

โครงการ

การเรียนการสอนเพื่อเสริมประสบการณ์

ชื่อโครงการ ค่าสูงสุดต่ำสุดของผลรวมเชิงเส้นของช่วงที่มีเงื่อนไขเชิงเส้น
(Maximum and minimum values of linear combination with interval (inear equation)

ศิรัชชา เรือนรื่น เลขประจำตัว 5833542423

ภาควิชา คณิตศาสตร์และวิทยาการคอมพิวเตอร์
ปีการศึกษา
2561

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของโครงงานทางวิชาการที่ให้บริการในคลังปัญญาจุฟัา (CUIR)
เป็นแฟ้มข้อมูลของนิสิตเจ้าของโครงงานทางวิชาการที่ส่งผ่านทางคณะที่สังกัด

ค่าสูงสุดต่ำสุดของผลรวมเชิงเส้นของช่วงที่มี่เื่อนไขเชิงเส้น

โครงงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรบันฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2561
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MAXIMUM AND MINIMUM VALUES OF LINEAR COMBINATION WITH
 INTERVAL LINEAR EQUATION

A Project Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science Program in Mathematics

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2018
Copyright of Chulalongkorn University

หัวข้อโครงงาน

โดย
สาขาวิชา
อาจารย์ที่ปรีกษาโครงงานหลัก

ค่าสูงสุดต่ำสุดของผลรวมเชิงเส้นของช่วงที่มีเงื่อนไขเชิง
เส้น
นางสาวศิรัชชา เรือนรื่น
คณิตศาสตร์
รองศาสตราจารย์ ดร.พันทิพา ทิพย์วิวัฒน์พจนา

ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับโครงงานฉบับนี้เป็นส่วนหนึ่งของการศีกษาตามหลักสูตรปริญญาบัณทิต ในรายวิชา 2301499 โครงงานวิทยาศาสตร์
(รองศาสตราจารย์ ดร.ตวงรัตน์ ไชยชนะ)

คิรัชชา เรือนรื่น: ค่าสูงสุดต่ำสุดของผลรวมเชิงเส้นของช่วงที่มีเงื่อนไขเชิงเส้น. (MAXIMUM AND MINIMUM VALUES OF LINEAR COMBINATION WITH INTERVAL LINEAR EQUATION) อ.ที่ปรึกษาโครงงานหลัก : รศ. ดร.พันทิพา ทิพย์ วิวัฒน์พจนา, 38 หน้า.

โครงงานนี้ ศึกษาและพิสูจน์ขั้นตอนวิธีการหาค่าสูงสุดและค่าต่ำสุดของค่าคาด หวังเมื่อ ความน่าจะเป็นอยู่ในช่วงที่กำหนดให้ จากนั้นจึงทำการประยุกต์ใช้ขั้นตอนวิธีดังกล่าวกับคุณสมบัติ ต่าง ๆ ของช่วงความน่าจะเป็นในการวิเคราะห์หาค่าสูงสุดและค่าต่ำสุดของผลรวมเชิงเส้นของช่วง ที่มีเงื่อนไขเชิงเส้น และเขียนโปรแกรมเพื่อหาค่าสูงสุดและค่าต่ำสุดดังกล่าวโดยใช้ภาษาไพธอน

จุฬาลงกรณ์มหาวิทยาลัย

Chiliainngikorn IIniversity

 ปีการศึกษา 2561

\#\# 5833542423: MAJOR MATHEMATICS

KEYWORDS: INTERVAL LINEAR EQUATION / PROBABILITY INTERVAL

SIRATCHA RUANRUEN : MAXIMUM AND MINIMUM VALUES OF LINEAR COMBINATION WITH INTERVAL LINEAR EQUATION. ADVISOR : ASSOC. PROF. PHANTIPA THIPWIWATPOTJANA, Ph.D., 38 pp.

In this project, we study and prove the method for finding the smallest and the largest expected values when a probability interval is given. Then we apply the method with the properties of probability interval to analyze the minimum and the maximum values of a linear combination with interval linear constraint. We further write a code for finding the minimum and the maximum values using Python language,

Field of Study: Mathematics Advisor's Signature
 Academic Year: 2018

Acknowledgements

I would like to thank my advisor, Associate Professor Phantipa Thipwiwatpotjana, Ph.D, for giving me the motivation for this project, basic background and suggestions.

Moreover, I appreciate the great help of Associate Professor Tuangrat Chaichana., Ph.D and Associate Professor Nattanard Triphop. They provide the value comments and advises for me to complete my project successfully.

Special thanks are given to my teachers in the faculty of Science and the Department of Mathematics and Computer Science for their supports during my education in Chulalongkorn University. Finally, I would like to thank my family and friends very much for supporting me.

Contents

Page
Abstract (Thai) iv
Abstract (English) v
Acknowledgements vi
Contents vii
Chapter
1 Introduction 1
2 Probability Interval 3
2.1 Definition of probability interval 3
2.2 Properties of probability interval 4
2.3 Extreme probabilities 8
3 linear combination with interval linear equation 11
3.1 Adjusting $\left[\mathrm{c}_{i}, \bar{c}_{i}\right]$ to be non-negative interval 11
3.2 Transformation of an interval linear combination 13
3.2.1 Transformation of interval linear equation 13
3.2.2 Transformation of interval linear combination 15
4 Example and Algorithm 17
5 Conclusion 29
Bibliography 30
Appendix 31
Biography 38

CHAPTER I

INTRODUCTION

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. For a given $d \in \mathbb{R}$ and $\alpha_{i}, \underline{c_{i}}, \overline{c_{i}} \in \mathbb{R} \forall i=1,2, \ldots, n$ where $\underline{c_{i}} \leq \overline{c_{i}}$, we call the equation $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ where the unknown $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$ $\forall i=1,2, \ldots, n$ as an interval linear equation. And we call $\sum_{i=1}^{n} c_{i} x_{i}$ where the unknown $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$ as an interval linear combination.

Let us consider an interval linear combination $\sum_{i=1}^{n} c_{i} x_{i}$ such that c_{i} 's have the interval linear relation

$$
\sum_{i=1}^{n} \alpha_{i} c_{i}=d
$$

where c_{i} is an unknown parameter in the interval $\left[\underline{c}_{i}, \bar{c}_{i}\right]$, such that $\underline{c}_{i} \leq \bar{c}_{i}$,
x_{i} is an element in $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$,
α_{i} is a known of c_{i} 's,
d is a known parameter.
L. M. De Campos, et al. provided atgorithms for finding the smallest and the largest expected values of a probability interval linear combination with probability interval in [1]. We study and prove the Algorithms in [1]. Then we try to apply these Algorithm to find the smallest and the largest values of a general interval linear combination with the linear relation $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ where $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$ and $\underline{c}_{i}, \bar{c}_{i} \in \mathbb{R}$. Then we write a code for finding the minimum and the maximum values using Python language.

The interval linear combination can be adjusted to be a probability interval linear combination $\sum_{i=1}^{N} p_{i} t_{i}$ where p_{i} is an unknown probability in a probability interval and $t_{i} \in \mathbb{R}$. When we concern only on non-negative lower bound $\underline{c_{i}}, \forall i=1,2, \ldots, n$, it had been shown in [2]. However, the boundaries of c_{i} are not always greater than or equal to zero. So, we will provide a method for adjusting the interval linear combination to be a probability interval linear combination when $\underline{c_{i}}$ and $\overline{c_{i}}$ are not only non-negative values. In other word, in this project we concern the general case when c_{i} is an unknown parameter in the interval $\left[\underline{c}_{i}, \bar{c}_{i}\right]$ such that $\underline{c}_{i} \leq \bar{c}_{i}$ and $\underline{c}_{i}, \overline{c_{i}} \in \mathbb{R}$.

We first provide some properties of probability interval, a method finding the smallest and the largest expected values and a proof of an Algorithm for finding the smallest and the largest expected values in Chapter II. A method for adjusting an interval linear combination to probability interval linear combination is shown in Chapter III. Chapter IV serves the Algorithm to find the minimum and the maximum values of linear combination with interval linear equation. The final chapter is served for the conclusion of this project.

CHAPTER II

PROBABILITY INTERVAL

In this chapter, we present all basic knowledge needed to find the lowest and the largest values of an interval linear combination. We start with properties of probability interval. Some basic idea of extreme probabilities will provided. Furthermore, We prove that probability got from Algorithm 1 and 2 provide the smallest and the largest expected values when a probability interval is given in the last section of this chapter.

2.1 Definition of probability interval

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x and $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\}$ be a family of intervals bounded by 0 and 1 . We can explain these intervals as a set of bounds of probabilities by defining the set \mathscr{P} of probability distributions on X as

$$
\begin{equation*}
\mathscr{P}=\left\{\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid l_{i} \leq p_{i} \leq u_{i}, \sum_{i=1}^{n} p_{i}=1\right\} . \tag{2.1}
\end{equation*}
$$

Then the set L is called a set of probability intervals (or probability interval, in short), if there exist $p_{i} \in\left[l_{i}, u_{i}\right]$, for all $i=1,2, \ldots, n$ such that $\sum_{i=1}^{n} p_{i}=1$, and \mathscr{P} is the set of all possible probabilities associated to L.

In order to avoid the emptiness of set \mathscr{P}, it is necessary to have more properties on the intervals which is called proper. A probability interval L is called a proper probability interval if

$$
\begin{equation*}
\sum_{i=1}^{n} l_{i} \leq 1 \leq \sum_{i=1}^{n} u_{i} \tag{2.2}
\end{equation*}
$$

In addition, we can also associate with the proper intervals $\left[l_{i}, u_{i}\right]$ by presenting a pair (l, u) of the lower and upper probabilities through \mathscr{P} as follows.

$$
\begin{equation*}
l(A)=\inf _{p \in \mathscr{P}} p(A) \text { and } u(A)=\sup _{p \in \mathscr{P}} p(A), \forall A \subseteq X \tag{2.3}
\end{equation*}
$$

Therefore, $l\left(\left\{x_{i}\right\}\right)=\inf _{p \in \mathscr{P}} p_{i} \geq l_{i}$ and $u\left(\left\{x_{i}\right\}\right)=\sup _{\boldsymbol{p} \in \mathscr{P}} p_{i} \leq u_{i}$. We use these two properties to get the tight bound of each interval.

2.2 Properties of probability interval

A proper probability interval must also have the following properties to ensure that the lower bound l_{i} and the upper bound u_{i} of the probability interval can be reached by some probabilities in the set \mathscr{P}, so called a reachable probability interval.

Definition (Reachable). Let $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\}$ be a probability interval. If there exist $p_{j}, q_{j} \in\left[l_{j}, u_{j}\right]$ for all $j \in\{1,2, \ldots, n\}$ such that $\forall i$, $l_{i}+\sum_{j \neq i} p_{j}=1$ and $u_{i}+\sum_{j \neq i} q_{j}=1$, then L is called a reachable probability interval.

