ความสัมพันธ์ระหว่างโครงสร้างและสมบัติของตัวเร่งปฏิกิริยาเซอร์โคโนซีน ในการเกิดพอลิเมอร์ของโพรพิลีน

นายชินพงษ์ กฤตยากรนุพงศ์

วิทยานิพนธีนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-346-148-5 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

STRUCTURE-PROPERTY RELATIONSHIPS OF ZIRCONOCENE CATALYSTS IN PROPYLENE POLYMERIZATION

Mr. Chinapong Kritayakornupong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2000 ISBN 974-346-148-5

Thesis Title	Structure-Property Relationships of Zirconocene Catalysts in		
	Propylene Polymerization		
By	Mr. Chinapong Kritayakornupong		
Department	Chemistry		
Thesis Advisor	visor Associate Professor Vudhichai Parasuk, Ph.D.		

Accepted by Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

Springt Koked Chairman

(Associate Professor Sirirat Kokpol, Ph.D.)

Vudhichni Parante Thesis Advisor

(Associate Professor Vudhichai Parasuk, Ph.D.)

S. Hanghua Member

(Associate Professor Supot Hannongbua, Ph.D.)

W. Tralicanpuch Member

(Associate Professor Wimonrat Trakarnpruk, Ph.D.)

ชินพงษ์ กฤตยากรนุพงศ์ : ความสัมพันธ์ระหว่างโครงสร้างและสมบัติของตัวเร่ง ปฏิกิริยาเซอร์โคโนซีนในการเกิดพอลิเมอร์ของโพรพิลีน (STRUCTURE-PROPERTY RELATIONSHIPS OF ZIRCONOCENE CATALYSTS IN PROPYLENE POLYMERIZATION) อาจารย์ที่ปรึกษา : รศ. คร. วุฒิชัย พาราสุข, 107 หน้า. ISBN 974-346-148-5

ในการศึกษาครั้งนี้ ได้ทำการคำนวณหาโครงสร้างเสถียรของเซอร์โคโนซีน 5 โครง สร้างด้วยวิธีทางเคมีควอนตัมต่างๆ ได้แก่ B3LYP/DZVP, B3LYP/LANL2DZECP, ONIOM (B3LYP/DZVP:UFF) และเปรียบเทียบค่าพารามิเตอร์ทางโครงสร้างที่ได้จากการคำนวณด้วยวิธี ต่างๆ จากนั้นก็นำพารามิเตอร์เหล่านี้มาหาค่าตัวแปรทางโครงสร้างซึ่งได้แก่ ระยะทางระหว่าง ระนาบของวงไซโคลเพนตะไดอินิล มุมระหว่างระนาบของวงไซโคลเพนตะไดอินิล ความอ้าของ ช่อง โอบถิควิตี มุมของการบิค ระยะแคบที่สุดของโพรง และ มุมโพรง เพื่อหาความสัมพันธ์กับ สมบัติในการเร่งปฏิกิริยา เช่น ร้อยละการเกิดไอโซเทคติก และ โพรคักทิวิตี จากกราฟความ สัมพันธ์ระหว่างสมบัติในการเร่งปฏิกิริยาและพารามิตอร์ทางโครงสร้าง เมื่อระยะทางระหว่าง ระนาบของวงไซโกลเพนตะใดอินิล และ มุมระหว่างระนาบของวงไซโกลเพนตะใดอินิลมีก่าเพิ่ม ขึ้นร้อยละการเกิดไอโซเทคติกเพิ่มขึ้น ซึ่งสามารถนำมาใช้ในการออกแบบตัวเร่งปฏิกิริยาตัวใหม่ เพื่อให้มีความเฉพาะเจาะจงสูงขึ้นได้ สำหรับสมบัติในการเร่งปฏิกิริยา เมื่อความอ้าของช่อง ระยะ แกบที่สุดของโพรง และ มุมโพรง มีค่าเพิ่มขึ้นโพรดักทิวิตีเพิ่มขึ้น เช่นเดียวกันประจุบน Zr และวง ไซโคลเพนตะไดอินิลของโครงสร้างในรูปไอออนมีความสัมพันธ์ที่ดีกับโพรดักทิวิตีที่ได้จากการ ทดลอง ดังนั้นความเกะกะที่สภาวะทรานสิชันซึ่งแทนด้วยระยะทางระหว่างระนาบของวงไซโคล เพนตะไดอินิลควบคุมความเฉพาะเจาะจง และอัตราการผ่านเข้าโพรงซึ่งขึ้นอยู่กับขนาดช่องทาง เข้าโพรง (ระยะแคบที่สุดของโพรง) และอิทธิพลทางอิเล็กตรอนซึ่งแทนด้วยประจุบน Zr ควบคุม ้ความสามารถในการเร่งปฏิกิริยา ความรู้นี้สามารถนำมาใช้แนะนำตัวเร่งปฏิกิริยาเซอร์ โคโนซีนที่มี สมบัติในการเร่งปฏิกิริยาตามต้องการได้

