mathrm{CH}$, st), 1688 ($\mathrm{C}=\mathrm{O}$, st), 1595, 1482, 1453 (C=C, st), 1353, 1173 ($\mathrm{S}=\mathrm{O}$, st).

Elemental analysis: Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 58.81 ; \mathrm{H}, 5.92$

The synthetic procedure was adapted from the previously reported documents. ${ }^{(29)}$ A solution of 2-(8-tosyltriethyleneglycol)benzaldehyde (2) (4.08 g, 10 $\mathrm{mmol})$ in acetonitrile (100 mL) was added dropwise to a solution mixture of calix[4]arene ($2.12 \mathrm{~g}, 5 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{~g}, 100 \mathrm{mmol})$ in freshly distilled acetonitrile $(50 \mathrm{~mL})$. The reaction mixture was refluxed with stirred under nitrogen atmosphere for 7 days. After cooling to room temperature, the solvent was removed
under reduced pressure to give a brown viscous oil. The residue was dissolved in dichloromethane (100 mL) and extracted with water $(2 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was removed by a rotary evaporator. The residue was purified by column chromatography (silica gel, EtOAc : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=10: 90$) to give 1,3-calix[4]-dibenzaldehyde (3) as a colourless oil ($2.37 \mathrm{~g}, 53 \%$ yield).

Characteristic data for 3: ${ }^{1} \mathbf{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=10.52$ (s, 2H, ArCHO), 7.82 (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{o}-\mathrm{ArHCHO}$), 7.81 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArOH}$), 7.46 (dd, $J=1.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{ArHCHO}), 7.06(\mathrm{~d}, \mathrm{f}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{ArHOH}), 6.98(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArHCHO}), 6.84(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{ArHOH}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, ~, m-$ $\mathrm{ArHCHO}), 6.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{ArHOH}), 6.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{ArHOH})$, $4.23\left(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.17\left(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.04(\mathrm{t}, J=4.4$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.98\left(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.90-3.85\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.81-3.79$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{OCH}_{2}$), $3.35\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right)$
${ }^{13} \mathbf{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=189.8,161.3,153.3,151.9$, $135.9,133.2,130.4,128.8,128.7,128.2,125.3,125.1,121.2,119.0,113.3,75.5,71.2$, $71.0,70.1,69.6,68.2,31.8$

MALDI-TOF MS calcd for $\left[\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{12}\right]^{+} 896.36 \mathrm{~m} / \mathrm{z}$, found $919.42\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.

Chulalongiornn University

IR spectrum ($\boldsymbol{v}, \mathrm{cm}^{-1}$): 3349 (OH, st), $3063(\mathrm{CH}$, st (aromatic)), 2920, $2864(\mathrm{CH}, \mathrm{st})$, 1685 (C=O, st), 1598, 1479, 1449 (C=C, st).

Elemental analysis: Anal calcd for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{O}_{12}$: C, $72.30 ; \mathrm{H}, 6.29$

Found: C, 72.54; H, 6.55

2.2.1.4 Synthesis of 1,3-calix[4]arene-bis-dipyrromethane (4)

A mixture of 1,3-calix [4]-dibenzaldehyde (3) ($1.125 \mathrm{~g}, 1.26 \mathrm{mmol}$) and freshly distilled pyrrole ($7.0 \mathrm{~mL}, 100 \mathrm{mmol}$) was degassed by bubbling with nitrogen for 20 minutes, and then trifluoroacetic acid $(0.05 \mathrm{~mL}, 0.62 \mathrm{mmol})$ was added. The solution was stirred for 20 minutes at room temperature. The reaction mixture was diluted with dichloromethane (50 mL), washed with $0.1 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, respectively. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo. The residue was purified by column chromatography (silica gel, $\mathrm{Et}_{3} \mathrm{~N}$: EtOAc: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ คว1:2:98) to give 1,3-calix[4]arene-bisdipyrromethane (4) as a brown oil ($0.54 \mathrm{~g}, 38 \%$ yield).

Characteristic data for 4: ${ }^{1} \mathbf{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta(\mathrm{ppm})=8.95$ (s, 4H, pyrrole-NH), 7.76 (s, 2H, ArOH), 7.26 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.20 (d, $J=$ $4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.85$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{ArH}$ and pyrrole- H), $6.14(\mathrm{dd}, J=2.8,2.8 \mathrm{~Hz}, 4 \mathrm{H}$, pyrrole- H), 5.98 (s, 4H, pyrrole-H), 5.71 (s, 2H, meso-H), 4.44 (d, $\left.J=12.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.09$ (t, $J=3.2 \mathrm{~Hz}, 4 \mathrm{H}$, OCH_{2}), $3.89\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.84\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.73(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.63\left(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.38(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH} 2 \mathrm{Ar})$
${ }^{13} \mathbf{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=155.5,153.0,151.6,132.9$, 132.4, 131.6, 129.7, 128.7, 128.3, 127.9, 127.7, 125.0, 121.0, 118.8, 116.4, 112.0, $107.5,106.1,75.1,70.7,70.4,69.5,69.4,66.8,46.0,30.9$

2.2.1.5 Synthesis of porphyrin-calix[4]arene (L1)

4

open air

1,3-Calix[4]arene-bis-dipyrromethane (4) $\$(0.54 \mathrm{~g}, \quad 0.48 \mathrm{mmol})$ and benzaldehyde $(0.07 \mathrm{ml}, 0.96 \mathrm{mmol})$ were disselved in toluene $(40 \mathrm{~mL})$ in a twonecked round-bottomed flask. Propionic acid $(40 \mathrm{~mL})$ was added into the solution which turned to a dark color. The reaction was heated at reflux for 3 hours in the open air. After cooling to room temperature, solvents were removed under reduced pressure. The residue was dissolved in dichloromethane (100 mL), washed with saturated NaHCO_{3} solution and then washed with water $(2 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed to give a black viscous residue. The residue was purified by column chromatography (silica gel, $\mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 95$) to give $\mathbf{L} 1$ as a purple solid ($74 \mathrm{mg}, 12 \%$ yield).

Characteristic data for L1: ${ }^{1} \mathbf{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.83$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta$-pyrrole- H), $8.77(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta$-pyrrole- H), $8.13(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $8.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.77 (m, 1H, ArH), 7.75 (m, 1H, ArH), 7.73 (m, 1H, ArH), 7.72 (s, 2H, ArOH),
$7.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.39$ (m, 1H, ArH), 7.36 (m, 2H, ArH), $7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{ArHOH}$), 6.73 (d, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArHOH}), 6.64$ (dd, $J=8.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $6.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.86\left(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 3.68(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.97\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.92(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{ArOCH}_{2}\right), 2.52\left(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.17\left(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.98(\mathrm{t}, J=$ $\left.4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.74\left(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right),-2.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$
${ }^{13} \mathbf{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=158.9,153.1,151.3,142.1$, $135.4,134.6,134.3,133.2,131.3,129.9,128.6,127.7,127.6,125.0,119.7,119.6$, $118.4,116.3,111.9,69.5,69.3,69.2,69.0,68.8,68.4,30.8$

MALDI-TOF MS calcd for $\mathrm{C}_{84} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~m} / \mathrm{z}$ 1299.53, found 1299.83.
UV-vis (THF): $\lambda_{\text {max }} / \mathrm{nm}(\log \varepsilon): 418(5.41), 514,546,595,652$
IR spectrum ($\left.\boldsymbol{v}, \mathrm{cm}^{-1}\right): 3354(0 \mathrm{H}$, st), $3319(\mathrm{NH}, \mathrm{st}), 3053,3025(\mathrm{CH}$, st (aromatic)), 2923, 2866 (CH, st), 1467, 1441 ($\mathrm{C}=\mathrm{C}$, st $), 963$ (C-C, st)
2.2.1.6 Synthesis of Metalloporphyrin-calix[4]arene (ML1) (ZnL1, CuL1,

CoL1, FeL1 and SnL1)

Generally, a solution mixture of free base porphyrin-calix[4]arene (L1) (100 $\mathrm{mg}, 0.077 \mathrm{mmol}$) and metal acetate (10 molar equiv.) in $\mathrm{CHCl}_{3} / \mathrm{MeOH}(3: 1 \mathrm{v} / \mathrm{v})$ was refluxed with stirring under nitrogen atmosphere for 2 days. After the reaction mixture was cooled to room temperature, dichloromethane (100 mL) was added to the mixture. The mixture was then extracted with $0.1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and water $(2 \times 100$ mL). The organic layer was dried using anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was dissolved in a minimum amount of dichloromethane, and methanol was added to precipitate. Metalloporphyrin-calix[4]arene (ML1) was obtained as a pink solid ($81 \mathrm{mg}, 78 \%$ yield), red solid ($89 \mathrm{mg}, 85 \%$ yield) and orange solid ($77 \mathrm{mg}, 74 \%$ yield) of ZnL1, CuL1 and CoL1, respectively.

In the case of $\mathbf{F e L 1}$ and $\mathbf{S n} \mathbf{L 1}$, they were synthesized by refluxing free base porphyrin-calix[4]arene (L1) (100 $\mathrm{mg}, 0.077 \mathrm{mmot}$) and metal chloride (100 times molar excess of FeCl_{3} and 50 times molar excess of SnCl_{2}) in DMF (15 mL) under nitrogen atmosphere for 5 days. The reaction solution was cooled to room temperature and suspended in ethyl acetate $(100 \mathrm{~mL})$. The solution was washed with 0.1 M HCl $(50 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in wacuo- The product was recrytallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ to obtain a brown solid ($54 \mathrm{mg}, 51 \%$ yield) and green solid (57 mg , 54% yield) of FeL1 and SnL1, respectively.

Chulalongiorn University

Characteristic data for $\mathbf{Z n L 1}:{ }^{1} \mathbf{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $8.88(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta$-pyrrole- H), $8.82(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta$-pyrrole- H), $8.21(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.76-7.60 (m, 8H, ArH), $7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.68(\mathrm{dd}, J=8.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 6.61 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 3.70 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{ArOCH}_{2}$), 3.54 (d, $J=12.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.92\left(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.83$ (s, 4H, ArOCH_{2}), 2.44 (s, 4H, ArOCH_{2}), $2.03\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 1.92\left(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.66(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{OCH}_{2}$).
${ }^{13} \mathbf{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=159.1,152.9,151.1,150.3$, $149.9,143.1,134.9,134.5,134.3,132.9,132.8$, 131.7, 131.6, 129.5, 128.7, 128.1, 127.7, 127.2, 126.4, 126.3, 125.1, 120.4, 119.9, 118.4, 116.8, 112.8, 73.7, 69.3, 69.2, 68.9, 68.8, 68.7, 30.8

MALDI-TOF MS calcd for $\left[\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Zn}\right]^{+} 1362.89 \mathrm{~m} / \mathrm{z}$, found 1363.15 .
UV-vis (THF): $\lambda_{\max } / \mathrm{nm}(\log \varepsilon): 424$ (5.67), 556, 594.
IR spectrum ($\left.\boldsymbol{v}, \mathrm{cm}^{-1}\right): 3341(\mathrm{OH}, \mathrm{st}), 3050,3015(\mathrm{CH}$, st (aromatic)), 2918, 2855 (CH, st), 1461, 1438 (C=C, st), 998 (C-C) st).
Elemental analysis: Anal calcd for $\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Zn}$: C, $74.03 ; \mathrm{H}, 5.32$; N, 4.11

$$
\text { Found: } \mathrm{C}, 73.78 ; \mathrm{H}, 5.35 ; \mathrm{N}, 4.16
$$

Characteristic data for CuL1:

MALDI-TOF MS calcd for $\left[\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Cu}\right] \quad 1361.04 \mathrm{~m} / \mathrm{z}$, found 1361.73 .
UV-vis (THF): $\lambda_{\max } / \mathrm{nm}(\log \varepsilon) \div 415(5.61), 539$.
IR spectrum ($\left.\boldsymbol{v}, \mathrm{cm}^{-1}\right): 3348(\mathrm{OH}, \mathrm{st}), 3056,3021(\mathrm{CH}$, st (aromatic)), 2918, 2863 (CH, st), 1464, 1438 (C=C, st), 1000 (C-C, st).

Elemental analysis: Anal calcd for $\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Cu}: \mathrm{C}, 74.13 ; \mathrm{H}, 5.33 ; \mathrm{N}, 4.12$
Found: C, 74.13; H, 5.42; N, 4.15

Characteristic data for CoL1:

MALDI-TOF MS calcd for $\left[\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Co}\right]^{+} 1356.42 \mathrm{~m} / \mathrm{z}$, found 1356.69 .

UV-vis (THF): $\lambda_{\max } / \mathrm{nm}(\log \varepsilon): 416$ (5.20), 530.
IR spectrum ($\left.\boldsymbol{v}, \mathrm{cm}^{-1}\right): 3348(\mathrm{OH}$, st), 3053, $3021(\mathrm{CH}$, st (aromatic)), 2921, 2866 (CH, st), 1461, 1441 (C=C, st), 1000 (C-C, st).

Characteristic data for FeL1:

MALDI-TOF MS calcd for $\left[\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{FeCl}\right]^{+} \mathrm{m} / \mathrm{z}$ 1388.78, $1353.34\left[\mathrm{M}^{+}-\mathrm{Cl}\right]$ found $1353.41\left[\mathrm{M}^{+}-\mathrm{Cl}\right]$.

UV-vis (THF): $\lambda_{\max } / \mathrm{nm}(\log \varepsilon): 417$ (5.04), $501,569$.
IR spectrum ($\left.\boldsymbol{v}, \mathrm{cm}^{-1}\right): 3348(\mathrm{OH}, \mathrm{st}), 3054,3019(\mathrm{CH}$, st (aromatic)), 2921, 2865 (CH, st), 1467, 1442 (C=C, st), 1000 (C-C, st).

Elemental analysis: Anal calcd for $\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{ClFe}$: C, $72.65 ; \mathrm{H}, 5.23 ; \mathrm{N}, 4.03$
Found: C, 72.74; H, 4.68, N, 4.07

Characteristic data for SnL1: HMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta(\mathrm{ppm})=$ $9.12(\mathrm{~s}, 8 \mathrm{H}$, pyrrole- H), $8.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArOH}+$ $\mathrm{ArH}), 7.43$ (m, 2H, ArH), 7.34 (m, 2H, ArH), 6.94 (m, 4H, ArH), 6.82 (d, J= 7.6 Hz , $4 \mathrm{H}, \mathrm{ArH}), 6.67(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}), 6.55(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}), 4.10(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.06\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 3.23\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 3.17(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.16(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 0.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$
${ }^{13} \mathbf{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=152.1,150.5,145.6,145.1$, $133.9,133.8,132.5,131.4,129.8,127.8,127.2,127.0,126.2,124.2,119.5,117.7$, $110.6,75.7,73.7,69.1,68.4,68.0,67.8,30.1$

MALDI-TOF MS calcd for $\left[\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SnCl}_{2}\right]^{+} \mathrm{m} / \mathrm{z}$ 1387.29, 1451.74 [$\left.\mathrm{M}^{+}-\mathrm{Cl}\right]$ found $1451.41\left[\mathrm{M}^{+}-\mathrm{Cl}\right]$.

UV-vis (THF): $\lambda_{\text {max }} / \mathrm{nm}(\log \varepsilon): 429$ (5.25), $565,602$.
IR spectrum ($\boldsymbol{v}, \mathrm{cm}^{-1}$): $3341(\mathrm{OH}, \mathrm{st}), 3053,3020(\mathrm{CH}$, st (aromatic)), $2920(\mathrm{CH}, \mathrm{st})$, 1461, 1442 ($\mathrm{C}=\mathrm{C}$, st)

Elemental analysis: Anal calcd for $\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Sn}$: C, 67.84; H, 4.8; N, 3.77

Found: C, 67.57; H, 4.90; N, 3.88

2.2.2 Synthesis of Metalloporphyrin-calix[4]pyrrole (ML2)

2.2.2.1 Synthesis of 5-phenyldipyrromethane (5) ${ }^{(30)}$

A solution mixture of benzaldehyde $(0.7 \mathrm{~mL}, 10 \mathrm{mmol})$ and freshly distilled pyrrole ($13.86 \mathrm{~mL}, 200 \mathrm{mmol}$) was degassed by bubbling with nitrogen for 20 minutes. Then, trifluoroacetic acid $(0.38 \mathrm{~mL}, 5.01 \mathrm{mmol})$ was added. The solution was stirred for 20 minutes at room temperature. The reaction mixture was dissolved in dichloromethane $(100 \mathrm{~mL})$, washed with $0.1 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ and water $(2 \times 100$ mL), respectively. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The residue was purified by column chromatography (silica gel, $\mathrm{Et}_{3} \mathrm{~N}$: EtOAc : hexane $=1: 20: 80$) to give 5-phenyldipyrromethane (5) as a brown oil ($0.93 \mathrm{~g}, 42 \%$ yield).

