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Chapter 1

Galois Rings

A finite commutative ring is a local ring if it has a unique maximal ideal. It follows
that if R is local ring with maximal ideal M, then the unit group of R, denoted by
U(R), is the complement of M, i.e., U(R) = R~ M. Let n and r be positive integers
and let p be a prime number. It is well known that there exists a monic polynomial
h(x) in Zy[x] of degree r such that the reduction h(z) in Z,[z] is ireducible. This
such polynomial is called a basic irreducible polynomial. Consider the ring exten-
sion Zyn[z]/(h(z)), called a Galois ring. It can be proved that up to isomophism
this Galois ring is unique [1] and hence we may denote it by GR(p",r). Observe
that GR(p",1) = Zy» and GR(p,r) = [F,r, the field of p” elements. Some general

properties of Galois rings are recorded below.

Theorem 1. [1] Let R = GR(p", ).
1. Ris a local ring of characteristic p™ with maximal ideal pR.
2. R/pR=TF, and UW(R) = R\ pR.

3. There exists a non-zero element £ in R which is a root of a monic polynomial

h(x) of degree r in Z,[x] such that h(x) is irreducible in Z,[x] and

R={ay+aié+ - +a_1& " ag,an,... a1 € L'}



The unit group of the Galois ring GR(p", r) is well studied.
Theorem 2. [1] Let R = GR(p",r). Then W(R) = F,, x Gy where

1. F). = Fyr {0} is cyclic of order p” — 1.

2. Gy is a group of order p"~Y" such that

(@) If p=2and n > 3, then G5 is a direct product of a cyclic group of order
2, a cyclic group of order 272 and r — 1 cyclic groups each of order 2" 1.
(b) If (p is odd) or (p = 2 and n < 2), then G5 is a direct product of r cyclic

groups each of order p"~1.

For an element a in a commutative ring R, a is a square in R if there exists a b in
R such that a = b?. Stangl [3] determined the number of squares in Z,». His results
are as follows. For n € N and p a prime number, we write s(p") for the number of

squares in Zyn.

Theorem 3. Let n € N. If p =2, then s(2) =2 and

( 2n—1 = 4
——, neven;
3
s(2") = <
27145
—+, n odd and n > 3.
. 3
If pis an odd prime. Then
p+1 pP—p+2
s(p) = —— and () 5
If n > 3, then
(, n+1 2
P HPte L ven:
2(p+1)
s(p") =
n+1 2 1
w, n odd.
( 2(p+1)

We classify squares in the Galois ring GR(p™, ) into two types: nonunit elements

and units. We obtain a 1-1 correspondence between the squares in pGR(p", r) and



the square in GR(p" 2, ). This implies a recursion formula in Chapter 2. In Chapter
3, we find a closed form of the number of squares in GR(p", r). Finally, we apply
the results on Galois rings to obtain the number of squares in the quotient rings of

the ring of Gaussian integers in Chapter 4.



Chapter 2

Recursion Formula

Let p be a prime number and n, r positive integers. Consider the Galois ring
R=GR(",r)={ap+ @&+ +a, 1" 1ag,a1,...,a4,1 € Lpn}

where ¢ is a root of a basic irreducible polynomial h(z) of degree r in Z,n[x].
Assume that n > 3. Then p?Z,n is a subgroup of (Z,, +) of order p"~2. Note that if
a € 7 consider modulo p" and a > p"~2, then a = p"~2¢ + r for some ¢ € N and

0 <r<p"2 sop’a = p*r mod p". Hence, we have shown:
Lemma 4. p*Z,» = {p*a : a € Zand 0 < a < p" 2}

Let T;, denote the set of all squares in pR and let z € T},. Then z = [? for some
| € pR, so z = (pL)* for some L € R. Thus z = p?L? € p*R. It follows that z can be

written as

z=p*ag+ a1+ a®+ -+ a, &Y  for some ag, ay, ..., a4,y € Zpn.
By Lemma 4, we have

2 =p*(bo+ 1€+ 0o + -+ b1 &71) for some by, by, ..., by_y € Zpn-s.

Since z is a square, so by + b1 + b2 + -+ + b1 must be a square. Therefore,
the number of elements in T, is the number of squares in GR(p" 2, r).

Let S(p™,r) be the number of squares in R and let Q(p",r) be the number of
squares in R*. Since the number of squares in pR is the number of elements in

T, and R = R* U pR (a disjoint union), we have the number of squares in R is the

qa



number of squares in R* and the number of squares in pR. This proves the following

recursion formula.

