CHAPTER IV

RESULTS AND DISCUSSION

This research aimed to study oxidative degradation of natural rubber in the presence of microparticles containing titanium dioxide under ultraviolet light. Microparticles were prepared from gelatin–gum arabic by phase separation from an aqueous solution system. Microparticles were characterized by scanning electron microscopy (SEM) and electron dispersive X-ray (EDX). Oxidative degradation was studied under ultraviolet light (accelerated condition) and sunlight by following viscosity-average molecular weight using solution viscometry method. Degradation of vulcanized rubber containing titanium dioxide microparticles under sunlight was monitored by determination of mechanical properties.

4.1 Preparation of Microparticles Containing Titanium Dioxide Powder

Microparticles were prepared by microencapsulation utilizing phase separation from an aqueous solution system. In this process, the starting materials for formation of a capsule wall are gelatin and gum arabic, which are water–soluble polymers. When pH is lower than 4.8, gelatin becomes polycationic. Gum arabic contains only carboxylic acids in the molecule, and hence, its aqueous solution is polyanion. There is an interaction between polycationic gelatin and polyanionic gum arabic resulting in the formation of a coacervate. We found that very high stirring speed is necessary to achieve even distribution of titanium dioxide (TiO₂) powder during coacervation: process. For this experiment, the speed of 14,000 rpm was chosen. After being recovered by freezedrying TiO₂-containing particles were characterized by SEM-EDX. As can be seen from SEM micrographs (Figure 4.1) particles appeared as agglomerated particles with an average diameter of 30 μ m. From micrograph in Figure 4.2 with higher magnification agglomerated particles consist of smaller particles with an average diameter of 0.3 - 0.5 μ m. This data agree with the previous work reported earlier by Palmieri^[23] and coworkers about the fact that freeze-drying is not an effective drying process. It is then difficult to obtain single microparticles since the process cannot break down the particle cluster. It is uncertain to assume that all particles in the agglomerates (Figure 4.2) containing TiO₂. It is also plausible that some particles are uncoacervated excess of colloidal polymers without TiO₂. In order to estimate the amount (%w/w) of TiO₂ in the particles quantitatively, it is necessary to determine ash content of the particles. The result suggested that the particles contain 1.13 %w/w.

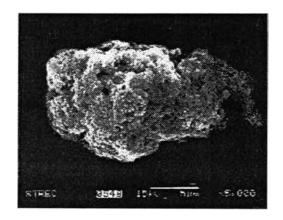


Figure 4.1 SEM micrograph of an agglomerated microparticle containing TiO₂ obtained after freeze-drying (x 5,000)

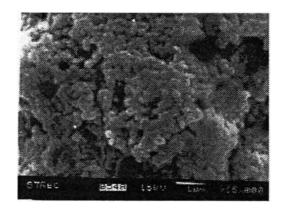


Figure 4.2 SEM micrograph of an agglomerated microparticle containing TiO₂ obtained after freeze-drying (x 15,000)

The existence of TiO_2 in the microparticles was also confirmed qualitatively by EDX data as indicated in Figure 4.3. A characteristic peak of titanium appears around 4.25 eV. The atomic composition result indicated that the particles contain 0.1% of titanium.

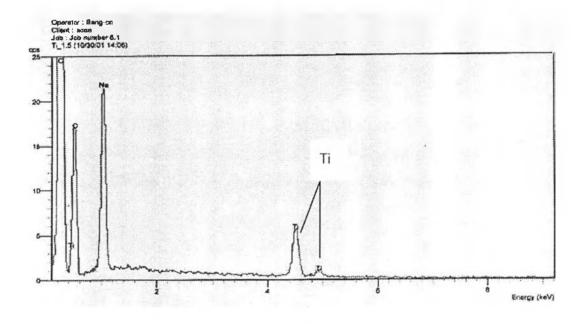


Figure 4.3 EDX of microparticles

4.2 Oxidative Degradation of Natural Rubber

Oxidative degradation studies of natural rubber were divided into 3 parts.

- The degradation of rubber solution in the presence of TiO₂ powder was studied after exposed to UV light under accelerated condition by following viscosity – average molecular weight of natural rubber solution.
- Oxidative degradation of natural rubber sheets containing TiO₂ powder or TiO₂ microparticles after exposed to UV light under accelerated condition or to sunlight was studied by following viscosity-average molecular weight of rubber sheets.
- Oxidative degradation of vulcanized rubber sheets containing TiO₂ powder or TiO₂ microparticles after exposed to sunlight was studied by determining tensile properties.