Characteristic data for 5 : ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.92$ (br s, 2H, pyrrole-NH), 7.35-7.22 (m, 5H, ArH), 6.69 ($\mathrm{s}, 2 \mathrm{H}$, pyrrole- H), 6.17 (dd, $J=$ $2.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}$, pyrrole-H), $5.92(\mathrm{~s}, 2 \mathrm{H}$, pyrrole- H), $5.47(\mathrm{~s}, 1 \mathrm{H}$, meso- H).

2.2.2.2 Synthesis of 2-(2-(triethylenglycol)bezadehyde)acetophenone (6)

A solution of 2-(8-tosyltriethylenestyeol)benzadehyde (2) (4.08 g, 10 mmol) in acetonitrile $(100 \mathrm{~mL})$ was added dropwise to a solution mixture of 2hydroxyacetophenone ($1.20 \mathrm{~mL}, 10 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.82 \mathrm{~g}, 100 \mathrm{mmol})$ in freshly distilled acetonitrile $(50 \mathrm{~mL})$. The reaction mixture was refluxed with stirred under nitrogen atmosphere for 18 hours. After cooling to room temperature, the solvent was removed under reduced pressure to give a brown viscous oil. The residue was dissolved in dichloromethane (100 mL) and extracted with water $(2 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed using a rotary evaporator. The residue was purified by column chromatography (silica gel, EtOAc : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=10: 90$) to give 2-(2(triethylenglycol)bezaldehyde)acetophenone (6) as a yellow oil ($2.15 \mathrm{~g}, 58 \%$ yield).

Chulalongkorn University

Characteristic data for 6: ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=10.40$ (s, 1H, ArCHO), 7.68 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, o-\mathrm{ArHCHO}$), 7.62 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $o-\mathrm{ArH}$), 7.39 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.31 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.90-6.81 (m, $4 \mathrm{H}, \mathrm{ArH}$), 4.12-4.07 (m, 4H, OCH_{2}), 3.90-3.76 (m, 4H, OCH_{2}), 3.61 (s, 4H, OCH_{2}), 2.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COAr}$)
${ }^{13} \mathbf{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=189.7,178.2,144.9,135.9$, $132.9,129.8,128.1,127.9,125.1,120.9,113.0,70.8,70.7,69.5,69.3,68.7,68.3$, 28.7.

IR spectrum ($\left.\boldsymbol{v}, \mathrm{cm}^{-1}\right): 3070(\mathrm{CH}$, st (aromatic)), 2920, $2874(\mathrm{CH}, \mathrm{st}), 1685(\mathrm{C}=\mathrm{O}$, st), 1595, 1479, 1442 (C=C, st).

2.2.2.3 Synthesis of 5,15-di(2-(2-(triethyleneglycol)acetophenone)phenyl)-

 10,20-diphenylporphyrin (7)

6

A mixture of 5-phenyldipyrromethane (5) ($0.93 \mathrm{~g}, 4.18 \mathrm{mmol}$) and 2-(2(triethylenglycol)bezaldehyde)acetophenone (6) ($1.55 \mathrm{~g}, 4.18 \mathrm{mmol}$) was dissolved in toluene $(40 \mathrm{~mL})$ in a two-necked round-bottomed flask. Propionic acid $(40 \mathrm{~mL})$ was added into the solution which then turned to a dark color. The reaction was heated at reflux for 3 hours in air. After cooling to room temperature, the solvent was removed under reduce pressure. The residue was dissolved in dichloromethane (100 mL), washed with saturated NaHCO_{3} solution and then washed with water $(2 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed to give a black viscous residue. The residue was purified by column chromatography (silica gel, EtOAc : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=10: 90$) to give a mixture of compound 7 (TLC, silica gel; $\mathrm{R}_{\mathrm{f}}=0.42$) and compound $8\left(T L C\right.$, silica gel; $\mathrm{R}_{\mathrm{f}}=$ 0.56) which cannot be purified by column chromatography.

Characteristic data for 7 and 8:

MALDI-TOF MS calcd for $\left[\mathrm{C}_{72} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{10}\right]^{+} 1147.33 \mathrm{~m} / \mathrm{z}$, found 1147.68 .

2.2.2.4 Synthesis of 5,15-di(2-(2-(triethyleneglycol)-bis-dipyrroethyl)phenyl)-

10,20-diphenylporphyrin (9)

A solution mixture of $5,15-\mathrm{di}(2-(2-($ triethyleneglycol $)$ acetophenone)phenyl)-10,20-diphenylporphyrin (7 and $\mathbf{8}$) ($70 \mathrm{mg}, 0.061 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ and freshly distilled pyrrole ($0.4 \mathrm{~mL}, 4.88 \mathrm{mmol}$) was degassed by bubbling with nitrogen for 20 minutes, and then trifluoroacetic acid ($0.01 \mathrm{~mL}, 0.03 \mathrm{mmol})$ was added. The solution was stirred for 20 minutes at room temperature. The reaction mixture was diluted with dichloromethane (50 mL), washed with saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ solution and then washed with water $(2 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The compound 9 cannot be purified by column chromatography.

2.3 Preparation of PVC membrane electrodes

The PVC membrane was prepared using $10 \mathrm{mmol} / \mathrm{kg}(1 \% \mathrm{w} / \mathrm{w})$ ionophore (ZnL1, CuL1, CoL1, FeL1 and SnL1), 1.5, 2.5, 3.5 and $5.0 \mathrm{mmol} / \mathrm{kg}(15 \%, 25 \%$, 35% and 50% mol relative to the amount of ionophore) cationic additives (TDMACl) or anionic additives (KTpClPB), $33 \mathrm{wt} . \% \mathrm{PVC}$ and $66 \mathrm{wt} . \%$ plasticizer (o-NPOE), in the total mass of 220 mg . Compositions of membranes containing metalloporphyrincalic[4]arenes (ZnL1, CuL1, CoL1, FeL1 and SnL1) used in this experiment are listed in Table 2.1. The components were dissolved in 2.5 ml (THF) and the mixture was stirred for an hour. The mixture was transferred to a glass ring (30 mm i.d.) fixed on a glass slide. The solvent was evaporated stowly at room temperature for 24 hours to give a membrane. The transparent membrane was punched into small sizes (7.5 mm i.d.) and then conditioned with 0.01 M solution of anions overnight.

Table 2.1. Membrane composition ($\% \mathrm{w} / \mathrm{W}$) of the constructed electrodes for anions.

Types	A		-	D	E	F	Gb	H	I	j	K	L	M
ZnL1	1	-	-	-	-	1	1	-	-	-	-	-	-
CoL1	-	จ110	าลงก	กรณை	เมเหา	า2ท	リフลย	ย-	-	-	-	-	-
CuL1		HUL	A 101	NGKO	OR-V	U-III	VERS	17Y	1	1	-	-	-
FeL1	-	-	-	1	-	-	-	-	-	-	-	-	-
SnL1	-	-	-	-	1	-	-	-	-	-	1	1	1
o-NPOE	66	66	66	66	66	66	66	66	66	66	66	66	66
TDMACl [a]	25	25	25	25	-	15	35	15	35	50	-	-	-
KpClPB [a]	-	-	-	-	25	-	-	-	-	-	-	15	35
PVC	33	33	33	33	33	33	33	33	33	33	33	33	33

[a] $\% \mathrm{~mol}$ relative to the ionophore amount.

2.4 Potential measurement

The electrode body was prepared from the conditioned PVC membranes. In all cases, the mixture of 0.01 M anion and 0.001 M NaCl were used as the inner filling solution except ionophore ($\mathbf{S n L} \mathbf{1}$) the mixture of 0.01 M anions and 0.01 M NaCl was used as the inner filling solution (IFS). All potential measurements were carried out with the following Voltaic cell:
$\mathrm{Ag}, \mathrm{AgCl} / 3 \mathrm{M} \mathrm{KCl} / / 1 \mathrm{M} \mathrm{LiOAc} / /$ sample solution / membrane / IFS / AgCl, Ag.

The reference electrode, $\mathrm{Ag} / \mathrm{AgCl}$ with double junction was used (type 6.0726.100, MetrohmAG,CH-9010 Herisau, Switzerland) with 1 M LiOAc as salt bridge electrolyte. Continuous potential measurements were carried out with a 16channel electrode monitor (Lawson Labs Inc., Malvern, PA 19355, USA).

2.5 Selectivity measurements

The selectivity coefficients were determined by separate solution method (SSM). The interfering ions studied were $\mathrm{ClO}_{4}^{-}, \mathrm{SCN}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}, \mathrm{OAc}^{-}$, $\mathrm{SO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and $\mathrm{HCO}_{3}{ }^{-}$. The dynamic response of the electrode was first measured against the same interfering anions (10^{-7} to $10^{-2} \mathrm{M}$). The electrode was then used to measure the response of iodide solutions for ionophores (ZnL1, CuL1, CoL1 and FeL1) and used to measure the response of salicylate solutions for ionophores (SnL1).

2.6 Effects of $\mathbf{p H}$

The pH electrode, reference electrode and PVC membrane electrode were immersed in the solution of iodide $\left(1.0 \times 10^{-4} \mathrm{M}\right.$ or $\left.1.0 \times 10^{-3} \mathrm{M}\right)$. The pH range $2.0-10.0$ of the solution was adjusted with 0.01 M HCl and $0.01-0.1 \mathrm{M} \mathrm{NaOH}$.

2.7 Reversibility of the PVC membrane potential

The membrane reversibility was examined by measuring the EMF response of I-ISE in a $10^{-4} \mathrm{M} \mathrm{I}^{-}$solutions. Subsequently, the electrode was rinsed and dipped into a $10^{-3} \mathrm{M} \mathrm{I}^{-}$solution. The cycle was repeated three times.

2.8 Complexation studies

2.8.1 UV-vis spectrophotometric studies of $\mathbf{Z n L} 1$ with anions

A solution mixture of $1.0 \times 10^{-6} \mathrm{M} \mathrm{ZnL1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ and 100 times molar excess of anions in $\mathrm{CH}_{3} \mathrm{CN}$ was prepared in a vial and added directly to a cuvette. The UV-vis spectra were recorded after each addition of the solution mixture.

2.8.2 NMR Spectroscopic studies of ZnL 1 with $\mathrm{Bu}_{4} \mathrm{NF}$

A solution of $0.005 \mathrm{M} \mathrm{ZnL1}\left(2 \times 10^{-6} \mathrm{mmol}\right)$ in a mixture of $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{CN}$ $(1: 9 \mathrm{v} / \mathrm{v})(0.4 \mathrm{~mL})$ was prepared in a NMR tube. The excess amount of $\mathrm{Bu}_{4} \mathrm{NF}$ in $\mathrm{CD}_{3} \mathrm{CN}(0.4 \mathrm{~mL})$ was prepared in a vial and added directly to the NMR tube by a microsyringe. ${ }^{1} \mathrm{H}$ NMR spectra were recorded after each addition.

Chulalongikorn University

CHAPTER III

RESULTS AND DISCUSSION

3.1 Synthesis and characterization of ionophores

3.1.1 Synthesis and characterization of metalloporphyrin-calix[4]arene

(ML1)

Scheme 3.1 Synthetic patway of 1,3-calix[4]-dibenzaldehyde (3)

1,3-Calix[4]-dibenzaldehyde (3) was prepared according to the procedure shown in Scheme 3.1. ${ }^{(29)}$ The reaction of anhydrous triethyleneglycol with
tosylchloride in the presence of triethylamine as base and a catalytic amount of DMAP in freshly distilled dichloromethane gave a white solid of triethyleneglycol ditosylate (1) in 71% yield, after recrytallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. The structures of compound 1 was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy and the NMR spectrum showed the characteristic peaks of tosyl groups: a singlet of methyl protons near aromatic ring at 2.44 ppm and two doublets of aromatic protons at $7.79\left(\mathrm{o}-\mathrm{ArHSO}_{2}\right)$ and $7.34\left(m-\mathrm{ArHSO}_{2}\right) \mathrm{ppm}(J=8.0 \mathrm{~Hz})$. The IR spectrum of compound $\mathbf{1}$ showed an absorption band at 1356 and $1170 \mathrm{~cm}^{-1}$ corresponding to $\mathrm{S}=\mathrm{O}$ stretching. ${ }^{(31)}$

The nucleophilic substitution reaction of salicylaldehyde with triethyleneglycol ditosylate (1) using excess potassium carbonate as base in freshly distilled acetonitrile provided 2-(8-tosyltriethyleneglycol)benzaldehyde (2) as a colourless oil (61% yield). The structures of compound 2 was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy and the NMR spectrum showed the characteristic peak of tosyl groups: a singlet of methyl protons near aromatic ring at 2.35 ppm and two doublets of aromatic protons at $7.72\left(0-\mathrm{ArHSO}_{2}\right)$ and $7.26\left(m-\mathrm{ArHSO}_{2}\right) \mathrm{ppm}(J=8.4 \mathrm{~Hz})$, the characteristic peaks of benzaldehyde unit: a singlet of ArCHO at 10.43 ppm . The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 exhibited ${ }^{13} \mathrm{C}$ of aldehyde at 189.7 ppm and ${ }^{13} \mathrm{C}$ of methyl group near aromatic ring at 21.6 ppm . The IR spectrum of compound 2 showed an absorption band at $1688 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ stretching, 1356 and $1170 \mathrm{~cm}^{-1}$ corresponding to $\mathrm{S}=\mathrm{O}$ stretching. The elemental analysis was in accordance with the structure of compound $\mathbf{2}$.

Condensation reaction of 2-(8-tosyltriethyleneglycol)benzaldehyde (2) (2 equiv.) with calix[4]arene using excess potassium carbonate as base in freshly distilled acetonitrile for 7 days gave a colourless oil of 1,3-calix[4]-dibenzaldehyde (3) in 53% yield, after purified by column chromatography. The structure of compound 3 was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy that showed the characteristic peaks of benzaldehyde unit: a singlet of ArCHO at 10.52 ppm , singlet of hydroxyl protons at 7.81 ppm and methylene protons of calix[4]arene around 4.23 and 3.55 ppm (doublet, $J=13.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}$). These two doublets also indicated that 1,3-calix[4]-dibenzaldehyde (3) existed in cone conformation. ${ }^{(28,32)}$ The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ exhibited ${ }^{13} \mathrm{C}$ of aldehydic carbon at 189.8 ppm and ${ }^{13} \mathrm{C}$ of
methylene of calix[4]arene at $31.8 \mathrm{ppm} .{ }^{(33)}$ The IR spectrum of compound 3 showed an absorption band at $1685 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ stretching. The elemental analysis was in accordance with the structure of compound $\mathbf{3}$ and MALDI-TOF mass supported the structure of the desired 3 corresponding to intense mass signal at m/z 919.42 $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.

3.1.1.2 Synthesis and characterization of 1,3-calix[4]arene-bis-

 dipyrromethane (4)

Scheme 3.2 The synthesis of 1,3-calix[4]arene-bis-dipyrromethane (4)

Chulalongkorn University

The synthesis of 1,3-calix[4]arene-bis-dipyrromethane (4) was carried out (Scheme 3.2) by treating 1,3-calix[4]-dibenzaldehyde (3) with excess pyrrole in the presence of a catalytic amount of $\mathrm{CF}_{3} \mathrm{COOH}$ for 20 minutes according to the published procedure. ${ }^{(34,35)}$ The residue was purified by column chromatography (silica gel, $\mathrm{Et}_{3} \mathrm{~N}$: EtOAc : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2: 98$) to give 1,3-calix[4]arene-bis-dipyrromethane (4) as a brown oil (38% yield). The structure of compound $\mathbf{3}$ was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy that showed the characteristic peaks of pyrrole-NH as a singlet at 8.95 ppm , a singlet of hydroxyl protons at 7.76 ppm , and four singnals of pyrrolic protons of dipyrromethane at $6.65,6.14,5.98$ and 5.71 ppm , respectively. Methylene protons of calix[4]arene showed two doublets at 4.44 and 3.38 ppm with $J=12.8 \mathrm{~Hz}$
($\mathrm{ArCH}_{2} \mathrm{Ar}$). These indicated that 1,3-calix[4]arene-bis-dipyrromethane (4) was in a cone conformation. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4 showed the characteristic peaks of meso- position at 46.0 ppm and ${ }^{13} \mathrm{C}$ of methylene of calix[4]arene at 30.9 ppm.