ภาควิชาเคมี	ลายมือชื่อนิสิตมีแพรมี การพระพุพรรี
สาขาวิชาเคมฟิสิกัล	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2543	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4172273023 : MAJOR CHEMISTRY

CHINAPONG KRITAYAKORNUPONG : STRUCTURE-PROPERTY RELATIONSHIPS OF ZIRCONOCENE CATALYSTS IN PROPYLENE POLYMERIZATION. THESIS ADVISOR : ASSOC. PROF. VUDHICHAI PARASUK, Ph.D. 107 pp. ISBN 974-346-148-5

In this study, the quantum chemical calculations were performed on five zirconocene structures in which geometries were optimized at various levels of B3LYP/DZVP, B3LYP/LANL2DZ, theory such as and ONIOM (B3LYP/DZVP:UFF). All optimized parameters of various methods were compared. Structural parameters such as distance between Cp planes, angle between Cp planes, gap aperture, obliquity, twisted angle, cavity distance, and cavity angle were elucidated from these optimized geometries to seek for relations with catalytic properties such as % isotacticity and productivity. From the plots between catalytic properties and structural parameters, the distance and angle between Cp planes increase as the % isotacticity increase, which could be used to design new catalysts with higher selectivity. For reactivity, the productivity increases as the gap aperture, cavity distance, and cavity angle increases. Also Zr charges as well as charges on the cyclopentadienyl rings, in the ion form gives good relation with the experimental productivity. Thus, the steric at transition state which represented by large cavity (distance between Cp planes) controls the selectivity and the rate of entering cavity which represented by the entrance channel (cavity distance) and the electronic effect of substituents represented by charge on zirconium controlled the reactivity. This knowledge was used to suggest new zirconocene catalyst with required catalytic properties.

ภาควิชาเคมี	ลายมือชื่อนิสิตธัหพรษี กฎกหางพบุพรด
สาขาวิชาเคมีฟิสิกัล	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา ²⁵⁴³	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

I would like to affectionately give all gratitude to my parents for their wholehearted understanding, encouragement, and support throughout my entire study.

Gratefully thanks to Associate Professor Dr. Sirirat Kokpol, Associate Professor Dr. Supot Hannongbua and Associate Professor Dr. Wimonrat Trakarnpruk for their advice as thesis committee.

I also would like to acknowledge the Austrian-Thai Center (ATC) for computer assisted chemical education and research for computing and other academic facilities. Thanks to Dr. David Valenta for allowing us to use the facility at the Hewlett – Packard, Colorodo. Also thanks to the High Performance Computing Center (HPCC), the National Electronics and Computers Technology Center (NECTEC) for computer time at their SGI–powerchallenge and the *Ratchdaphisek Somphot Endowment* a grant for financial support.

I also would like to thank Prof. Dr. Keiji Morokuma and Dr. Thom Vreven for suggestion regarding the mechanism of propylene polymerization and ONIOM approach and Prof. Dr. Hans-Herbert Brintzinger who kindly gave me the Aperture program and the X-ray structure of the zirconocene structure 3.

Finally, this thesis would never be completed without the excellent advice from my thesis advisor, Associate Professor Dr. Vudhichai Parasuk, who always provides me the useful guidance, suggestion, encouragement, and understanding during the whole research.

CONTENTS

2

Pages

ABSTRACT IN THAI		
ABSTRACT IN ENGLISH		
ACKNOWLEDGEMENT	vi	
LIST OF FIGURES	х	
LIST OF TABLES	xiii	
LIST OF ABBREVIATIONS	xv	
LIST OF SYMBOLS	xv	
CHEPTER 1 INTRODUCTION	1	
1.1 Polypropylene	1	
1.2 Ziegler-Natta Catalyst	3	
1.3 Metallocene Catalyst	4	
1.3.1 The Stereoselectivity of Propylene from Metallocene		
Catalysts	5	
1.3.1.1 Definition of % isotacticity	5	
1.3.2 Acticities of Metallocene Catalysts	8	
CHEPTER 2 THEORETICAL BACKGROUND	11	
2.1 Solution of Schrödinger Equation of Molecular Systems	11	
2.1.1 The Schrödinger Wave Equation	11	
2.1.2 The Born-Oppenheimer Approximation	12	
2.1.3 The Hartree-Fock Wavefunction	14	
2.1.4 Molecular Orbital and Introduction of Basis set	15	
2.2 Basis set		
2.2.1 Minimal Basis sets	17	
2.2.2 Extended Basis set	18	
2.2.3 Polarization Basis set	19	

