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Chapter 1
Galois Rings

A finite commutative ring is a local ring if it has a unique maximal ideal. It follows
that if R is local ring with maximal ideal M , then the unit group of R, denoted by
U(R), is the complement of M , i.e., U(R) = R∖M . Let n and r be positive integers
and let p be a prime number. It is well known that there exists a monic polynomial
h(x) in Zpn [x] of degree r such that the reduction h̄(x) in Zp[x] is irreducible. This
such polynomial is called a basic irreducible polynomial. Consider the ring exten-
sion Zpn [x]/(h(x)), called a Galois ring. It can be proved that up to isomophism
this Galois ring is unique [1] and hence we may denote it by GR(pn, r). Observe
that GR(pn, 1) = Zpn and GR(p, r) = Fpr , the field of pr elements. Some general
properties of Galois rings are recorded below.

Theorem 1. [1] Let R = GR(pn, r).

1. R is a local ring of characteristic pn with maximal ideal pR.

2. R/pR ∼= Fpr and U(R) = R∖ pR.

3. There exists a non-zero element ξ in R which is a root of a monic polynomial
h(x) of degree r in Zpn [x] such that h̄(x) is irreducible in Zp[x] and

R = {a0 + a1ξ + · · ·+ ar−1ξ
r−1 : a0, a1, . . . , ar−1 ∈ Zpn}.

1
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The unit group of the Galois ring GR(pn, r) is well studied.

Theorem 2. [1] Let R = GR(pn, r). Then U(R) ∼= F×
pr ×G2 where

1. F×
pr = Fpr ∖ {0} is cyclic of order pr − 1.

2. G2 is a group of order p(n−1)r such that

(a) If p = 2 and n ≥ 3, then G2 is a direct product of a cyclic group of order
2, a cyclic group of order 2n−2 and r− 1 cyclic groups each of order 2n−1.

(b) If (p is odd) or (p = 2 and n ≤ 2), then G2 is a direct product of r cyclic
groups each of order pn−1.

For an element a in a commutative ring R, a is a square in R if there exists a b in
R such that a = b2. Stangl [3] determined the number of squares in Zpn . His results
are as follows. For n ∈ N and p a prime number, we write s(pn) for the number of
squares in Zpn .

Theorem 3. Let n ∈ N. If p = 2, then s(2) = 2 and

s(2n) =



2n−1 + 4

3
, n even;

2n−1 + 5

3
, n odd and n ≥ 3.

If p is an odd prime. Then

s(p) =
p+ 1

2
and s(p2) =

p2 − p+ 2

2
.

If n ≥ 3, then

s(pn) =



pn+1 + p+ 2

2(p+ 1)
, n even;

pn+1 + 2p+ 1

2(p+ 1)
, n odd.

We classify squares in the Galois ring GR(pn, r) into two types: nonunit elements
and units. We obtain a 1–1 correspondence between the squares in pGR(pn, r) and
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the square in GR(pn−2, r). This implies a recursion formula in Chapter 2. In Chapter
3, we find a closed form of the number of squares in GR(pn, r). Finally, we apply
the results on Galois rings to obtain the number of squares in the quotient rings of
the ring of Gaussian integers in Chapter 4.



Chapter 2
Recursion Formula

Let p be a prime number and n, r positive integers. Consider the Galois ring

R = GR(pn, r) = {a0 + a1ξ + · · ·+ ar−1ξ
r−1 : a0, a1, . . . , ar−1 ∈ Zpn}

where ξ is a root of a basic irreducible polynomial h(x) of degree r in Zpn [x].
Assume that n ≥ 3. Then p2Zpn is a subgroup of (Zn,+) of order pn−2. Note that if
a ∈ Z consider modulo pn and a ≥ pn−2, then a = pn−2q + r for some q ∈ N and
0 ≤ r < pn−2, so p2a ≡ p2r mod pn. Hence, we have shown:

Lemma 4. p2Zpn = {p2a : a ∈ Z and 0 ≤ a < pn−2}.

Let Tn denote the set of all squares in pR and let z ∈ Tn. Then z = l2 for some
l ∈ pR, so z = (pL)2 for some L ∈ R. Thus z = p2L2 ∈ p2R. It follows that z can be
written as

z = p2(a0 + a1ξ + a2ξ
2 + · · ·+ ar−1ξ

r−1) for some a0, a1, . . . , ar−1 ∈ Zpn .

By Lemma 4, we have

z = p2(b0 + b1ξ + b2ξ
2 + · · ·+ br−1ξ

r−1) for some b0, b1, . . . , br−1 ∈ Zpn−2 .