3.1.1.3 Synthesis and characterization of porphyrin-calix[4]arene (L1)

4

L1

Scheme 3.3 The synthesis of free base porphyrin-calix[4]arene (L1)

Synthesis of porphyrin-calix[4]arene (L1) procedure was adapted from the previously reported documents ${ }^{(36)}$ (Scheme 3.3). The obtained by the acid catalyzed condensation of benzaldehyde and 1,3-calix[4]arene-bis-dipyrromethane (4) in toluene at reflux in air. The compound $\mathbf{L} 1$ was separated by column chromatography (silica gel, EtOAc : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 95$) to give a purple solid $\mathbf{L 1}$ of in 12% yield. The structure of porphyrin-calix[4]arene (L1) was supported by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, IR and UV-Vis spectroscopies. The ${ }^{1} \mathrm{H}$ NMR spectrum of porphyrin-calix[4]arene (L1) showed the protons signal of β-pyrrolic protons at 8.83 ppm and 8.77 ppm (doublet, $J=4.4 \mathrm{~Hz}$), triethylene protons exhibited groups of signals around 3.86, 2.92, 2.52, 2.17, 1.98 and 1.74 ppm (triplet, $J=4.4 \mathrm{~Hz}, 24 \mathrm{H}$), methylene protons of calix[4]arene showed signals around 3.68 ppm and 2.97 (doublet, $J=13.0 \mathrm{~Hz}$,
$\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right)$. These two doublets also indicated that porphyrin-calix[4]arene (L) existed in cone conformation. The protons signals of NH in porphyrin appeared around -2.75 ppm (singlet, 2H). The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{L 1}$ showed of triethylene ${ }^{13} \mathrm{C}$ groups of signals around $69.5,69.3,69.2,69.0,68.8$ and $68.4 \mathrm{ppm},{ }^{13} \mathrm{C}$ of methylene of calix[4]arene at 30.8 ppm . The UV-vis spectrum of $\mathbf{L 1}$ showed a Soret band at 418 nm in THF and four Q bands around $514 \mathrm{~nm}, 546 \mathrm{~nm}, 595 \mathrm{~nm}$ and 652 nm (Figure 3.1). The IR spectrum of porphyrin-calix[4]arene (L1) showed an absorption band at $3354 \mathrm{~cm}^{-1}$ corresponding to $\mathrm{O}-\mathrm{H}$ stretching and at $3319 \mathrm{~cm}^{-1}$ for N H vibrations of the tetrapyrrole system, ${ }^{(37)}$ the strong absorption of the C-C of porphyrin was observed at $963 \mathrm{~cm}^{-1}$ and MALDI-TOF mass supported the structure of desired $\mathbf{L} 1$ corresponding to intense mass signal at m / z 1299.53, found 1299.83 .

3.1.1.4 Synthesis and characterization of Metalloporphyrin-calix[4]arene (ML1) (ZnL1, CuL1, CoL1, FeL1 and SnL1)

Scheme 3.4 The synthesis of Metalloporphyrin-calix[4]arene (ML1) (ZnL1, CuL1, CoL1, FeL1 and SnL1)

Zinc(II) porphyrin-calix[4]arene (ZnL1), cuper(II) porphyrin-calix[4]arene (CuL1), cobalt(II) porphyrin-calix[4]arene (CoL1), ferric(III) porphyrincalix[4]arene (FeL1) and tin(IV) porphyrin-calix[4]arene (SnL1) (Scheme 3.4) ${ }^{(38-}$
${ }^{42)}$ were prepared from the metallation of free base porphyrin-calix[4]arene (L1) with the corresponding metal salts. All products were recrytallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ to obtain as a pink solid (78% yield), red solid (85% yield), orange solid (74% yield), brown solid (51\% yield) and green solid (54\% yield) of ZnL1, CuL1, CoL1, FeL1 and SnL1, respectively. The structures of metalloporphyrin-calix[4]arene (ML1) were supported by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, IR and UV-vis spectroscopies. The elemental analysis was in accordance with the structure of compound ML1. The UV-vis spectra of metalloporphyrin-calix[4]arene (ML1) (ZnL1, CuL1, CoL1, FeL1 and SnL1) displayed only two Q bands substantially different from that of the free base porphyrin-calix[4]arene (L1). The Soret band of ZnL1 and SnL1 showed a bathochromic shift (424 and 429 nm, respectively). The hypsochromic shift of the Soret bands was found in the case of CuL1 (415 nm), CoL1 (416 nm) and FeL1 (417 nm) (Figure 3.1).

Figure 3.1 UV-vis spectra of L1, ZnL1, CuL1, FeL1, CoL1 and SnL1 in THF.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\operatorname{Zinc}($ II $)$ porphyrin-calix[4]arene ($\mathbf{Z n L 1}$) showed the protons signal of β-pyrrolic protons at 8.88 ppm and 8.82 ppm (doublet, $J=4.4$ Hz), triethylene protons exhibit groups of signals around 3.70, 2.92, 2.83, 2.44, 2.03, 1.92 and $1.66 \mathrm{ppm}(24 \mathrm{H})$. The protons signals of NH in porphyrin disappeared around -2.75 ppm and methylene protons of calix[4]arene showed of signals around 3.54 ppm and 2.92 (doublet, $J=12.8 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}$). These two doublets also indicated that ZnL1 existed in cone conformation in the same manner as free base porphyrincalix[4]arene (L1). The structures of compound SnL1 was characterized by ${ }^{1} \mathrm{H}$ NMR spectrum showed the characteristic peaks of the porphyrin unit: a singlet of β-pyrrolic protons at 9.12 ppm and disappeared Of NH around -2.75 ppm . The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{Z n L 1}$ showed triethylene ${ }^{13} \mathrm{C}$ around 73.7, 69.3, 69.2, 68.9, 68.8 and $68.7 \mathrm{ppm},{ }^{13} \mathrm{C}$ of methylene of catix[4]arene at 30.8 ppm . Compounds CuL1, CoL1 and FeL1 could not be characterized by ${ }^{1} \mathrm{H}$ NMR because copper, cobalt and ferric were paramagnetic metal ions. The IR spectra of metalloporphyrincalix[4]arene (ZnL1, CuL1, CoL1, FeL1 and SnL1) displayed only O-H stretching (at $3351,3348,3348,3348$ and $3341 \mathrm{~cm}^{-1}$, respectively), without an absorption band of N-H vibrations. ${ }^{(43)}$

จุฬาลงกรณ์มหาวิทยาลัย

3.1.2 Synthesis and characterization of metalloporphyrin-calix[4]pyrrole

 (ML2)The compound ML2 containing calix[4]pyrrole linked to the porphyrin unit by polyethylene glycol chains was attempted to synthesize by the following procedure.

3.1.2.1 Synthesis and characterization of 5,15-di(2-(2-

 (triethyleneglycol)acetophenone)phenyl)-10,20-diphenylporphyrin (7)

6

Scheme 3.5 The synthesis of 5,15-di(2-(2-(triethyleneglycol)acetophenone)phenyl)-10,20-diphenylporphyrin (7)

The synthetic procedure was adapted from the previously reported documents. ${ }^{(21,44)}$ 5,15-di(2-(2-(triethyleneglycol)acetophenone)phenyl)-10,20-diphenylporphyrin (7) (Scheme 3.5) was synthesized by condensation of 5phenyldipyrromethane (5) and 2-(2-(triethylenglycol)bezaldehyde)acetophenone (6) to give a mixed atropoisomer of compound 7 (TLC, silica gel; $\mathrm{R}_{\mathrm{f}}=0.42$) and compound 8 (TLC, silica gel; $\mathrm{R}_{\mathrm{f}}=0.56$). Both compounds cannot be separated by
column chromatography. MALDI-TOF mass spectrum supported the structures of desired atropoisomers $\mathbf{7}$ and $\mathbf{8}$ corresponding to intense mass signal at $1147.33 \mathrm{~m} / \mathrm{z}$.

3.1.2.2 Synthesis and characterization of 5,15-di(2-(2-(triethyleneglycol)-

 bis-dipyrroethyl)phenyl)-10,20-diphenylporphyrin (9)

Scheme 3.6 The synthesis of 5,15-di(2-(2-(triethyleneglycol)-bis-dipyrroethyl)phenyl)-10,20-diphenylporphyrin (9)

จุาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

5,15-Di(2-(2-(triethyleneglycol)-bis-dipyrroethyl)phenyl)-10,20-
diphenylporphyrin (9) was synthesized by the acid catalyzed of 5,15-di(2-(2-(triethyleneglycol)acetophenone)phenyl)-10,20-diphenylporphyrin (7 and 8) with 80 time molar excess pyrrole in a presence of catalytic amount of $\mathrm{CF}_{3} \mathrm{COOH}$ for 20 minutes according to the published procedure. ${ }^{(35)}$ Unfortunately, the product cannot be purified by column chromatography. Therefore, the desired product, ML2 cannot be synthesized due to the complication in separation.

3.2 X-ray study of Copper(II) porphyrin-calix[4]arene (CuL1)

Single crystals of CuL1 were obtained by allowing the solvent $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ to slowly evaporate. The X-ray crystal structure of $\mathbf{C u L 1}$ is shown in Figure 3.2. Compound CuL1 acted the saddle distorted nonplanar porphyrin because the porphyrin ring has many substituents. ${ }^{(45,46)}$ The Cu^{2+} ion is at the center of the porphyrin ring without an axial ligation. The bond lengths from the $\mathrm{Cu}-\mathrm{N}$ are within $1.976(4)-1.990(4) \AA$. There is a solvent molecule (ethyl acetate) in the crystal structure of compound CuL1. The calix[4]arene unit is in cone conformation in the solid state. ${ }^{(47)}$ The ethylene glycol chain links metalloporphyrin ring and calix[4]arene moiety at 1,3 -position and metalloporphyein bends toward calix[4]arene because of the edge-to-face $\mathrm{H}-\pi$ interaetions between the proton (H34) of phenyl at mesoposition of porphyrin and phenyl ring of calix[4]arene.
a)

b)

Figure 3.2 Crystal structure of copper(II) porphyrin-calix[4]arene CuL1 a) side view of CuL1, and b) below view of CuL1

3.3 Potentiometric studies of ionophores (ZnL1, CuL1, CoL1, FeL1 and SnL1)

Ionophores ZnL1, CuL1, CoL1, FeL1 and $\mathbf{S n L} 1$ were then used to fabricate anion selective electrodes

3.3.1 EMF responses of the ISE, prepared for $\mathrm{ZnL1}, \mathrm{CuL1}$, CoL1 and

FeL1

The emf responses of types A, B, C and D were presented in Chapter 2. (10 $\mathrm{mmol} / \mathrm{kg}(1 \% \mathrm{w} / \mathrm{w})$ ionophores (ZnL1, CuL1, CoL1 and FeL1, respectively), 25\% mol of TDMACl relative to the ionophore amount, $33 \mathrm{wt} . \% \mathrm{PVC}$ and $66 \mathrm{wt} . \%$ $o-N P O E)$. The properties of each membrane electrode were investigated from the calibration curves by plotting betyeen the potential responses for all different of anions species and logarithm of activity. As it was seen from the calibration curves (Figure 3.3-3.6) except for perchlorate, thiocyanate and iodide, the slopes of the obtained curves are much lower than the expected Nernstian slope and plots suffer from limited linear range. However, the iodide ion exhibited the Nernstian response over a concentration range of 1.0×10^{-6} to $1.0 \times 10^{-2} \mathrm{M}$. The results indicated that these ionophores had good selectivity towards ciodide.

Figure 3.3 Calibration curves of anions responses for type A (ZnL1)

Figure 3.4 Calibration curves of anions responses for type B (CuL1)

Figure 3.5 Calibration curves of anions responses for type C (CoL1)

Figure 3.6 Calibration curves of anions responses for type D (FeL1)
3.3.2 Effect of solution buffer for iodide responses of the membrane electrode based on $\mathrm{ZnL1}$ using 25\% cationic additives

In aqueous solution of milli-Q water, glycine buffer $\mathrm{pH} 3.5(0.05 \mathrm{M})$ and 4-Morpholinoethanesufonic acid (MES) buffer pH 5.5 (0.05 M), the membrane electrode using $\mathbf{Z n L 1}, 25 \%$ mol of TDMACl relative to the ionophore amount (type A) exhibited a good response and the slope towards I' in all solution. Moreover, the milli-Q water gave a slope and detection limit of the iodide response better than glycine and MES as shown in Figure 3.7 and Table 3.1.

Figure 3.7 Calibration curyes of membrane A responses for I^{-}in milli-Q water, glycine buffer pH 3.5 and MES buffer pH 5.5 .

Table 3.1 Characteristics of iodide responses of membrane type A (ZnL1, $25 \% \mathrm{~mol}$ of TDMACl) in each aqueous sotution.

Type of solution	Snlope	Linear range	Detection limit
milli-Q	จงาล-56.8 ณัมห	$1 \times 10^{-6}-1 \times 10^{-2}$	5.97×10^{-7}
Glycine pH 3.5	-56.6	$1 \times 10^{-6}-1 \times 10^{-2}$	1.06×10^{-6}
MES pH 5.5	-56.6	$5 \times 10^{-6}-1 \times 10^{-2}$	3.35×10^{-6}

3.3.3 Selectivity coefficients of PVC membrane electrodes based on $\mathbf{Z n L 1}$,

$\mathrm{CuL} 1, \mathrm{CoL} 1$ and FeL1 using $\mathbf{2 5 \%}$ mol of cationic additives

One of the most important characteristics of ion selective electrode is its relative response to the primary ion over other ions presented in the solution, which is exhibited in terms of potentiomatric selectivity coefficients. Logarithm of anion selectivity coefficients, $\log K_{i, j}^{p o t}$ was determined by separate solution method (SSM).

In SSM, i refer to primary ion (iodide) and j refer to interfering ions (other anions) as shown in Figure 3.8

All membrane electrode gave values of $\log \log K_{i, j}^{p o t}$ of $\mathrm{ClO}_{4}{ }^{-}(+1)$ and SCN^{-} $(+0.5)$ higher than that of I^{-}according to the Hofmeister series. ${ }^{(1)}$ However, PVC membranes based on ZnL1 and CuL1 (A and B, respectively) gave values of $\log K_{i, j}^{\text {pot }}$ lower than membranes based on CoL1 (C) and FeL1 (D) and the blank membrane (25% TDMACI).

Figure 3.8 Selectivity coefficients of membrane electrodes base on $\mathbf{Z n L} 1$ (type A), CuL1 (type B), CoL1 (type C), and FeL1 (type D). Measurements carried out in milli-Q water. Type refer to membrane composition listed in Table 2.1

3.3.4 Selectivity coefficients of PVC membrane electrode base on $\mathbf{Z n L} 1$

 and CuL1 using $\mathbf{1 5 \%}$, $\mathbf{2 5 \%}$ and $\mathbf{3 5 \%}$ mol of cationic additivesFor the membrane electrodes based on $\mathbf{Z n L 1}$ with cationic additives (TDMACl) $15 \%, 25 \%$ and 35% mol relative to the ionophore amount (type F, A and G , respectively). The membrane A displayed values of $\log K_{i, j}^{p o t}$ of $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ lower than membrane F and membrane G , but other anions $\left(\mathrm{ClO}_{4}{ }^{-}, \mathrm{SCN}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}\right.$, $\mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}, \mathrm{OAc}^{-}$and $\mathrm{HCO}_{3}{ }^{-}$) did not differ significantly (see Figure 3.9).

Figure 3.9 Selectivity coefficients of membrane electrodes base on ZnL1 (type A, F and G), and CuL1 (type B, H, I and J). Measurements carried out in milli-Q water. Type refer to membrane composition listed in Table 2.1

In the case of membrane electrodes based on CuL1, cationic additives (TDMACl) $15 \%, 25 \%, 35 \%$ and 50% mol relative to the ionophore amount (type H , B, I and J , respectively). The membrane J displayed values of $\log K_{i, j}^{p o t}$ of $\mathrm{SO}_{4}{ }^{2-}$, $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{F}^{-}$and OAc^{-}lower than membrane G, membrane B and membrane I. But it is interesting the observe that the membrane I is showing the lowest values of $\log K_{i, j}^{p o t}$ of $\mathrm{HCO}_{3}{ }^{-}$, as presented in Figure 3.9.