Theorem 5. Forn >3, S(p™,r) = Q(p",r) + S(p" 2 r).



Chapter 3
Q(p",r) and S(p", )

This chapter consists of two computations which are determining Q(p", r) and S(p™, r)
of the previous chapter. We use Q(p",r) to assist us finding S(p™,r). According to

Theorem 2, we may classify p and n into three cases.
1. p=2andn > 3;
2. p=2andn <3
3. pis odd.

In the first case, by Theorem 2, we know that

R = Zyr 1 and Gy = Zg X Zgn-2 X Lon-1 X -+ X L1
'
r — 1 times

and the number of squares in R* is|2Zqr 1] -|2G5|. So,

" -1 2 o2 2\
Q" r) = 2,2 —1) (2,2) (2,27 2) <(272”‘1))
= (@ -1).2vd (2R

— <2r o 1)(2711"721"71)

2m“—7"—1 o 2m“—27“—1

Hence, if p = 2 and n > 3, then Q(p™,r) = 21 — gnr=2r=1

As for the second case and the third case, by Theorem 2, we have

X
Fpr g ZpT—l aﬂd G2 g an71 X an71 X+ X anfll.

N

~
r times



It follows that

(27p7" - 1) 27pn—1
Ifp=2andn =1,then Q(p",r) = (2" —-1)(1)" =2"—-1landif p=2and n = 2,
then Q(p™,r) = (2" —1)(3)" = 2" — 1. Finally, if p is odd, then (2,p" — 1) =2, so

p'f‘_l 1\ pnr_p
Q) = ey = B

We conclude these results in the next theorem.

Theorem 6. Let n,r € N. Then

,
gnr—r=1 _ 2m’-2r*1’ p=2andn > 3;
QW r) = 2" —1, p=2andn<3;

pnr / pnrfr
\ 2

y pis odd.

To compute the S(p",r), we shall use the recursion formula and Theorem 6.
First, we consider the cases n =1 and n = 2.
Case n = 1: Recall that S(p, r) is the sum of the number of squares in GR(p,r)* and
the number of squares in pGR(p,r) = {0}. Thus, S(p,r) = Q(p,r) + 1. It follows
that
2", p=2

5 p is odd.
Case n = 2: Again S(p?,r) is the sum of the number of squares in GR(p?, r)* and
the number of squares in pGR(p?,r). Note that if a is a square in pGR(p?, ), then
a = (pl)?for somel € GR(p*,1),s0a = 0in GR(p? r). Thus, S(p?,r) = Q(p?,r)+1.
Hence,

2", p=2

p27' _ pr + 2
T
Next, we find the number of squares in GR(p",r) for all n > 3. By using the

S r) =
p is odd.

recursive formula in Theorem 5 and Q(p", r) in Theorem 6, we must divide p and n



into four cases.

Case 1. p =2 and n is even. Then

S(p",r)

= Q@"r)+Sp"2r)

— (2111”77“71 . 2117‘727‘71) + (2711”731”71 o 2nr74r71) 4.
+ (237"—1 _ 227’—1) + S(pz,r)

— (Qn'r—r—l _ 2n'r—2'r—1) + (2nr—3r—1 _ 2nr—4r—1) 4o

+ (237“71 o 227‘71) 4 27’
(22r—1)(2nr—2r - 1)

= or
2 +1 *

B 2n7‘—1 _ 227‘—1 A 227" + or

B or 1 '

Case 2. p =2 and n is odd. Then

S(p",r)

= QU r)+ SO )

_ (2nr—r—1 / 2nr—2r—1) + (2nr—3r—1 _ 2n7"—47"—1) e
+ (277 27 + S(p.r)

_ (277,7'77"71 o 2nr—2r—1) + (2nr73r71 _ 2m"747"71) +...