Since z is a square, so b0 + b1ξ + b2ξ
2 + · · ·+ br−1ξ

r−1 must be a square. Therefore,
the number of elements in Tn is the number of squares in GR(pn−2, r).

Let S(pn, r) be the number of squares in R and let Q(pn, r) be the number of
squares in R×. Since the number of squares in pR is the number of elements in
Tn and R = R× ∪ pR (a disjoint union), we have the number of squares in R is the

4
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number of squares in R× and the number of squares in pR. This proves the following
recursion formula.

Theorem 5. For n ≥ 3, S(pn, r) = Q(pn, r) + S(pn−2, r).



Chapter 3
Q(pn, r) and S(pn, r)

This chapter consists of two computations which are determiningQ(pn, r) and S(pn, r)

of the previous chapter. We use Q(pn, r) to assist us finding S(pn, r). According to
Theorem 2, we may classify p and n into three cases.

1. p = 2 and n ≥ 3;

2. p = 2 and n < 3;

3. p is odd.

In the first case, by Theorem 2, we know that

F×
2r

∼= Z2r−1 and G2
∼= Z2 × Z2n−2 × Z2n−1 × · · · × Z2n−1︸ ︷︷ ︸

r − 1 times

and the number of squares in R× is |2Z2r−1| ·|2G2|. So,

Q(pn, r) =
2r − 1

(2, 2r − 1)
· 2

(2, 2)
· 2n−2

(2, 2n−2)
·
(

2n−1

(2, 2n−1)

)r−1

= (2r − 1) · 2n−3 · (2n−2)r−1

= (2r − 1)(2nr−2r−1)

= 2nr−r−1 − 2nr−2r−1.

Hence, if p = 2 and n ≥ 3, then Q(pn, r) = 2nr−r−1 − 2nr−2r−1.
As for the second case and the third case, by Theorem 2, we have

F×
pr

∼= Zpr−1 and G2
∼= Zpn−1 × Zpn−1 × · · · × Zpn−1︸ ︷︷ ︸

r times

.

6
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It follows that

Q(pn, r) =
pr − 1

(2, pr − 1)
·
(

pn−1

(2, pn−1)

)r

.

If p = 2 and n = 1, then Q(pn, r) = (2r − 1)(1)r = 2r − 1 and if p = 2 and n = 2,
then Q(pn, r) = (2r − 1)(2

2
)r = 2r − 1. Finally, if p is odd, then (2, pr − 1) = 2, so

Q(pn, r) =
pr − 1

2
· (pn−1)r =

pnr − pnr−r

2
.

We conclude these results in the next theorem.

Theorem 6. Let n, r ∈ N. Then

Q(pn, r) =


2nr−r−1 − 2nr−2r−1, p = 2 and n ≥ 3;

2r − 1, p = 2 and n < 3;

pnr − pnr−r

2
, p is odd.

To compute the S(pn, r), we shall use the recursion formula and Theorem 6.
First, we consider the cases n = 1 and n = 2.
Case n = 1: Recall that S(p, r) is the sum of the number of squares in GR(p, r)× and
the number of squares in pGR(p, r) = {0}. Thus, S(p, r) = Q(p, r) + 1. It follows
that

S(p, r) =


2r, p = 2;

pr + 1

2
, p is odd.

Case n = 2: Again S(p2, r) is the sum of the number of squares in GR(p2, r)× and
the number of squares in pGR(p2, r). Note that if a is a square in pGR(p2, r), then
a = (pl)2 for some l ∈ GR(p2, r), so a = 0 in GR(p2, r). Thus, S(p2, r) = Q(p2, r)+1.
Hence,

S(p2, r) =


2r, p = 2;

p2r − pr + 2

2
, p is odd.

Next, we find the number of squares in GR(pn, r) for all n ≥ 3. By using the
recursive formula in Theorem 5 and Q(pn, r) in Theorem 6, we must divide p and n
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into four cases.
Case 1. p = 2 and n is even. Then

S(pn, r) = Q(pn, r) + S(pn−2, r)

= (2nr−r−1 − 2nr−2r−1) + (2nr−3r−1 − 2nr−4r−1) + · · ·

+ (23r−1 − 22r−1) + S(p2, r)

= (2nr−r−1 − 2nr−2r−1) + (2nr−3r−1 − 2nr−4r−1) + · · ·

+ (23r−1 − 22r−1) + 2r

=
(22r−1)(2nr−2r − 1)

2r + 1
+ 2r

=
2nr−1 − 22r−1 + 22r + 2r

2r + 1
.