3.3.5 Potentiometric studies of ionophore (SnL1)

Due to Lewis acid behavior of the metat center in porphyrin ring, it can bind anions as an axial ligand and exhibits the potentiometric response. Tin(IV) has high oxidation state. Therefore, the synthesized $\operatorname{Sn}(\mathrm{IV})$ porphyrin-calix[4]arene (SnL1) is studied as an ionophore for anion selective electrodes.

3.3.5.1 EMF responses of SnL1 using $\mathbf{2 5 \%} \mathbf{~ m o l}$ of anionic additives

Due to Lewis acid behavior of the metal center in porphyrin ring, it can bind anions as an axial ligand and exhibits the potentiometric response. Tin(IV) has high oxidation state. Therefore, the synthesized $\mathrm{Sn}(\mathrm{IV})$ porphyrin-calix[4] arene ($\mathbf{S n L 1}$) is studied as an ionophore for anion selective electrodes.

For the ionophore SnL1 (type E), the composition of the membrane differerent from that of ZnL1, CuL1, CoL1 and FeL1, ionophore (SnL1) ($10 \mathrm{mmol} / \mathrm{kg}(1 \%$ w / w), $25 \% \mathrm{~mol}$ of anionic additives (KTpClPB) relative to the ionophore amount, 33 $\mathrm{wt} . \% \mathrm{PVC}$ and $66 \mathrm{wt} . \%$ o-NPOE). The effects of anions on the behavior of membrane electrode was investigated using the calibration curves by plotting between the potential responses for all different of anion species and logarithms of activity. As it was seen from the calibration curves (Figure 3.10) except for salicylate, the slopes of the obtained curves are much lower than the expected Nernstian slope. In contrast, perchlorate and thaiocyanate ion exhibited the slope (-45.2 and $-39.4 \mathrm{mV} /$ decade, respectively) of membrane E lower than membranes component of $\mathbf{Z n L 1}, \mathbf{C u L 1}$,

CoL1 and FeL1. However, the salicylate ion exhibited in the Nernstian response over a concentration range of 5.0×10^{-5} to $1.0 \times 10^{-2} \mathrm{M}$. In this regard, the ionophore is selective towards salicylate compared to other anions. However, the SnL1 membrane electrode still suffers from a limited linear range for detecting salicylate ion. ${ }^{(9,48,49)}$

Figure 3.10 Calibration curves of anions responses for type E (SnL1). Measurements carried out in glycine buffer pH 3.5 (0.05 M).

3.3.5.2 Effect of the inner filling solution on salicylate responses of

 membrane \mathbf{E}The effect of the inner filling solution concentration on the emf response of membrane electrode was investigated at different concentrations of I^{-}and Cl^{-}as shown in Table 3.2. The results showed various that concentrations of the inner filling solution resulted in different slopes for salicylate. However, at $\mathrm{I}^{-} 1.0 \times 10^{-2} \mathrm{M}$ and Cl^{-}
$1.0 \times 10^{-2} \mathrm{M}$ of the inner filling solution, the electrode exhibited the Nernstian slope $(-60 \mathrm{mV} /$ decade $)$, while at the concentrations $\mathrm{I}^{-} 1.0 \times 10^{-3} \mathrm{M}$ and $\mathrm{Cl}^{-} 1.0 \times 10^{-2} \mathrm{M}$, the electrode displayed super Nernstian response ($-64 \mathrm{mV} /$ decade) as shown in Figure 3.11 and Table 3.2.

Figure 3.11 Calibration curves of salicylate responses for type E (SnL1), different concentrations of I^{-}and Cl^{-}of the inner filling solution. Measurements carried out in glycine buffer $\mathrm{pH} 3.5(0.05 \mathrm{M})$)

Table 3.2 Characteristics of salicylate responses of membrane type E (SnL1, 25\% mol of KTpClPB) in each inner filling solution.

Type of inner filling solution	slope	Linear range
Sal $0.001 \mathrm{M}+\mathrm{Cl} 0.01 \mathrm{M}$	-64	$5 \times 10^{-5}-1 \times 10^{-2}$
Sal $0.01 \mathrm{M}+\mathrm{Cl} 0.01 \mathrm{M}$	-60	$5 \times 10^{-5}-1 \times 10^{-2}$
Sal $0.01 \mathrm{M}+\mathrm{Cl} 0.001 \mathrm{M}$	-58	$5 \times 10^{-5}-1 \times 10^{-2}$

3.3.5.3 Selectivity coefficients of PVC membrane electrode based on SnL1

In the case of membrane electrode fabricated from SnL1.Effects of anionic additives (KTpClPB) $0 \%, 15 \%, 25 \%$ and 35% mol relative to the ionophore amount (type K, E, L and M, respectively) were studied. The membrane E displayed values of $\log K_{S a l, j}^{p o t}$ of all interfering ions lower than salicylate ion. However, I^{-}was found to be the most interfering ion. Furthermore, the membrane electrode using SnL1 exhibited anon-Hofmeister pattern towards salicylate with an anionic additive, suggesting charge carrier mechanism ${ }^{(17)}$ of the electrode membrane as presented in Figure 3.12.

$$
\log K_{i, j}^{p o t}
$$

Figure 3.12 Selectivity coefficients of membrane electrodes based on SnL1, anionic additives (KTpClPB) $0 \%, 15 \%, 25 \%$ and 35% mol relative to the ionophore amount (type K, E, L and M, respectively). Measurements carried out in glycine buffer pH 3.5 (0.05 M).

For the membrane electrode using $\mathbf{S n L 1}$ without ionic additives (type K), selectivity coefficients of membrane showed the values of $\log K_{i, j}^{\text {pot }}$ of $\mathrm{NO}_{3}{ }^{-}$lower than $\mathrm{NO}_{2}{ }^{-}$. It was found that the membrane K gave a non- Hofmeister series. The membrane electrode has a greater amount of anionic additives (KTpClPB), selectivity coefficients of F^{-}and OAc^{-}ion in membrane electrodes using anionic additives corresponding to the values more than the membrane electrode based on $\mathbf{S n L 1}$ only. In contrast, selectivity coefficients decrease for $\log K_{i, j}^{p o t}$ of $\mathrm{ClO}_{4}{ }^{-}$and SCN^{-}.

3.3.6 Reversibility of the potentiometric iodide response for membrane electrode based on $\mathbf{Z n L} 1$ using 25% cationic additives

The reversibility of the membrane electrode was an important property of the ion selective electrodes.

Figure 3.13 The reversibility of emf iodide response for membrane electrode based on $\mathbf{Z n L 1}$ using 25% TDMACl at different concentrations between $1 \times 10^{-4} \mathrm{M}$ and $1 \times 10^{-3} \mathrm{M}$.

Figure 3.13 showed the emf response toward I^{-}for the membrane electrode based on ZnL1 using 25% cationic additives (TDMACl). When changing I^{-} concentration back and forth between $1 \times 10^{-4} \mathrm{M}$ and $1 \times 10^{-3} \mathrm{M}$, emf signals can be restored at the same concentration of I^{-}in every cycle. Accordingly, the membrane electrode be used to measure I^{-}concentration with a very good reversibility.

3.3.7 Effect of $\mathbf{p H}$ on the potentiometric iodide response for membrane electrode based on $\mathbf{Z n L} 1$ using 25\% cationic additives

The influence of pH of the test solution on the iodide response was tested at $1 \times 10^{-4} \mathrm{M}$ and $1 \times 10^{-3} \mathrm{M}$ concentration of iodide over a pH range of 2.0-10.0 (adjusted with HCl or NaOH) as shown in Figure 3.14. The results showed that the emf response remains constant over the pH range 3.5-6.0. In high $\mathrm{pH}, \mathrm{OH}^{-}$can coordinate as an axial ligand to the metal center porphyrin. ${ }^{(50)}$

Figure 3.14 Effect of pH of the potentiometric iodide response for membrane electrode based on $\mathbf{Z n L 1}$ using 25% cationic additives. At $1 \times 10^{-4} \mathrm{M}$ and $1 \times 10^{-3} \mathrm{M}$ concentration of I .

3.4 Complexation studies of Zinc(II) porphyrin-calix[4]arene (ZnL1)

 with anions in solutionCompound $\mathbf{Z n L} 1$ contains the Zinc center porphyrin strap calix[4]arene which can bind anions and act as a chromophore. Thus, the complexation studies of Zinc(II) porphyrin-calix[4]arene with $\mathrm{ClO}_{4}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{PhCOO}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, were carried out in acetonitrile. The anion recognition via ion-ion interactions to axial ligand of Zinc porphyrin can also be easily monitored by anions complexation induced change in UV-vis absorption spectra by additions of excess (100 equiv.) tetrabutylammonium salts. The obtained spectra were shown in Figure 3.15.

Figure 3.15 UV-vis spectra of Zinc(II) porphyrin-calix[4]arene (ZnL1) ($5.0 \mu \mathrm{M}$) with various tetrabutylammonium salts (100 equiv.).

The UV-vis spectrum of ZnL1, in the absence of anions, exhibited the Soret band at 423 nm in acetonitrile. A bathochromic shift of the spectrum was observed at 430 nm upon adding the $\mathrm{Bu}_{4} \mathrm{NF}$, but other anions do not give a new band due to ZnL1 : anions complexes.

3.4.1 Complexe studies of Zinc(II) porphyrin-calix[4]arene (ZnL1) with

$\mathrm{Bu}_{4} \mathrm{NF}$

Complexation studies of $\mathrm{Zinc}(\mathrm{II})$ porphyrin-calix[4]arene ($\mathbf{Z n L 1}$) with $\mathrm{Bu}_{4} \mathrm{NF}$ in acetonitrile by UV-vis spectrophotometrywere also carried out. UV-vis absorption spectra of ZnL1 were measurect at a $1.0 \mu \mathrm{M}$. The job's method ${ }^{(51)}$ was used to determine the binding stoiehiometry of the complexes using the absorption spectra data at 423 nm for complex of ZnL 1 with $\left(\mathrm{Bu}_{4} \mathrm{NF}\right.$. The job's plot was plotted between the mole fraction of $\mathbf{Z n L 1}$ in the mixture $\left(\mathrm{X}_{\mathrm{ZnL1}}\right)$ and $\Delta \mathrm{A} \times\left(1-\mathrm{X}_{\mathrm{ZnL1}}\right)$ calculated from the maximum absorption changes $\triangle A$ multiplied by their inverse mole fraction (1$\mathrm{X}_{\mathrm{ZnL1}}$). The plots afforded the maximum point at 0.5 for $\mathbf{Z n L} 1$ with $\mathrm{Bu}_{4} \mathrm{NF}$ suggesting a $1: 1$ stoichiometry as shown in Figure 3.16.

Figure 3.16 The job's plot of the complexation of $\mathbf{Z n L} 1$ with $\mathrm{Bu}_{4} \mathrm{NF}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

3.5 ${ }^{1} \mathrm{H}$ NMR studies of $\mathrm{Zinc}($ II) porphyrin-calix[4]arene (ZnL1) with

$\mathrm{Bu}_{4} \mathrm{NF}$

${ }^{1} \mathrm{H}$ NMR titrations of $5 \mu \mathrm{M} \mathrm{ZnL1}\left(2 \times 10^{-6} \mathrm{mmol}\right)$ in a mixture of CDCl_{3} : $\mathrm{CD}_{3} \mathrm{CN}(1: 9 \mathrm{v} / \mathrm{v})$ with $\mathrm{Bu}_{4} \mathrm{NF}$ as a fluoride anion were carried out. The ${ }^{1} \mathrm{H}$ NMR apectra were illustrated in Figure 3.17 and 3.18. The signals of β-pyrrolic protons at 8.49 and 8.41 ppm to upfield shifts and remained a broad singlet upon adding fluoride (0.7 equiv.). ${ }^{(52,53)}$ Moreover, the signal of ethylene protons at 3.36 ppm were slightly downfield shifted and methylene protons of calix[4]arene showed a doublet at 3.11 ppm which was broadened and downfield shifted. These results suggested that F^{-}was coordinate as an axial ligand of the Zn-porphyrin complex and located near calix[4]arene cavity.

Figure 3.17 ${ }^{1} \mathrm{H}$ NMR titration spectra of $\mathbf{Z n L 1}$ with $\mathrm{Bu}_{4} \mathrm{NF}$ in a mixture $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{CN}=1: 9(\mathrm{v} / \mathrm{v})$ at $9.00-6.00 \mathrm{ppm}$.

Figure 3.18 ${ }^{1} \mathrm{H}$ NMR titration spectra of $\mathbf{Z n L 1}$ with $\mathrm{Bu}_{4} \mathrm{NF}$ in a mixture $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{CN}=1: 9(\mathrm{v} / \mathrm{v})$ at $4.00-0.05 \mathrm{ppm}$.

CHAPTER IV

CONCLUSION

Ionophores based on metalloporphyrin-calix[4]arene ML1 (ZnL1, CuL1, CoL1, FeL1 and SnL1) have been synthesized. The synthetic pathway was beginning with a condensation of 2-(8-tosyltriethyleneglycol)benzaldehyde (2) with calix[4]arene by using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as a base in refluxing $\mathrm{CH}_{3} \mathrm{CN}$. The 1,3-calix[4]dibenzaldehyde (3) was afforded with 53% yield. The acid catalyzed condensation of 1,3-calix[4]-dibenzaldehyde (3) with excess pyrrole afforded 1,3-calix[4]arene-bisdipyrromethane (4) in 38% yield. The porphyrin-calix[4]arene (L1) (12% yield) was obtained by the acid catalyzed condensation and oxidation of benzaldehyde and 1,3-calix[4]arene-bis-dipyrromethane $(\mathbf{4})$ in toluene at reflux in air. The metallation of free base porphyrin-calix[4]arene (L1) with the corresponding metal salts were afforded with metalloporphyrin-calix 4 Jarene (ZnL1, CuL1, CoL1, FeL1 and SnL1) in $78 \%, 85 \%, 74 \%, 51 \%$ and 54% yield, respectively. The X-ray crystal structure of porphyrin-calix[4]arene (CuL1) showed the calix[4]arene unit is in cone conformation and copper ion is the center of porphyrin ring without an axial ligation.

The potentiometric response of polymer membrane electrodes doped with metalloporphyrin-calix[4]arene (ZnL1, CuL1, CoL1 and FeL1) as ionophores for anions were constructed. In this case, the mentioned ionophores were found to detect iodide selectivity in comparison to other anions. For the potentiometric response of polymer membrane electrodes doped with $\mathbf{S n L} \mathbf{1}$ as ionophores for anions, the slopes of the obtained curves are much lower than the expected Nernstian slope. However, the salicylate ion exhibited the Nernstian response over a concentration range of 5.0×10^{-5} to $1.0 \times 10^{-2} \mathrm{M}$.

The complexation studies of metalloporphyrin-calix[4]arene (ZnL1) with Bu_{4} NF presented that the complex of $\mathbf{Z n L 1}: \mathrm{Bu}_{4} \mathrm{NF}$ were $1: 1$ stoichiometry. The ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{Z n L} 1$ with upon each addition of $\mathrm{Bu}_{4} \mathrm{NF}$ as a fluoride. The results
suggested the coordination of F^{-}to the $\mathrm{Zn}(\mathrm{II})$ center and it showed locate near the calix[4]arene cavity.