Theorem 1. Given a reachable probability interval

$$
L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\},
$$

we have

$$
\begin{equation*}
\sum_{j \neq i} l_{j}+u_{i} \leq 1 \text { and } \sum_{j \neq i} u_{j}+l_{i} \geq 1, \quad \forall i=1,2, \ldots, n . \tag{2.4}
\end{equation*}
$$

The conditions (2.4) guarantee that the lower bound l_{i} and the upper bounds u_{i} can be reached by some probabilities in \mathscr{P}. Sometimes probability interval is not reachable, we must change it to become a reachable probability interval. Now, let us see through the series of theorems how to modify a probability interval to be reachable without changing the associated set of possible probabilities

Lemma 1. Let $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\}$ be a set of proper probability intervals and

$$
\begin{equation*}
l_{i}^{\prime}=\max \left\{l_{i}, 1-\sum_{j \neq i} u_{j}\right\} \text { and } u_{i}^{\prime}=\min \left\{u_{i}, 1-\sum_{j \neq i} l_{j}\right\}, \text { for all } i=1,2, \ldots, n \tag{2.5}
\end{equation*}
$$

Then $l_{i}^{\prime} \leq u_{i}^{\prime}$, for all $i=1,2, \ldots n$.

Proof. We will show that $l_{i}^{\prime} \leq u_{i}^{\prime}$, for all $i=1,2, \ldots, n$.
Case I: $\quad l_{i} \leq 1-\sum_{j \neq i} u_{j}$ and $u_{i} \leq 1-\sum_{j \neq i} l_{j}$.

$$
\text { So, } \begin{aligned}
l_{i}^{\prime} & =\max \left\{l_{i}, 1-\sum_{j \neq i} u_{j}\right\}=1-\sum_{j \neq i} u_{j} \\
& \leq u_{i}=\min \left\{u_{i}, 1-\sum_{j \neq i} l_{j}\right\}=u_{i}^{\prime} .
\end{aligned}
$$

Case II: $\quad l_{i} \leq 1-\sum_{j \neq i} u_{j}$ and $u_{i}>1-\sum_{j \neq i} l_{j}$.

$$
\text { So, } \begin{aligned}
l_{i}^{\prime} & =\max \left\{l_{i}, 1-\sum_{j \neq i} u_{j}\right\}=1-\sum_{j \neq i} u_{j} \\
& \leq 1-\sum_{j \neq i} l_{j}=\min \left\{u_{i}, 1-\sum_{j \neq i} l_{j}\right\}=u_{i}^{\prime} .
\end{aligned}
$$

Case III: $\quad l_{i}>1-\sum_{j \neq i} u_{j}$ and $u_{i} \leq 1-\sum_{j \neq i} l_{j}$.

$$
\text { So, } \begin{aligned}
l_{i}^{\prime} & =\max \left\{l_{i}, 1-\sum_{j \neq i} u_{j}\right\}=l_{i} \\
& \leq u_{i}=\min \left\{u_{i}, 1-\sum_{j \neq i} l_{j}\right\}=u_{i}^{\prime} .
\end{aligned}
$$

Case IV: $\quad l_{i}>1-\sum_{j \neq i} u_{j}$ and $u_{i}>1-\sum_{j \neq i} l_{j}$.

$$
\begin{aligned}
& \text { So, } l_{i}^{\prime}=\max \left\{l_{i}, 1-\sum_{j \neq i} u_{j}\right\}=l_{i} \leq \\
& \\
& \quad 1-\sum_{j \neq i} l_{j}=\min \left\{u_{i}, 1-\sum_{j \neq i} l_{j}\right\}=u_{i}^{\prime} .
\end{aligned}
$$

From Case I - IV, we have $l_{i}^{\prime} \leq u_{i}^{\prime}$, for all $i=1,2, \ldots, n$.
Theorem 2. Let $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\}$ and $L^{\prime}=\left\{\left[l_{i}^{\prime}, u_{i}^{\prime}\right] \mid\right.$ $0 \leq l_{i}^{\prime} \leq u_{i}^{\prime} \leq 1, i=1,2, \ldots, n$ where $l_{i}^{\prime}=\max \left\{l_{i}, 1+\sum_{j \neq i} u_{j}\right\}$ and $u_{i}^{\prime}=\min \left\{u_{i}, 1-\sum_{j \neq i} l_{j}\right\}$ for all $i=1,2, \ldots, n$. Then $\mathscr{P}=\mathscr{P}^{\prime}$ where $\mathscr{P}=\left\{\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid l_{i} \leq p_{i} \leq u_{i}, \sum_{i=1}^{n} p_{i}=1\right\}$ and

$$
\mathscr{P}^{\prime}=\left\{\boldsymbol{p},=\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right) \mid l_{i}^{\prime} \leq p_{i}^{\prime} \leq u_{i}^{\prime}, \sum_{i=1}^{n} p_{i}^{\prime}=1\right\} .
$$

Proof. From Lemma 1, we have $l_{i} \leq l_{i}^{\prime} \leq u_{i}^{\prime} \leq u_{i}$ for all $i=1,2, \ldots, n$. Thus $\mathscr{P} \subseteq \mathscr{P}^{\prime}$. On the other hand, let $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathscr{P}$ and we have $\sum_{i=1}^{n} p_{i}=1$. We will show that $l_{i}^{\prime} \leq p_{i} \leq u_{i}^{\prime} \forall i=1,2, \ldots, n$. Consider $l_{i}^{\prime} \leq p_{i}$.

Case I: If $l_{i}^{\prime}=l_{i}$, then $l_{i}^{\prime}=l_{i} \leq p_{i}$.
Case II: If $l_{i}^{\prime}=1-\sum_{j \neq i} u_{j}$ and we have $p_{j} \leq u_{j}, \forall j$.

$$
\begin{aligned}
\sum_{j \neq i} p_{j} & \leq \sum_{j \neq i} u_{j} \\
-1+p_{i}+\sum_{j \neq i}^{j} p_{j} & \leq-1+p_{i}+\sum_{j \neq i} u_{j} \\
-1+\sum_{i=1}^{n} p_{i} & \leq-1+p_{i}+\sum_{j \neq i} u_{j} \\
0 & \leq-1+p_{i}+\sum_{j \neq i} u_{j} \\
1-\sum_{j \neq i} u_{j} & \leq p_{i} \\
l_{i}^{\prime} & \leq p_{i} .
\end{aligned}
$$

From Case I - II, we have $l_{i}^{\prime} \leq p_{i}$, for all $i=1,2, \ldots, n$. Consider $p_{i} \leq u_{i}^{\prime}$.
Case I: If $u_{i}^{\prime}=u_{i}$, then $p_{i} \leq u_{i}=u_{i}^{\prime}$.
Case II: If $u_{i}^{\prime}=1-\sum_{j \neq i} l_{j}$ and we have $l_{j} \leq p_{j}, \forall j$.

$$
\begin{aligned}
\sum_{j \neq i} l_{j} & \leq \sum_{j \neq i} p_{j} \\
p_{i}-1+\sum_{j \neq i} l_{j} & \leq p_{i}-1+\sum_{j \neq i} p_{j} \\
p_{i}-1+\sum_{j \neq i} l_{j} & \leq \sum_{i=1}^{n} p_{i}-1=1-1=0 \\
p_{i}-1+\sum_{j \neq i} l_{j} & \leq 0 \\
p_{i} & \leq 1-\sum_{j \neq i} l_{j} \\
p_{i} & \leq u_{i}^{\prime} .
\end{aligned}
$$

From Case I - II, we have $p_{i} \leq u_{i}^{\prime}$, for all $i=1,2, \ldots, n$.
Hence, $l_{i}^{\prime} \leq p_{i} \leq u_{i}^{\prime}, \forall i$. Then $\boldsymbol{p} \in \mathscr{P}^{\prime}$ and thus $\mathscr{P} \subseteq \mathscr{P}^{\prime}$.

According to Lemma 1, we can replace the original set of probability intervals L to L^{\prime} defined in (2.5) without affacting the set \mathscr{P}. This replacement permits us to refine the probability bounds that define \mathscr{P} in such a way that these bounds can always be reached, as shown the next theorem.

Theorem 3. The probability interval L^{\prime} defined in (2.5) are reachable.
Proof. We will prove that $\sum_{j \neq i} l_{j}^{\prime}+u_{i}^{\prime} \leq 1$, for all $i=1,2, \ldots, n$. Let $i=1,2, \ldots, n$.

Case I: $\quad \forall j \neq i$, and $l_{j} \geq 1-\sum_{m \neq j} u_{m}$, then $l_{j}^{\prime}=l_{j}, \forall j \neq i \quad$.
From (2.5), we have $u_{i}^{\prime} \leq 1-\sum_{j \neq i} l_{j}$

$$
\text { So, } \begin{aligned}
\sum_{j \neq i} l_{j}^{\prime}+u_{i}^{\prime} & \leq \sum_{j \neq i} l_{j}^{\prime}+\left(1-\sum_{j \neq i} l_{j}\right) \\
& =\sum_{j \neq i}\left(l_{j}^{\prime}-l_{j}\right)+1 \\
& =0+1=1
\end{aligned}
$$

Case II: $\quad \forall h \neq i$, and $l_{h}<1-\sum_{j \neq h} u_{m}$, then $l_{h}^{\prime}=1-\sum_{j \neq h} u_{j}$.

$$
\text { So, } \begin{aligned}
\sum_{j \neq i} l_{j}^{\prime}+u_{i}^{\prime} & =\sum_{j \neq i, h}^{j \neq h} l_{j}^{\prime}+l_{h}^{\prime}+u_{i}^{\prime} \\
& =\sum_{j \neq i, h}^{j \neq h} l_{j}^{\prime}+\left(1-\sum_{j \neq h} u_{j}\right)+u_{i}^{\prime} \\
& =\sum_{j \neq i, h} l_{j}^{\prime}-\left(\sum_{j \neq i, h} u_{j}+u_{i}\right)+u_{i}^{\prime}+1 \\
& =\sum_{j \neq i, h}\left(l_{j}^{\prime}-u_{j}\right)+\left(u_{i}^{\prime}-u_{i}\right)+1 \\
& \leq 0+0+1=1 .
\end{aligned}
$$

From Case I - II, we have $\sum_{j \neq i} l_{j}^{\prime}+u_{i}^{\prime} \leq 1$, for all $i=1,2, \ldots, n$.
We will prove that $\sum_{j \neq i} u_{j}^{\prime}+l_{i}^{\prime} \geq 1$, for all $i=1,2, \ldots, n$.
Case I: $\quad \forall h \neq i$, and $u_{h} \geq 1-\sum_{j \neq h} l_{j}$, then $u_{h}^{\prime}=1-\sum_{j \neq h} l_{j}$.