Case 2. p = 2 and n is odd. Then

S(pn, r) = Q(pn, r) + S(pn−2, r)

= (2nr−r−1 − 2nr−2r−1) + (2nr−3r−1 − 2nr−4r−1) + · · ·

+ (22r−1 − 2r−1) + S(p, r)

= (2nr−r−1 − 2nr−2r−1) + (2nr−3r−1 − 2nr−4r−1) + · · ·

+ (22r−1 − 2r−1) + 2r

=
(2r−1)(2nr−r − 1)

2r + 1
+ 2r

=
2nr−1 − 2r−1 + 22r + 2r

2r + 1
.

Case 3. p is odd and n is even. Then

S(pn, r) = Q(pn, r) + S(pn−2, r)

=
pnr − pnr−r

2
+

pnr−2r − pnr−3r

2
+ · · ·+ p4r − p3r

2
+ S(p2, r)

=
pnr − pnr−r + pnr−2r − pnr−3r + · · ·+ p4r − p3r + p2r − pr

2
+ 1

=
pr(pnr − 1)

2(pr + 1)
+ 1

=
pnr+r + pr + 2

2(pr + 1)
.
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Case 4. p is odd and n is odd. Then

S(pn, r) = Q(pn, r) + S(pn−2, r)

=
pnr − pnr−r

2
+

pnr−2r − pnr−3r

2
+ · · ·+ p3r − p2r

2
+ S(p, r)

=
pnr − pnr−r + pnr−2r − pnr−3r + · · ·+ p3r − p2r + pr

2
+

1

2

=
pr(pnr + 1)

2(pr + 1)
+

1

2

=
pnr+r + 2pr + 1

2(pr + 1)
.

Finally, we have the closed form of the number of squares in GR(pn, r) for all
n ∈ N and p a prime number in the following theorem.

Theorem 7. Let p be a prime number and n, r ∈ N. Then

1. S(p, r) =


2r, p = 2;

pr + 1

2
, p is odd,

2. S(p2, r) =


2r, p = 2;

p2r − pr + 2

2
, p is odd.

3. If n ≥ 3, then

S(pn, r) =



2nr−1 − 22r−1 + 22r + 2r

2r + 1
, p = 2 and n is even;

2nr−1 − 2r−1 + 22r + 2r

2r + 1
, p = 2 and n is odd;

pnr+r + pr + 2

2(pr + 1)
, p is odd and n is even;

pnr+r + 2pr + 1

2(pr + 1)
, p is odd and n is odd.



Chapter 4
Applications to the Quotient Rings of
the Ring of Gaussian Integers

The ring of Gaussian integers, denoted by Z[i], consists of complex numbers that
have the form a + bi, where a, b ∈ Z and i =

√
−1. The units in Z[i] are ±1 and

±i. For a, b ∈ Z not both zeros, we have the order of the ring Z[i]/(a + bi) is
N(a+ bi) = a2+ b2. It is well known that every prime in Z[i] is a unit multiple of the
following primes:

1. π or π̄, where N(π) = q is a prime number in Z which is q ≡ 1 mod 4,

2. p, where p is a prime number in Z with p ≡ 3 mod 4 and

3. α = 1 + i.

Cross [2] worked on representatives for the equivalence classes of the quotient
rings of ideals of Z[i] generated by prime powers in the next theorem.

Theorem 8. [2] The equivalence classes of Z[i] modulo a power of a prime are
given as follows. For all m,n ∈ N, we have

1. Z[i]/(πn) = {[a] : 0 ≤ a ≤ qn − 1},

2. Z[i]/(pn) = {[a+ bi] : 0 ≤ a, b ≤ pn − 1},

3. Z[i]/(α2m) = {[a+ bi] : 0 ≤ a, b ≤ 2m − 1},

4. Z[i]/(α2m+1) = {[a+ bi] : 0 ≤ a ≤ 2m+1 − 1 and 0 ≤ b ≤ 2m − 1}.

10
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Now, we count the number of squares in the quotient rings of the ring of Gaussian
integers by counting the squares in the ring which is isomorphic to these extension
rings. We distinguish the proof into three cases depending on types of primes.

