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Chapter 1

Preliminaries

In this project, rings always contain the identity 1 # 0.

1.1 Some Background in Ring Theory

We begin by providing some facts about commutative rings which are used in this

project.

Definition 1.1. Let u be an element in a ring. Then « is a unit of R if there exists a
v € R such that uv = vu = 1. Also, the set of all units in R is denoted by R*. It

forms a group under the multiplication of R.

Definition 1.2. Let R be a commutative ring and I C R. Then [ is said to be an
ideal of R if it satisfies the following properties: (i) (I, +) is a subgroup of (R, +); (ii)

forany r € Rand a € I, then ar € I.

Definition 1.3. An ideal M of a ring R is said to be maximal if M # R and for any
ideal J of R,
MCJCR=J=MorJ=R.

Definition 1.4. A commutative ring is said to be local if it has a unique maximal ideal.
Theorem 1.5. If R is a local ring with unique maximal ideal M, then R* = R~ M.

Theorem 1.6. Let R be a finite commutative ring. Then R = Ry X Ry X ... R where

R; is a local ring fori € {1,2,...,s}.



1.2 Some Background in Graph Theory

In this section, we provide some definitions of graphs, spectra and energy.

Definition 1.7. A graph G is an ordered pair (V(G), E(G)) where V(G) is the set of
all vertices in G and E(G) = {{v,w} : v,w € V(G)} is the set of all edges in G.

Definition 1.8. Let G and H be graphs. The cartesian product of G and H, de-
noted by G x H, is a graph whose vertex set is V(G) x V(H) and edge set is
{w,w), (v, w")}:v=1v"and {w,w'} € E(H) or {v,v'} € V(G) and w = w'}.

Definition 1.9. Let G = (V(G),E(G)) and H = (V(H),E(H)) be graphs. The
tensor product of G and H, denoted by G ® H, is a graph whose vertex set is
V(G) x V(H) and the edge set is {{(v,w), (v, w")} : {v,v'} € E(G) and {w,w'} €
E(H)}.

Definition 1.10. If v is a vertex of a graph G, then the degree of v is the number of

edges connecting v and denoted by degv.
Definition 1.11. A graph G is regular if every vertex of G has the same degree.

Definition 1.12. A graph G is strongly regular with parameters (n, k, A, u) if G has
n vertices with regularity £ and every pair of adjacent vertices and every pair of

non-adjacent vertices have A and p common neighbors, respectively.

Definition 1.13. Let G be a graph with vertex set V(G) = {vi,va,...,v,}. The
adjacency matrix A(G) = [a;;] is an n x n matrix where a;; = 1 if the v; is adjacent

to the vj; otherwise, a;; = 0 forall ¢,j € {1,2,...,n}.

Definition 1.14. The distance of two vertices v and w in a graph G is the least
number of edges connecting them. It is denoted by d(v, w). Also, d(v,v) = 0 for all

v € V(G). The diameter of a graph G is diam(G) = max{d(v,w) : v,w € V(G)}.

Definition 1.15. Let G be a graph with vertex set V(G) = {vi,vs,...,v,}. The
distance matrix D(G) = [d;;] of a graph G is also an n x n matrix where d;; is the

distance from v; to v; forall 4,5 € {1,2,...,n}.



Definition 1.16. A matrix is said to be circulant if its first row generates the other

rows by shifting the first row to the right or shifting the first row to the left.

Example 1.17. Let
1 2 3

A=13 1 2
2 3 1

Then, A is a circulant matrix whose the first row is (1,2, 3).

Definition 1.18. An eigenvalue of the adjacency matrix of a graph G is called a

spectrum of G. The set of all spectra of GG is denoted by Spec(G). Also, if A, Ag, ..., A,

are spectra of the adjacemcy matrix of a graph G' with multiplicities my, ma, ..., m,,
: . AMooA Ay

respectively, then we write Spec(G) = for the spectrum of G.
mi Mo -+ My

Definition 1.19. A graph with n vertices is said to be complete if every pair of distinct
vertices has an edge connecting them. We let K,, denote the complete graph with

n vertices.

Theorem 1.20. Spec(K,,) =

Definition 1.21. The energy of a eraph G, denoted by F(G), is defined as the sum

of the absolute value of each spectrum of G counting multiplicities.