$$
\text { So, } \begin{aligned}
\sum_{j \neq i} u_{j}^{\prime}+l_{i}^{\prime} & =\sum_{j \neq i, h} u_{j}^{\prime}+u_{h}^{\prime}+l_{i}^{\prime} \\
& =\sum_{j \neq i, h} u_{j}^{\prime}+\left(1-\sum_{j \neq h} l_{j}\right)+l_{i}^{\prime} \\
& =\sum_{j \neq i, h} u_{j}^{\prime}-\left(\sum_{j \neq i, h} l_{j}+l_{i}\right)+l_{i}^{\prime}+1 \\
& =\sum_{j \neq i, h}\left(u_{j}^{\prime}-l_{j}\right)+\left(l_{i}^{\prime}-l_{i}\right)+1 \\
& \geq 0+0+1=1
\end{aligned}
$$

Case II: $\quad \forall j \neq i$, and $u_{j}<1-\sum_{m \neq j} l_{m}$, then $u_{j}^{\prime}=u_{j}$.

$$
\text { From (2.5), we have } l_{i}^{\prime} \geq 1-\sum_{j \neq i} u_{j}
$$

$$
\text { So, } \begin{aligned}
\sum_{j \neq i} u_{j}^{\prime}+l_{i}^{\prime} & \geq \sum_{j \neq i} u_{j}^{\prime}+\left(1-\sum_{j \neq i} u_{j}\right) \\
& =\sum_{j \neq i}\left(u_{j}^{\prime}-u_{j}\right)+1 \\
& =0+1=1
\end{aligned}
$$

From Case I - II, we have $\sum_{j \neq i} u_{j}^{\prime}+l_{i}^{\prime} \geq 1$, for all $i=1,2, \ldots, n$.
When we have a reachable probability interval, we will find all of the possible probabilities $\boldsymbol{p} \in \mathscr{P}$ to obtain the smallest and largest expected values by Algorithms in Section 2.3.

2.3 Extreme probabilities

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x, where each x_{i} has its corresponding unknown probability p_{i} bounded by $\left[l_{i}, u_{i}\right]$. Without loss of generality, if $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, L.M. de Campos, et al.[1] provided probabilities \boldsymbol{p} and $\overline{\boldsymbol{q}}$ that give the smallest expected values $\underline{E}(x)$ and the largest expected values $\bar{E}(x)$, respectively.

Extreme probability is based on the assumption that when we want to have the smallest expected values. If the realization of x_{i} is less than or equal to x_{j}, then probability p_{i} should be closer to the upper bound than probability p_{j} for all $i, j=1,2, \ldots, n$; i.e.,

$$
\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\left(u_{1}, u_{2}, \ldots, u_{k-1}, 1-\sum_{j=1}^{k-1} u_{j}-\sum_{j=k+1}^{n} l_{j}, l_{k+1}, \ldots, l_{n}\right)
$$

where k is the index such that $l_{k} \leq 1-\sum_{j=1}^{k-1} u_{j}-\sum_{j=k+1}^{n} l_{j} \leq u_{k}$. On the other hand, when we want to have the largest expected values, if the realization of x_{i} is less than or equal to x_{j}, then probability q_{i} should be closer to the lower bound than probability q_{j} for all $i, j=1,2, \ldots, n$;i.e.,

$$
\left(q_{1}, q_{2}, \ldots, q_{n}\right)=\left(l_{1}, l_{2}, \ldots, l_{h-1}, 1-\sum_{j=1}^{h-1} l_{j}-\sum_{j=h+1}^{n} u_{j}, u_{h+1}, \ldots, u_{n}\right),
$$

where h is the index such that $l_{h} \leq 1-\sum_{j=1}^{h-1} l_{j}-\sum_{j=h+1}^{n} u_{j} \leq u_{h}$.
The smallest expected values $\underline{E}(x)=\sum_{i=1}^{n} p_{i} x_{i}$, where p_{i} is a probability computed from the following Algorithm.

```
Algorithm 1 for \(\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)\)
\(S \leftarrow 0\)
For \(i=0\) to \(n-1\) do \(S \leftarrow S+u_{i}\);
\(S \leftarrow S+l_{n} ;\)
\(k \leftarrow n\);
While \(S \geq 1\) do \(S \leftarrow S-u_{k-1}+l_{k-1} ; p_{k} \leftarrow l_{k} ; k \leftarrow k-1\);
For \(i=1\) to \(k-1\) do \(p_{i} \leftarrow u_{i}\);
\(p_{k} \leftarrow 1-S+l_{k}\);
```

The largest expected values $\bar{E}(x)=\sum_{i=1}^{n} q_{i} x_{i}$, where q_{i} is a probability computed from the following Algorithm.

```
Algorithm 2 for \(\overline{\boldsymbol{q}}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)\)
\(S \leftarrow 0\)
For \(i=0\) to \(n-1\) do \(S \leftarrow S+l_{i}\);
\(S \leftarrow S+u_{n} ;\)
\(k \leftarrow n\);
While \(S \leq 1\) do \(S \leftarrow S+u_{k-1}-l_{k-1} ; q_{k} \leftarrow u_{k} ; k \leftarrow k-1\);
For \(i=1\) to \(k-1\) do \(q_{i} \leftarrow l_{i}\);
\(q_{k} \leftarrow 1-S+u_{k} ;\)
```

At this end, we provide the proof of Algorithm 1 and 2, since there are no proofs provided in [1].

Theorem 4. For a given reachable probability interval $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq\right.$ $\left.u_{i} \leq 1, i=1,2, \ldots, n\right\}$, let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n known realizations of a random variable x, where each realization x_{i} has its corresponding unknown probability p_{i} such that $p_{i} \in\left[l_{i}, u_{i}\right]$. If $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, and there exists an index k such that $p_{k}=1-\sum_{j=1}^{k-1} u_{j}-\sum_{j=k+1}^{n} l_{j} \in\left[l_{k}, u_{k}\right]$, then $\left(p_{1}, p_{2}, \ldots, p_{n}\right)=$
$\left(u_{1}, u_{2}, \ldots, u_{k-1}, p_{k}, l_{k+1}, \ldots, l_{n}\right)$ providing the smallest expected value. Similarly, if there exists an index h such that $q_{h}=1-\sum_{j=1}^{h-1} l_{j}-\sum_{j=h+1}^{n} u_{j} \in\left[l_{h}, u_{h}\right]$, then $\left(q_{1}, q_{2}, \ldots, q_{n}\right)=$ $\left(l_{1}, l_{2}, \ldots, l_{h-1}, q_{h}, u_{h+1}, \ldots, u_{n}\right)$ providing the largest expected value.

Proof. Suppose there exists an index $k \in\{1,2, \ldots, n\}$ such that

$$
p_{k}=1-u_{1}-u_{2}-\cdots-u_{k-1}-l_{k+1}-l_{k+2}-\cdots-l_{n} \in\left[l_{k}, u_{k}\right] .
$$

We want to show that $\left(p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{n}\right)=\left(u_{1}, u_{2}, \ldots, u_{k-1}, p_{k}, l_{k+1}, \ldots, l_{n}\right)$ is providing the smallest expected value $\underline{E}(x)$, when realization of x are $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ where $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
Let $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be any probability where $p_{i} \in\left[l_{i}, u_{i}\right] i=1,2, \ldots, n$
Let $\quad \delta_{i}=u_{i}-p_{i} \quad \forall i=1,2, \ldots, k-1 \quad \Rightarrow u_{i}=p_{i}+\delta_{i}$

$$
\beta_{i}=p_{i}-l_{i} \quad \forall i=k+1, k+2, \ldots, n \quad \Rightarrow l_{i}=p_{i}-\beta_{i}
$$

$$
E(x)=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n}
$$

$$
\geq x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n}+\left(x_{1}-x_{k}\right) \delta_{1}+\left(x_{2}-x_{k}\right) \delta_{2}+\cdots+\left(x_{k-1}-x_{k}\right) \delta_{k-1}
$$

$$
+\left(x_{k}-x_{k+1}\right) \beta_{k+1}+\left(x_{k}-x_{k+2}\right) \beta_{k+2}+\cdots+\left(x_{k}-x_{n}\right) \beta_{n}
$$

$$
=x_{1}\left(p_{1}+\delta_{1}\right)+x_{2}\left(p_{2}+\delta_{2}\right)+\cdots+x_{k-1}\left(p_{k-1}+\delta_{k-1}\right)
$$

$$
+x_{k}\left(p_{k}-\delta_{1}-\delta_{2}-\cdots-\delta_{k-1}+\beta_{k+1}+\beta_{k+2}+\cdots+\beta_{n}\right)
$$

$$
+x_{k+1}\left(p_{k+1}-\beta_{k+1}\right)+x_{k+2}\left(p_{k+2}-\beta_{k+2}\right)+\cdots+x_{n}\left(p_{n}-\beta_{n}\right)
$$

$$
=x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{k-1} u_{k-1}+x_{k} \underline{p_{k}}+x_{k+1} l_{k+1}+x_{k+2} l_{k+2}+\cdots+x_{n} l_{n}
$$

The proof of the largest expected value can be done in the same fashion.

CHAPTER III

LINEAR COMBINATION WITH INTERVAL LINEAR EQUATION

In this chapter, we transform an interval linear equation to a probability interval then use probability interval properties to get the maximum and the minimum values of a linear combination with interval linear equation.

3.1 Adjusting $\left[c_{i}, \bar{c}_{i}\right.$] to be non-negative interval

In this section, we will show how to adjust $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ where $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$ for the given $\alpha_{i}, \underline{c_{i}}, \overline{c_{i}}, d \in \mathbb{R}$ to the form of an interval linear equation $\sum_{i=1}^{N} \alpha_{i}^{\prime} c_{i}^{\prime}=d$ where $c_{i}^{\prime} \in\left[\underline{c}_{i}^{\prime}, \overline{c_{i}^{\prime}}\right]$ such that $\underline{c_{i}^{\prime}} \geq 0$ for some $N \in \mathbb{N}$. It is reasonable to discard the case when $\alpha_{i}=0$ and $\underline{c_{i}}=\overline{c_{i}}=0$ out of our consideration. Note that we will use the notation $-[a, b]$ to represent $\{x \mid-b \leq x \leq-a\}$.