จุฬาลงกรณ์มหาวิทยาลัย
 Chulalongkorn University

REFERENCES

(1) Bakker, E., Bühlmann, P., and Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics. Chem. Rev. 97 (1997) : 3083-3132.
(2) Koryta, J. Ion-selective electrodes. Ann. Rev. Mater. Sci. 16 (1986) : 13-27.
(3) Cattrall, R. W. Chemical Sensors. Oxford, New York : Melbourne, 1997.
(4) Bakker, E., Pretsch, E., and BüHlmann, P. Selectivity of potentiometric ion sensors" Anal. Chem. 72 (2000): 1127-1133.
(5) Nezel, T., Zhylyak, G., Mohr, G. J., and Keller, U. E. S. Aquacyanocobalt(III)cobyrinate as a key compound in NO_{2}-sensitive polymeric liquid membranes. Anal. Sci. 19 (2003):551-556.
(6) Shahrokhian, S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem. 73 (2001) : 5972-5978.
(7) Amirnasr, M., Schenk, K. J., Gorji, A., and Vafazadeh, R. Synthesis and spectroscopic characterization of $\left[\mathrm{Co}^{\mathrm{III}}(\right.$ salophen $\left.)(\text { amine })_{2}\right] \mathrm{ClO}_{4}$ (amine $=$ morpholine, pyrrolidine, and piperidine) complexes. The crystal structures of $\left[\mathrm{Co}^{\text {III }}(\right.$ salophen $\left.)(\text { morpholine })_{2}\right] \mathrm{ClO}_{4} \quad$ and [Co ${ }^{\text {III }}$ (salophen) (pyrrolidine) ${ }_{2}$]ClO 4 . Polyhedron 20 (2001) : 695-702.
(8) Ganjali, M. R., and others. Highly selective iodide membrane electrode based on a cerium salen. Anal. Sci. 18 (2002) : 289-292.
(9) Chaniotakis, N. A., Park, S. B., and Meyerhoff, M. E. Salicylate-selective membrane electrode based on $\operatorname{tin}(1 \mathrm{~V})$ tetraphenylporphyrin. Anal. Chem. 67 (1989) : 566-570.
(10) Biesaga, M., Pyrzńska, K., and Trojanowicz, M. Porphyrins in analytical chemistry. a review. Talanta 51 (2000) : 209-224.
(11) Pietrzak, M., and Meyerhoff, M. E. Polymeric membrane electrodes with high nitrite selectivity based on rhodium(III) porphyrins and salophens as ionophores. Anal. Chem. 81 (2009) : 3637-3644.
(12) Khorasani, J. H., Amini, M. K., Motaghi, H., Tangestaninejad, S., and Moghadam, M. Manganese porphyrin derivatives as ionophores for thiocyanate-selective electrodes: the influence of porphyrin substituents and additives on the response properties. Sens. Actuator B-Chem. 87 (2002) : 448-456.
(13) Lvova, L., and others. Platinum porphyrins as ionophores in polymeric membrane electrodes. Analyst 136 (2011) : 4966-4976.
(14) Santos, E. M. G., Araújo, A. N., Couto, C. M. C. M., and Montenegroa, M. C. B. S. M. "Use of tin (IV) porhyrins as ionophores for the construction of phthalate-selectiveelectrodes: influence of the structure and membrane composition on their response properties. Electroanal. 17 (2005) : 1945-1951.
(15) Chawla, H. M., Singh, S. P. and Upreti, S. A facile one-pot access to cone and 1,3-alternate conformers of calix[4] arene-bis(amido)crowns. Tetrahedron 63 (2007): :5636-5642.
(16) Custelcean, R., and others. Calix[4]pyrrole: an old yet new ion-pair receptor. Angew. Chem. 117 (2005):2593-2598.
(17) Miyaji, H., and others. Single side strapping: a new approach to fine tuning the anion aecognition properties of calix[4]pyrroles. J. Am. Chem. Soc. 125 (2003) : 7301-7306.
(18) Blas, J. R., Márquez, M., Sessler, J. L., Luque, J. F., and Orozco, M. Theoretical study of anion binding to calix[4]pyrrole: the effects of solvent, fluorine substitution, cosolute, and water traces. J. Am. Chem. Soc. 124 (2002) : 12796-12805.
(19) Sessler, J.L., and others. Calix[4]pyrrole as a chloride anion receptor: solvent and countercation effects. J. Am. Chem. Soc. 128 (2006) : 1228112288.
(20) Yoo, J., Kim, M. S., Hong, S. J., Sessler, J. L., and Lee, C. H. Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines. J. Org. Chem. 74 (2009) : 1065-1069.
(21) Panda, P. K., and Lee, C.H. Metalloporphyrin-capped calix[4]pyrroles: heteroditopic receptor models for anion recognition and ligand fixation. J. Org. Chem. 70 (2005) : 3148-3156.
(22) Chawla, H. M., Sahu, S. N., and Shrivastava, R. A novel calix[4]arene-based neutral semicarbazone receptor for anion recognition. Tetrahedron Lett. 48 (2007) : 6054-6058.
(23) Jaime, C., Mendoza, J. D., Prados, P., Nieto, P. M., and Shched, C. ${ }^{13}$ C NMR chemical shifts. a single rule to determine the conformation of calix[1]arenes. J. Org. Chem. 56 (1991) : 3372-3376.
(24) Sahin, O., and Yilmaz, M. Synthesis and fluorescence sensing properties of a new naphthalimide derivative of calix[4]arene. Tetrahedron Lett. 53 (2012) : 2319-2324.
(25) Lee, S. H., Kim, H. J., Lee, Y. O., Vicensb, J., and Kim, J. S. Fluoride sensing with a PCT-based calix[4]arene. Tetrahedron Lett. 47 (2006) : 4373-4376.
(26) Singh, N., Lee, G. W., and Jang, D. O. p-tert-Butylcalix[4]arene-based fluororeceptor for the recognition of dicarboxylates. Tetrahedron 64 (2008) : 1482-1486.
(27) Dudič, M., and others. Calixarene-based metalloporphyrins: molecular tweezers for complexation of DABCO. Tetrahedron 59 (2003) : 2409-2415.
(28) Gutsche, C. D., and Levine, J. A. Calix[4]arenes. 6. Synthesis of a functionalizable calix[4]arene in a conformationlly rigid cone conformation. J. Am. Chem. Soc. 104 (1982): 2652-2653.
(29) Songtham Ruangchaithaweesuk. Synthesis of Bis-Calix[4]areneCalix[4]pyrrole as Ion Pair Receptor. Master's Thesis, Department of Chemistry, Faculty of Science, Chulalongkorn University, 2004.
(30) Brückner, C., and others. Novel and improved syntheses of 5,15diphenylporphyrin and its dipyrrolic precursors. J. Porphyrins Phthalocyanines 2 (1998) : 455-465.
(31) IR absorptions for representative functional groups. [Online]. 2012. Available from : http://www.chemistry.ccsu.edu/glagovich/teaching/316/ir/ table.html [2012, Jan 20].
(32) Beer, P. D., Gale, P. A., and Hesek, D. A neutral upper to lower rim linked bis-calix[4]arene receptor that recognise anionic guest species. Tetrahedron Lett. 36 (1995) : 767-770.
(34) Sanghoon, K., and others. Metallic macrocycle with a 1,3-alternate calix[4]arene phosphorus ligand. Inorg. Chem. 43 (2004) : 2906-2913.
(35) Gryko, D. T., and others. Synthesis of thiol-derivatized ferrocene-porphyrins for studies of multibit infornation storage. J. Org. Chem. 65 (2000) : 7356-7362.
(36) Lindsey, J. S. .Synthetic routes to meso-patterned porphyrins. Acc. Chem. Res. 43 (2010) : 300-311
(37) Plachev, Y. A., Chemyadyev, Y., and Tsivadze, A. Y. Syntheses and Structures of osmium(11) and osmium(VI) meso-tetra(benzo-15-crown5) por[hyrinates aecording to the spectral data. Russ. J. Inorg. Chem. 54 (2009) 558-562.
(38) Li, K., and others. Multiple bismuth(III)-thioather secondary interactions intagrate metalloporphyrin ligands into functional networks. Inorg. Chem. 46 (2007) : 4844-4849.
(39) Spellane, P. J., Gouterman, M., Antipas, A., Kim, S., and Lui, Y. C. Porphyrins. 40. ${ }^{1}$ Electronic spectra and four-orbital energies of freebase, zinc, copper, and palladium tetrakis(perfluorophenyl)porphyrins. Inorg. Chem. 19 (1980) : 386-391.
(40) Ostović, D., and Bruice, T. C. Intermediates in the epoxidation of alkenes by cytochrome P-450 models 5. Epoxidation of alkenes catalyzed by a sterically hindered (meso-tetrakis(2,6-dibromophenyl)
 6511-6517.
(41) Ikeue, T., Ohgo, Y., saitoh, T., Yamaguchi, T., and Nakamura, M. Factors affecting the electronic ground state of low-spin iron(III) porphyrin
complexes. Inorg. Chem. 40 (2001) : 3423-3434.
(42) Maeda, D., Shimakoshi, H., Abe, M., and Hisaeda, Y. Syntheses and photophysical behavoir of porphyrin isomer $\mathrm{Sn}(\mathrm{IV})$ complexes. Inorg. Chem. 48 (2009) : 9853-9860.
(43) Xaing, N., and others. Synthesis and characterization of porphyrinterthiophene and oligothiophene π-conjugated copolymers for polymer solar cells. Eur. Polym. J. 46 (2010) : 1084-1092.
(44) Eckers, F., Deiters, E., Métivet, A., Bulach, V., and Hosseini, M. W. Synthesis and structural analysis of porphyrin-based polynucleating ligands bearing 8-methoxy-and 8-(allyloxy)quiniline units. Eur. J. Org. Chem. (2011) : 2531-2541.
(45) Medforth, C. J., and others Unusual aryl-porphyrin rotational barriers in peripherally crowded porphyrins. Inorg. Chem. 42 (2003) : 2227-2241.
(47) Chen, W., El-Khouly, M. E., and Fukuzumi, S. Saddle distortion of a sterically unhindered porphyrin ring in a copper porphyrin with electrondonating substituents. Lnorg. Chem. 50 (2011) : 671-678.
(48) Guillon, J., Léger, J. M., Sonnet, P., Jarry, C., and Robba, M. Synthesis of cone, partial-cone, and 1,3-alternate 25,27-bis[1-(2-ethyl)hexyl]- and 25,27-bis[1-(2-tert-butoxy)ethyl]calix[4]arene-crown-6 conformers as potential selective cesium extractants. J. Org. Chem. 65 (2000) : 82838289.
(49) Malinowska, E., Niedziólka, J., Roźniecka, E., and Meyerhoff, M. E. Salicylate-selective membrane electrodes based on $\mathrm{Sn}(\mathrm{IV})$ - and $\mathrm{O}=\mathrm{Mo}(\mathrm{V})-$ porphyrins: differences in response mechanism and analytical performance. J. Elec. Chem. 154 (2001) : 109-117.
(50) Messick, M. S., Krishnan, S. K., Hulvey, M. K., and Steinle, E. D. Development of anion selective polymer membrane electrodes based on lutetium(III) porphyrins. Anal. Chim. Acta 539 (2005) : 223-228.
(51) Harris, D. C. Quantitative Chemical Aanalysis. $6^{\text {th }}$ ed. NewYork, NJ : Michell Russel Julet, 2002.
(52) Valiotti, A. B., Shumilova, G. I., and Zaitseva A. V. Electrochemical properties of membranes based on complexes tetraphenylporphyrinions of group IIIB metals (Al, Ga, In, Tl). Russ. J. Electrochem. 37 (2001) : 95-101.
(53) Carofiglio, Y., Lubian, E., Menegazzo, I., Saielli, G., and Varotto, A. Melamine-bridged bis(porphyrin- $\mathrm{Zn}^{\mathrm{II}}$) receptors: molecular recognition properties. J. Org. Chem. 74 (2009) : 9034-9043.
(54) Pinto, S. M. A., and others. Synthesis of new metalloporphyrin triads: efficient and versatile tripod optical/sensor for the detection of amines. Inorg. Chem. 50 (2011): 7916-7918.

จุฬาลงกรณ์มหาวิทยาลัย

จุฬาลงกรณ์มหาวิทยาลัย
Chulalongiorn University

(fecce-

จุฬาลงกรณ์มหาวิทยาลัย
Chulalongkorn University

Figure A-1 ${ }^{1}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1}$

Wavenumbers $\left(\mathbf{c m}^{-1}\right)$

Figure A-2 IR spectrum of 1

Figure A-3 ${ }^{1}$ NMR speetrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2}$

Figure A-4 ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2}$

Figure A-6 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$

Figure A-7 ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$

Figure A-8 MALDI-TOF mass spectrum (CCA) of $\mathbf{3}$

Figure A-10 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4}$

Figure A-11 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4}$

Figure A-12 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L} 1$

Figure A-13 ${ }^{1 / 3} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L} 1$

Figure A-14 MALDI-TOF mass spectrum (CCA) of L1

Figure A-15 IR spectrum of L1

Figure $\mathbf{A - 1 6}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{Z n L 1}$

Figure A-17 ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{Z n L 1}$

Figure A-18 MALDI-TOF mass spectrum (CCA) of ZnL1

Figure A-20 MALDI-TOF mass spectrum (CCA) of CuL1

Figure A-22 MALDI-TOF mass spectrum (CCA) of CoL1

Figure A-24 MALDI-TOF mass spectrum (CCA) of FeL1

Figure $\mathbf{A}-25 \mathrm{R}$ spectrum of FeL1

Chulalong $\frac{1}{\operatorname{Lin}} \mathrm{j}$

Figure A-26 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S n L} 1$

Figure A-27 ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S n L} 1$

Figure A-28 MALDI-TOF mass spectrum (CCA) of SnL1

Figure A-29요 spectrum of SnL1

Figure A-30 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5}$

Figure A-31 H NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of 6

Figure A-32 IR spectrum of 6

Figure A-33 MALDI-TOF mass spectrum (CCA) of $\mathbf{7}$ and $\mathbf{8}$

จุฬาลงกรณ์มหาวิทยาลัย Ghilaiongkorn University

จุฬาลงกรณ์มหาวิทยาลัย
Chulalongkorn University

Table 1. Crystal data and structure refinement for cuper(II) porphyrincalix[4]arene (CuL1)

Identification code	s543414_01_01
Empirical formula	$\mathrm{C}_{88} \mathrm{H}_{78} \mathrm{CuN}_{4} \mathrm{O}_{12}$
Formula weight	1447.08
Temperature	296(2) K
Wavelength	
Unit cell dimensions	$\begin{aligned} & a=22.437(5) \text { A } \\ & b=13.900(2) \text { Alpha }=90 \text { deg. } \\ & c=25.367(6) \text { A } \\ & \text { gamma }=90 \text { deg. } \end{aligned}$
Volume	$7319(3) \AA^{3}$
Z, Calculated density	
Absorption coefficient	$0.367 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	3036
Theta range for data collection	1.74 to 25.08 deg .
Limiting indices พาลงกรณ์มหา $-26<=\mathrm{h} \ll=26,-16<=\mathrm{k}<=9,-30<=1<=30$	
Reflections collected/ unique ORN	41802/12899 [R(int) $=0.1826]$
Completeness to theta $=25.08$	99.2 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	12899 / 0 / 944
Goodness-of-fit on F^{2}	0.801
Final R indices [$\mathrm{I}>2$ sigma(I]	$\mathrm{R} 1=0.0614, \mathrm{wR} 2=0.1315$
R indices (all data)	$\mathrm{R} 1=0.1806, \mathrm{wR} 2=0.1640$
Extinction coefficient	0.00099(15)

[^0]

จุฬาลงกรณ์มหาวิทยาลัย

Table 2. Atomic coordinates ($\mathrm{x} \quad 10^{4}$) and equivalent isotropic displacement parameters ($A^{\mathbf{2}} \times \mathbf{1 0}^{\mathbf{3}}$) for cuper(II) porphyrin-calix[4]arene (CuL1) U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)
$\mathrm{Cu}(1)$	5611(1)	-970(1)	7579(1)	23(1)
$\mathrm{O}(1)$	6825(2)	2080 (3)	7427 (2)	33(1)
$\mathrm{O}(2)$	6171(2)	4452(3)	$7153(2)$	54(1)
$\mathrm{O}(3)$	5381(2)	5902 (3)	$7428(2)$	57(1)
$\mathrm{O}(4)$	4801(2)	$5176(3)$	$8194(2)$	32(1)
$\mathrm{O}(5)$	5949(2)	4218 (3)	9) $87119(2)$	28(1)
$\mathrm{O}(6)$	4568(2)	$3097(3)$	$8353(2)$	29(1)
$\mathrm{O}(7)$	5666(2)	$2136(2)$	8559(2)	22(1)
$\mathrm{O}(8)$	4891(2)	1136(3)	$7476(2)$	27(1)
$\mathrm{O}(9)$	3411(2)	1441 (3)	$6802(2)$	$34(1)$
$\mathrm{O}(10)$	3536(2)	(11) $-23(3)$	$7738(2)$	28(1)
$\mathrm{N}(1)$	4720(2)	-1449(3)	ม7153(2)	$20(1)$
N(2)	5510(2)	LA-1169(3)	8313(2)	19(1)
N(3)	6503(2)	-505(3)	7997(2)	18(1)
N(4)	5717(2)	-741(3)	6851(2)	21(1)
C(1)	4433(3)	-1625(4)	6583(2)	22(1)
C(2)	3782(3)	-1957(4)	6454(2)	25(1)
C(3)	3671(3)	-1928(4)	6936(2)	24(1)
C(4)	4258(3)	-1606(4)	7380(2)	23(1)
C(5)	4345(3)	-1526(4)	7956(2)	21(1)
C(6)	4949(3)	-1369(4)	8395(2)	21(1)
C(7)	5975(3)	-1111(3)	8852(2)	18(1)
C(8)	5699(3)	-1288(3)	9270(2)	21(1)