Definition 1.22. An eigenvalue of the distance matrix of a graph G is called a distance
spectrum of G. The set of all distance spectra of G is denoted by Spec,,(G). Sim-
itarly, if wq, po, . .., uy, are distance spectra of the distance matrix of a graph G with

pi Ha ot i
ki ko - K,

multiplicities ki, ko, ..., k,, respectively, we write Spec,(G) =

for the distance spectrum of G.

Definition 1.23. The distance energy of a graph G, denoted by DE(G), is defined as

the sum of the absolute value of each distance spectrum of G' counting multiplicities.



1.3 Spectra of Unitary Cayley Graphs

In this section, we collect the previous results on the spectra and energies of unitary

Cayley graphs from [1, 2, 3, 4, 6, 7, 8].

Definition 1.24. Let R be a finite commutative ring. The unitary Cayley graph of R
is a graph whose vertex set is R and the edge setis {{a,b} : a,b € Randa—b € R*}.
The unitary Cayley graph of R is denoted by Grg.

Definition 1.25. Let R be a finite commutative ring. A subgraph Hg of Gy is called
the restricted unitary Cayley graph induced from the square mapping if the ver-
tex set of Hy is R and the edge set is {{a,b} : a,b € Randa — b € Kr(R*?)},
where Kp = {a € R* :a®> =1} and (R*)* = {a® : a € R*}.

Definition 1.26. Let ¢ be a prime power such that ¢ = 1 mod 4. The Paley graph is
the graph whose vertex set is the finite field of order ¢, denoted by F,, and the edge
setis {{a,b} : a,b € Rand a — b & (F))*}. The Payley graph over I, is denoted by
Hg,

Proposition 1.27. [2]. We have the following properties of unitary Cayley graphs.

1. Let R be a finite commutative ring such that R = Ry X Ry X --- X R, where

R;is a localring fori € {1,2,...,s}. Then Gr = Gg, ® Gg, ® -+ R Gp,.

2. If R is a finite local ring with maximal ideal M, then Gg is a complete mul-
tipartite graph whose partite sets are the cosets of M. In particular, if F'is a

finite field, then G is the complete graph on |F| elements.
Proposition 1.28. If R is a finite local ring, then diam(Ggr) = 2.

Proof. From Proposition 1.27 (2), G is a complete multipartite graph, so its diameter

is 2. []
Theorem 1.29. [7]. Let R be a finite local ring with maximal ideal M of size m.
Then
Spec(Gr) IRl —m  —m 0
pec(Gr) =
L -1 S =)



and E(Gr) = 2(|R| —m). In particular, if F'is a field, then

Fl—-1 -1
Spec(GF) =
1 |F| -1

and E(Gr) =2(|F| —1).
Theorem 1.30. [6]. Let A be an nxn circulant matrix with the first row (ao, . . . , a,_1).
Then the spectrum \; of A are

2 -1
Aj = ag + a1wj + agw;” + -+ ap1w;”

where w; = e%for all j € {1,2,...,n}.

Ay A
Lemma 1.31. [3]. Let A = Tl beag2ax2 symmetric matrix. Then the spectra

A Ag
of A can be obtained from the spectra of Ay + A1 and Ag — A;.

Lemma 1.32. [4]. Let q be a prime power such that ¢ = 1 (mod 4). The Pa-
4

ley sraph Hpg, is a strongly regular graph with parameters (g, T %) and
¢=1 a-l —va-1
2

Spec(Hg,) =| *
Proposition 1.33. If ¢ is a prime power such that ¢ = 1 (mod 4), then the Paley
graph Hy, is of diameter two.

Proof. It follows from the fact that Hy, is strongly regular so any two vertices has a

common neighbor. L]

Proposition 1.34. [1]. Let G be a regular graph of degree p with n vertices. If diam(G)

is at most 2, then
Spec,(G) ={2n—2—p} U {—=A—2: X € Spec(G) and X # p}.

Theorem 1.35. [8] Let R be a finite local ring with unique maximal ideal M of size

m and of characteristic an odd prime power.
1. —1is asquare in R if and only if £ =1 mod 4.