Lemma 2. For the given $\alpha_{i} \neq 0, \underline{c_{i}}, \overline{c_{i}}, d \in \mathbb{R}$ where $\underline{c_{i}} \leq \overline{c_{i}}$ and $\underline{c_{i}}, \overline{c_{i}}$ are not zero at the same time, $i=1,2, \ldots$, n, let $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$, where $c_{i} \in\left[\underline{c_{i}}, \overline{c_{i}}\right]$. Then there exist $N \in \mathbb{N}$ and $\alpha_{i}^{\prime}, \underline{c_{i}^{\prime}}, \overline{c_{i}^{\prime}} \in \mathbb{R}$ where $0 \leq \underline{c_{i}^{\prime}} \leq \overline{c_{i}^{\prime}}, i=1,2, \ldots, N$ such that $\sum_{i=1}^{N} \alpha_{i}^{\prime} c_{i}^{\prime}=d$ where $c_{i}^{\prime} \in\left[\underline{c}_{i}^{\prime}, \overline{c^{\prime}}\right]$.

Proof. In order to get non-negative values of ${\underline{c_{i}^{\prime}}}_{i}$'s, $\forall i=1,2, \ldots, N$, we split $\left[\underline{c}_{i}, \bar{c}_{i}\right]$ into three cases as follows :

- case $\underline{c_{i}} \geq 0:\left[\underline{c}_{i}, \bar{c}_{i}\right]$ stays the same,
- case $\overline{c_{i}} \leq 0:\left[\underline{c}_{i}, \bar{c}_{i}\right]=-\left[\left|\overline{c_{i}}\right|,\left|\underline{c_{i}}\right|\right]$
- case $\underline{c_{i}}<0$ and $\overline{c_{i}}>0:\left[\underline{c}_{i}, \bar{c}_{i}\right]$ is splitted into $\left[\underline{c}_{i}, 0\right]$ and $\left[0, \bar{c}_{i}\right]$

Let $I_{1}=\left\{i \mid \underline{c}_{i} \geq 0\right\}, I_{2}=\left\{i \mid \underline{c}_{i}<0\right.$ and $\left.\bar{c}_{i} \leq 0\right\}$ and $I_{3}=\left\{i \mid \underline{c}_{i}<0\right.$ and $\left.\bar{c}_{i}>0\right\}$ and $\left|I_{1}\right|=n_{1},\left|I_{2}\right|=n_{2}$ and $\left|I_{3}\right|=n_{3}$.

$$
\begin{array}{r}
\sum_{i=1}^{n} \alpha_{i} c_{i}=d \\
\sum_{i \in I_{1}} \alpha_{i} c_{i}+\sum_{i \in I_{2}} \alpha_{i} c_{i}+\sum_{i \in I_{3}} \alpha_{i} c_{i}=d
\end{array}
$$

We reorder the indices of α_{i} and c_{i} by using the first n_{i} indices as the indices of α_{i} and c_{i} in I_{1}, then the next n_{2} indices as the indices of α_{i} and c_{i} in I_{2} and the last n_{3} indices as the indices of α_{i} and c_{i} in I_{3}.

$$
\sum_{j=1}^{n_{1}} \alpha_{j} c_{j}+\sum_{j=n_{1}+1}^{n_{1}+n_{2}} \alpha_{j} c_{j}+\sum_{j=n_{1}+n_{2}+1}^{n} \alpha_{j} c_{j}=d
$$

Since, if $\underline{c_{i}}<0$ and $\overline{c_{i}}>0$, the interval $\left[\underline{c}_{i}, \bar{c}_{i}\right]$ can be splitted into $\left[\underline{c}_{i}, 0\right]$ and $\left[0, \bar{c}_{i}\right]$ Therefore,

$$
\underbrace{\sum_{j=1}^{n_{1}} \alpha_{j} c_{j}}_{(1)}+\underbrace{\sum_{j=n_{1}+1}^{n_{1}+n_{2}} \alpha_{j} c_{j}}_{(2)}+\underbrace{\sum_{j=n_{1}+n_{2}+1}^{n} \alpha_{j} c_{j}}_{(3)}+\underbrace{\sum_{j=n+1}^{n+n_{3}} \alpha_{j} c_{j}}_{(4)}=d
$$

where,

- in (1) : $\alpha_{j}=\alpha_{j}$ and $c_{j} \in\left[\underline{c}_{j}, \bar{c}_{j}\right]$ when $\bar{j}=1,2, \ldots, n_{1}$
- in (2): $\alpha_{j}=\alpha_{j}$ and $c_{j} \in\left[\underline{c}_{j}, \bar{c}_{j}\right]$ when $j=n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}$
- in (3) : $\alpha_{j}=\alpha_{j}$ and $c_{j} \in\left[\underline{c}_{j}, 0\right]$ when $j=n_{1}+n_{2}+1, n_{1}+n_{2}+2, \ldots, n$
- in (4) : $\alpha_{j}=\alpha_{j-n_{3}}$ and $c_{j} \in\left[0, \bar{c}_{j-n_{3}}\right]$ when $j=n+1, n+2, \ldots, n+n_{3}$

In (1), since $\underline{c_{j}} \geq 0$, we use $\alpha_{j}^{\prime}=\alpha_{j}$ and $c_{j}^{\prime} \in\left[\underline{c}_{j}, \bar{c}_{j}\right]$ when $j=1,2, \ldots, n_{1}$
In (2), since $\overline{c_{j}} \geq 0$, we use $\alpha_{j}^{\prime}=-\alpha_{j}$ and $c_{j}^{\prime} \in\left[\left|\bar{c}_{j}\right|,\left|\underline{c}_{j}\right|\right]$ when $j=n_{1}+1, n_{1}+$ $2, \ldots, n_{1}+n_{2}$
In (3), since $\underline{c_{j}} \leq 0$, we use $\alpha_{j}^{\prime}=-\alpha_{j}$ and $c_{j}^{\prime} \in\left[0,\left|\underline{c}_{j}\right|\right]$ when $j=n_{1}+n_{2}+1, n_{1}+$ $n_{2}+2, \ldots, n$
In (4), since $\underline{c_{i}} \geq 0$, we use $\alpha_{j}^{\prime}=\alpha_{j}$ and $c_{j}^{\prime} \in\left[0, \bar{c}_{j}\right]$ when $j=n+1, n+2, \ldots, n+n_{3}$

Thus,

$$
\begin{gathered}
\sum_{j=1}^{n_{1}} \alpha_{j}^{\prime} c_{j}^{\prime}+\sum_{j=n_{1}+1}^{n_{1}+n_{2}} \alpha_{j}^{\prime} c_{j}^{\prime}+\sum_{j=n_{1}+n_{2}+1}^{n} \alpha_{j}^{\prime} c_{j}^{\prime}+\sum_{j=n+1}^{n+n_{3}} \alpha_{j}^{\prime} c_{j}^{\prime}=d \\
\sum_{j=1}^{n+n_{3}} \alpha_{j}^{\prime} c_{j}^{\prime}=d
\end{gathered}
$$

Now, the interval linear equation $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ where c_{i} is an unknown parameter in the interval $\left[\underline{c}_{i}, \bar{c}_{i}\right]$ was adjusted to be an interval linear equation $\sum_{i=1}^{N} \alpha_{i}^{\prime} c_{i}^{\prime}=d$, where $N=n+n_{3}$, with non-negative interval $\left[\underline{c}_{i}^{\prime}, \overline{\bar{c}_{i}^{\prime}}\right]$. In other word, $\underline{c}_{i}^{\prime} \geq 0$.

3.2 Transformation of an interval linear combination

An interval linear combination $\sum_{i=1}^{n} c_{i} x_{i}$ such that c_{i} 's have the linear relation $\sum_{i=1}^{n} \alpha_{i} c_{i}=$ d when c_{i} is an unknown parameter in a given interval $\left[\underline{c_{i}}, \overline{c_{i}}\right]$ such that $\underline{c_{i}} \leq \overline{c_{i}}$ where $\underline{c_{i}} \geq 0$ and $\underline{c_{i}}, \overline{c_{i}}$ are not zero at the same time for the given $\alpha_{i} \neq 0, d \in \mathbb{R}$ can be adjusted to be a probability interval linear combination $\sum_{i=1}^{N} p_{i} t_{i}$ such that $\sum_{i=1}^{N} p_{i}=1$ where $p_{i} \in\left[l_{i}, u_{i}\right]$ and $t_{i} \in \mathbb{R}$ for some integer N, by the method presented in this section. We first convert an interval linear equation $\sum_{i=1}^{n} \alpha_{i} c_{i}=1$ to $\sum_{i=1}^{N} p_{i}=1$ for some $N \in \mathbb{N}$. Then we convert $\sum_{i=1}^{n} c_{i} x_{i}$ to $\sum_{i=1}^{N} p_{i} t_{i}$.

3.2.1 Transformation of interval linear equation

After we can adjust all boundaries $\underline{c_{i}}, \overline{c_{i}}$ to the non-negative $\underline{c_{j}^{\prime}}, \overline{c_{j}^{\prime}} \forall j=1,2, \ldots, N$, in this subsection, we assume that all boundaries are non-negative. We will show how to convert $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ where $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$ to become a $\sum_{i=1}^{N} p_{i}=1, \exists N \in \mathbb{N}$.

Consider $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$. Since $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$, we must check first that there exists $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in(\underline{\boldsymbol{c}}, \overline{\boldsymbol{c}})$ such that $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$, or not. In other words, we have to
check that

$$
\begin{equation*}
\min _{c_{i} \in\left[c_{i}, \bar{c}_{i}\right]} \sum_{i=1}^{n} \alpha_{i} c_{i} \leq d \leq \max _{c_{i} \in\left[\left[_{i}, \bar{c}_{i}\right]\right.} \sum_{i=1}^{n} \alpha_{i} c_{i}, \tag{3.1}
\end{equation*}
$$

where

$$
\min _{c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]} \sum_{i=1}^{n} \alpha_{i} c_{i}=\sum_{j \in J_{1}} \alpha_{j} \bar{c}_{j}+\sum_{j \in J_{2}} \alpha_{j} \underline{c}_{j} \text { and } \max _{c_{i} \in\left[c_{i}, \bar{c}_{i}\right]} \sum_{i=1}^{n} \alpha_{i} c_{i}=\sum_{j \in J_{1}} \alpha_{j} \underline{c}_{j}+\sum_{j \in J_{2}} \alpha_{j} \bar{c}_{j},
$$

such that $J_{1}=\left\{j \mid \alpha_{j}<0\right\}$ and $J_{2}=\left\{j \mid \alpha_{j}>0\right\}$.

After we check the validity of the interyal linear equation, we now try to transform $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ where $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$ to become a proper probability interval as stated in Lemma 3.

Lemma 3. Let $d \in \mathbb{R}$ and $\alpha_{i} \in \mathbb{R} \backslash\{0\}$ for all $i=1,2, \ldots, n$. Then the system $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ where $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right], c_{i} \geq 0$ and $\overline{c_{i}} \neq 0$ can be transform to the corresponding system $\sum_{i=1}^{n+n_{1}} p_{i}=1$ where $p_{i} \in\left[l_{i}, u_{i}\right], n_{1}=\left|J_{1}\right|$ and $J_{1}=\left\{j \mid \alpha_{j}<0\right\}$.

