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Chapter 1

Introduction

The content of infinite sums is discussed extensively in calculus and real analysis
course. However, the concept of infinite products, which is closely related to that
of infinite sums, is not mentioned in any regular undergraduate analysis course. In
this project, we study about infinite products.

In Chapter 2, we give a formal definition of infinite products, together with basic
examples including important infinite products such as Viete’s formula and Wallis
product. We also give theorems concerning the convergence of infinite products.

In Chapter 3, we give an infinite product of sine using fourier series. We also
devise the partial fraction of cotangent using the infinite product of sine.

In the last chapter, we give an application of infinite products to a geometric

problem.



Chapter 2

Infinite products

Definition 1. Let a,, be a sequence of real numbers. An infinite product

oo

| | ap = 1G203 * * *

n=1

is said to converge if there exists an m € N such that the a,’s are nonzero for all

n > m and the limit of partial products szm Qp = Ay * Qi1 - - - Ay

JLH;OH% Ay (B 500) O

converges to a nonzero value, say p. In this case we define

o0

Ilan:ajl.a2.a3...am_1.p‘

n=1

The definition is of course independent of the m chosen such that the a,'s are nonzero
for all n > m. The infinite product [[,_, a, diverges if it doesn’t converge; That is
either there are infinitely many zero a,’'s or the limit (1) diverges or the limit (1)
converges to zero. In this latter case, we say that the infinite product diverges to
zero.

See the proof in [1].

Example 2. 1. The product 1-2-3--- diverges.
2. The product [, (1 + 1) diverges.
3. The product [ 172, <1 — ﬁ) converges to %
4. The product []°7,(1 — 2) diverges to zero.



Proof. 1. Consider

1.2.3...:Hn

Hence the product 1-2-3--- diverges.
2. Consider

(e 3) -1 ()

n=1

Hence the product 77 (1 + &) diverges.
3. Consider

L 9 C fen?in 2
hm 1 —_ = hm —_——
k—o0 n(n =+ 1) k—o00 . n(n + 1)

b (n—1)(n+2)
koo L 2L n(n+ 1)

— lim 1-42-53:64-7 (k—1)(k+2)
k5o \2:33-44-55-6 k(k+1)
, (1 k+2>
= lim [ = ——
1
=3
Hence the product []°2, (1 — ﬁ) converges to %



4. Consider

n=

b 1 =1
g T (1) = i I
2 n=2
1
9

Hence the product 77 ,(1 — 2) diverges to zero. O

Theorem 3. If a;, > 0 for all k, then the product [[;—,(1 + ai) converges if and
only if the series -, ai, converges. The same is true if a, < 0 for all k.

See the proof in [1].

Example 4. The product [[_, (1 - ﬁ) converges.

Proof. Assume a = k(k+1 and b, = 1%2
So
4 —2
lim — = lim k(klﬂ)
k—oo Of k—00 w2
i =2
= 1i1m —
k—oo k2 4+ Kk +1
= —=2.

Since Y7, by = 75 is a p-serie, >, by converges.

n=2 n(n+1

| <1 - m) converges. N

By comparison test, > oo, —— j converges. Since a < 0 for all k, the product

2.1 Vieta’s product formula

The infinite product formula

\[1 L1 12
2 2 aVataVe T

was discovered in 1593 by the French lawyer and mathematician Francois Vieta

(1540-1603), whose name was rendered into Latin as Franciscus Vieta. The formula

4



derives special interest from the unexpected appearance of the number 7. It can be

written more explicitly as

2

n— 00 m

where by — ﬁ and by =/ +1Lb,, n=12 ... Seethe proofin [1].

2.2 Wallis product formula

The remarkable Wallis product formula is

y 2:24-46-6 (2n)(2n)
im x
n—soc1-33-55-7 (2n—1)(2n+1)

=3 (1)

It was first recorded by John Wallis (1616-1703) as early as 1656. Equivalent for-

i (w) (8) - (ap) = >

gelee.s (3)

The factors in (2) are simply the reciprocals of those in (1). To see that (1) and (3)

mulation are

and

2n+1

are equivalent, observe first that because — 1, the formula (1) implies

22422. % _22
lim & (2n )(Qn):g

n“r00 325272 -+ (21 — 1)2

Taking square roots, we deduce that

T . 2:4-6---(2n—2)
| Von
\fQ nirilo3-5-7-- (2n—1)
24262 ... (99 _ 9)2
L PH6 (20— 2)(2m)?
n—o0 (2n)\/2n
1 221 ()
lim (n)

V2o @n)la’

which shows that (1) implies (3). Since all steps are reversible, a similar argument

shows that (3) implies (1). See the proof in [1].



Chapter 3

Examples

3.1 Infinite product of sine

In this chapter, we show some results about uniform convergence, the Weier-

strass M-test and some properties of uniform convergence.