2. If =1 is not a square in R, then Hg = Gp.



3. If =lisasquarein R, then Hr = Hp/y ® me where ICm is the m-complete
graph with a loop on each vertex. Moreover, we obtain the spectra of Hg as

follows:

1.4  Our Objectives

IWic [6] established the distance matrix and computed the distance energy of the
unitary Cayley graph Gz, in terms of the Euler ¢-function. Gopal [5] obtained the
distance spectra of the cartesian graph G' x Ky where G is a regular graph of diameter
1 or2.

Hence, we turn our interests to distance spectra and distance energy of G and
Hp where R is a finite local ring. Furthermore, we also investigate the distance
spectra of Ky ® Gg. The results are presented in the next chapter. Section 2.1
covers the work on Gr and Ky ® G and Section 2.2 discussed the work on Hp

defined in Section 1.3.



Chapter 2

Results

2.1 Distance Spectra and Distance Energy of Gj

In the first section, we begin by computing distance spectra of Gg, followed by

Ky ® Gpg.

Theorem 2.1. Let R be a finite local ring with maximal ideal M of size m.

IR —1 -1
1. If m =1, then Spec,(GRr) = :
1 |IR| —1

Rl+m—2 m—2 —2
2. If m > 1, then Spec,(Ggr) = .
i By Bln - 1)

Proof. If m = 1, then M = {0}, so R is a field. It follows from [2] that G is a

IR —1 -1
Spec,(GRr) = .
1 |R| —1

Now, assume that m > 1. Write M = {0, 23, z3,...,2,} and ¢ = ‘mﬂ'. Then

complete graph. Then

R/M ={M,as+ M,a3+ M, ... a,+ M}.

Thus,
R = U a; + M = U {z;,a0 +xj,a5 +xj,..., a0, + 2}

1<i<q 1<j<m



By Proposition 1.27 (2), Gr is a complete multipartite graph whose partite sets are

the cosets of M. So, for any vertices v and w of G, we have
(
0 ifv=uw,

d(v,w) =<1 ifvand w are from different cosets,

2 if v #wand v, w are in the same cosets.
\

For j € {1,2,...,m}, we consider the distance matrix,
rj ax+x; az+x; - Qg1+ T Qg+ T
0 1 1 1 1 x;
1 0 1 e 1 1 as + T
A; = 1 1 0 1 1 az+x; ._ 4
1 1 1 0 1 ag—1 +;
1 1 1 e 1 0 aq + ;

and for j, k € {1,...,m} and j # k, we have the distance matrix

Tp Q2+ T a3+Tp -+ Qg1+ Ty Qg+ Tg
2 1 1 1 1 x;
1 2 1 : 1 as + x;
By, = 1 1 2 1 1 a3+, ._p
1 1 1 2 1 ag—1 +
1 1 1 1 2 aq + x;

The distance matrix of Gr can be presented using the above two matrices A and B

as follows:



Since A and B are circulant matrices, it follows that D(Gg) is a circulant matrix. Let

27

w = el and w; = w’ forall j € {0,1,...,|R| — 1}. From Theorem 1.30, we obtain

the distance spectra

= 0w+ w4 2wl w2 g glm e
+ w](m—l)q—i—l I w;anl
|R|—1 m—1
ST IR
k=0 =0
forall j € {0,1,...,|R| — 1}. We may distinguish three cases.
Case 1. 7 =0. Thenwy =1 and po = |R| + m — 2.
Case 2. j = km for some k € {1,2,...,q — 1}. Then w! = w/? = whm1 = LMl = 1,
sop;j=0+m-—2=m—2.
Case 3. j is not a multiple of m. Then w;? # 1, s0
m—1 qm
S LI EE A LN
J
ThUS, Hj =0+0—-2=-2.
Therefore, the above computation gives
< (Cr) IRl +m —2 m—2 -2
ec =
Peept 1 B 1 By 1)
This completes the proof. []

Corollary 2.2. Let R be a finite local ring with maximal ideal M of size m. Then the
distance energy of G is

— AR —1)  fm=1,

AR =By ifm > 1,

IR —1 -1
Proof. If m =1, then Spec,(GRr) = , SO
1 |IR| —1

DE(Gr) = |[R] = 1] + (|B] = D|-1] = 2(|R| = 1).