Proof. We will consider only the case $d \geq 0$. In case of negative value of d , we can multiply both side of the equation by -1 . Let $J_{1}=\left\{j \mid \alpha_{j}<0\right\}, J_{2}=\left\{j \mid \alpha_{j}>0\right\}$ where $\left|J_{1}\right|=n_{1}$ and $\left|J_{2}\right|=n_{2}$. Define $c_{\text {jnew }}=\bar{c}_{j}-c_{j}$, for each $j \in J_{1}$.
Then for any unknown $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right] \quad i=1,2, \ldots, n$, we have

$$
\begin{gathered}
\sum_{i=1}^{n} \alpha_{i} c_{i}=d \\
\sum_{j \in J_{1}} \alpha_{j} c_{j}+\sum_{j \in J_{2}} \alpha_{j} c_{j}=d \\
\sum_{j \in J_{1}} \alpha_{j} c_{j}+\sum_{j \in J_{2}} \alpha_{j} c_{j}+2\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right| \bar{c}_{j}\right)=2\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right| \bar{c}_{j}\right)+d \\
\sum_{j \in J_{1}}\left|\alpha_{j}\right|\left(\bar{c}_{j}-c_{j}\right)+\sum_{j \in J_{2}} \alpha_{j} c_{j}+\sum_{j \in J_{1}}\left|\alpha_{j}\right| \bar{c}_{j}=2\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right| \overline{c_{j}}\right)+d \\
\sum_{j \in J_{1}}\left|\alpha_{j}\right| c_{\text {jnew }}+\sum_{j \in J_{2}}\left|\alpha_{j}\right| c_{j}+\sum_{j \in J_{1}}\left|\alpha_{j}\right| \bar{c}_{j}=2\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right| \bar{c}_{j}\right)+d .
\end{gathered}
$$

Let $D=2\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right| \bar{c}_{j}\right)+d$. Since $D>0$, we have

$$
\frac{\sum_{j \in J_{1}}\left|\alpha_{j}\right| c_{\text {jnew }}+\sum_{j \in J_{2}}\left|\alpha_{j}\right| c_{j}+\sum_{j \in J_{1}}\left|\alpha_{j}\right| \bar{c}_{j}}{D}=1
$$

$\underbrace{\frac{\left|\alpha_{1}\right| c_{\text {new }}}{D}}_{p_{1} \geq 0}+\cdots+\underbrace{\frac{\left|\alpha_{n_{1}}\right| c_{n_{1} \text { new }}}{D}}_{p_{n_{1}} \geq 0}+\underbrace{\frac{\left|\alpha_{n_{1}+1}\right| c_{n_{1}+1}}{D}}_{p_{n_{1}+1}}+\cdots+\underbrace{\frac{\left|\alpha_{n}\right| c_{n}}{D}}_{p_{n} \geq 0}+\underbrace{\frac{\left|\alpha_{1}\right| \bar{c}_{1}}{D}}_{p_{n+1}}+\cdots+\underbrace{\frac{\left|\alpha_{n_{1}}\right| \bar{c}_{n_{1}}}{D}}_{p_{n+n_{1} \geq 0}}=1$

$$
p_{1}+p_{2}+\cdots+p_{n+n_{1}}=1
$$

As $c_{\text {jnew }}$ in (3.2) is an arbitrary value where $c_{\text {jnew }}=\bar{c}_{j}-c_{j} \in\left[0, \bar{c}_{j}-\underline{c}_{j}\right]$, so $\left|\alpha_{j}\right| c_{\text {jnew }}$ is in $\left[0,\left|\alpha_{j}\right|\left(\bar{c}_{j}-\underline{c}_{j}\right)\right]$. Since p_{i} 's depends on $c_{i} \in\left[\underline{c}_{i}, \bar{c}_{i}\right]$ and $c_{\text {jnew }} \in\left[0, \bar{c}_{j}-\underline{c}_{j}\right]$, the boundary $\left[l_{i}, u_{i}\right]$ for p_{i} 's can be represented as

- $l_{i}=0 \quad$ and $\quad u_{i}=\min \left\{\frac{\left|\alpha_{i}\right| c_{\text {inew }}}{D}, 1\right\}, \quad$ if $i=1,2, \ldots, n_{1}$
- $\quad l_{i}=\frac{\left|\alpha_{i}\right| \underline{c}_{i}}{D} \quad$ and $\quad u_{i}=\min \left\{\frac{\left|\alpha_{i}\right| \bar{c}_{i}}{D}, 1\right\}, \quad$ if $i=n_{1}+1, n_{1}+2, \ldots, n$
- $l_{i}=\frac{\left|\alpha_{i-n}\right| \bar{c}_{i-n}}{D}$ and $u_{i}=\frac{\left|\alpha_{i-n}\right| \bar{c}_{i-n}}{D}$, if $i=n+1, n+2, \ldots, n+n_{1}$

3.2.2 Transformation of interval linear combination

Lemma 4. $\sum_{i=1}^{n} c_{i} x_{i}$ where $\sum_{i=1}^{n} \alpha_{i} c_{i}=d, c_{i} \in\left[\underline{c_{i}}, \overline{c_{i}}\right], \underline{c_{i}} \geq 0$ and $\overline{c_{i}}>0$ can be transformed to $\sum_{i=1}^{n+n_{1}} p_{i} t_{i}$ where $p_{i} \in\left[l_{i}, u_{i}\right]$ and $t_{i} \in \mathbb{R}$ for all $i=1,2, \ldots, n+n_{1}$.

Proof. By Lemma 2, we can transform $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ to $\sum_{i=1}^{n+n_{1}} p_{i}=1$ where $p_{i} \in\left[l_{i}, u_{i}\right]$,
for all $i=1,2, \ldots, n+n_{1}$.

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} x_{i} & =\sum_{i=1}^{n} c_{i} x_{i}+\sum_{j \in J_{1}} \bar{c}_{j} x_{i}-\sum_{j \in J_{1}} \bar{c}_{j} x_{i} \\
& =\sum_{j \in J_{1}}\left(\bar{c}_{j}-c_{j}\right) y_{j}+\sum_{j \in J_{2}} c_{j} x_{j}+\sum_{j \in J_{1}} \bar{c}_{j} x_{j} \quad ; y_{j}=-x_{j} \\
& =\sum_{j \in J_{1}} c_{j n e w} y_{j}+\sum_{j \in J_{2}} c_{j} x_{j}+\sum_{j \in J_{1}} \bar{c}_{j} x_{j} \\
& =\sum_{j=1}^{n_{1}}\left(\frac{\left|\alpha_{j}\right| c_{\text {jnew }}}{D}\right)\left(\frac{D y_{j}}{\left|\alpha_{j}\right|}\right)+\sum_{j=n_{1}+1}^{n}\left(\frac{\left|\alpha_{j}\right| c_{j}}{D}\right)\left(\frac{D x_{j}}{\left|\alpha_{j}\right|}\right)+\sum_{j=n+1}^{n+n_{1}}\left(\frac{\left|\alpha_{j}\right| \bar{c}_{j}}{D}\right)\left(\frac{D x_{j}}{\left|\alpha_{j}\right|}\right) \\
& =\sum_{i=1}^{n+n_{1}} p_{i} t_{i} .
\end{aligned}
$$

where $\quad p_{i}=\frac{\left|\alpha_{i}\right| c_{\text {inew }}}{D}, \quad t_{i}=\frac{D y_{i}}{\left|\alpha_{i}\right|} \leq 0 \quad \forall i=1,2, \ldots, n_{1}$,

$$
\begin{array}{lll}
p_{i}=\frac{\left|\alpha_{i}\right| c_{i}}{D}, & t_{i}=\frac{D x_{i}}{\left|\alpha_{i}\right|} \geq 0 & \forall i=n_{1}+1, n_{1}+2, \ldots, n, \\
p_{i}=\frac{\left|\alpha_{i-n}\right| \bar{c}_{i-n}}{D}, & t_{i}=\frac{D x_{i-n}}{\left|\alpha_{i-n}\right|} \geq 0 & \forall i=n+1, n+2, \ldots, n+n_{1} .
\end{array}
$$

Now we transformed the interval linear combination $\sum_{i=1}^{n} c_{i} x_{i}$ such that c_{i} 's have the linear relation $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ when c_{i} is an unknown parameter in a given interval $\left[\underline{c_{i}}, \overline{c_{i}}\right]$ such that $\frac{c_{i}}{N} \leq \overline{c_{i}}$ for the given $\alpha_{i} \neq 0, d \in \mathbb{R}$ to be a probability interval linear combination $\sum_{i=1}^{\bar{N}} p_{i} t_{i}$ such that $\sum_{i=1}^{N} p_{i}=1$ where $p_{i} \in\left[l_{i}, u_{i}\right]$ and $t_{i} \in \mathbb{R}$ for some integer N. So, we can get the smallest and the largest expected values of interval linear combination by using Algorithms from the last section of chapter II. Because the interval linear combination $\sum_{i=1}^{n} c_{i} x_{i}$ is equivalent to the probability interval linear combination $\sum_{i=1}^{N} p_{i} t_{i}$. Then, The minimum and the maximum values of linear combination with interval linear equation be the same as the smallest and the largest expected values of the probability interval linear combination with probability interval, respectively.

CHAPTER IV

EXAMPLE AND ALGORITHM

In this chapter, we provide an example and Algorithm for finding the minimum and the maximum values of linear combination with interval equation by using Python language.

Example Find the largest and the smallest values of $5 c_{1}-3 c_{2}$ when $c_{1}+c_{2}=7$ and $c_{1} \in[-1,6], c_{2} \in[1,5]$.