Pages

2.2.4 Basis set Incorporating Diffuse Function	19
2.3 Effective Core Potential (ECP)	20
2.4 Density Functional Theory	22
2.5 Molecular Mechanics	29
2.6 ONIOM Approach (our own n-layered integrated molecular orbital	
and molecular mechanics)	30
CHAPTER 3 CALCULATIONS	36
3.1 Zirconocene Catalyst	36
3.2 Geometry Optimization	38
3.2.1 QM Method	39
3.2.2 QM/MM Method	39
3.3 Parameter for Predicting Catalytic Property	41
3.3.1 Distance and Angle between Cp Planes	41
3.3.2 Gap Aperture and Obliquity	42
3.3.3 Twisted Angle	43
3.3.4 Cavity Distance and Cavity Angle	44
3.3.5 Atomic Charges	46
CHAPTER 4 RESULTS	47
4.1 Optimized Structure of Zirconocene Using QM and ONIOM	47
4.1.1 $(Me_2C)_2(4-tBu-C_5H_3)_2ZrCl_2$	47
$4.1.2 \text{ Me}_2\text{Si}(4-t\text{Bu}-\text{C}_5\text{H}_3)_2\text{ZrCl}_2.$	51
4.1.3 Me ₂ Si(2-Me-4- t Bu-C ₅ H ₂) ₂ ZrCl ₂	55
4.1.4 Me ₂ Si(2-Me-4- <i>i</i> Pr-C ₅ H ₂) ₂ ZrCl ₂	60
4.1.5 (CH ₂) ₂ (tetrahydroindenyl) ₂ ZrCl ₂	65
4.1.6 Comparison with X-ray Data	69
4.1.7 Comparison between Computation Techniques	70
4.2 Geometrical Parameters and Their Relation to Catalytic Properties	71

Pages

4.2.1 Distance and Angle between Cp Planes	71
4.2.2 Gap Aperture and Obliquity	74
4.2.3 Twisted Angle	78
4.2.4 Cavity Distance and Cavity Angle	80
4.2.5 Atomic Charges	84
CHAPTER 5 DISCUSSION	87
5.1 Structure of Zirconocene	87
5.2 Quantitative Structure-Property Relationships (QSPR)	89
5.2.1 Distance and Angle between Cp Planes	89
5.2.2 Gap Aperture and Obliquity	90
5.2.3 Twisted Angle	92
5.2.4 Cavity Distance and Cavity Angle	93
5.2.5 Atomic Charges	94
5.3 Suggestion for New Zirconocene Catalyst	95
CHAPTER 6 CONCLUSION	98
6.1 The Structure-Property Relationships of Selectivity	98
6.2 The Structure-Property Relationships of Reactivity	98
6.3 The Effect of Substituents Group and Bridging Group to Cp Ring	
Opening	99
6.4 The Optimum Method for Calculation Zirconocene Structure	99
REFERENCES	100
APPENDIX	104
CURRICULUM VITAE	107

LIST OF FIGURES

Figures 2 1.1 The syndiotactic, isotactic, and atactic forms of polypropylene..... 1.2 Direct insertion mechanism as proposed by Cossee and Arlman...... 4 The Cossee-Arlman mechanism..... 1.3 5 The ten possible stereochemical pentads of a polyolefin..... 6 1.4 1.5 The 4 possibilities of propylene attack to metallocene catalyst..... 8 2.1 The cusp of Slater function..... 17 2.2 The ONIOM extrapolation scheme for a molecular system partitioned into two layers..... 31 2.3 Definition of different atom sets within the ONIOM scheme..... 32 2.4 Inner and outer regions using for partitioning of ethane molecule..... 33 3.1 Structures of zirconocene that investigated 37 3.2 Model and real systems using for partitioning dimethylsilano bridged zirconocene complexes..... 40 3.3 Model and real systems using for partitioning tetramethylethano and ethano bridged zirconocene complexes..... 40 3.4 The measurement of angle and distance between Cp planes..... 42 3.5 Illustrating of gap aperture and obliquity of zirconocenes..... 43 3.6 The illustration of twisted angle between two cyclopentadienyl rings of zirconocenes..... 44 3.7 The illustration of cavity distance of hydrogen atom at β-45 substituents..... 3.8 The illustration of cavity angle of hydrogen atom at Bsubstituents..... 46 4.1 Zirconocene structure 1 with atomic numbering..... 47 4.2 Zirconocene structure 2 with atomic numbering..... 51 Zirconocene structure 3 with atomic numbering..... 4.3 55 4.4 Zirconocene structure 4 with atomic numbering.....