10

IR|+m—2 m—2 —2
If m > 1, then Spec,,(Gr)= , SO
1 By Bl —1)

2|R|

m

2|R
|—’—m+2+
m

DE(Ggr) =|R|+m—2+|R| — (m—1)
as desired. L]

Theorem 2.3. Let R be a finite local ring with maximal ideal M of size m and K,

the path of length 2.

1. If m =1, then

3(JR|—1) |R|—5 —4 0
Spec,,(Ky ® Gg) =
1 1 |IR|—1 |R|—1
2. Ifm>1, then
< oG 3|IRI+2m—2 |R|—2m -2 2m—2 —2m—2 -2
R A e SR
Proof. Similar to the proof of Theorem 2.1, we may write M = {0, z3,23,...,Zn},
q= |m£|. Then

R/M ={M,as+ M,as+ M, ... a,+ M}.

Thus,
R = U a; + M = U {zj, a0+ xj,a3 + z4,...,a, + x;}.

1<i<q 1<j<m
By Proposition 1.27 (2), G is a complete multipartite graph whose partite sets are

the costes of M, for any vertices (z,v) and (y, w) of Ky ® Gg, we have

0 if (2,0) = (y,w).

1 if x # y and v, w are from different cosets,
d((z,v), (y,w)) =
2 ifzx=yandwv #w,

3 if z # yand v, w are from the same cosets.
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Forz € V(K,) and j € {1,2,...,m}, we consider the distance matrix

(@,2;) (a2 +a;) - (v,001+75) (2,00 +35)
0 2 2 2 (x,x;)
2 0 2 2 (x, a9 + ;)
A = . . : : : = A,
2 2 0 2 (x,aq-1 + ;)
2 2 2 0 (z,aq + ;)

forz € V(K,) and j, k € {1,2,...,m} with a; + ; # a; + x fori € {1,2,...,¢},

we have the distance matirx,

(x,xr) (x,aa+xg) -+ (x,00-1 + 1) (7,00 + x1)
2 2 2 2 (x, ;)
2 2 . 2 2 (x, a9 + ;)
By =| : z z s =5,
2 2 2 2 (z,ag—1 + ;)
2 2 e 2 2 (x,aq + ;)

and for z,y € V(K,) with z # y and j,k € {1,2,...,m}, we have the distance

matrix
(x,2r) (r,aa+xk) - (x,00-1 + 1) (T,00 + x8)
3 1 CHuLAL 1 I (4,;)
1 3 e 1 1 (y, a2 + )
Cir = : : - : : : =C.
1 1 3 1 (y, ag—1 + ;)
1 1 1 3 (v.0,+ ;)
. . . A Cn
If m = 1, then the distance matrix of Ky ® G is D(K; ® Gg) = . Let
Cll Al

2mi
I

f = e'®l and 0; =607 for j €{0,1,...,|R| — 1}. We know from Lemma 1.31 that the

distance spectra are obtained by computing the spectra of A; + Cy; and A; — Cpy
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which are both circulant. From, Theorem 1.30, we obtain the distance spectra of

Ay + Cyy and Ay — Cy, denoted by A; and pj, respectively:

|R|—1 |R|-1
)\j:?)Z@f and ,OJ:ZG§—4
k=0 1=0
forj €{0,1,...,|R| —1}. If j =0, then Ay = 3|R| and po = |R| — 4. If 7 # 0, then
|R[-1 |R[-1
> = -
k=0 1=0

so A; = 0 and p; = —4. Consequently,

3R |Rl—4 —4 0

Spec,, (K2 @ Gg) =
1 1 |R—1 |R| -1

If m > 1, then we obtain the distance matirx

Al B12 B13 Blm Cll 012 C(13 C'lm
BZl AQ BQS BQm C(21 C’22 023 OQm
BSl B32 A3 BSm C131 032 CY33 CSm
D(Ky©Gp)=| Bt Bz Bus = An Cmi Cuz Cpg -+ Coum
C111 012 Old C’lm Al B12 Bl3 Blm
CY21 C22 C’23 CQm B21 AQ BZS B2m
C’31 C132 C133 CBm B31 B32 AS BSm
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Hence,
A B B B C C C C
B A B B C C C C
B B A B C C C C
D(K,® Gp) = B B B A C C C C
c C C C A B B B
c C C C B A B B
c C C C B B A B
c C C C B B B A
Ay Ay
Then, our distance matrix is of the form . By Lemma 1.31, the distance
Al A