Solution We first adjust interval to be non-negative interval as follows :

- $[-1,6]$ is splitted in to $[-1,0]$ and $[0,6]$
- $[1,5]$ stays the same

So, the interval linear equation $c_{1}+c_{2}=7$ is adjusted to be $\alpha_{1}^{\prime} c_{1}^{\prime}+\alpha_{2}^{\prime} c_{2}^{\prime}+\alpha_{3}^{\prime} c_{3}^{\prime}=7$ where $c_{1}^{\prime} \in[1,5]$ and $\alpha_{1}^{\prime}=\alpha_{1}=1$,

$$
\begin{aligned}
& c_{2}^{\prime} \in[0,1] \text { and } \alpha_{2}^{\prime}=-\alpha_{2}=-1, \\
& c_{3}^{\prime} \in[0,6] \text { and } \alpha_{3}^{\prime}=\alpha_{3}=1 .
\end{aligned}
$$

Then, we must check that there exists $\boldsymbol{c}=\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right)$ such that $\sum_{i=1}^{3} \alpha_{i}^{\prime} c_{i}^{\prime}=7$, or not. In other words, we have to check that

$$
\min _{c_{i}^{\prime} \in\left[c_{c}^{\prime}, \overline{c_{c}^{\prime}}\right]} \sum_{i=1}^{3} \alpha_{i}^{\prime} c_{i}^{\prime} \leq d \leq \max _{c_{i}^{\prime} \in\left[c_{i}^{\prime}, c^{\prime} c_{i}^{\prime}\right]} \sum_{i=1}^{3} \alpha_{i}^{\prime} c_{i}^{\prime}
$$

where $J_{1}=\left\{j \mid \alpha_{j}^{\prime}<0\right\}$ and $J_{2}=\left\{j \mid \alpha_{j}^{\prime} \geq 0\right\}$,

$$
\begin{aligned}
& \min _{c_{i}^{\prime} \in\left[c^{\prime} i\right.}, \overline{\left.c_{c}^{\prime}\right]} \sum_{i=1}^{3} \alpha_{i}^{\prime} c_{i}^{\prime}=\sum_{j \in J_{1}} \alpha_{j}^{\prime} \bar{c}^{\prime}{ }_{j}+\sum_{j \in J_{2}} \alpha_{j}^{\prime} \underline{c}_{j}^{\prime}=(-1)(1)+(1)(1)+(1)(0)=0 \text { and } \\
& \max _{c_{i}^{\prime} \in\left[c^{\prime} i\right.}^{i}, \overline{\left.c_{i}^{\prime}\right]} \sum_{i=1}^{3} \alpha_{i}^{\prime} c_{i}^{\prime}=\sum_{j \in J_{1}} \alpha_{j}^{\prime} \underline{c}_{j}^{\prime}+\sum_{j \in J_{2}} \alpha_{j}^{\prime} \overline{c^{\prime}}{ }_{j}=(-1)(0)+(1)(5)+(1)(6)=11
\end{aligned}
$$

After we check the validity of the interval linear equation, we try to convert the interval linear equation to a probability interval.

Since $\alpha_{2}^{\prime}=-1 \leq 0$, therefore

$$
\alpha_{2}^{\prime} c_{2}^{\prime}+\alpha_{1}^{\prime} c_{1}^{\prime}+\alpha_{3}^{\prime} c_{3}^{\prime}=d \Leftrightarrow p_{1}+p_{2}+p_{3}+p_{4}=1 .
$$

We have $-c_{2}^{\prime}+c_{1}^{\prime}+c_{3}^{\prime}=7$ Then

$$
\begin{aligned}
-c_{2}^{\prime}+c_{1}^{\prime}+c_{3}^{\prime} & =7 \\
-c_{2}^{\prime}+c_{1}^{\prime}+c_{3}^{\prime}+2\left(|-1| \overline{c^{\prime}}{ }_{2}\right) & =7+2\left(|-1| \overline{c^{\prime}}{ }_{2}\right) \\
|-1|\left(\overline{c^{\prime}} 2-c_{2}^{\prime}\right)+|1| c_{1}^{\prime}+|1| c_{3}^{\prime}+|-1| \overline{c_{2}^{\prime}} & =7+2(1) \\
c_{2 \text { new }}^{\prime}+c_{1}^{\prime}+c_{3}^{\prime}+\overline{c_{2}^{\prime}} & =9 \\
\frac{c_{2 \text { new }}^{\prime}}{9}+\frac{c_{1}^{\prime}}{9}+\frac{c_{3}^{\prime}}{9}+\frac{1}{9} & =1 \\
p_{1}+p_{2}+p_{3}+p_{4} & =1
\end{aligned}
$$

where $\quad p_{1}=\frac{c_{2 \text { new }}^{\prime}}{9} \in\left[\frac{0}{9}, \frac{1}{9}\right]$,

$$
p_{2}=\frac{c_{1}^{\prime}}{9} \in\left[\frac{1}{9}, \frac{5}{9}\right],
$$

$$
p_{3}=\frac{c_{3}^{\prime}}{9} \in\left[\frac{0}{9}, \frac{6}{9}\right],
$$

$$
p_{4}=\frac{\overline{c_{2}^{\prime}}}{9} \in\left[\frac{1}{9}, \frac{1}{9}\right] .
$$

Next, we try to transform the interval linear combination to a probability interval linear combination. Since c_{1} was splitted, so we now have the interval linear combination as; $\sum_{i=1}^{3} c_{i}^{\prime} x_{i}^{\prime}=c_{1}^{\prime} x_{1}^{\prime}+c_{2}^{\prime} x_{2}^{\prime}+c_{3}^{\prime} x_{3}^{\prime}$
where $c_{1}^{\prime} \in[1,5]$ and $x_{1}^{\prime}=x_{2}=-3$,

$$
\begin{aligned}
& c_{2}^{\prime} \in[0,1] \text { and } x_{2}^{\prime}=-x_{1}=-5, \\
& c_{3}^{\prime} \in[0,6] \text { and } x_{3}^{\prime}=x_{1}=5 .
\end{aligned}
$$

Since, $\alpha_{2}^{\prime}=-1 \leq 0$, then

$$
\begin{aligned}
\sum_{i=1}^{3} c_{i}^{\prime} x_{i}^{\prime} & =-3 c_{1}^{\prime}+5 c_{2}^{\prime}+5 c_{3}^{\prime} \\
& =5 c_{2}^{\prime}-3 c_{1}^{\prime}+5 c_{3}^{\prime} \\
& =\left(\overline{c^{\prime}} 2-c_{2}^{\prime}\right)(-5)-3 c_{1}^{\prime}+5 c_{3}^{\prime}+5 \overline{c_{2}^{\prime}} \\
& =\left(\frac{|-1| c_{2 \text { new }}^{\prime}}{9}\right)\left(\frac{(9)(-5)}{|1|}\right)+\left(\frac{|1| c_{1}^{\prime}}{9}\right)\left(\frac{9(-3)}{|1|}\right)+\left(\frac{|1| c_{3}^{\prime}}{9}\right)\left(\frac{9(5)}{|1|}\right)+\left(\frac{|-1| \overline{c^{\prime}}}{9}\right)\left(\frac{9(5)}{|-1|}\right) \\
& =p_{1} t_{1}+p_{2} t_{2}+p_{3} t_{3}+p_{4} t_{4}
\end{aligned}
$$

where $\quad p_{1}=\frac{c_{2 \text { new }}^{\prime}}{9} \in\left[\frac{0}{9}, \frac{1}{9}\right], \quad t_{1}=\frac{9\left(-x_{2}^{\prime}\right)}{\left|\alpha_{2}^{\prime}\right|}=\frac{(9)(5)}{|-1|}=45$,

$$
\begin{array}{ll}
p_{2}=\frac{c_{1}^{\prime}}{9} \in\left[\frac{1}{9}, \frac{5}{9}\right], & t_{2}=\frac{9 x_{1}^{\prime}}{\left|\alpha_{1}^{\prime}\right|}=\frac{(9)(-3)}{|1|}=-27, \\
p_{3}=\frac{c_{3}^{\prime}}{9} \in\left[\frac{0}{9}, \frac{6}{9}\right], & t_{3}=\frac{9 x_{3}^{\prime}}{\left|\alpha_{3}^{\prime}\right|}=\frac{(9)(5)}{|1|}=45, \\
p_{4}=\frac{\overline{c_{2}^{\prime}}}{9} \in\left[\frac{1}{9}, \frac{1}{9}\right], & t_{4}=\frac{9 x_{2}^{\prime}}{\left|\alpha_{2}^{\prime}\right|}=\frac{(9)(-5)}{|-1|}=-45 .
\end{array}
$$

Next, we need to check that each interval of p_{i} has reachable probability property according to Theorem 1. If the probability interval is not reachable, we can adjust it to be reachable by Theorem 1.

First, check the proper properties that sum of the lower bounds must be less than or equal to one and the sum of the upper bounds must be greater than or equal to one:

$$
\begin{aligned}
& \sum_{i=1}^{4} l_{i}=\frac{0+1+0+1}{9}=\frac{2}{9} \leq 1 \\
& \sum_{i=1}^{4} u_{i}=\frac{1+5+6+1}{9}=\frac{13}{9} \geq 1
\end{aligned}
$$

After that check the reachable probability properties.

$$
\sum_{j \neq 1} l_{j}+u_{1}=\frac{1+0+1+1}{9}=\frac{3}{9} \leq 1,
$$

$$
\begin{aligned}
& \sum_{j \neq 1} u_{j}+l_{1}=\frac{5+6+1+0}{9}=\frac{12}{9} \geq 1, \\
& \sum_{j \neq 2} l_{j}+u_{2}=\frac{0+0+1+5}{9}=\frac{6}{9} \leq 1, \\
& \sum_{j \neq 2} u_{j}+l_{2}=\frac{1+6+1+1}{9}=\frac{9}{9} \geq 1, \\
& \sum_{j \neq 3} l_{j}+u_{3}=\frac{0+1+1+6}{9}=\frac{8}{9} \leq 1, \\
& \sum_{j \neq 3} u_{j}+l_{3}=\frac{1+5+1+0}{9}=\frac{7}{9} \nsupseteq 1, \\
& \sum_{j \neq 4} l_{j}+u_{4}=\frac{0+1+0+1}{9}=\frac{2}{9} \leq 1, \\
& \sum_{j \neq 4} u_{j}+l_{4}=\frac{1+5+6+1}{9}=\frac{13}{9} \geq 1 .
\end{aligned}
$$

We can see that the probability interval is not reachable. So we must change it to become a reachable probability interval shown below.

$$
\begin{array}{ll}
l_{1}^{\prime}=\max \left\{0,1-\frac{12}{9}\right\}=0 & u_{1}^{\prime}=\min \left\{\frac{1}{9}, 1-\frac{7}{9}\right\}=\frac{1}{9} \\
l_{2}^{\prime}=\max \left\{\frac{1}{9}, 1-\frac{8}{9}\right\}=\frac{1}{9} & u_{2}^{\prime}=\min \left\{\frac{5}{9}, 1-\frac{1}{9}\right\}=\frac{5}{9} \\
l_{3}^{\prime}=\max \left\{0,1-\frac{7}{9}\right\}=\frac{2}{9} & u_{3}^{\prime}=\min \left\{\frac{6}{9}, 1-\frac{2}{9}\right\}=\frac{6}{9} \\
l_{4}^{\prime}=\max \left\{\frac{1}{9}, 1-\frac{12}{9}\right\}=\frac{1}{9} & u_{4}^{\prime}=\min \left\{\frac{1}{9}, 1-\frac{1}{9}\right\}=\frac{1}{9}
\end{array}
$$

Now, we transform interval linear combination with interval linear equation to a probability interval linear combination with probability interval. Then we get the minimum and the maximum values of the interval linear combination by using Theorem 4 in Chapter II. The minimum value is -5 and the maximum value is 27 .