4.2.1 The degradation of rubber solution in the presence of TiO₂ powder after exposed to UV light under accelerated condition

Oxidative degradation of natural rubber in the presence of TiO_2 was studied under accelerated condition after exposed to UV light having wavenumber in the range of UVB (290 – 315 nm) to which most polymers are sensitive. The principal crystalline structure of TiO_2 used in this study was provent to be anatase as confirmed by X-ray diffractogram is shown in Figure 4.4. This form of TiO_2 is the most active form that exhibits oxidative catalytic behavior. Sol fraction of natural rubber dissolved in toluene was exposed to UV light and kept stirring in order to have TiO_2 dispersed evenly throughout the solution. Figure 4.5 showed viscosity - average molecular weight (\overline{M}_v) of natural rubber after exposed to UV light for 15 – 120 min.

Initial molecular weight of controlled natural rubber was about 2,000,000. Degradation of natural rubber started within the first 15 min of exposure: molecular weight of controlled rubber decreased 50% to about 1,000,000. As the exposure time was increased, the molecular weight continued to decrease at a slower rate as compared to the first 15 min and the molecular weight seems to level off at approximately 720,000 after 90 min of exposure. The changes in molecular weight promoted during the UV aging can be associated with the breaking process of chain molecules. Molecular weight of natural rubber containing 0.05% w/v TiO₂ powder was about 700,000 (65% decrease) after 15 min exposure. When the exposure time was longer, the molecular weight decrease as time of exposure and reached about 150,000 after 120 min exposure.

The degradation of natural rubber as a function of the amount of TiO_2 was also determined. Molecular weight of natural rubber exposed to UV light for 60 min is shown in Figure 4.6. The data suggested that the effect of the amount of TiO_2 powder in the solution is quite insignificant. Only slight molecular weight reduction was observed as the amount of TiO_2 was increased from 0.1 to 5%. This first part of degradation studies under accelerated condition suggested that TiO_2 is quite an effective oxidation catalyst for natural rubber degradation.

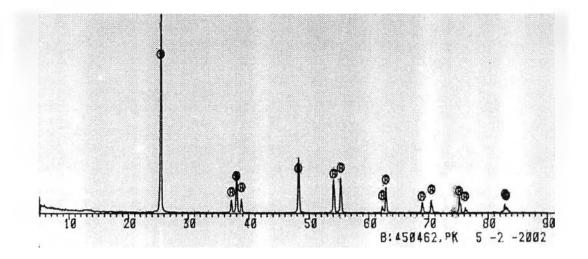


Figure 4.4 X-ray diffractrogram of titanium dioxide

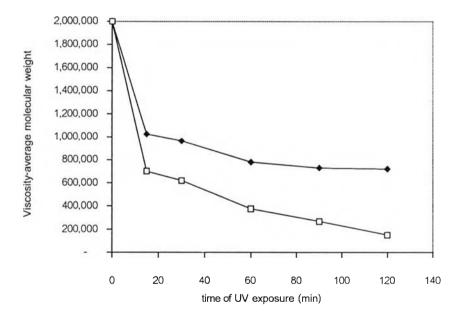


Figure 4.5 Viscosity-average molecular weight of natural rubber after UV exposure for 15 – 120 min under accelerated condition.
(◆: natural rubber, ^O: natural rubber + TiO₂)

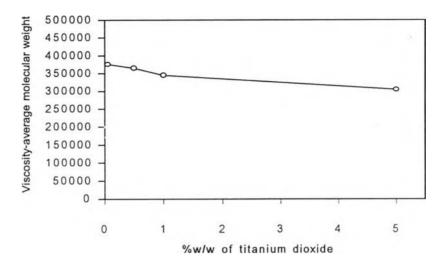


Figure 4.6 Viscosity-average molecular weight of natural rubber containing TiO_2 powder as a function of TiO_2 quantity after UV exposure for 60 min.