spectra can be obtained by computing the eigenvalues of the matrices Ay + A;
and Ay — A; whcih are |R| x |R| circulant matrices. Thus, we compute the spectra
of Ay — Ay, then Ay + A; from their first row. First, let w:e% and wj:wj for all
j€{0,1,...,|R| —1}. Foreach j € {0,1,...,|R| =1}, let u; denote a spectrum of
Ay — Ay, and k; denote a spectrum of Ay + A;. From Theorem 1.30, we obtain the

distance spectra

1 2¢-1 4 (_1)w(m_1)q

pi= —3+w;+-+wl ;

T (Dl Tt

4 w§m*1)61+1 4t w;anl
|R[-1 m—1
= wa—22w;’l—2
k=0 1=0
and
Kj=343w; 4+ 3wl 4+ 5wl + 3w 4 3T 5lm—1a
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forall j € {1,2,...,|R| — 1}. We now distinguish j into three cases.

Case 1. j = 0. Then wy =1 50 py = |R| —2m — 2, kg = 3|R| + 2m — 2.

Case 2. j = km for some k € {1,2,...,q — 1}. Then w? = w1 = wkma = Ik = 1,
Thus, ptj = —2m — 2 and K; = 2m — 2.

Case 3. j is not a multiple of m. Then w;? # 1.

qm m—1

1 — w] 1-1 L—wi™ 1-1
ql qk J
wj = - qs w; = T = 7 =0.

IZ; J 1 —wf 1 —wj kzg J 1 —wj 1 —wj

Thus, w; = =2 and K; = —2.
Therefore, we have
. o ® G 3IRI+2m -2 |R|—2m—2 2m—2 —2m—2 -2
pecy (K2 ® Gr) = ) | T R Ty &

This completes the proof. []

Corollary 2.4. Let R be a finite local ring with maximal ideal M of size m and K,

the path of length 2.

=
8|R| =8 If|R] >4,
1. Ifm=1,then DE(K; ® G) =

6| R| if|R|=1,2or3.
\

(
12|R| — 4m — 4B 4 IR > 2m + 2,
2. [fm > 1, then DE(KQ ®GR) =

| 10/R| — I8 if |R| < 2m + 2.
Proof. If m =1, then
3|R| |R|—4 —4 0
Spec,, (K ®@ Gg) =
1 1 |Rl—1 |R|—1
Case 1. |R| > 4. Then ||R| — 4| = |R| — 4, so
DE(Ky;® Gg) = 3|R|+ (|R| —4) + (|R| — 1)|—4| = 8| R| — 8.

Case 2. |R| < 4. Then ||R| — 4] =4 — |R], so

DE(Ky ® Gr) = 3[R|+ (4 — |R]) + (|R] — 1)|-4] = 6| R|.
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If m > 1, then

3|IR|+2m —2 |R|—2m—2 2m—2 —2m —2 -2
Spec,,(Ky ® Gg) =
1 1 LS D (7 -/
B
DE(Ky;® Gg)) = |3|R| +2m — 2| + ||R| — 2m — 2| + (F —1)]2m — 2|+
R R
L) =2m — 2 + (2(|R| — Z))|—2
(S = l-2m = 2]+ (1R - )|
R
= 3|R|+2m —2)+ (||R| —2m —2|) + (2|R| — 2|m—’ —2m +2)+
(2|R| + 2@ —2m —2) + (4|R| — 4@)
m m
R
= 11|R| —2m—4%’—2+||3\—2m—2|.
Case 1. |R| > 2m + 2. We have ||R| = 2m — 2| = |R| — 2m — 2. Then
Rl
DE(Gx, ® Gr)) = 11|B| = 2m — 4~ =2 + || R — 2m - 2|
:11|R|—2m—4@—2+|R|—2m—2
m
:1213|—4m—4@— .
m
Case 2. |R| < 2m + 2. We have ||R| —2m — 2| = 2m + 2 — |R|. Then
R
DE(Gr, ® Ggr)) = 11|R| — 2m — 4% — 24 ||R| —2m — 2|
:11|R|—2m—4@—2+2m+2—|R\
m
— 10|R| B
m
Hence, we have the corollary. []

2.2 Distance Spectra and Distance Energy of Hp

Throughout the second section, we obtain the distance spectra of Paley graphs, Hg

and Hy, .