Next, we provide an Algorithm for finding the minimum and the maximum values of linear combination with interval linear constraint in Python language.

```
# -*- coding: utf-8 -*-
| | |
Created on Tue Jan 15 21:06:05 2019
```

```
@author: siratcha
| | |
i=0
A= [ ]
Aold=[ ]
Aupdate=[]
L= [ ]
Lupdate=[]
Lprob=[]
U= [ ]
Uupdate=[]
Uprob=[]
Y= [ ]
Yupdate=[]
T= [ ]
y=input("Please enter all coefficients: ")
Y=y.split()
C=input("Please enter all coefficients of condition: ")
A=C.split()
d=float(input("Please enter d: "))
n=len(A)
n0=0
n1=0
m=0
n2=0
D=d
# Adjusting general interval to be a non-negative interval
while i<n:
I=input("Please enter an interval in form lower,upper : ")
l,u=I.split(',')
l=float(l)
u=float(u)
A[i]=float(A[i])
```

```
Y[i]=float(Y[i])
L.append(l)
U.append(u)
if L[i] >=0: #[+,+]
Lupdate.append(L[i])
Uupdate.append(U[i])
Aupdate.append(A[i])
Yupdate.append(Y[i])
Aold.append(A[i])
n0=n0+1
if L[i] < 0:
if U[i] < 0: #A[i][-,-]--> -A[i][+,+]
Lupdate.append(abs(U[i]))
Uupdate.append (abs (L[i]))
Aupdate.append(-A[i])
Yupdate.append(-Y[i])
Aold.append(A[i])
n1=n1+1 #the number of negative interval [-, -]
if U[i] >= 0: #[-1,+u]--> -A[i][0,abs(l)] and A[i][0,u]
Lupdate.append(0)
Uupdate.append(abs(L[i]))
Aupdate.append(-A[i])
Yupdate.append(-Y[i])
Aold.append(A[i])
n2=n2+1 #the number of interval [-1,+u]
i=i+1
i=0
while i < n:
if L[i] < 0 and U[i] >= 0:
Lupdate.append(0)
Uupdate.append(U[i])
Aupdate.append(A[i])
Yupdate.append(Y[i])
i=i+1
```

```
i=0
while i<(n+n2):
if Aupdate[i] < 0:
m=m+1 #the number of negative alpha_i
D=D+2*((abs (Aupdate[i])*(Uupdate[i])))
i=i+1
i=0
while i<(n+n2):
if Aupdate[i] < 0:
Lupdate.append(Uupdate[i])
Uupdate.append (Uupdate[i])
Aupdate.append(abs (Aupdate[i]))
Yupdate.append(Yupdate[i])
i=i+1
#Adjusting linear equation of non-negative interval
to be probability interval
i=0
while i<n+n2:
print("adjusted to probability intervals: ")
if Aupdate[i] < 0:
T.append((D* (-Yupdate[i]))/abs(Aupdate[i]))
upC=(abs (Aupdate[i]) *(Uupdate[i]-Lupdate[i]))/D
Lprob.append(0)
if upC < 1:
Uprob.append(upC)
else:
Uprob.append (1)
else:
T.append((D* (Yupdate[i]))/abs(Aupdate [i]))
Lprob.append((abs (Aupdate[i])*Lupdate[i]) /D)
upC=(abs(Aupdate[i]) *(Uupdate[i])) /D
if upC <1:
Uprob.append(upC)
```

else:
Uprob. append (1)
print([Lprob[i], Uprob[i]],"with coefficient t=", T[i]) $i=i+1$
while $i<n+n 2+m:$
T. append ((D* (Yupdate[i])) /abs (Aupdate [i]))

Lprob.append ((abs (Aupdate[i])*abs (Uupdate[i])) /D)
Uprob.append ((abs (Aupdate[i])*abs (Uupdate[i])) /D)
print([Lprob[i], Uprob[i]],"with coefficient t=", T[i])
$i=i+1$
\#proper check
$i=0$
$1=0$
$u=0$
$\mathrm{N}=\mathrm{n}+\mathrm{n} 2+\mathrm{m}$
while i<N:
l=l+Lprob[i] \#calculate the sum of lower bounds
u=u+Uprob[i] \#calculate the sum of upper bounds
$i=i+1$
if $l<=1$ and $u>=10$:UGMORN UNIVERSITY
\#if the sum of lower bounds is lower or equal to 1 and the sum of upper bounds is greater or equal to 1, A set of probability intervals is a Proper otherwise is not. print("A set of probability intervals is a Proper")
\#reachable check if not then adjust to reachable
$\mathrm{Xr}=[]$
Yr= []
Xcheck=[]
Ycheck=[]
Lprobreach=[]

```
Uprobreach=[ ]
j=0
while j<N:
x=sum(Lprob)-Lprob[j]+Uprob[j] #calculate following thm
y=sum(Uprob) -Uprob[j]+Lprob[j] #calculate following thm
Xr.append(x)
Yr.append(y)
j=j+1
for i in Xr:
if i <=1:
Xcheck.append(i)
for i in Yr:
if i >=1:
Ycheck.append(i)
if len(Xcheck) ==N and Ien(Ycheck)==N:
print("A set of probability intervals is reachable.")
#if a set of probability interval L is not a reachable,
Now we adjust it to become a reachable by calculated
following theorem
else:
print("A set of probability intervals is not reachable." )
print("A reachable set of probability intervals is ")
j=0
while j<N:
a=1-sum(Uprob) +Uprob [j]
b=1-sum(Lprob) +Lprob [j]
if Lprob[j]<a:
Lprob[j]=a
if Uprob[j]>b:
Uprob[j]=b
Lprobreach.append(Lprob[j])
Uprobreach.append(Uprob[j])
print(Lprobreach[j],Uprobreach[j])
j=j+1
```

```
#Ascending order follow x
i=0
S=0
N=n+n2+m
P= [ ]
Q=[ ]
Acal=[]
Lcal=[]
Ucal=[]
Tcal=[]
Aresp=[]
Lresp=[]
Uresp=[]
Tresp=[]
Acal.extend(Aupdate)
Lcal.extend(Lprobreach)
Ucal.extend(Uprobreach)
Tcal.extend(T)
while i < N:
P.append(1)
Q.append(1) Chulalongiorin University
i=i+1
i=0
while i < len(Tcal):
if min(Tcal)==Tcal[i]:
Aresp.append(Acal[i])
Lresp.append(Lcal[i])
Uresp.append(Ucal[i])
Tresp.append(Tcal[i])
del Acal[i]
del Lcal[i]
```

del Ucal[i]
del Tcal[i]
i=-1
$i=i+1$
\#Algorithm1 finding probability that will provide samllest expected value
i=0
while i<N-1:
S=S+Uresp[i]
$i=i+1$
i=0
S=S+Lresp [$\mathrm{N}-1$]
$\mathrm{k}=\mathrm{N}-1$
while S >= 1 and $k>=0$:
if $k==0$:
P[k]=Lresp[k]
else:
S=S-Uresp[k-1]+Lresp[k-1]
P[k]=Lresp[k]
$\mathrm{k}=\mathrm{k}-1$
while i < k:
P[i]=Uresp[i]
i=i+1
P[k]=1-S+Lresp [k]
\#Algorithm2 finding probability that will provide largest expected value
i=0
$\mathrm{S}=0$
while i<N-1:
S=S+Lresp[i]

```
i=i+1
i=0
S=S+Uresp [N-1]
k=N-1
while S <= 1 and k>=0:
if k==0:
Q[k]=Uresp[k]
else:
S=S+Uresp[k-1]-Lresp[k-1]
Q[k]=Uresp[k]
k=k-1
while i < k:
Q[i]=Lresp[i]
i=i+1
Q[k]=1-S+Uresp[k]
\#calculate the smallest and thelargest expected values i=1
minE=P [0] *Tresp [0]
maxE=Q[0]*Tresp[0]
while i<N:
minE=minE+(P[i]*Tresp[i])
maxE=maxE+(Q[i]*Tresp[i])
i=i+1
print("The smallest expected value is",minE)
print("The largest expected value is",maxE)
else:
print("A set of probability intervals is not a Proper")
\# A set of probability intervals is a proper if and only
if the sum of the lower bounds is less than or equal to 1 , and the sum of upper bounds is greater than or equal to 1.
```


CHAPTER V

CONCLUSION

We prove that probability got from Algorithm 1 and 2 in [1] provide the smallest and the largest expected values of linear combination with probability interval linear constraint when probability interval is given in Chapter II. We transform an interval linear combination $\sum_{i=1}^{n} c_{i} x_{i}$ such that c_{i} 's have the linear relation $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ when c_{i} is an unknown parameter in a given interval $\left[\underline{c_{i}}, \overline{c_{i}}\right]$ such that $\underline{c_{i}} \leq \overline{c_{i}}$ for the given $\alpha_{i} \neq 0, d \in \mathbb{R}$ to be a probability interval linear combination $\sum_{i=1}^{N} p_{i} t_{i}$ such that $\sum_{i=1}^{N} p_{i}=$ 1 where probability $p_{i} \in\left[l_{i}, u_{i}\right]$ and $t_{i} \in \mathbb{R}$ for some integer N and then we get the minimum and the maximum values of the interval linear combination with interval linear constraint by the method as explained in Chapter III. Then we provide an example and Algorithm for finding the minimum and the maximum values of linear combination with interval equation by using Python language.

Bibliography

[1] L. M. De Campos, J. F. Huete and S. Moral, Probability Interval; A Tool for Uncertain Reasoning, International Journal of Uncertainty, Fuzziness and KnowledgeBased Systems, Vol. 2, No. 2, 167-196, 1994.
[2] N. Burana, Interval Price Objective Coefficient Linear Programming Problem, Project Report, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, 2017.
[3] J. Rohn, Systems of Interval Linear Equations, Linear Algebra and Its Applications, No. 126, 39-78, 1989.

Appendix

The Project Proposal of Course 2301399 Project Proposal Academic Year 2018
Project Tittle (Thai)
Project Tittle (English)
Project Advisor
By
ค่าสูงสุดต่ำสุดของฟังก์ชันแบบช่วงที่มีเงื่อนไขเชิงเส้น
Maximum and minimum of interval function with linear condition.
Associate Professor Phantipa Thipwiwatpotjana, Ph.D.
Miss Siratcha Ruanruen ID 5833542423 Mathematics, Department of Mathematics and Computer Science Faculty of Science, Chulalongkorn University

Background and Rationale

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x. All we know is that we can apply the idea of the lowest and the largest expected values of the set of all expected values : $\left\{\sum_{i=1}^{n} p_{i} x_{i} \mid p_{i} \in\left[l_{i}, u_{i}\right]\right\}$ where $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq\right.$ $1, i=1,2, \ldots, n\}$ is a reachable set of proper probability intervals to find the lowest and the largest values of $\left\{\sum_{i=1}^{n} c_{i} x_{i}\right\}$ when c_{i} is an unknown in a given interval $\left[\underline{t_{i}}, \overline{v_{i}}\right]$ where $0 \leq t_{i}<v_{i}$ and $c_{i}^{\prime} s$ have the linear relation $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ for the given $\alpha_{i}, d \in \mathbb{R}$, [2]. In general, the bound of c_{i} is not always greater than or equal to zero, so we apply these ideas to find the lowest and the largest values of $\left\{\sum_{i=1}^{n} c_{i} x_{i}\right\}$ when c_{i} is an unknown in a given interval $\left[\underline{t_{i}}, \overline{v_{i}}\right]$ where $t_{i}<v_{i}$ and $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ for the fixed $\alpha_{i}, d \in \mathbb{R}$.