Pages

Figures

4.5	Zirconocene structure 5 with atomic numbering	65
4.6	Plot of distance between Cp planes obtained at various levels of	
	theory versus % isotacticity	72
4.7	Plot of angle between Cp planes obtained at various levels of theory	
	versus % isotacticity	73
4.8	Plot of distance between Cp planes obtained at various levels of	
	theory versus productivity	73
4.9	Plot of angle between Cp planes obtained at various levels of theory	
	versus productivity	74
4.10	Plot of gap aperture obtained at various levels of theory versus %	
	isotacticity	76
4.11	Plot of obliquity obtained at various levels of theory versus %	
	isotacticity	76
4.12	Plot of gap aperture obtained at various levels of theory versus	
	productivity	77
4.13	Plot of obliquity obtained at various levels of theory versus	
	productivity	77
4.14	Plot of twisted angle obtained at various levels of theory versus %	
	isotacticity	79
4.15	Plot of twisted angle obtained at various levels of theory versus	
	productivity	79
4.16	Plot of cavity distance obtained at various levels of theory versus $\%$	
	isotacticity	81
4.17	Plot of cavity angle obtained at various levels of theory versus $\%$	
	isotacticity	82
4.18	Plot of cavity distance obtained at various levels of theory versus	
	productivity	82

Pages

Figures

4.19	Plot of cavity angle obtained at various levels of theory versus	
	productivity	83
4.20	Plots of charges of cyclopentadienyl ring in neutral and ion forms	
	obtained from B3LYP/DZVP versus productivity	85
4.21	Plots of charges of zirconocene ring in neutral and ion forms obtained	
	from B3LYP/DZVP versus productivity	86
5.1	The definition of positive and negative signs of twisted angle	92

Pages

LIST OF TABLES

Tables		Pages
3.1	Reaction time, productivity, and % isotacticity of 5 structure of	
	zirconocenes obtained from Brintzinger	38
4.1	Structure parameter of (Me ₂ C) ₂ (4-tBu-C ₅ H ₃) ₂ ZrCl ₂ obtained at	
	various levels of theory	48
4.2	Structure parameter of Me ₂ Si(4-tBu-C ₅ H ₃) ₂ ZrCl ₂ obtained at various	
	levels of theory	51
4.3	Structure parameter of Me ₂ Si(2-Me-4-tBu-C ₅ H ₂) ₂ ZrCl ₂ obtained at	
	various levels of theory	55
4.4	Structure parameter of Me ₂ Si(2-Me-4-iPr-C ₅ H ₂) ₂ ZrCl ₂ obtained at	
	various levels of theory	60
4.5	Structure parameter of (CH ₂) ₂ (tetrahydroindenyl) ₂ ZrCl ₂ obtained at	
	various levels of theory	65
4.6	Comparison between X-ray structure and B3LYP/DZVP optimized	
	structure of structure 3	69
4.7	The average difference of bond distances, bond angles and torsion	
	angles of 5 zirconocene structures	70
4.8	The distance between Cp planes (Å) of 5 zirconocene structures from	
	QM and ONIOM calculations	71
4.9	The angle between Cp planes (°) of 5 zirconocene structures from	
	QM and ONIOM calculations	72
4.10	The gap aperture (°) of 5 zirconocene structures from QM and	
	ONIOM calculations	75
4.11	The obliquity (°) of 5 zirconocene structures from OM and ONIOM	
	calculations	75
4.12	The twisted angle (°) of 5 zirconocene structures from OM and	
	ONIOM	78

4.13	The cavity distance (Å) of 5 zirconocene structures from QM and	
	ONIOM calculations.	80
4.14	The cavity angle (Å) of 5 zirconocene structures from QM and	
	ONIOM calculations.	81
4.15	The net charges of various atoms and group atoms $(R^1, R^2, and \mu-x)$	
	of 5 zirconocene structures in neutral form obtained using	
	B3LYP/DZVP	84
4.16	The net charges of various atoms and group atoms (R ¹ , R ² , and μ -x)	
	of 5 zirconocene structures in ion form obtained using	
	B3LYP/DZVP	85

 $\left| \mathbf{y} \right|$

LIST OF ABBREVIATIONS

B3LYP	: Becke's threeparameter and Lee-Yang-Parr for the correlation		
Ср	: Cyclopentadienyl		
DFT	: Density Functional Theory		
DZV	: Double Zeta Split Valance		
DZVP	: Double Zeta Split Valance Plus Polarization Function		
ECP	: Effective Core Potential		
GTO	: Gaussian-type Orbital		
IMOMM	: Integrated Molecular Orbital and Molecular Mechanics		
LANL2DZ	: Effective Core Potential Basis set		
MAO	: Methylaluminoxane		
ONIOM	: Our own <i>n</i> -layered Integrated Molecular Orbital and Molecular		
	Mechanics		
QSPR	: Quantitative Structure-Property Relationship		
STO	: Slater-type Orbital		
TZVP	: triple zeta split valance		
UFF	: Universal Force Field		

LIST OF SYMBOLS

mim	: Minute
kg	: Kilogram
PP	: Polypropylene
h	 : Hour
mol	: Mole
p	: Pressure