IR spectrum of controlled natural rubber is shown in Figure 4.7. The IR spectrum showed peak at 1660 cm⁻¹ as an indication of C=C stretching. IR spectra of natural rubber and natural rubber containing TiO_2 powder after exposed to UV light for 120 min are shown in Figures 4.8 and 4.9. The IR spectra showed peak at 1760 cm⁻¹ as an indication of carbonyl group.

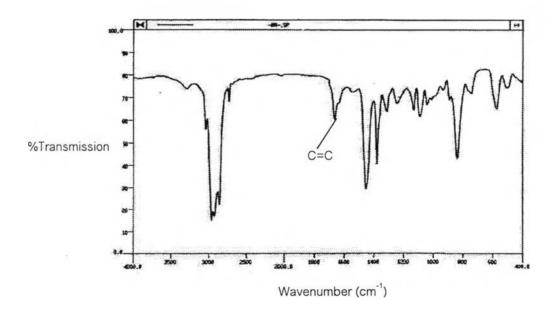


Figure 4.7 FT-IR spectrum of controlled natural rubber solution

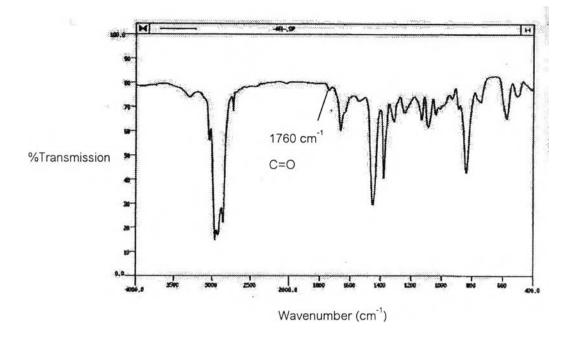


Figure 4.8 FT-IR spectrum of natural rubber solution after UV exposure for 120 min under accelerated condition.

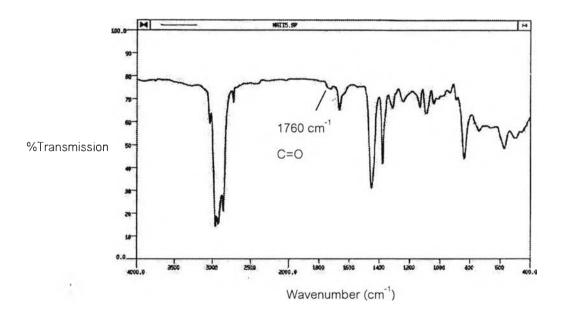


Figure 4.9 FT-IR spectrum of natural rubber solution with TiO_2 powder after UV exposure for 120 min under accelerated condition.

4.2.2 Oxidative degradation of natural rubber sheets containing TiO₂ powder and TiO₂ microparticles

The effect of the amount of TiO_2 powder and TiO_2 microparticles were determined and the results were shown in Figures 4.10 and 4.11, respectively. The data suggested that the degradation of natural rubber sheets were independent of the amount of TiO_2 powder or TiO_2 microparticles. We also suspect that this may be a result of inhomogeneous distribution of TiO_2 powder or TiO_2 microparticles within natural rubber sheet causing ineffective degradation.

For this reason, we desired to compare oxidative degradation of rubber sheets containing 0.5%w/w TiO₂ powder with rubber sheet containing 0.5%w/w tiO₂ microparticles. From Figure 4.12, molecular weight of natural rubber, natural rubber containing TiO₂ powder and natural rubber containing TiO₂ microparticles were reduced after 1 hour exposure. Slightly greater extent of degradation was observed for natural rubber containing 0.5%w/w TiO₂ powder (45% decrease) and 0.5%w/w TiO₂ microparticles (50% decrease) as compared to the controlled natural rubber without TiO₂ (40% decrease). Interestingly, it was observed that the extent of degradation of natural rubber containing TiO₂ microparticles became greater than the one containing TiO₂ powder after 2 hours of exposure. This could indicate that the encapsulation of TiO₂ suppressed the rate of degradation as compared to the direct addition of TiO₂ powder. We explain an initial degradation of natural rubber containing TiO₂ powder being lower than the one containing TiO₂ microparticles as a result of ultraviolet reflection of TiO₂ powder. However, the effect of ultraviolet reflection was outweighed by the catalytic character after longer exposure. We would like to comment that this explanation is only valid based on the fact that extent of degradation is independent of the amount of TiO₂ powder (0.1, 0.5, 1 and 5%w/w) or TiO₂ microparticles (0.5, 1, 3 and 5%w/w).