Objective

1. Prove that $\boldsymbol{p}=\left(u_{1}, \ldots, u_{i-1}, p_{i}, l_{i+1}, \ldots, l_{n}\right)$ for some index i such that $p_{i}=$ $1-\sum_{j=1}^{i-1} u_{j}-\sum_{j=i+1}^{n} l_{j}$ providing the smallest expected value and $\boldsymbol{q}=\left(l_{1}, \ldots, l_{i-1}, q_{i}, u_{i+1}, \ldots, u_{n}\right)$ for some index i such that $q_{i}=1-\sum_{j=1}^{i-1} l_{j}-$
$\sum_{j=i+1}^{n} u_{j}$ providing largest expected value.
2. Find the lowest and the largest values of $\left\{\sum_{i=1}^{n} c_{i} x_{i}\right\}$ when c_{i} is an unknown in a given interval $\left[\underline{t_{i}}, \overline{v_{i}}\right]$ where $t_{i}<v_{i}$ and $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ for the fixed $\alpha_{i}, d \in \mathbb{R}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x.

Project Activity

1. Study probability interval in [1].

- Proper probability interval
- Reachable probability interval
- Extreme probabilities

2. Prove that probabilities $\boldsymbol{p}, \boldsymbol{q}$ got from the method in [1] provide the smallest and largest expected values, respectively.
3. Provide an algorithm to find the lowest and largest values of $\left\{\sum_{i=1}^{n} c_{i} x_{i}\right\}$ when c_{i} is an unknown in a given interval $\left[\underline{t_{i}}, \overline{v_{i}}\right]$ where $t_{i}<v_{i}$ and $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ for the fixed $\alpha_{i}, d \in \mathbb{R}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x.
4. Recheck the process.
5. Conclude all results and write a report.

Duration

Procedue	Month								
	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
1.Study probability interval in [1].									
2.Prove that probabilities \boldsymbol{p}, \boldsymbol{q} got from the method in [1] provide the smallest and largest expected values, re- spectively.									
3.Provide an algorithm to find the lowest and largest values of $\boldsymbol{c}^{T} \boldsymbol{x}$.									
4.Recheck the process.									
5.Conclude all results and write a report.									

Benefits

1. The benefits to the student who implements this project.

- Apply the basic knowledge in mathematics and the knowledge gained from our learning to a related application problem.
- Know how to work systematically.

2. The benefits for users of the project.

- Find the lowest and largest values of $\left\{\sum_{i=1}^{n} c_{i} x_{i}\right\}$ when c_{i} is an unknown in a given interval $\left[\underline{t_{i}}, \overline{v_{i}}\right]$ where $t_{i}<v_{i}$ and $\sum_{i=1}^{n} \alpha_{i} c_{i}=d$ for the fixed $\alpha_{i}, d \in$ \mathbb{R} and $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x.
- Apply the idea got from this project to a big data set.

Equipment

1. Hardware

- Notebook computer Intel core i5-6200U
- Printer
- Thumb drive

2. Software

- Microsoft Word 365 ProPlus
- TeXstudio 2.12.8
- Spyder (Python 3.6)

References

[1] L. M. De Campos, J. F. Huete and S. Moral, Probability Interval; A Tool for Uncertain Reasoning, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 2, No. 2, 167-196, 1994.
[2] N. Burana, Interval Price Objective Coefficient Linear Programming Problem, Project Report, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, 2017.
[3] J. Rohn, Systems of Interval Linear Equations, Linear Algebra and Its Applications, No. 126, $39-78,1989$.

Appendix

1. Definition of probability interval

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x and $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\}$ be a family of intervals bounded by 0 and 1 . We can explain these intervals as a set of bounds of probabilities by defining the set \mathscr{P} of probability distributions on X as

$$
\mathscr{P}=\left\{\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid l_{i} \leq p_{i} \leq u_{i}, \sum_{i=1}^{n} p_{i}=1 \text { and } p_{i}=p\left(\left\{x_{i}\right\}\right), \forall i\right\} .
$$

Then the set L is called a set of probability intervals (or probability interval, in short), if there exist $p_{i} \in\left[l_{i}, u_{i}\right]$, for all $i=1,2, \ldots, n$ such that $\sum_{i=1}^{n} p_{i}=1$, and \mathscr{P} is the set of all possible probabilities associated to L.

In order to avoid the emptiness of set \mathscr{P}, it is necessary to have more properties on the intervals which is called proper. A probability interval L is called a proper probability interval if

$$
\sum_{i=1}^{n} l_{i} \leq 1 \leq \sum_{i=1}^{n} u_{i} .
$$

In addition, we can also associate with the proper intervals $\left[l_{i}, u_{i}\right]$ by presenting a pair (l, u) of the lower and upper probabilities through \mathscr{P} as follows.

$$
l(A)=\inf _{p \in \mathscr{P}} p(A) \text { and } u(A)=\sup _{p \in \mathscr{P}} p(A), \forall A \subseteq X .
$$

Therefore, $l\left(\left\{x_{i}\right\}\right)=\inf _{p \in \mathscr{P}} p_{i} \geq l_{i}$ and $u\left(\left\{x_{i}\right\}\right)=\sup _{p \in \mathscr{P}} p_{i} \leq u_{i}$. We use these two properties to get the tight bound of each interval.

2. Properties of probability interval

A proper probability interval must also have the following properties to ensure that the lower bound l_{i} and the upper bound u_{i} of the probability interval can be reached by some probabilities in the set \mathscr{P}, so called a reachable probability interval.
[Reachable] Let $L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\}$ be a probability interval. If there exist $p_{j}, q_{j} \in\left[l_{j}, u_{j}\right]$ for all $j \in\{1,2, \ldots, n\}$ such that $\forall i, l_{i}+\sum_{j \neq i} p_{j}=1$ and $u_{i}+\sum_{j \neq i} q_{j}=1$, then L is called a reachable probability interval.

Theorem 5. Given a reachable probability interval

$$
L=\left\{\left[l_{i}, u_{i}\right] \mid 0 \leq l_{i} \leq u_{i} \leq 1, i=1,2, \ldots, n\right\},
$$

we have

$$
\sum_{j \neq i} l_{j}+u_{i} \leq 1 \text { and } \sum_{j \neq i} u_{j}+l_{i} \geq 1, \quad \forall i=1,2, \ldots, n .
$$

These conditions guarantee that the lower bound l_{i} and the upper bounds u_{i} can be reached by some probabilities in \mathscr{P}. Sometimes probability interval is not reachable, we must change it to become a reachable probability interval. Now, let us see through the series of theorems how to modify a probability interval to be reachable without changing the associated set of possible probabilities \mathscr{P}

3. Extreme probabilities

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of all n realizations of a random variable x, where each x_{i} has its corresponding unknown probability p_{i} bounded by $\left[l_{i}, u_{i}\right]$. Without loss of generality, if $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, L.M. de Campos, et al. [1]provided probabilities $\underline{\boldsymbol{p}}$ and $\overline{\boldsymbol{q}}$ that give the smallest expected values $\underline{E}(x)$ and the largest expected values $\bar{E}(x)$, respectively.

Extreme probability is based on the assumption that when we want to have smallest expected values. If the realization of x_{i} is less than or equal to x_{j}, then probability p_{i} should be closer to the upper bound than probability p_{j} for all $i, j=1,2, \ldots, n$; i.e.,

$$
\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\left(u_{1}, u_{2}, \ldots, u_{k-1}, 1-\sum_{j=1}^{k-1} u_{j}-\sum_{j=k+1}^{n} l_{j}, l_{k+1}, \ldots, l_{n}\right)
$$

where k is the index such that $l_{k} \leq 1-\sum_{j=1}^{k-1} u_{j}-\sum_{j=k+1}^{n} l_{j} \leq u_{k}$. On the other hand, when we want to have largest expected values, if the realization of x_{i} is less than or equal to x_{j}, then probability q_{i} should be closer to the lower bound than probability q_{j} for all $i, j=1,2, \ldots, n$; i.e.,

$$
\left(q_{1}, q_{2}, \ldots, q_{n}\right)=\left(l_{1}, l_{2}, \ldots, l_{h-1}, 1-\sum_{j=1}^{h-1} l_{j}-\sum_{j=h+1}^{n} u_{j}, u_{h+1}, \ldots, u_{n}\right),
$$

where h is the index such that $l_{h} \leq 1-\sum_{j=1}^{h-1} l_{j}-\sum_{j=h+1}^{n} u_{j}, u_{h+1} \leq u_{h}$.
The smallest expected values $\underline{E}(x)=\sum_{i=1}^{n} p_{i} x_{i}$, where p_{i} is a probability computed from the following algorithm.

```
Algorithm 1 for \(\underline{\boldsymbol{p}}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)\)
\(S \leftarrow 0\)
For \(i=0\) to \(n-1\) do \(S \leftarrow S+u_{i}\);
\(S \leftarrow S+l_{n} ;\)
\(k \leftarrow n ;\)
While \(S \geq 1\) do \(S \nvdash S-u_{k-1}+l_{k-1} ; p_{k} \leftarrow l_{k} ; k \leftarrow k-1\);
For \(i=1\) to \(k-1\) do \(p_{i} \leftarrow u_{i}\);
\(p_{k} \leftarrow 1-S+l_{k} ;\)
```

The largest expected values $E(x)=\sum_{i=1}^{n} q_{i} t_{i}$, where q_{i} is a probability computed from the following algorithm.

Algorithm 2 for $\overline{\boldsymbol{q}}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$
$S \leftarrow 0$
For $i=0$ to $n-1$ do $S \leftarrow S+l_{i}$;
$S \leftarrow S+u_{n} ;$
$k \leftarrow n ;$
While $S \leq 1$ do $S \leftarrow S+u_{k-1}-l_{k-1} ; q_{k} \leftarrow u_{k} ; k \leftarrow k-1$;
For $i=1$ to $k-1$ do $q_{i} \leftarrow l_{i}$;
$q_{k} \leftarrow 1-S+u_{k} ;$

Biography

Siratcha Ruanruen ID 5833542423
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University