Theorem 2.5. Let q be a prime power such that ¢ = 1 mod 4. Then

3(g—1 —3—vq —3+/4q
Specy(He) =( 27D T2 T
Lo e
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Proof. By Lemma 1.32, Hp, is regular of degree q;; and

1 Vi-l —yg-1
Spec(Hy,) = i q: q: . We know from Proposition 1.33 that diam( Hg,) =
2 2

2. Therefore, by Proposition 1.34, Specy,(Hr,) = {2n —2 - S U {-A—2: ) €
Spec(Hy,) and A # <1} Hence,

2g—2— 9t VT _ 9 Vi _ 9

Specy(Hrg) = ? o1 2q_1
1 5 5
—3— —3+
_ %(q —1) 2\/6 2\/6
—1 -1
NIV -TP
as desired. L]

Corollary 2.6. Let q be a prime power such that ¢ =1 mod 4. Then

L(2¢3 4 6¢—2,/g—6) ifg>9,

6+ 2v5 ifq=F5.

DE(Hz,) =

Proof. By Theorem 2.5,

s - o 2

If ¢ > 9, then

3¢ —3 qg-—1 q+3 qg—1 q—3
DE(Hg,) = 23 (I AE5) oLy d
2 2 2 2 2
30—3 ¢*+3¢—G—3 ¢ —3¢—/T+3
~ T2 ° 1 * 1

1

If ¢ = 5, then DE(Hg,) = 6 + 2/5. []

Lemma 2.7. Let G be a graph with n vertices and K., denote the m-complete ¢raph
with a loop on each vertex. If G is regular of degree k, then A(G ®l€m) isan mnxmn

matrix of the form
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Moreover, G ® K.y, is resular of degree mik.

Proof. Let (uy,v1) and (ug,v9) be a pair of vertices of G ® C,n. Since vy and vy is
adjacent, whether (uy,v;) and (us,v9) are adjacent to each other or not depending

on uy, ug. Consequently, we obtain the above A(G ® ICm). L]

Theorem 2.8. Let R be a finite local ring with maximal ideal M of size m and
characteristic of an odd prime power. If —1 is not a square in R, then Hr = G (by
Theorem 1.35), so DE(HR) = DE(Gg). If —1is a square in R, then

sRlem—t m( B D1a m(y/ Bl 9

Spec,(Hg) = 2 @31 @271 and

1 st S m

LBIR 4+ 5m — 4+ (Rl —m) /) m(/ B 11y >4
LBIR| +5m —4+ (B _1)a—m)) iFm(/H1+1)<4

DE(Hz) =

Proof. Assume that —1 is a square in R. Then by Theorem 1.35, Hp = Hp/y @ ICm.

Note that Hp/y is a Paley graph. Moreover, we obtain the spectra of Hy as follows:

Rl=m  mO/ -1 m-y/
Spec(Hg) = 2 2

|R| Fid]
1 1L -1
2

_1)

0

[\

d

m

N

1R
Since Hgyy is a Paley graph, it is regular of degree -

—_

. By Lemma 2.7, Hg is a
regular graph of degree L From Proposition 1.34, Spec,(Hg) = {2|R[—2—|R‘—_m}

U{=A—2: )€ Spec(G) and X # 'R‘ 1. Then the distance spectra of Hp is given
by

R4m—a  mO/ 144 m(y/El1)—4
Specp(Hp)=| ° i’ il

1 S— s m
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Next, we compute the distance energy of Hg.
B
|R|

|R| m(y/
m

Case 1. m( o

+ 1) > 4. We have

A B _ 1y 14| 1B B, 1) _ 4
3|R|+m —4 | m( poos )+ 1B g {m( oy )
DE(Hp) = m B L
(1) = [HEEA () R Pk ) LA
+ m|—2
3|R| +5m — 4 B4 IR| IRl _ 4 R
5 + () m(y = = 1)+ 4) + () m(y ) = 1) —4)
IR|
3Rl +5m—4 11 IR]
- B +( 1 )(2m m)
_ 3|R|+5m —4 (|R|_m) 1]
- ; . E
1 R
= S(3|R|+5m — 4+ (1B = m) E‘)'
m 1R A -, 1R
Case 2. m( %+1)<4.Wehave ( "12+1)4 N (2m+1)_
5 L I IRl
3R +m—4] E_q | m(yE -1 +4] B _g fm(y/E+1) -4
DE(Hp) = o B Ld
(1) = [FEEA SR P ) 78
+ m|—2|