+ (227‘71 — 27”71) + 27‘
(2r—1)(2nr—r i 1)

Case 3. pis odd and n is even. Then

Spp"r) =

= or
2r+1 +
_ 2n'r—1 a 27"—1 hil 22r + 2'r
B 2"+
Q(p",r) +S(p" 2, 7)
pnr _ pm’—r pnr—2r _ pm’—Sr p4r _ p3r )
5+ 5 ot T+ S0 T)
pnr _ pn'r’—r + pnr—2r _ pn'r’—S'r’ 4o+ p4r _ p3r + p2fr _ p'r
+1
2
T(pv — 1]
p(p ) 11
2(pm +1)

pnr—l-r +pr + 2
2(p" +1)



Case 4. pis odd and n is odd. Then

S",r) = QW) +SEr)
nr nr—r nr—2r nr—3r 3r 2r

p —D p - D P —D

_ NI N AR~
5 + 5 tot S+ (p,7)

_ pnr _ pnr—r + pnr—2r _ pnr—37" 4+t p3r _ p2r + pr 1
B 2 2

™ +1)

1

20p"+1) 2

pnr+r + 2pr + 1
2(p+1)

Finally, we have the closed form of the number of squares in GR(p",r) for all

n € N and p a prime number in the following theorem.

Theorem 7. Let p be a prime number and n,r € N. Then

S(p.r) 27, p=2;
1 D, T =
) 7 1
p+’ p is odd,

2

27, p=2
2 S(p2,7") = 2r r

L 2p+ . pisodd.

3. If n >3, then

( 2n7"—1 o 227"—1 1y 227" + or
2r 4+ 1

2nr—1 _ 2r—1 + 22r + or
2r+1

pnrJrr +pr + 2
2pr+1)

pnr-‘rr + 2pr +1
20 +1)

\

, p=2andn Iiseven;

,  p=2andn isodd,

pis odd and n is even;

pis odd and n is odd.



Chapter 4
Applications to the Quotient Rings of

the Ring of Gaussian Integers

The ring of Gaussian integers, denoted by Z|i], consists of complex numbers that
have the form a + bi, where a,b € Z and i = \/—1. The units in Z[i] are =1 and
+i. For a,b € Z not both zeros, we have the order of the ring Z[i|/(a + bi) is
N(a+bi) = a®+ b Itis well known that every prime in Z[i] is a unit multiple of the

following primes:
1. mor 7w, where N(7) = ¢ is a prime number in Z which is ¢ = 1 mod 4,
2. p, where pis a prime number in Z with p = 3 mod 4 and
3. a=1+:.

Cross [2] worked on representatives for the equivalence classes of the quotient

rings of ideals of Z[i] generated by prime powers in the next theorem.

Theorem 8. [2] The equivalence classes of Z[i] modulo a power of a prime are

given as follows. For all m,n € N, we have
1 Zli)/ () = {la] : 0 <a < q" 1},
2. Z[i]/(p") ={la+1bi] : 0 <a,b<p"—1},
3.2/ (@®) ={la+bi]:0<ab<2m—1},
4. Z[i)/(a®™ ) ={la+bi] :0<a<2™ —1and 0 < b < 2™ — 1},

10
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Now, we count the number of squares in the quotient rings of the ring of Gaussian
integers by counting the squares in the ring which is isomorphic to these extension
rings. We distinguish the proof into three cases depending on types of primes.

Let n be a positive integer.

Case 1. Z[i]/(7™) where N(7) = ¢ is a prime number in Z with ¢ = 1 mod 4.

Assume that r, s € Z are such that r = s mod 7. Then n" divides r — s, so 7" divides

r —s=r—s. Since w and T are not associates, m and 7 are relatively prime in Z]i], so
7" = ¢" divides r—s. Thus, r = s mod ¢". Since |Z[i|/(7")| = N(n") = n"7" = ¢",

the above argument shows that
Z[i)/(t") ={a+ (n"):a€Z and 0 <a < q¢" —1}.

The natural map ¢ : a + (7") — [a] gives an isomorphism of Z[i] /(") onto Zgn.
Since Zg» is a Galois ring over Zg with r = 1, Theorem 7 implies the following

theorem.

Theorem 9. Let S(n™) denote the number of squares in Zli]/(x™) where n € N.

Then

q+1
1. S(m) = 5
2 _
2 5(#):#

3. If n >3, then

(" g +2 .
1 " niseven;
2(q+1)
S(n") =
4 og 41
¢ At odd.
( 2(¢+1)

Case 2. Z[i]/(p™) where p is a prime number in Z with p = 3 mod 4. We will show
that Z[z]/(p", 2 + 1) = Z[i]/(p")-

Proof. Define p : Z[z] — Z[i]/(p"), by p : f(z) — f(i) + (p"). Then pis an
onto homomorphism. To compute the kernel of p, let f(z) € Z[x] be such that

f(@) + (p™) = 0+ (p™). Then p™ divides f(i) in Z[i], so f(i) = p™(b + ci) for some



12

b,c € Z. Thus, f(i) — p™(b+ ci) = 0, so i is a root of f(x) — p™(b+ cx) in Z[z]. It
follows that f(z) — p™(b+ cx) = (2? + 1)g(x) for some g(x) € Z[x]. Then f(z) =
p"(b+cx) + (% + 1)g(x) is in (p", 22 + 1). Hence, ker p = (p™, 2* + 1). []

Next, we prove that Z[z]/(p™, 2? + 1) & Zyn[z]/(2* + 1).