$\mathrm{C}(9)$	$5064(3)$	$-1441(4)$	$8988(2)$	$22(1)$
$\mathrm{C}(10)$	$6625(3)$	$-851(4)$	$8986(2)$	$20(1)$
$\mathrm{C}(11)$	$7068(3)$	$-819(4)$	$9590(2)$	$21(1)$
$\mathrm{C}(12)$	$6980(3)$	$-177(4)$	$9971(2)$	$25(1)$
$\mathrm{C}(13)$	$7432(3)$	$-105(4)$	$10526(2)$	$34(2)$
$\mathrm{C}(14)$	$7978(3)$	$-656(4)$	$10700(2)$	$33(2)$
$\mathrm{C}(15)$	$8070(3)$	$-1289(4)$	$10323(3)$	$32(2)$
$\mathrm{C}(16)$	$7624(3)$	$-1378(4)$	$9777(2)$	$28(2)$
$\mathrm{C}(17)$	$6850(3)$	$-559(4)$	$8575(2)$	$21(1)$
$\mathrm{C}(18)$	$6887(3)$	$-57(4)$	$7763(2)$	$20(1)$
$\mathrm{C}(19)$	$7500(3)$	$177(4)$	$8210(2)$	$25(2)$
$\mathrm{C}(20)$	$7474(3)$	$-135(4)$	$8702(2)$	$23(1)$
$\mathrm{C}(21)$	$6738(3)$	$150(4)$	$7199(2)$	$21(1)$
$\mathrm{C}(22)$	$6199(3)$	$-204(4)$	$6770(2)$	$25(2)$
$\mathrm{C}(23)$	$5291(3)$	$-982(4)$	$6311(2)$	$29(2)$
$\mathrm{C}(24)$	$5517(3)$	$-596(5)$	$5898(3)$	$39(2)$
$\mathrm{C}(25)$	$6050(3)$	$-97(4)$	$6174(2)$	$35(2)$
$\mathrm{C}(26)$	$4708(3)$	$-1456(4)$	$6188(2)$	$25(2)$
$\mathrm{C}(27)$	$4340(3)$	$-1704(5)$	$5575(3)$	$33(2)$
$\mathrm{C}(28)$	$3775(3)$	$-1229(4)$	$5265(3)$	$38(2)$
$\mathrm{C}(29)$	$3437(3)$	$-1453(5)$	$4693(3)$	$52(2)$
$\mathrm{C}(30)$	$3676(4)$	$-2157(6)$	$4437(3)$	$55(2)$
$\mathrm{C}(31)$	$4239(4)$	$-2647(6)$	$4744(3)$	$55(2)$
$\mathrm{C}(32)$	$4566(3)$	$-2414(5)$	$5318(3)$	$45(2)$
$\mathrm{C}(33)$	$7191(3)$	$777(4)$	$7044(2)$	$22(1)$
$\mathrm{C}(34)$	$7588(3)$	$411(4)$	$6786(2)$	$26(2)$
$\mathrm{C}(35)$	$8016(3)$	$994(4)$	$6659(2)$	$26(1)$
$\mathrm{C}(36)$	$8044(3)$	$1943(4)$	$6782(2)$	$27(2)$
$\mathrm{C}(37)$	$7650(3)$	$2345(4)$	$7038(2)$	$28(2)$
$\mathrm{C}(38)$	$7226(3)$	$1768(4)$	$7163(2)$	$26(2)$
$\mathrm{C}(39)$	$6772(3)$	$3081(4)$	$7516(3)$	$35(2)$
$6273(3)$	$3541(4)$	$6990(3)$	$49(2)$	

$\mathrm{C}(41)$	$5656(3)$	$4958(5)$	$6724(3)$	$57(2)$
$\mathrm{C}(42)$	$5600(3)$	$5941(5)$	$6957(3)$	$56(2)$
$\mathrm{C}(43)$	$4726(3)$	$5665(5)$	$7264(3)$	$53(2)$
$\mathrm{C}(44)$	$4543(3)$	$5901(5)$	$7757(2)$	$41(2)$
$\mathrm{C}(45)$	$4703(3)$	$5418(4)$	$8698(3)$	$30(2)$
$\mathrm{C}(46)$	$5167(3)$	$5959(4)$	$9100(3)$	$29(2)$
$\mathrm{C}(47)$	$5804(3)$	$6206(4)$	$9044(3)$	$30(2)$
$\mathrm{C}(48)$	$6340(3)$	$5531(4)$	$9392(3)$	$29(2)$
$\mathrm{C}(49)$	$6371(3)$	$4585(4)$	$9224(3)$	$23(1)$
$\mathrm{C}(50)$	$6854(3)$	$3953(4)$	$9558(2)$	$24(1)$
$\mathrm{C}(51)$	$6856(3)$	$2914(4)$	$9377(2)$	$26(2)$
$\mathrm{C}(52)$	$6388(3)$	$2305(4)$	$9532(2)$	$20(1)$
$\mathrm{C}(53)$	$6511(3)$	$2126(4)$	$10107(2)$	$23(1)$
$\mathrm{C}(54)$	$6082(3)$	$1600(4)$	$10264(2)$	$23(1)$
$\mathrm{C}(55)$	$5519(3)$	$1264(4)$	$9854(2)$	$23(1)$
$\mathrm{C}(56)$	$5370(3)$	$1444(4)$	$9283(2)$	$20(1)$
$\mathrm{C}(57)$	$4722(3)$	$1148(4)$	$8848(2)$	$23(1)$
$\mathrm{C}(58)$	$4201(3)$	$1866(4)$	$8827(2)$	$22(1)$
$\mathrm{C}(59)$	$3742(3)$	$1606(4)$	$9060(2)$	$25(1)$
$\mathrm{C}(60)$	$3253(3)$	$2234(4)$	$9035(2)$	$31(2)$
$\mathrm{C}(61)$	$3227(3)$	$3129(4)$	$8805(2)$	$30(2)$
$\mathrm{C}(62)$	$3671(3)$	$3424(4)$	$8579(2)$	$26(2)$
$\mathrm{C}(63)$	$3656(3)$	$4434(4)$	$8348(3)$	$34(2)$
$\mathrm{C}(64)$	$4142(3)$	$5095(4)$	$8762(3)$	$30(2)$
$\mathrm{C}(65)$	$4064(3)$	$5379(4)$	$9260(3)$	$32(2)$
$\mathrm{C}(66)$	$4504(3)$	$5942(4)$	$9655(3)$	$35(2)$
$\mathrm{C}(76)$	$5542(3)$	$1221(4)$	$6878(2)$	$34(2)$
$\mathrm{C}(68)$	$5068(3)$	$6223(4)$	$9585(3)$	$32(2)$
$\mathrm{C}(69)$	$5825(3)$	$1933(4)$	$9136(2)$	$20(1)$
$\mathrm{C}(70)$	$5875(3)$	$1395(4)$	$8261(2)$	$25(2)$
C				

$\mathrm{C}(73)$	$3864(3)$	$793(4)$	$6720(2)$	$32(2)$
$\mathrm{C}(74)$	$3476(3)$	$1565(4)$	$7380(2)$	$31(2)$
$\mathrm{C}(75)$	$3140(3)$	$813(4)$	$7587(2)$	$27(2)$
$\mathrm{C}(76)$	$3343(3)$	$-802(4)$	$7965(2)$	$25(1)$
$\mathrm{C}(77)$	$3755(3)$	$-1587(4)$	$8092(2)$	$21(1)$
$\mathrm{C}(78)$	$3585(3)$	$-2403(4)$	$8311(2)$	$22(1)$
$\mathrm{C}(79)$	$3025(3)$	$-2454(4)$	$8413(2)$	$27(2)$
$\mathrm{C}(80)$	$2629(3)$	$-1663(4)$	$8293(2)$	$31(2)$
$\mathrm{C}(81)$	$2777(3)$	$-832(4)$	$8075(2)$	$26(1)$
$\mathrm{C}(82)$	$7313(3)$	$4290(4)$	$10071(3)$	$35(2)$
$\mathrm{C}(83)$	$7289(3)$	$5228(4)$	$10239(3)$	$36(2)$
$\mathrm{C}(84)$	$6811(3)$	$5837(4)$	$9905(3)$	$35(2)$
$\mathrm{O}(3 \mathrm{~S})$	$8448(2)$	$2079(4)$	$9694(2)$	$68(2)$
$\mathrm{C}(1 \mathrm{~S})$	$8791(4)$	$1429(6)$	$10194(3)$	$87(3)$
$\mathrm{O}(1 \mathrm{SS})$	$8933(3)$	$1282(4)$	$9198(2)$	$85(2)$
$\mathrm{C}(1 \mathrm{SS})$	$8558(4)$	$1917(6)$	$9216(3)$	$65(2)$
$\mathrm{C}(3 \mathrm{SS})$	$8643(4)$	$1838(6)$	$10683(3)$	$93(3)$
$\mathrm{C}(4 \mathrm{SS})$	$8181(4)$	$2572(5)$	$8744(3)$	$69(2)$

จุฬาลงกรณ์มหาวิทยาลัย

Table 3. Bond lengths [A] and angles [deg] for cuper(II) porphyrin-calix[4]arene (CuL1)

$\mathrm{N}(4)-\mathrm{C}(23)$	1.381(7)
$\mathrm{N}(4)-\mathrm{C}(22)$	1.394(6)
$\mathrm{C}(1)-\mathrm{C}(26)$	$1.380(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.446(7)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.338(7)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.443(7)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	1.404(7)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.407(7) \mathrm{J} / \mathrm{d}$
$\mathrm{C}(5)-\mathrm{C}(77)$	1.491 (7)
$\mathrm{C}(6)-\mathrm{C}(9)$	
$\mathrm{C}(7)-\mathrm{C}(10) \quad 1.414$	
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.437(7)$
$\mathrm{C}(8)-\mathrm{C}(9)$	
$\mathrm{C}(8)-\mathrm{H}(8) \quad 0.9300$	
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9300
$\mathrm{C}(10)-\mathrm{C}(17)$	S\% $1.380(7)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$2{ }^{\text {a }}$ 1.477(7)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.384(7)$
$\mathrm{C}(11)-\mathrm{C}(16)$	จุฬาลงกรณมหาวทยาลย
$\mathrm{C}(12)-\mathrm{C}(13)$	HULALO1.391(7) UNIVERSITY
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9300
$\mathrm{C}(13)-\mathrm{C}(14)$	1.369 (8)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9300
$\mathrm{C}(14)-\mathrm{C}(15)$	1.371(8)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9300
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.373(7)$
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9300
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9300
$\mathrm{C}(17)-\mathrm{C}(20)$	$1.438(7)$
$\mathrm{C}(18)-\mathrm{C}(21)$	$1.372(7)$

$\mathrm{C}(37)-\mathrm{C}(38)$	$1.370(7)$
$\mathrm{C}(37)-\mathrm{H}(37)$	0.9300
$\mathrm{C}(39)-\mathrm{C}(40)$	$1.520(8)$
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	0.9700
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9700
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9700
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9700
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.512(9)$
$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~A})$	0.9700
$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~B})$	0.9700
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	0.9700
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	0.9700
$\mathrm{C}(43)-\mathrm{C}(44)$	$1.496(8)$
$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~A})$	0.9700
$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~B})$	0.9700
$\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~A})$	0.9700
$\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~B})$	0.9700
$\mathrm{C}(45)-\mathrm{C}(46)$	$1.373(8)$
$\mathrm{C}(45)-\mathrm{C}(64)$	$1.402(8)$
$\mathrm{C}(46)-\mathrm{C}(67)$	
$\mathrm{C}(46)-\mathrm{C}(47)$	
$\mathrm{C}(47)-\mathrm{C}(48)$	$1.380(7)$
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	$1.526(7)$
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	$1.517(8)$
$\mathrm{C}(48)-\mathrm{C}(49)$	0.9700
$\mathrm{C}(48)-\mathrm{C}(84)$	1.99170
$\mathrm{C}(49)-\mathrm{C}(50)$	$1.395(8)$
$\mathrm{C}(50)-\mathrm{C}(82)$	$1.398(8)$
$\mathrm{C}(50)-\mathrm{C}(51)$	$1.516(7)$
$\mathrm{C}(51)-\mathrm{C}(52)$	$1.513(7)$
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	0.9700
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9700

$\mathrm{C}(52)-\mathrm{C}(69)$	$1.381(7)$
$\mathrm{C}(52)-\mathrm{C}(53)$	$1.400(7)$
$\mathrm{C}(53)-\mathrm{C}(54)$	1.382(7)
$\mathrm{C}(53)-\mathrm{H}(53)$	0.9300
$\mathrm{C}(54)-\mathrm{C}(55)$	$1.377(7)$
$\mathrm{C}(54)-\mathrm{H}(54)$	0.9300
$\mathrm{C}(55)-\mathrm{C}(56)$	1.380(7)
$\mathrm{C}(55)-\mathrm{H}(55)$	0.9300
$\mathrm{C}(56)-\mathrm{C}(69)$	1.391 (7)
$\mathrm{C}(56)-\mathrm{C}(57)$	$1.511(7)$
$\mathrm{C}(57)-\mathrm{C}(58)$	1.523 (7)
$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	
$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B}) \quad 0.97$	
$\mathrm{C}(58)-\mathrm{C}(68)$	
$\mathrm{C}(58)-\mathrm{C}(59)$	
$\mathrm{C}(59)-\mathrm{C}(60)$	
$\mathrm{C}(59)-\mathrm{H}(59)$	0.9300
$\mathrm{C}(60)-\mathrm{C}(61)$	(1) $1.365(7)$
$\mathrm{C}(60)-\mathrm{H}(60)$	5 0.9300
$\mathrm{C}(61)-\mathrm{C}(62)$	คงา $1.386(7)$ (0 คิทยา
$\mathrm{C}(61)-\mathrm{H}(61)$	จูพาลงกู่ 0.9300 มาวทยาลย
$\mathrm{C}(62)-\mathrm{C}(68)$	HULALO 1.391(7) NI UNIVERSITY
$\mathrm{C}(62)-\mathrm{C}(63)$	1.516 (7)
$\mathrm{C}(63)-\mathrm{C}(64)$	$1.505(8)$
$\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~A})$	0.9700
$\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~B})$	0.9700
$\mathrm{C}(64)-\mathrm{C}(65)$	$1.396(8)$
$\mathrm{C}(65)-\mathrm{C}(66)$	$1.357(8)$
$\mathrm{C}(65)-\mathrm{H}(65)$	0.9300
$\mathrm{C}(66)-\mathrm{C}(67)$	$1.398(7)$
$\mathrm{C}(66)-\mathrm{H}(66)$	0.9300
$\mathrm{C}(67)-\mathrm{H}(67)$	0.9300