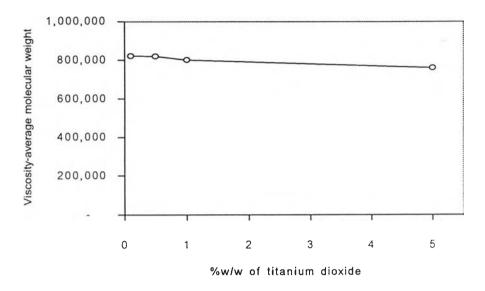


Figure 4.10 Viscosity-average molecular weight of natural rubber sheet containing TiO₂ powder after exposed to UV light under accelerated condition for 120 min.

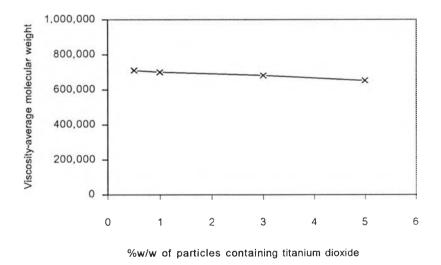


Figure 4.11 Viscosity-average molecular weight of natural rubber sheet containing TiO₂ particles after exposed to UV light under accelerated condition for 120 min.

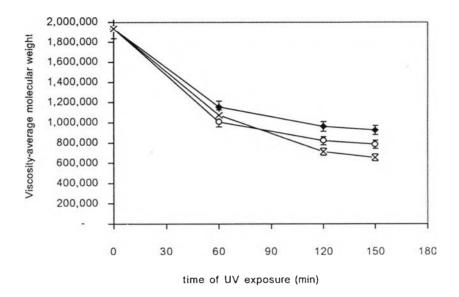


Figure 4.12 Viscosity-average molecular weight of natural rubber sheets after exposed to UV light for 120 min. (\blacklozenge : natural rubber, O : natural rubber + 0.5%w/w TiO₂ powder, x: : natural rubber + 0.5%w/w TiO₂ particles)

The degradation of natural rubber sheets in the presence of water was shown in Table 4.1. Molecular weight of natural rubber, natural rubber containing TiO_2 powder and natural rubber containing TiO_2 microparticles decreased more rapidly than the samples degraded in dry condition. Molecular weight of natural rubber containing TiO_2 microparticles slightly decreased more than others. These data suggested that water plays a role in controlling degradation to some extent.

Table 4.1 The degradation of natural rubber sheets in the presence of water

	Dry condition		Soaking in water	
NR sample	\overline{M}_{v}	$\% \overline{M}_{v}$ reduction ^a	\overline{M}_{v}	$\% \overline{M}_{v}$ reduction ^a
NR	960,878	50	733,152	62
NR+0.5% TiO ₂ powder	821,217	57	589,770	69
NR+0.5% TiO ₂ particles	711,560	63	457,214	76

a, The molecular weight reduction was calculated by comparing with the original \overline{M}_{v} of ~ 2,000,000

A similar trend of degradation after exposure to sunlight (Figure 4.13) was observed for natural rubber sheets containing 0.5%w/w TiO₂ powder and 0.5%w/w TiO₂ microparticles. Initially, the sheets containing TiO₂ powder seem to be more stable than the ones containing TiO₂ microparticles due to more efficient UV reflection of TiO₂ powder than encapsulated TiO₂. The reversed trend was evidenced for samples exposed to sunlight for 2 and 3 days. The molecular weights of all samples were unexpectedly decreased to approximately the same value ($\overline{M}_v = 80,000$) after 4 days of exposure. We would like to comment that all samples were uncured rubber. It is then possible to observe such a trend due to the damage of natural rubber by a combination of heat and sunlight after long exposure.