Theorem 5 (Weierstrass M-test). Assume | fn(x)| < M, for all x € D and the series
of real number y_ " | M, converges, so series y -, fn(x) converges uniformly on D.

See the proof in [2].
Example 6. Z ———— converges uniformly in each interval [—a, a] with0 < a < 1.
t2 _ 712
n=1
2t

t2—n2

Computing the maximum of each component, the numerator

Proof. Let t be in each interval [—a,a] with 0 < a < 1. Assume f,(z) =

2a

and M, = —~——.
n®—a

must be maximum and denominator must be minimum, so

2t
t2 _ n2

2a

_a2'

fn(t) =

2

n
Since Y7, M, converge by use comparison test with p-series (n=2). By the
o0
Weierstrass M-test, Z 72, converges uniformly in each interval [—a,a] with
—n
n=1

O0<a<l. - ]



Theorem 7. If > | fu(z) = S(x) converges uniformly on [a,b] and f, is on [a,b]
for alln € N,

/ S(x)dr = Z fo(x)d.

n=1"7%

See the proof in [2].

Theorem 8. If > > | f/(x) converges uniformly on (a,b), f} is continuous on (a,b)
foralln € N and S(x) => ", fu(z) then S'(x) => 7", fr(z) on (a,b).
See the proof in [2].

Next, we present basic definitions and theorems about Fourier series.

Definition 9. Trigonometric series are series of sine functions and cosine functions,

of the form,

% + nz::l(an cos(nzx) + by, sin(nx)) (1)
or
% + ay cos(x) + by sin(x) + as cos(x) + besin(x) + - - -
where ag,a1,b1,a2,be,. .. are real numbers.

See the proof in [2].

Definition 10. Let f be an integrable function having a period of 2m. The Fourier

series of f are trigonometric series (1) having coefficients a,, and b, given by

1 ™
ay, = —/ f(z)cos(nz)dr n=0,1,2,...
™ —T

1 s
b, = — f(z)sin(nz)de n=1,2,3,....
™ —Tr

See the proof in [2].

Theorem 11. Let f : R — R be a differentiable function on [0,2x]|. If f have a
period of 2m, then the Fourier series of f converges to the mean of right-hand limits

and left-hand limits. That is

f(z™) ;‘ f(zh) _ % + Z(an cos(nx) + b, sin(nz))

n=1

where f(x7) = limy_,,- f(t) and f(at) = limy_,+ f(¢).
See the proof in [2].



Theorem 12. Let x € R. Then

2 2 2
sinww:mx(l—%) (1—%) (1_%>

Proof. Let ¢ € R\ Z be not an integer. Assume f(z) = cos(cx) for —7m < x < 7.

Then the Fourier series of f is
% + ;(an cos(nx) + by, sin(nx)).

Since f is an integrable function having a period of 27, by Definition 10, the coeffi-

cient ag is
L paya
ag = — x)dx
0 -~
~ | costeard
= — cos(cx)dx
™ —Tr

™

<L (et

I (Sm(m) L sin(—cw))

m c c
2/ .
= sin(cm).



Then coefficient a,, is

)

1 s
a, = —/ f(z) cos(nz)dx
™ —T
1 s
== cos(cx) cos(nx)dx
_ / cos(cx + nx) cos(cx — nx) d
2
1
= — cos(cx + nx) 4 cos(cx — nx)dx
T
1 (sin(cx + nx) Sm(cx —nx)|*
C2n c+n c—n -7
1 (sin(em +nm) sm(c7r —nm)  sin(—er —nm)  sin(—crw + nw)
Con c+n c—n c+n c—n
1 (2sin(cr +nm)  2sin(er — o)
27 c+n c—n
1 [sin(er + nm) sm(c7r — )
o c + n c—n
1 ((c—mn)sin(cr + nm) + (c+n) sin(cr — nm)
T 2 —n?
1 ((c—mn)(sincrcosnm + cosemsinnm) (¢ + n)(sincm cosnm — cos e sinn)
o 2 —n? 2 —n?
1 ((c—n)(sincrcosnm) + (c + n)(sincr cos n)
o 2 —n?
1 (2csincmcosnm
T 2 —n?
2c . (=)™
= —siner5——
Then
1 [7 )
b, = — / f(z) sin(nx)dx
™ —Tr
1 [" )
=— / cos(cx) sin(nz)dz
™ —Tr
1 0 T
=— (/ cos(cx) sin(nz)dx +/ cos(cx) sin(mc)dx) :
™ —m 0

Since cos(czx) sin(nz) is odd function,

.

cos(cx) sin(nz)dz

_ /0 " cos(ca) sin(na)da.



Then

S
S
I
3| =

(_ /0 " cos(cx) sin(na)de + /0 " cos(ex) sin(nx)dx)

Il
e

Hence the fourier series of f is

ésincw =, 2 . (—=1)"
-+ g — S cT— 3
2 T cc—n
n=1

CcOoSnx.