$\mathrm{C}(70)-\mathrm{C}(71)$	$1.499(7)$
$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~A})$	0.9700
$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	0.9700
$\mathrm{C}(71)-\mathrm{H}(71 \mathrm{~A})$	0.9700
$\mathrm{C}(71)-\mathrm{H}(71 \mathrm{~B})$	0.9700
$\mathrm{C}(72)-\mathrm{C}(73)$	$1.539(7)$
$\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~A})$	0.9700
$\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	0.9700
$\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~A})$	0.9700
$\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~B})$	0.9700
$\mathrm{C}(74)-\mathrm{C}(75)$	$1.497(7)$
$\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~A})$	0.9700
$\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~B})$	0.9700
$\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~A})$	0.9700
$\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~B})$	0.9700
$\mathrm{C}(76)-\mathrm{C}(77)$	$1.387(7)$
$\mathrm{C}(76)-\mathrm{C}(81)$	$1.400(7)$
$\mathrm{C}(77)-\mathrm{C}(78)$	$1.378(7)$
$\mathrm{C}(78)-\mathrm{C}(79)$	$1.509(8)$
$\mathrm{C}(78)-\mathrm{H}(78)$	$1.380(7)$
$\mathrm{C}(79)-\mathrm{C}(80)$	
$\mathrm{C}(79)-\mathrm{H}(79)$	0.9300
$\mathrm{C}(80)-\mathrm{C}(81)$	$1.375(7)$
$\mathrm{C}(80)-\mathrm{H}(80)$	0.9300
$\mathrm{C}(81)-\mathrm{H}(81)$	0.9300
$\mathrm{C}(82)-\mathrm{C}(83)$	$1.379(8)$
$\mathrm{C}(82)-\mathrm{H}(82)$	0.9300
$\mathrm{C}(83)-\mathrm{C}(84)$	$1.378(8)$
$\mathrm{C}(83)-\mathrm{H}(83)$	0.9300
$\mathrm{C}(84)-\mathrm{H}(84)$	0.9300
$\mathrm{O}(3 \mathrm{~S})-\mathrm{C}(1 \mathrm{SS})$	$1.3 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})$
$17(7)$	

$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(3 \mathrm{SS})$	$1.511(10)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 1)$	0.9700
$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	0.9700
$\mathrm{O}(1 \mathrm{SS})-\mathrm{C}(1 \mathrm{SS})$	$1.232(9)$
$\mathrm{C}(1 \mathrm{SS})-\mathrm{C}(4 \mathrm{SS})$	$1.487(10)$
$\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 1)$	0.9600
$\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 2)$	0.9600
$\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 3)$	0.9600
$\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 1)$	0.9600
$\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 2)$	0.9600
$\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 3)$	0.9600
	178
$\mathrm{~N}(4)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$178.69(18)$
$\mathrm{N}(4)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$89.48(18)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$89.76(18)$
$\mathrm{N}(4)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$89.93(18)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$90.85(18)$
$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$179.13(18)$
$\mathrm{C}(38)-\mathrm{O}(1)-\mathrm{C}(39)$	
$\mathrm{C}(40)-\mathrm{O}(2)-\mathrm{C}(41)$	$119.6(4)$
$\mathrm{C}(43)-\mathrm{O}(3)-\mathrm{C}(42)$	$113.6(5)$
$\mathrm{C}(45)-\mathrm{O}(4)-\mathrm{C}(44)$	
$\mathrm{C}(69)-\mathrm{O}(7)-\mathrm{C}(70)$	$113.9(5)$
$\mathrm{C}(72)-\mathrm{O}(8)-\mathrm{C}(71)$	$111.9(4)$
$\mathrm{C}(74)-\mathrm{O}(9)-\mathrm{C}(73)$	$110.5(4)$
$\mathrm{C}(76)-\mathrm{O}(10)-\mathrm{C}(75)$	$119.6(4)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	$106.7(4)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Cu}(1)$	$127.5(4)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Cu}(1)$	$125.7(4)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(6)$	$104.8(4)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{Cu}(1)$	$127.9(3)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Cu}(1)$	$127.3(4)$

$\left.\begin{array}{ll}\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(9) & 126.9 \\ \mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(7) & 122.2(5) \\ \mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(11) & 118.7(5) \\ \mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(11) & 118.9(5) \\ \mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16) & 118.0(5) \\ \mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10) & 121.7(5) \\ \mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(10) & 119.9(5) \\ \mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13) & 120.7(5) \\ \mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12) & 119.6 \\ \mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12) & 119.6\end{array}\right)$.

$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	126.1
$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20)$	126.1
$\mathrm{C}(18)-\mathrm{C}(21)-\mathrm{C}(22)$	123.0(5)
$\mathrm{C}(18)-\mathrm{C}(21)-\mathrm{C}(33)$	118.3(5)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(33)$	118.7(5)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{N}(4)$	125.0(5)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(25)$	125.8(5)
$\mathrm{N}(4)-\mathrm{C}(22)-\mathrm{C}(25)$	109.2(5)
$\mathrm{N}(4)-\mathrm{C}(23)-\mathrm{C}(26)$	125.2(5)
$\mathrm{N}(4)-\mathrm{C}(23)-\mathrm{C}(24)$	$109.3(5)$
$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{C}(24)$	125.3 (5)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23) \quad 108 \% 1(6)$	
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24) \quad 126$.	
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(22) \quad 107.8(5)$	
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	
$\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{H}(25)$	126.1
$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{C}(23)$	124.0 (5)
$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{C}(27) \quad 119.4(5)$	
$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{C}(27)$	116.3(5)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)$	$119.7(6)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	N20.4(6)
$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(26)$	119.9(6)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	120.4(7)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	119.8
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	119.8
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	119.3(7)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	120.3
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	120.3
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	120.9(7)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30)$	119.5
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	119.5

$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$118.5(7)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	120.7
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	120.7
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	$121.1(7)$
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{H}(32)$	119.4
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	119.4
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(38)$	$117.8(5)$
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(21)$	$122.1(5)$
$\mathrm{C}(38)-\mathrm{C}(33)-\mathrm{C}(21)$	$120.1(5)$
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	$121.5(5)$
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	119.2
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	119.2
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	$119.4(5)$
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{H}(35)$	$120.3)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35)$	120.3
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$121.15)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36)$	119.4
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{H}(36)$	119.4
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	$119.4(5)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37)$	120.3
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37)$	120.3
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{O}(1)$	$124.5(5)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(33)$	$120.8(5)$
$\mathrm{O}(1)-\mathrm{C}(38)-\mathrm{C}(33)$	$114.7(5)$
$\mathrm{O}(1)-\mathrm{C}(39)-\mathrm{C}(40)$	$110.5(5)$
$\mathrm{O}(1)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	109.6
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	109.6
$\mathrm{O}(1)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	108.1
$\mathrm{O}(2)-\mathrm{C}(40)-\mathrm{C}(39)$	$105.9(5)$
$\mathrm{O}(2)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	110.6
IV	

$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$	121.8(5)
$\mathrm{C}(67)-\mathrm{C}(46)-\mathrm{C}(47)$	119.7(6)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(46)$	111.7(4)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.3
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.3
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.3
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.3
$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	107.9
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(84)$	117.7(6)
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(47)$	
C(84)-C(48)-C(47)	
$\mathrm{O}(5)-\mathrm{C}(49)-\mathrm{C}(48)$	
$\mathrm{O}(5)-\mathrm{C}(49)-\mathrm{C}(50$	
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50) \quad 121.6(6)$	
$\mathrm{C}(82)-\mathrm{C}(50)-\mathrm{C}(49)$	
$C(82)-C(50)-C(51)$	$121.0(5)$
$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(51)$	$120.3(5)$
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(50)$	$111.9(4)$
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	109.2
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	109.2
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.2
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B}) \mathrm{LO}^{\text {d }}$	G109.2
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	107.9
$\mathrm{C}(69)-\mathrm{C}(52)-\mathrm{C}(53)$	117.2(5)
$\mathrm{C}(69)-\mathrm{C}(52)-\mathrm{C}(51)$	123.5(5)
$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$	$119.2(5)$
$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(52)$	120.6(5)
$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{H}(53)$	119.7
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{H}(53)$	119.7
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(53)$	120.1(5)
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{H}(54)$	119.9
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{H}(54)$	119.9

$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	121.2(5)
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{H}(55)$	119.4
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{H}(55)$	119.4
$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(69)$	117.4(5)
$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$	120.0(5)
$\mathrm{C}(69)-\mathrm{C}(56)-\mathrm{C}(57)$	122.5(5)
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$	111.1(4)
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	109.4
$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	109.4
C(56)-C(57)-H(57B)	
$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B}) \quad 109.4$	
$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B}) \quad 108.0$	
$\mathrm{C}(68)-\mathrm{C}(58)-\mathrm{C}(59) \quad 117.2(5)$	
$\mathrm{C}(68)-\mathrm{C}(58)-\mathrm{C}(57) \quad 123.5(5)$	
$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{C}(57) \quad 119.3(5)$	
$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{C}(58)$	
$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{H}(59)$	119.7
$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{H}(59)$	119.7
$\mathrm{C}(61)-\mathrm{C}(60)-\mathrm{C}(59) \quad 119.8(6)$	
$\mathrm{C}(61)-\mathrm{C}(60)-\mathrm{H}(60)$	120.1
$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{H}(60)$	120.1
$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)$	121.7(6)
$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{H}(61)$	119.1
$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{H}(61)$	119.1
$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(68)$	117.7(5)
$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	121.3(5)
$\mathrm{C}(68)-\mathrm{C}(62)-\mathrm{C}(63)$	120.9(5)
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(62)$	113.1(5)
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~A})$	109.0
$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~A})$	109.0
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~B})$	109.0
$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~B})$	109.0

$\mathrm{H}(63 \mathrm{~A})-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~B})$	107.8
$\mathrm{C}(65)-\mathrm{C}(64)-\mathrm{C}(45)$	116.1(6)
$\mathrm{C}(65)-\mathrm{C}(64)-\mathrm{C}(63)$	119.8(6)
$\mathrm{C}(45)-\mathrm{C}(64)-\mathrm{C}(63)$	124.0(6)
$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(64)$	121.7(6)
$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{H}(65)$	119.2
$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{H}(65)$	119.2
$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)$	120.5(6)
$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{H}(66)$	119.7
$\mathrm{C}(67)-\mathrm{C}(66)-\mathrm{H}(66)$	119.75
$\mathrm{C}(46)-\mathrm{C}(67)-\mathrm{C}(66) \quad 19.8(6)$	
$\mathrm{C}(46)-\mathrm{C}(67)-\mathrm{H}(67)$	
$\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{H}(67)$	
$\mathrm{O}(6)-\mathrm{C}(68)-\mathrm{C}(58) \quad 121.8(5)$	
$\mathrm{O}(6)-\mathrm{C}(68)-\mathrm{C}(62)$	
$\mathrm{C}(58)-\mathrm{C}(68)-\mathrm{C}(62)$	
$\mathrm{C}(52)-\mathrm{C}(69)-\mathrm{C}(56)$	$123.2(5)$
$\mathrm{C}(52)-\mathrm{C}(69)-\mathrm{O}(7)=$	119.1 (5)
$C(56)-C(69)-O(7) \quad 117.3(5)$	
$\mathrm{O}(7)-\mathrm{C}(70)-\mathrm{C}(71) \quad 107.9(4)$	
$\mathrm{O}(7)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~A})$	110.1
$\mathrm{C}(71)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~A})-$	GV0.1
$\mathrm{O}(7)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	110.1
$\mathrm{C}(71)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	110.1
$\mathrm{H}(70 \mathrm{~A})-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	108.4
$\mathrm{O}(8)-\mathrm{C}(71)-\mathrm{C}(70)$	108.4(4)
$\mathrm{O}(8)-\mathrm{C}(71)-\mathrm{H}(71 \mathrm{~A})$	110.0
$\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{H}(71 \mathrm{~A})$	110.0
$\mathrm{O}(8)-\mathrm{C}(71)-\mathrm{H}(71 \mathrm{~B})$	110.0
$\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{H}(71 \mathrm{~B})$	110.0
$\mathrm{H}(71 \mathrm{~A})-\mathrm{C}(71)-\mathrm{H}(71 \mathrm{~B})$	108.4
$\mathrm{O}(8)-\mathrm{C}(72)-\mathrm{C}(73)$	109.6(4)

$\mathrm{O}(8)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~A})$	109.7
$\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~A})$	109.7
$\mathrm{O}(8)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	109.7
$\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	109.7
$\mathrm{H}(72 \mathrm{~A})-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	108.2
$\mathrm{O}(9)-\mathrm{C}(73)-\mathrm{C}(72)$	$113.8(5)$
$\mathrm{O}(9)-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~A})$	108.8
$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~A})$	108.8
$\mathrm{O}(9)-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~B})$	108.8
$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~B})$	108.8
$\mathrm{H}(73 \mathrm{~A})-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~B})$	107.7
$\mathrm{O}(9)-\mathrm{C}(74)-\mathrm{C}(75)$	$114.1(5)$
$\mathrm{O}(9)-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~A})$	108.7
$\mathrm{C}(75)-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~A})$	108.7
$\mathrm{O}(9)-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~B})$	108.7
$\mathrm{C}(75)-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~B})$	108.7
$\mathrm{H}(74 \mathrm{~A})-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~B})$	107.6
$\mathrm{O}(10)-\mathrm{C}(75)-\mathrm{C}(74)$	$108.6(4)$
$\mathrm{O}(10)-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~A})$	110.0
$\mathrm{C}(74)-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~A})$	110.0
$\mathrm{O}(10)-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~B})$	110.0
$\mathrm{C}(74)-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~B})$	110.0
$\mathrm{H}(75 \mathrm{~A})-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~B})$	108.4
$\mathrm{O}(10)-\mathrm{C}(76)-\mathrm{C}(77)$	$115.5(5)$
$\mathrm{O}(10)-\mathrm{C}(76)-\mathrm{C}(81)$	$124.1(5)$
$\mathrm{C}(77)-\mathrm{C}(76)-\mathrm{C}(81)$	$120.4(5)$
$\mathrm{C}(78)-\mathrm{C}(77)-\mathrm{C}(76)$	$118.6(5)$
$\mathrm{C}(78)-\mathrm{C}(77)-\mathrm{C}(5)$	$123.0(5)$
$\mathrm{C}(76)-\mathrm{C}(77)-\mathrm{C}(5)$	$118.3(5)$
$\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{C}(79)$	$122.0(5)$
$\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{H}(78)$	119.0
$\mathrm{C}(79)-\mathrm{C}(78)-\mathrm{H}(78)$	119.0

$\mathrm{C}(80)-\mathrm{C}(79)-\mathrm{C}(78)$	118.4(5)
$\mathrm{C}(80)-\mathrm{C}(79)-\mathrm{H}(79)$	120.8
$\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{H}(79)$	120.8
$\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{C}(81)$	121.8(6)
$\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{H}(80)$	119.1
$\mathrm{C}(81)-\mathrm{C}(80)-\mathrm{H}(80)$	119.1
$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(76)$	118.8(5)
$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{H}(81)$	120.6
$\mathrm{C}(76)-\mathrm{C}(81)-\mathrm{H}(81)$	120.6
$\mathrm{C}(83)-\mathrm{C}(82)-\mathrm{C}(50)$	
$\mathrm{C}(83)-\mathrm{C}(82)-\mathrm{H}(82)$	
$\mathrm{C}(50)-\mathrm{C}(82)-\mathrm{H}(82)$	
$\mathrm{C}(82)-\mathrm{C}(83)-\mathrm{C}(84)$	$120.2(6)$
$\mathrm{C}(82)-\mathrm{C}(83)-\mathrm{H}(83)$	119.9
$\mathrm{C}(84)-\mathrm{C}(83)-\mathrm{H}(83)$	119.9
$\mathrm{C}(83)-\mathrm{C}(84)-\mathrm{C}(48)$	21.6(6)
$\mathrm{C}(83)-\mathrm{C}(84)-\mathrm{H}(84)$	119.2
$\mathrm{C}(48)-\mathrm{C}(84)-\mathrm{H}(84)$	1192
$\mathrm{C}(1 \mathrm{SS})-\mathrm{O}(3 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})$	116.7(6)
$\mathrm{O}(3 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(3 \mathrm{SS})$	105.3(7)
$\mathrm{O}(3 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 1)$	110.7
$\mathrm{C}(3 \mathrm{SS})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{Sl})^{0}$	G110.7
$\mathrm{O}(3 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	110.7
$\mathrm{C}(3 \mathrm{SS})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	110.7
$\mathrm{H}(1 \mathrm{~S} 1)-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	108.8
$\mathrm{O}(1 \mathrm{SS})-\mathrm{C}(1 \mathrm{SS})-\mathrm{O}(3 \mathrm{~S})$	121.0(8)
$\mathrm{O}(1 \mathrm{SS})-\mathrm{C}(1 \mathrm{SS})-\mathrm{C}(4 \mathrm{SS})$	126.6(8)
$\mathrm{O}(3 \mathrm{~S})-\mathrm{C}(1 \mathrm{SS})-\mathrm{C}(4 \mathrm{SS})$	112.4(8)
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 1)$	109.5
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 2)$	109.5
H(3S1)-C(3SS)-H(3S2)	109.5
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 3)$	109.5