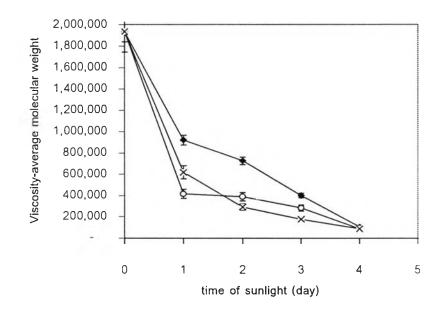


Figure 4.13 Viscosity-average molecular weight of natural rubber sheets after exposed to sunlight for 1 – 4 days. (◆ : natural rubber, ○ : natural rubber + 0.5%w/w TiO₂ powder, X : natural rubber + 0.5%w/w TiO₂ particles)

4.2.3 Mechanical properties of natural rubber

To determine the effect of TiO₂ addition on degradation of controlled vulcanized natural rubber sheets, vulcanized natural rubber sheets containing 1%w/w TiO₂ powder and 1%w/w TiO₂ particles were exposed to sunlight for 5 to 15 days. Figure 4.14 illustrates the tensile strength of vulcanized natural rubber sheets after sunlight exposure. All samples showed a decrease in tensile strength as the time of sunlight exposure was longer. The reduction of tensile strength of vulcanized natural rubber sheets containing 1%w/w TiO₂ particles was slightly lower than the controlled vulcanized natural rubber sheets and vulcanized natural rubber sheets containing 1%w/w TiO₂ powder. This data suggested that the degree of degradation of vulcanized natural rubber sheets containing TiO₂ powder and TiO₂ particles were not significantly different from the controlled rubber sheets. Degraded natural rubber sheets were also characterized by ATR-IR as shown in Figures 4.15, 4.16, 4.17 and 4.18. As expected, IR spectra of vulcanized natural rubber, vulcanized natural rubber containing TiO₂ powder and TiO₂ particles after exposure to sunlight for 15 days exhibited higher intensity of peaks in the region of 1700 – 1760 cm⁻¹. It indicated that higher carbonyl groups at the surface being generated after exposure to sunlight as compared to the controlled rubber sheets before sunlight exposure. The insignificant reduction of tensile strength may be regarded to the fact that insufficient amount of TiO₂ powder or TiO₂ particles incorporated causing ineffective degradation especially within cured natural rubber network.

In order to improve the extent of degradation of cured natural rubber, it may be necessary to incorporate greater amount of TiO_2 powder or TiO_2 particles.

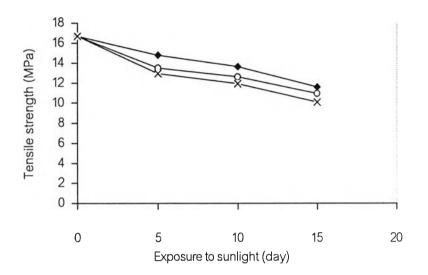


Figure 4.14 Tensile strength of vulcanized natural rubber after exposed to sunlight for 5 - 15 days. (◆ : natural rubber, O : natural rubber + 1%w/w TiO₂ powder, X : natural rubber + 1%w/wTiO₂ particles)

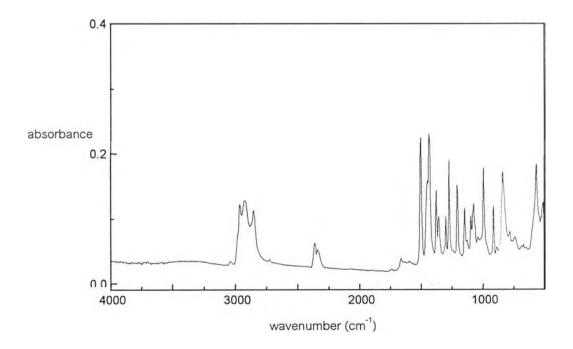


Figure 4.15 ATR-IR spectrum of controlled vulcanized rubber sheet

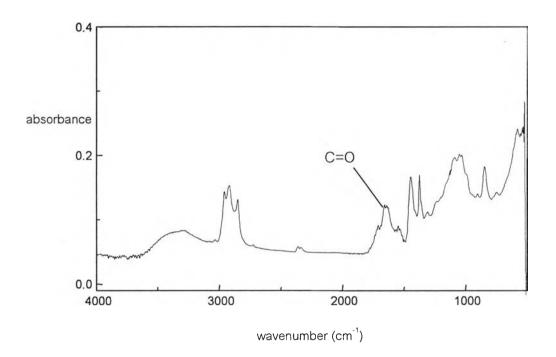


Figure 4.16 ATR-IR spectrum of controlled vulcanized rubber sheet after exposed to sunlight for 15 days