Since f is a differentiable function on [—m, 7] and f have period 27, by Theorem 9,

COS Cx + COS cT

2

= COS Ccx

™ ct—n ™

1
T to both sides,
inmt 2t

o0

™
—cott =
We give patial fraction of cotangent,

m
%co‘mﬂf—@—kz252 5 for x € R\Z.

1
Subtract o from both sides,

oo

v
Z_tCOtﬂt_Z_tz_;I?—nz

10



Multiply 2¢ to both sides,

1 = 2
meotmt — — = _

Integrate with respect to t from € to x for 0 < e < x < 1,

x 1 r 20 2
tmt — —dt = —dt.
/Emm t /Zt_n

Then

T

* 1
/ 7 cot it — ;dt =Insinwt —Int —Inw

€

sin 7wt |z
=1In
it €
sinTx sin e
=1In —1In
TL TE

Since Z 2 converges uniformly in each interval [—a,a] with 0 < a < 1 and
—-n

2t
” 5 is continuous in each interval [—a, a] with 0 < a < 1, by Theorem 7,
-n
o~ 2 = [T 2t
| S ard=3 [
€ n=1 TEATy 1
= Z Int? — n?
z?— n?
o Z ln y,,2 -
Thus

sin T sm TE
In E
T

_n2

Taking € — 0 ,we have

. o0 2
sin rx T4 —
n = g In
T —
n=1

Then




So

n=1
Then
sin wx s x>
= <1——2),O<I<1
T n
n=1
. sinmx | .
Since is an even function,
T
. o 2
sin Tx x
=][(1-%).-1<z<l
T n
n=1
Hence

2 2 2
SinWI:W$<1—%) (1—%) (1—%)---,—1<m<1.

We show that the right-hand side is periodic with period 2. If p(x) denotes the
infinite product (which converges for every z € R), we want to show that p(z+2) =

p(z). Let the partial product be

Then

po(T+2) = mx—n+2)(z—n+3)---(z+1)(z+2)(z+3)

(v tn+1)(r+n+2)
Y e mnt )
BTy G G R )

zz+1)---(x+n+1)(z+n+2).

12



Then
(1" (@—m)a—n+1)
nh)?  (z—n)(z—n+1)

P +2) = po(z),n=1,2,3,....

Taking n — oo, we have

p(z +2) = p(x) for z € R.

2 2 2
sinmczmc(l—%) (1—%) (1—%) for z € R.

Hence

13



Chapter 4

An application

Problem 1. Suppose that an equilateral triangle is inscribed in a circle of radius 1,
then a circle C} is circumscribed about the triangle, then a square is circumscribed
about Cj3, another circle Cy is circumscribed about the square ,a regular pentagon

is circumscribed about Cy4, and so on. Is the sequence of the circles C,, bounded?




Proof. Consider the n-gon is circumscribed about a circle of radius r and another

circle is circumscribed about the n-gon. The second circle has radius R.

. .
Since 6 is —,
n

Lod T
0S— = —.
g7, ALY
Then
R = rsec =
n
If C,, has radius R,, ,we will show that R, = H sec %
k=3

Basis step ; n =3

15



Consider the triangle in the above picture; since the triangle is circumscribed about
. LT
a circle, 0 is 3

By trigonometry,

1
Ccos — = —.
3 R
Then
T
R = —.
sec 5

Induction step:

Consider triangle in the above picture; since (m + 1)-gon is circumscribed about a

circle, 6 is .
m+1
By trigonometry,
T R,,
cos = :
m+1 Rm+1
Then
R,4+1 = R, - sec )
i ¢ m—+1
o s
Since R,, = — f > 3,
H sec ’ or m >
k=3
m+1 -
Ry = sec —.
k
k=3

16



17

We will prove the circles C,, for n = 3,4,5,... are bounded. We show lim R, =

n—oo
n oo
. m ™ .
lim H sec — = H sec — exists.
n—oo k k
k=3 k=3

Since
Hsec%:Hsecnﬂ
k=3 n=1
Let
1 1 —cos:Z
ajp = sec i —-1= —1= —M
k+2 (:oskLJr2 COS == k+2
and
2
B T
R <k+2) '
Then
1 — cos-%= k+2
COS =
lim 3k _ lim —%
k—oo bk k—o0 T
(35
. 1 —cosk 1
= lim = 3

k—)oo
353 (m)

2 0 0
Since Z by = Z (k‘ n 2) 2 Z (l{j{T——Q)z is a p-series, which is convergent, Z ay
k=1 k=1
and kZ; (sec <E) — 1) converges.

By Theorem 3, H sec % converges. Hence the sequence of the circles C), is bounded.
k=3

]
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