m_d B I
_ 3R] UL B = 1)(m(\/§1)+4)+(m41)(4m( L)

|E|
3|R|+5m —4 -1

= %(3\R| +5m —4+ (‘mR’ —1)(4—m)).

This completes the proof. []
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Background and Rationale

A commutative ring with identity 1 is said to be a local ring if it has a unique
maximal ideal. Let R be a finite commutative ring with identity 1 and S C R. The
Cayley graph of R, denoted by Cay(R,S), is a graph whose vertex set is R and
the edge set is {{a,b} : a,b € Randa —b € S}. If S = R*, then Cay(R, R*) is
called the unitary Cayley graph of R. Also Cay(R, R*) is denoted by Gr. Here,
R* denotes the group of units of R. It follows from [1] that if R is a finite local ring,
then Gg is a complete multi-partite graph whose partite sets are the cosets of M

where M is the maximal ideal of R.

The adjacency matrix A = [a;;] of a graph G with n vertices is a n x n matrix
where a;; = 1 if the ith vertex is adjacent to the jth vertex; otherwise, a;; = 0 for
alli,7 € {1,2,...,n}. An eigenvalue of A is called a spectrum of G. The distance
of the ith vertex and the jth vertex is the least number of edges connecting them.
The distance matrix D = [d;;]| of a graph G is also an n x n matrix where d;; is the
distance from ith vertex to jth vertex and d;; = 0if i = j for all i,5 € {1,2,...,n}

and the eigenvalue of D is called the distance spectrum of the graph G.

The energy of a graph G, denoted by E(G), is the sum of its absolute values of
spectra. Similarly, the distance energy of the graph G, denoted by DE(G), is the

sum of its absolute values of distance spectra.

Akhtar et al. [2] studied and obtained all spectra of the unitary Cayley graph of
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a finite commutative ring R. Consequently, the energy is computed. Later, A.lllic.
[1] established the distance matrix and computed the distance energy of Gy, in
terms of Euler function as follows: 1. 2(p — 1) where n is a prime p; 2. 4(n — 2) if
n is a power of 2; 3. 2(2n + ¢(n)(2** — 1) —m — 2 4+ [[1_,(2 — pi)) where m =
p1p2-.-pk is the maximal square-free divisor of n which is an odd composite number; 4.
20— 2m -+ $(1)25" — (2+26(n)) — (2—26(n))+ (% ~2(é(m) + 1)) +[2(8(n) — 1) — 2])

where n is even with odd prime divisor.

In this project, we focus on computing the distance energy of the unitary Cay-
ley graphs of finite local rings. We also plan to extend our domain to some finite

commutative rings.
Objectives

To compute the distance spectra and the distance energy of the unitary Cayley

graphs of a finite local ring and a finite commutative ring.
Project Activities
1. Study the articles [1] and [3].
2. Review the elementary knowledge in Abstract Algebra and Graph Theory.

3. Construct the distance matrix and compute the distance spectrum of the uni-

tary Cayley graph over finite local rings.

4. Continue to work on the distance matrix and the distance energy of G where

R is a finite commutative ring.

5. Write a report.
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Project Activities

August 2018 - April 2019

1.Study the articles [1] and
[3].

2.Review the elementary
knowledge in  Abstract

Algebra and Graph Theory.

Aug | Sep | Oct | Nov | Dec | Jan | Feb

Mar

Apr

3.Construct the distance
matrix and compute the
distance spectrum of the
unitary Cayley graph over

finite local rings.

4.Continue to work on the
distance matrix and the dis-
tance energy of G where R

is a finite commutative ring.

5.Write a report.
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Benefits

To obtain the general results of the distance energy of the unitary Cayley graphs

whose vertices are elements in finite local rings and some finite commutative rings.
Equipment

1. Computer

2. Printer

3. Stationery

4. Paper
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