Let n be a positive integer.
Case 1. Z[i]/(πn) where N(π) = q is a prime number in Z with q ≡ 1 mod 4.
Assume that r, s ∈ Z are such that r ≡ smod πn. Then πn divides r−s, so π̄n divides
r − s = r−s. Since π and π̄ are not associates, π and π̄ are relatively prime in Z[i], so
πnπ̄n = qn divides r−s. Thus, r ≡ smod qn. Since |Z[i]/(πn)| = N(πn) = πnπ̄n = qn,
the above argument shows that

Z[i]/(πn) = {a+ (πn) : a ∈ Z and 0 ≤ a ≤ qn − 1}.

The natural map φ : a + (πn) 7−→ [a] gives an isomorphism of Z[i]/(πn) onto Zqn .
Since Zqn is a Galois ring over Zqn with r = 1, Theorem 7 implies the following
theorem.

Theorem 9. Let S(πn) denote the number of squares in Z[i]/(πn) where n ∈ N.
Then

1. S(π) = q + 1

2

2. S(π2) =
q2 − q + 2

2

3. If n ≥ 3, then

S(πn) =



qn+1 + q + 2

2(q + 1)
, n is even;

qn+1 + 2q + 1

2(q + 1)
, n is odd.

Case 2. Z[i]/(pn) where p is a prime number in Z with p ≡ 3 mod 4. We will show
that Z[x]/(pn, x2 + 1) ∼= Z[i]/(pn).

Proof. Define ρ : Z[x] → Z[i]/(pn), by ρ : f(x) 7−→ f(i) + (pn). Then ρ is an
onto homomorphism. To compute the kernel of ρ, let f(x) ∈ Z[x] be such that
f(i) + (pn) = 0 + (pn). Then pn divides f(i) in Z[i], so f(i) = pn(b + ci) for some
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b, c ∈ Z. Thus, f(i) − pn(b + ci) = 0, so i is a root of f(x) − pn(b + cx) in Z[x]. It
follows that f(x) − pn(b + cx) = (x2 + 1)g(x) for some g(x) ∈ Z[x]. Then f(x) =

pn(b+ cx) + (x2 + 1)g(x) is in (pn, x2 + 1). Hence, ker ρ = (pn, x2 + 1).

Next, we prove that Z[x]/(pn, x2 + 1) ∼= Zpn [x]/(x
2 + 1̄).

Proof. Define η : Z[x] → Zpn [x]/(x
2 + 1̄), by η(a0 + a1x + · · · + akx

k) = ā0 + ā1x +

· · · + ākx
k + (x2 + 1̄) for all a0, a1, . . . , ak ∈ Z and k ∈ N ∪ {0}. Then η is an onto

homomorphism. Its kernel is {a0 + a1x + · · · + akx
k : k ∈ N ∪ {0}, a0, a1, . . . , ak ∈

Z and x2 + 1̄ divides ā0 + ā1x + · · · + ākx
k in Zpn [x]}. If a0, a1, . . . , ak ∈ Z and

ā0 + ā1x+ · · ·+ ākx
k = (x2 + 1̄)(b̄0 + b̄1x+ · · ·+ b̄mx

m) for some m ∈ N ∪ {0} and
b0, b1, . . . , bm ∈ Z, then pn divides (a0+a1x+· · ·+akx

k)−(x2+1)(b0+b1x+· · ·+bmx
m)

in Z[x], so a0 + a1x+ · · ·+ akx
k = (x2 +1)(b0 + b1x+ · · ·+ bmx

m)+ pnh(x) for some
h(x) ∈ Z[x].

Since p ≡ 3 mod 4, −1 is not a square modulo p, so x2 + 1̄ is irreducible in
Zp[x]. Hence, Zpn [x]/(x

2 + 1̄) is a Galois ring with r = 2. By Theorem 7, we have the
following theorem.

Theorem 10. Let S(pn) denote the number of squares in Z[i]/(pn) where n ∈ N.
Then

1. S(p) = p2 + 1

2

2. S(p2) = p4 − p2 + 2

2

3. If n ≥ 3, then

S(pn) =



p2n+2 + p2 + 2

2(p2 + 1)
, n is even;

p2n+2 + 2p2 + 1

2(p2 + 1)
, n is odd.

Case 3. Z[i]/(αn) where α = 1 + i. For n ∈ N, let S(αn) be the number of squares
in Z[i]/(αn) and let Q(αn) be the number of squares in Z[i]/(αn) that are units. By
Theorem 8, we know that Z[i]/(α) = {[0], [1]} and Z[i]/(α2) = {[0], [1], [i], [1 + i]}.
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Since (02 ≡ 0 mod α and 12 ≡ 1 mod α) and (02 ≡ 0 mod α2, 12 ≡ 1 mod α2,
i2 ≡ 1 mod α2 and (1 + i)2 ≡ 0 mod α2), we have S(α) = 2 and S(α2) = 2. For
n ≥ 3, we begin with a lemma.