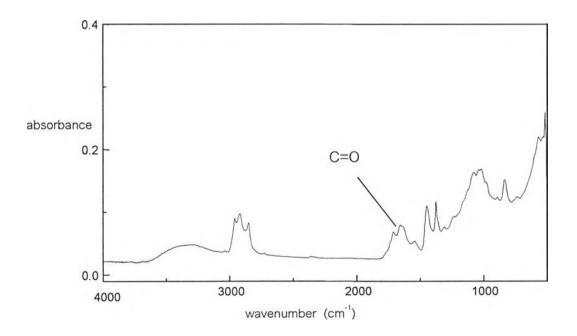


Figure 4.17 ATR-IR spectrum of vulcanized rubber sheet containing 1%/w TiO₂ powder after exposed to sunlight for 15 days

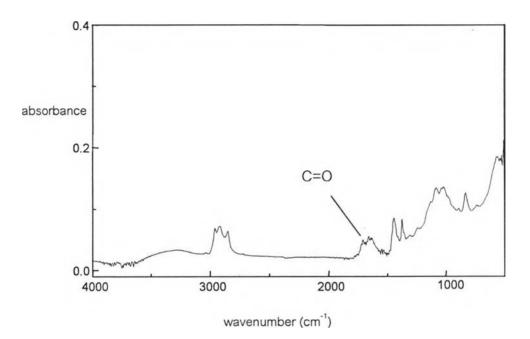
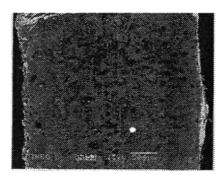


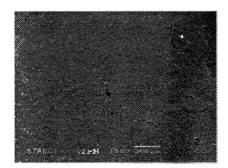
Figure 4.18 ATR-IR spectrum of vulcanized rubber sheet containing 1%w/w TiO₂ particles after exposed to sunlight for 15 day.

The degradation of vulcanized natural rubber sheets in the presence of water was shown in Table 4.2. Tensile strength of vulcanized natural rubber sheet, vulcanized natural rubber sheet containing 1%w/w TiO₂ powder and 1%w/w TiO₂ particles decreased more than the samples degraded in dry condition. Tensile strength of vulcanized natural rubber sheet containing TiO₂ particles slightly decreased more than others. These data suggested that water plays a role in controlling degradation to some extent.

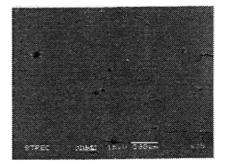
	Dry c	ondition	Soaking in water	
NR sample	Tensile	%	Tensile	%
	Strength	reduction [®]	Strength	reduction ^a
	(MPa)		(MPa)	
NR	11.60	31	11.12	33
NR+1% TiO ₂ powder	10.95	34	9.52	43
NR+1% TiO ₂ particles	10.10	40	8.78	47

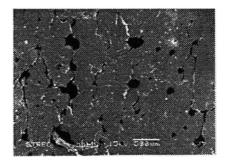

Table 4.2 The degradation of vulcanized natural rubber sheets in the presenceof water after exposure to sunlight for 15 days.

a, The tensile strength reduction was calculated by comparing with the original tensile strength of 16.70.


4.2.4 Surface morphologies of vulcanized rubber sheets before and after sunlight exposure.

The vulcanized natural rubber sheets were analyzed by SEM. Figure 4.19 showed surface morphologies of vulcanized natural rubber sheet, vulcanized natural rubber sheet containing TiO_2 powder and TiO_2 particles after exposed to sunlight for 15 days. These micrographs displayed some cavities in surface, probably due to water evaporation during the vulcanization, but the material itself seemed to be homogeneous. Micrograph of natural rubber containing TiO_2 particles (d) displayed some surface fractures, which clearly indicated that the natural rubber sheets have lost some physical integrity after being degraded. However, this lost of physical integrity at the surface is not significant enough to affect bulk mechanical properties.




(a) controlled vulcanized natural rubber sheet

(c) vulcanized natural rubber
 sheet + TiO₂ powder after
 exposed to sunlight for 15 days

(b) controlled vulcanized natural
 rubber after exposed to sunlight
 for 15 days

(d) vulcanized natural rubber
 sheet + TiO₂ particles exposed
 to sunlight for 15 days

Figure 4.19 Micrographs of vulcanized rubber sheets before and after sunlight exposure