Proof. Define n : Z[z] — Zy[z]/(2* + 1), by n(ap + a1 + - - - + aga®) = o + a1z +
vt aprt 4+ (22 4+ 1) for all ag, a1, ...,ar € Z and k € NU {0}. Then 7 is an onto
homomorphism. Its kernel is {ag + a1 + - - - + apa® : k € NU{0}, ag,ay,...,ar €
Z and z? + 1 divides ag + ayx + - -+ + aga® in Zynlx|}. If ag,aq,...,a; € Z and
o+ arx + - + apa® = (22 +1)(bg + bz + - - + bpa™) for some m € NU {0} and
bo, b1, - .., b € Z, then p™ divides (ag+ayz+- - -+apz®)— (22 +1) (bo+brz+- - -+bpa™)
in Z[x], s0 ag+ a1z + - - - + apx® = (22 4+ 1)(by + bz + - - - + byx™) + p"h(z) for some

h(z) € Zx]. []

Since p = 3 mod 4, —1 is not a square modulo p, so 2% + 1 is irreducible in
Z,|z]. Hence, Zyn[z]/(x* + 1) is a Galois ring with r = 2. By Theorem 7, we have the

following theorem.

Theorem 10. Let S(p™) denote the number of squares in Z[i]/(p™) where n € N.

Then
2 + 1
1. S(p) =
4 2
— B
2. S(p?) = 7%

3. Ifn >3 then

(2042 249
p T , n is even;
2(p* +1)
Sp") =
2n+2 2 2 1
p Jgp + ,  nisodd.
[ 200 +1)

Case 3. Zli]/(a™) where a = 1 4. For n € N, let S(a™) be the number of squares
in Z[i]/(a™) and let Q(a™) be the number of squares in Z[i]/(a™) that are units. By
Theorem 8, we know that Z[i]/(«) = {[0],[1]} and Z[i]/(a?) = {[0], [1], [1], [1 + 4]}
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Since (0> = 0 mod o and 12 = 1 mod ) and (0> = 0 mod 2, 12 = 1 mod a?,
i> = 1 mod o? and (1 +7)? = 0 mod a?), we have S(a) = 2 and S(a?) = 2. For

n > 3, we begin with a lemma.

Lemma 11. Let n € Nwithn > 3. For b € Z[i], b+ (o™ %) is a square in Z[i]/(a"?)

if and only if ba? + (™) is a square in Z[i]/(a™).

Proof. Let b € Z[i]. Suppose b+ (a™2) is a square in Z[i]/(a™?). Then there exists
a ¢ € Z[i] such that ¢* = b mod o™ 2, so ¢ — b = a2z for some z € Z[i]. It follows
that (ca)? — ba? = o™z or ba? = (ca)? mod o”. Hence, ba? is a square in Z[i]/(a™).

Conversely, suppose that there is a y € Zli] such that ba? = 3? mod a™. Then
ba? — y* = a"w for some w € Zli], so a* | y*. Thus, a | y, so we have y = xa? for

2

some z € Z[i]. Hence, ba? — xa? = a"w, s0 b — x = o" 2w, i.e., b = x mod a" 2 as

desired. L]

Let n € N and n > 3. Suppose k € Z[i] and ka is a square in Z[i]/(a™). Then
ka—c? = a™z for some ¢, z € Z[i], so a | ¢ Since ais a prime in Z[i], a | c. It follows
that « | k, so k = ba for some b € Z[i] and ba? + (™) is a square in Z[i]/(a™). The
above lemma implies that b+ (a"~2) is a square in Z[i]/(a™~?). Thus, we have a 1-1
correspondence between nonunit squares in Z[i]/(a™) and squares in Z[i]/(a"2).
This proves S(a™) — Q(a™) = S(a™?). We record this recursion formula in the next

theorem.
Theorem 12. Forn > 3, S(a") = Q(a™) + S(a"2).
Cross [2] computed the following unit groups.
Theorem 13. [2] W(Z[i]/(a)) = {0}, W(Z[i]/(a?)) = Zy, W(Z[i]/(a?®)) = Z4 and

W(Z[i]) /(o)) = Zy x Zy. Forn >5,

. Ligm—1 X Ligm—2 X Ly,  if n = 2m;
U(Z[i] /(")) =
Ligm-1 X Ligm-1 X Ly, ifn=2m+1.
Then we have Q(a) = 1, Q(a?) = 2, Q(a®) = 2 and Q(a*) = 2. Forn > 5, we

have two cases.