Lemma 11. Let n ∈ N with n ≥ 3. For b ∈ Z[i], b+ (αn−2) is a square in Z[i]/(αn−2)

if and only if bα2 + (αn) is a square in Z[i]/(αn).

Proof. Let b ∈ Z[i]. Suppose b+ (αn−2) is a square in Z[i]/(αn−2). Then there exists
a c ∈ Z[i] such that c2 ≡ b mod αn−2, so c2 − b = αn−2z for some z ∈ Z[i]. It follows
that (cα)2 − bα2 = αnz or bα2 ≡ (cα)2 mod αn. Hence, bα2 is a square in Z[i]/(αn).

Conversely, suppose that there is a y ∈ Z[i] such that bα2 ≡ y2 mod αn. Then
bα2 − y2 = αnw for some w ∈ Z[i], so α2 | y2. Thus, α | y, so we have y = xα2 for
some x ∈ Z[i]. Hence, bα2 − xα2 = αnw, so b− x = αn−2w, i.e., b ≡ x mod αn−2 as
desired.

Let n ∈ N and n ≥ 3. Suppose k ∈ Z[i] and kα is a square in Z[i]/(αn). Then
kα−c2 = αnz for some c, z ∈ Z[i], so α | c2. Since α is a prime in Z[i], α | c. It follows
that α | k, so k = bα for some b ∈ Z[i] and bα2 + (αn) is a square in Z[i]/(αn). The
above lemma implies that b+(αn−2) is a square in Z[i]/(αn−2). Thus, we have a 1–1
correspondence between nonunit squares in Z[i]/(αn) and squares in Z[i]/(αn−2).
This proves S(αn)−Q(αn) = S(αn−2). We record this recursion formula in the next
theorem.

Theorem 12. For n ≥ 3, S(αn) = Q(αn) + S(αn−2).

Cross [2] computed the following unit groups.

Theorem 13. [2] U(Z[i]/(α)) ∼= {0}, U(Z[i]/(α2)) ∼= Z2, U(Z[i]/(α3)) ∼= Z4 and
U(Z[i]/(α4)) ∼= Z2 × Z4. For n ≥ 5,

U(Z[i]/(αn)) ∼=


Z2m−1 × Z2m−2 × Z4, if n = 2m;

Z2m−1 × Z2m−1 × Z4, if n = 2m+ 1.

Then we have Q(α) = 1, Q(α2) = 2, Q(α3) = 2 and Q(α4) = 2. For n ≥ 5, we
have two cases.
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Case 1. n = 2m is even. Then

Q(α2m) = |2Z2m−1| · |2Z2m−2| · |2Z4| =
2m−1

2
· 2

m−2

2
· 4
2
= 22m−4 = 2n−4.

Case 2. n = 2m+ 1 is odd. Then

Q(α2m+1) = |2Z2m−1| · |2Z2m−1| · |2Z4| =
2m−1

2
· 2

m−1

2
· 4
2
= 22m−3 = 2n−4.

Hence, Q(αn) = 2n−4 for all n ≥ 5.
Now, for n ≥ 3, by repeated applications of Theorem 12, we obtain:

If n is even, then

S(αn) = Q(αn) + S(αn−2)

= 2n−4 + 2n−6 + · · ·+ 22 + S(α4)

=
22(2n−4 − 1)

3
+Q(α4) + S(α2)

=
2n−2 + 8

3
,

and if n is odd, then

S(αn) = Q(αn) + S(αn−2)

= 2n−4 + 2n−6 + · · ·+ 21 + S(α3)

=
2(2n−3 − 1)

3
+Q(α3) + S(α)

=
2n−2 + 10

3
.

We conclude the number of squares in Z[i]/(αn)) in the following theorem.

Theorem 14. We have S(α) = 2 and S(α2) = 2. For n ≥ 3, then

S(αn) =



2n−2 + 8

3
, n is even;

2n−2 + 10

3
, n is odd.

Since Z[i] is a UFD, if w is a nonzero nonunit element in Z[i], then it is a product
of powers of a prime in Z[i]. Using the Chinese remainder theorem and Theorems
9, 10 and 14, we can determine the number of squares in Z[i]/(w) where w is a
nonzero nonunit element in Z[i].
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3. Prove a recursion formula for the number of squares in D/(pn) where D is a
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