$\mathrm{H}(3 \mathrm{~S} 1)-\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 3)$	109.5
$\mathrm{H}(3 \mathrm{~S} 2)-\mathrm{C}(3 \mathrm{SS})-\mathrm{H}(3 \mathrm{~S} 3)$	109.5
$\mathrm{C}(1 \mathrm{SS})-\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 1)$	109.5
$\mathrm{C}(1 \mathrm{SS})-\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 2)$	109.5
$\mathrm{H}(4 \mathrm{~S} 1)-\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 2)$	109.5
$\mathrm{C}(1 \mathrm{SS})-\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 3)$	109.5
$\mathrm{H}(4 \mathrm{~S} 1)-\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 3)$	109.5
$\mathrm{H}(4 \mathrm{~S} 2)-\mathrm{C}(4 \mathrm{SS})-\mathrm{H}(4 \mathrm{~S} 3)$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(A^{2} x \quad 10^{3}\right)$ for cuper(II) porphyrin-calix[4]arene (CuL1) The anisotropic displacement factor exponent takes the form: $-\mathbf{2} \boldsymbol{\pi}^{2}\left[\mathrm{~h}^{2} \mathbf{a}^{2} \times \mathbf{U} 11+\ldots+2 h \mathrm{k} \mathbf{a} \times \mathrm{b} \times \mathrm{U} 12\right]$
U11 U22 U33 U23 U13 U12

-						
$\mathrm{Cu}(1)$	$27(1)$	$26(1)$	$20(1)$	$-1(1)$	$15(1)$	$-4(1)$
$\mathrm{O}(1)$	$39(3)$	$23(2)$	$47(3)$	$-4(2)$	$29(2)$	$0(2)$
$\mathrm{O}(2)$	$60(4)$	$51(3)$	$54(3)$	$5(3)$	$26(3)$	$5(3)$
$\mathrm{O}(3)$	$75(4)$	$65(3)$	$45(3)$	$11(3)$	$36(3)$	$10(3)$
$\mathrm{O}(4)$	$45(3)$	$30(2)$	$35(3)$	$10(2)$	$30(2)$	$16(2)$
$\mathrm{O}(5)$	$32(3)$	$31(2)$	$25(2)$	$-4(2)$	$14(2)$	$-4(2)$
$\mathrm{O}(6)$	$34(3)$	$31(2)$	$31(3)$	$12(2)$	$22(2)$	$3(2)$
$\mathrm{O}(7)$	$31(2)$	$19(2)$	$19(2)$	$-1(2)$	$-15(2)$	$4(2)$
$\mathrm{O}(8)$	$26(2)$	$37(3)$	$16(2)$	$4(2)$	$7(2)$	$0(2)$
$\mathrm{O}(9)$	$28(3)$	$43(3)$	$28(3)$	$6(2)$	$8(2)$	$10(2)$
$\mathrm{O}(10)$	$32(3)$	$25(2)$	$32(3)$	$5(2)$	$18(2)$	$5(2)$
$\mathrm{N}(1)$	$27(3)$	$17(3)$	$22(3)$	$-5(2)$	$16(2)$	$R S 11(2)$
$\mathrm{N}(2)$	$21(3)$	$21(3)$	$20(3)$	$-1(2)$	$12(2)$	$0(2)$
$\mathrm{N}(3)$	$25(3)$	$14(3)$	$19(3)$	$-4(2)$	$14(2)$	$-7(2)$
$\mathrm{N}(4)$	$25(3)$	$28(3)$	$13(3)$	$-7(2)$	$11(2)$	$-10(2)$
$\mathrm{C}(1)$	$32(4)$	$24(3)$	$17(3)$	$-3(3)$	$17(3)$	$-5(3)$
$\mathrm{C}(2)$	$31(4)$	$26(3)$	$20(4)$	$-5(3)$	$14(3)$	$-3(3)$
$\mathrm{C}(3)$	$25(4)$	$27(4)$	$25(4)$	$-1(3)$	$15(3)$	$-3(3)$
$\mathrm{C}(4)$	$29(4)$	$24(3)$	$20(4)$	$2(3)$	$14(3)$	$0(3)$
$\mathrm{C}(5)$	$32(4)$	$19(3)$	$20(4)$	$-4(3)$	$19(3)$	$-1(3)$
$\mathrm{C}(6)$	$30(4)$	$17(3)$	$23(4)$	$-1(3)$	$18(3)$	$0(3)$
$\mathrm{C}(7)$	$29(4)$	$11(3)$	$22(3)$	$6(3)$	$19(3)$	$2(3)$

$\mathrm{C}(8)$	$27(4)$	$24(3)$	$15(3)$	$-4(3)$	$12(3)$	$1(3)$
$\mathrm{C}(9)$	$34(4)$	$21(3)$	$19(4)$	$3(3)$	$19(3)$	$4(3)$
$\mathrm{C}(10)$	$28(4)$	$15(3)$	$23(3)$	$-1(3)$	$17(3)$	$3(3)$
$\mathrm{C}(11)$	$22(3)$	$25(3)$	$22(3)$	$1(3)$	$16(3)$	$1(3)$
$\mathrm{C}(12)$	$28(4)$	$27(4)$	$25(4)$	$1(3)$	$17(3)$	$1(3)$
$\mathrm{C}(13)$	$42(5)$	$43(4)$	$22(4)$	$-2(3)$	$17(3)$	$-4(4)$
$\mathrm{C}(14)$	$30(4)$	$50(4)$	$17(4)$	$5(3)$	$7(3)$	$-1(3)$
$\mathrm{C}(15)$	$26(4)$	$45(4)$	$27(4)$	$15(3)$	$15(3)$	$10(3)$
$\mathrm{C}(16)$	$38(4)$	$30(4)$	$27(4)$	$11(3)$	$23(3)$	$10(3)$
$\mathrm{C}(17)$	$26(4)$	$19(3)$	$20(4)$	$0(3)$	$12(3)$	$0(3)$
$\mathrm{C}(18)$	$27(4)$	$14(3)$	$23(4)$	$-2(3)$	$16(3)$	$-2(3)$
$\mathrm{C}(19)$	$28(4)$	$27(4)$	$25(4)$	$-5(3)$	$15(3)$	$-5(3)$
$\mathrm{C}(20)$	$23(4)$	$28(4)$	$19(4)$	$2(3)$	$9(3)$	$4(3)$
$\mathrm{C}(21)$	$28(4)$	$21(3)$	$20(4)$	$-3(3)$	$14(3)$	$-3(3)$
$\mathrm{C}(22)$	$33(4)$	$26(4)$	$21(4)$	$1(3)$	$16(3)$	$-4(3)$
$\mathrm{C}(23)$	$35(4)$	$38(4)$	$21(4)$	$1(3)$	$18(3)$	$-7(3)$
$\mathrm{C}(24)$	$38(4)$	$65(5)$	$18(4)$	$-2(3)$	$14(3)$	$-16(4)$
$\mathrm{C}(25)$	$44(5)$	$45(4)$	$21(4)$	$-3(3)$	$16(3)$	$-23(3)$
$\mathrm{C}(26)$	$31(4)$	$29(4)$	$23(4)$	$-3(3)$	$19(3)$	$-8(3)$
$\mathrm{C}(27)$	$30(4)$	$49(4)$	$26(4)$	$-3(3)$	$18(3)$	$-15(3)$
$\mathrm{C}(28)$	$43(5)$	$45(4)$	$28(4)$	$1(3)$	$16(4)$	$-21(4)$
$\mathrm{C}(29)$	$50(5)$	$74(6)$	$33(5)$	$10(4)$	$16(4)$	$-28(4)$
$\mathrm{C}(30)$	$60(6)$	$87(6)$	$22(4)$	$-9(4)$	$21(4)$	$-38(5)$
$\mathrm{C}(31)$	$48(5)$	$88(6)$	$42(5)$	$-23(4)$	$31(4)$	$-30(5)$
$\mathrm{C}(32)$	$35(4)$	$77(5)$	$30(4)$	$-15(4)$	$20(4)$	$-26(4)$
$\mathrm{C}(33)$	$24(4)$	$25(4)$	$18(3)$	$0(3)$	$12(3)$	$-4(3)$
$\mathrm{C}(34)$	$32(4)$	$24(3)$	$24(4)$	$-2(3)$	$14(3)$	$-5(3)$
$\mathrm{C}(35)$	$33(4)$	$30(4)$	$22(3)$	$0(3)$	$21(3)$	$-3(3)$
$\mathrm{C}(36)$	$30(4)$	$31(4)$	$25(4)$	$3(3)$	$15(3)$	$-14(3)$
$\mathrm{C}(37)$	$29(4)$	$25(4)$	$33(4)$	$-1(3)$	$16(3)$	$-1(3)$
$\mathrm{C}(38)$	$25(4)$	$34(4)$	$26(4)$	$-1(3)$	$16(3)$	$0(3)$
$\mathrm{C}(39)$	$43(4)$	$28(4)$	$44(4)$	$2(3)$	$27(4)$	$5(3)$

$\mathrm{C}(40)$	$87(6)$	$18(4)$	$42(5)$	$-4(3)$	$25(4)$	$6(4)$
$\mathrm{C}(41)$	$62(6)$	$73(6)$	$38(5)$	$19(4)$	$19(4)$	$13(4)$
$\mathrm{C}(42)$	$65(6)$	$57(5)$	$60(5)$	$10(4)$	$39(5)$	$21(4)$
$\mathrm{C}(43)$	$31(4)$	$86(6)$	$45(5)$	$41(4)$	$17(4)$	$10(4)$
$\mathrm{C}(44)$	$50(5)$	$46(4)$	$35(4)$	$23(4)$	$27(4)$	$24(4)$
$\mathrm{C}(45)$	$48(5)$	$20(4)$	$34(4)$	$10(3)$	$30(4)$	$7(3)$
$\mathrm{C}(46)$	$46(4)$	$10(3)$	$46(4)$	$3(3)$	$35(4)$	$5(3)$
$\mathrm{C}(47)$	$43(4)$	$20(4)$	$42(4)$	$2(3)$	$34(4)$	$0(3)$
$\mathrm{C}(48)$	$35(4)$	$26(4)$	$42(4)$	$-1(3)$	$34(4)$	$-8(3)$
$\mathrm{C}(49)$	$25(4)$	$21(4)$	$36(4)$	$3(3)$	$25(3)$	$0(3)$
$\mathrm{C}(50)$	$29(4)$	$25(4)$	$26(4)$	$-4(3)$	$21(3)$	$-5(3)$
$\mathrm{C}(51)$	$26(4)$	$33(4)$	$24(4)$	$-1(3)$	$15(3)$	$1(3)$
$\mathrm{C}(52)$	$22(4)$	$21(3)$	$21(4)$	$-1(3)$	$14(3)$	$7(3)$
$\mathrm{C}(53)$	$17(3)$	$27(4)$	$28(4)$	$-5(3)$	$11(3)$	$4(3)$
$\mathrm{C}(54)$	$29(4)$	$25(3)$	$20(4)$	$1(3)$	$15(3)$	$2(3)$
$\mathrm{C}(55)$	$30(4)$	$17(3)$	$29(4)$	$-1(3)$	$20(3)$	$1(3)$
$\mathrm{C}(56)$	$26(4)$	$15(3)$	$23(4)$	$-1(3)$	$14(3)$	$3(3)$
$\mathrm{C}(57)$	$26(4)$	$24(3)$	$23(3)$	$-1(3)$	$16(3)$	$4(3)$
$\mathrm{C}(58)$	$25(4)$	$27(4)$	$15(3)$	$-4(3)$	$8(3)$	$-3(3)$
$\mathrm{C}(59)$	$30(4)$	$27(3)$	$20(3)$	$1(3)$	$12(3)$	$0(3)$
$\mathrm{C}(60)$	$24(4)$	$36(4)$	$38(4)$	$-8(3)$	$17(3)$	$0(3)$
$\mathrm{C}(61)$	$30(4)$	$32(4)$	$33(4)$	$0(3)$	$18(3)$	$6(3)$
$\mathrm{C}(62)$	$26(4)$	$27(4)$	$29(4)$	$3(3)$	$15(3)$	$3(3)$
$\mathrm{C}(63)$	$28(4)$	$44(4)$	$36(4)$	$6(3)$	$20(3)$	$16(3)$
$\mathrm{C}(64)$	$31(4)$	$27(4)$	$36(4)$	$8(3)$	$16(3)$	$10(3)$
$\mathrm{C}(65)$	$30(4)$	$27(4)$	$46(5)$	$7(3)$	$23(4)$	$5(3)$
$\mathrm{C}(66)$	$47(4)$	$31(4)$	$48(4)$	$14(4)$	$43(4)$	$15(4)$
$\mathrm{C}(67)$	$39(4)$	$23(4)$	$38(4)$	$4(3)$	$20(3)$	$2(3)$
$\mathrm{C}(68)$	$29(4)$	$23(4)$	$21(4)$	$-2(3)$	$9(3)$	$-1(3)$
$\mathrm{C}(69)$	$29(4)$	$18(3)$	$20(4)$	$-3(3)$	$16(3)$	$2(3)$
$\mathrm{C}(70)$	$32(4)$	$27(3)$	$22(4)$	$-1(3)$	$16(3)$	$-2(3)$
$\mathrm{C}(71)$	$27(4)$	$33(4)$	$25(4)$	$0(3)$	$15(3)$	$-1(3)$

$\mathrm{C}(72)$	$34(4)$	$44(4)$	$27(4)$	$-1(3)$	$16(3)$	$-2(3)$
$\mathrm{C}(73)$	$33(4)$	$38(4)$	$24(4)$	$-7(3)$	$11(3)$	$-4(3)$
$\mathrm{C}(74)$	$28(4)$	$35(4)$	$30(4)$	$3(3)$	$14(3)$	$7(3)$
$\mathrm{C}(75)$	$28(4)$	$30(4)$	$25(4)$	$-1(3)$	$12(3)$	$2(3)$
$\mathrm{C}(76)$	$29(4)$	$28(4)$	$21(3)$	$3(3)$	$14(3)$	$-1(3)$
$\mathrm{C}(77)$	$20(4)$	$35(4)$	$10(3)$	$-7(3)$	$7(3)$	$-4(3)$
$\mathrm{C}(78)$	$28(4)$	$22(3)$	$20(3)$	$-3(3)$	$12(3)$	$1(3)$
$\mathrm{C}(79)$	$38(4)$	$29(4)$	$23(4)$	$-5(3)$	$22(3)$	$-11(3)$
$\mathrm{C}(80)$	$27(4)$	$47(4)$	$24(4)$	$-9(3)$	$17(3)$	$-7(3)$
$\mathrm{C}(81)$	$26(4)$	$33(4)$	$21(3)$	$-6(3)$	$12(3)$	$-5(3)$
$\mathrm{C}(82)$	$29(4)$	$42(4)$	$40(4)$	$-4(3)$	$20(3)$	$2(3)$
$\mathrm{C}(83)$	$36(4)$	$38(4)$	$42(4)$	$10(4)$	$24(4)$	$-6(4)$
$\mathrm{C}(84)$	$42(4)$	$28(4)$	$51(5)$	$-11(4)$	$35(4)$	$-8(4)$
$\mathrm{O}(3 \mathrm{~S})$	$66(4)$	$88(4)$	$59(4)$	$-2(3)$	$32(3)$	$2(3)$
$\mathrm{C}(1 \mathrm{~S})$	$94(7)$	$113(7)$	$43(6)$	$26(5)$	$13(5)$	$27(6)$
$\mathrm{O}(1 \mathrm{SS})$	$64(4)$	$101(5)$	$99(5)$	$-19(4)$	$42(4)$	$10(3)$
$\mathrm{C}(1 \mathrm{SS})$	$55(6)$	$89(7)$	$58(6)$	$-7(5)$	$29(5)$	$-13(5)$
$\mathrm{C}(3 \mathrm{SS})$	$106(8)$	$120(8)$	$47(6)$	$-23(5)$	$21(6)$	$-28(6)$

VITAE

Miss Nattaporn Labung was born on May 14, 1986 in Buriram, Thailand. She graduated with a high school diploma from Buriram pittayakom School, Thailand She received a Bachelor Degree of Chemistry from Faculty of Science at Chulalongkorn University, Bangkok in 2009. After that, she has been a graduate student at the Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok in 2009. She finished her Master's Degree of Science in the academic year 2011.

[^0]: Largest diff. peak and hole