Case 1. n = 2m is even. Then

QaP™) = (2| - oo - [2] = Fo  E A gt g
(6] — m— . m— . = T = = =
2 1 2 2 4 2 2 2
Case 2. n =2m + 1is odd. Then
2m—1 2m—1 4
Q(a2m+1) = |2Z2m71| : |2Z2m71| . |QZ4| = 9 : —2 : 5 - 22m_3 - 2n_4

Hence, Q(a™) = 2"~ for all n > 5.
Now, for n > 3, by repeated applications of Theorem 12, we obtain:

If n is even, then

S@") = Q(a")+8(a"7?)

— 2n—4+2n—6+”‘_’_22_’_8(a4>
22 2n—4 -1
= 220 10w + S(e)
2n*2 +8
3 )

and if n is odd, then

S@") = Q") +S(a")

— 271—4_}_277,—6_}_”‘_{_21_{_5(&3)
T ——
2 % + Qo) + S(a)
272 110
3 2

We conclude the number of squares in Z[i] /(™)) in the following theorem.

Theorem 14. We have S(a) =2 and S(a?) = 2. For n > 3, then

( 2n72 + 8 .
_ n is even;
3
S(a™) =
22 4 10
—+, n is odd.
\ 3

14

Since Zli] is a UFD, if w is a nonzero nonunit element in Z[i], then it is a product

of powers of a prime in Z[i]. Using the Chinese remainder theorem and Theorems

9, 10 and 14, we can determine the number of squares in Z[i|/(w) where w is a

nonzero nonunit element in Z[i].
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In 1996, Stangl [1] determined the number of squares in Z,» where p is a prime
number. He showed that Vn > 3, s(p") = q(p™) + s(p™~2) where s(p") is the number
of all squares in Z,» and ¢(p™) the number of squares in Z,» that are units. A square
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known.

Let Z[i] = {a+bi : a,b € Z} be the ring of Gaussian integers. Cross [2] completely
determined the group of units of the quotient ring Z[i]/(«) for all « € Z[i]. It allows
us to count the number of squares in this quotient ring which are units.

In this project, we will find the number of squares in quotient rings of the ring
of Gaussian integers. We will prove a recursion formula for the number of squares
in D/(p") where D is a unique factorization domain and p € D is a prime element.

Then, we use Cross’s result to obtain the number of squares.
Objectives
To count the number of squares in quotient rings of the ring of Gaussian integers.

Project Activities

1. Study the work of Stangl [1] and Cross [2].

2. Review basic knowledge on Abstract Algebra and Number Theory which relates

to our project.
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. Prove a recursion formula for the number of squares in D/(p™) where D is a
unique factorization domain and p € D is a prime element.

. Compute the number of quadratic residues by using result of Cross [2] and then

compute the number of squares that are non-unit.

. Use recursion formula to determine form of number of squares in Z[i]/(7")

where 7 is s prime in Zli].

. Write a report.



Activities Table
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Project Activities

August 2018 - April 2019

1.Study the work of Stangl
[1] and Cross [2].

2.Review basic knowledge
on Abstract Algebra and
Number Theory which re-

lates to our project.

Aug | Sep

Oct | Nov | Dec | Jan | Feb

Mar

Apr

3.Prove a recursion formula
for the number of squares
in D/(p") where D is a
unique factorization domain
and p € D is a prime ele-

ment.

4.Compute the number of
quadratic residues by us-
ing result of Cross [2] and
then compute the number

of squares that are non-unit.

5.Use recursion formula to
determine form of num-
ber of squares in Z[i]/(7™)

where 7 is s prime in Z[i].

6.Write a report.
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Benefits
To obtain the number of squares in quotient rings of the ring of Gaussian integers.

Equipment

—_

. Computer

N

. Paper

3. Printer

EaN

. Stationery

5. Word processing program
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