สารออกฤทธิ์ทางชีวภาพจากเปล้าเงิน หัสคืน และกระเจาะ

นางสาวจิราภรณ์ ทองตัน

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาเภสัชเคมีและผลิตภัณฑ์ธรรมชาติ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN : 974-17-5114-1 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

BIOACTIVE COMPOUNDS

FROM

CROTON KONGENSIS, CROTON BIRMANICUS AND MILLETTIA KANGENSIS

Miss Jiraporn Thongtan

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Chemistry and Natural Products Faculty of Pharmaceutical Sciences

Chulalongkorn University Academic Year 2003 ISBN : 974-17-5114 -1

Thesis Title	Bioactive Compounds from Croton kongensis, Croton
	birmanicus and Millettia kangensis
By	Miss Jiraporn Thongtan
Field of Study	Pharmaceutical Chemistry and Natural Products
Thesis Advisor	Associate Professor Nijsiri Ruangrungsi, Ph.D.
Thesis Co-Advisor	Mr. Prasat Kittakoop, Ph.D

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

......Dean of the Faculty of Pharmaceutical Sciences (Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

...... Chairman

(Associate Professor Ekarin Saifah, Ph.D.)

(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

...... Thesis Co-Advisor

(Mr. Prasat Kittakoop, Ph.D.)

Member

(Associate Professor Somyote Sutthivaiyakit, Ph.D.)

......Member

(Associate Professor Sumphan Wongseripipatana, Ph.D.)

จิราภรณ์ ทองตัน: สารออกฤทธิ์ทางชีวภาพจากเปล้าเงิน หัสคืน และ กระเจาะ (BIOACTIVE COMPOUNDS FROM *CROTON KONGENSIS*, *CROTON BIRMANICUS* AND *MILLETTIA KANGENSIS*) อาจารย์ที่ปรึกษา: รศ. คร. นิจศิริ เรืองรังษี, อาจารย์ที่ปรึกษาร่วม : คร. ประสาท กิตตะคุปต์, 161 หน้า. ISBN: 974-17-5114-1

้จากการศึกษาสารออกฤทธิ์ทางชีวภาพของเปล้าเงิน หัสคืน และ กระเจาะ สามารถแยกสาร ในกลุ่มใคเทอร์ปีนอยค์ 4 ชนิค ฟลาโวนอยค์ 7 ชนิค และอัลคาลอยค์ 1 ชนิค การพิสูจน์โครงสร้าง ของสารทั้งหมดที่แยกได้อาศัยการวิเคราะห์เชิงสเปกตรัมของ UV, IR, MS และ NMR ร่วมกับการ เปรียบเทียบข้อมูลกับสารที่ทราบโครงสร้างแล้ว พบว่าสารที่แยกได้จากเปล้าเงินประกอบด้วยสาร ใหม่ที่มีโครงสร้างในกลุ่ม 8,9-secokaurane 2 ชนิดคือ คือ ent-8,9-seco-7α,11β-diacetoxy kaura-8(14),16-dien-9,15-dione, ent-8,9-seco-8,14-epoxy-7 α -hydroxy-11 β -acetoxy-16kauren-9,15-dione, สารที่เคยมีรายงานแล้ว 1 ชนิดคือ *ent*-8,9-*seco*-7 α -hydroxy-11-acetoxy kaura-8(14),16-dien-9,15-dione และสารที่เคยมีรายงานแล้วในกลุ่ม kaurane 1 ชนิค คือ ent-7β-hydroxy-15-oxokaur-16-en-18-yl acetate สารที่แยกใด้จากหัสคืนประกอบ ด้วยสารที่เคยมี รายงานแล้วในกลุ่ม glutarimide alkaloid 1 ชนิดคือ julocrotine สารที่แยกได้จากกระเจาะ ประกอบด้วยสารใหม่ในกลุ่ม furanoflavonoids 2 ชนิด คือ 3-methoxy-6-hydroxy-[4",5":8,7]furanoflavone, 2,5,8-trimethoxy-[4",5":6,7]-furanoflavanone, pyranoflavonoid 1 ชนิด คือ 3,6-dimethoxy-2"-dimethyl-[5",6":8,7]-pyranoflavone และ coumestan 1 ชนิด คือ 4'hydroxy,5,6,7-trimethoxycoumestan สารที่เคยมีรายงานแล้ว 2 ชนิดคือ karanjin และ 3,6dimethoxy-[4",5":8,7]-furanoflavone และสารที่พบครั้งแรกจากธรรมชาติอีก 1 ชนิด คือ 5,8dimethoxy-[4",5":7,6]-furanoflavone สารที่แยกได้ทั้งหมด 12 ชนิดถูกนำไปทดสอบฤทธิ์ทาง ชีวภาพได้แก่ฤทธิ์ต้านวัณโรค ฤทธิ์ต้านมาลาเรีย และฤทธิ์ความเป็นพิษต่อเซลล์ พบว่า *ent*-8,9seco-7 α , 11 β -diacetoxykaura-8(14), 16-dien-9, 15-dione, ent-8, 9-seco-8, 14-epoxy-7 α hydroxy-11 β -acetoxy-16-kauren-9,15-dione, *ent*-8,9-*seco*-7 α -hydroxy-11-acetoxykaura -8(14),16-dien-9,15-dione และ ent-7β-hydroxy-15-oxokaur-16-en-18-yl acetate จากเปล้า เงินมีฤทธิ์ต้านวัณโรค ฤทธิ์ต้านมาลาเรีย และฤทธิ์ความเป็นพิษต่อเซลล์ ขณะที่ julocrotine จาก หัสคืนและ 5,8-dimethoxy-[4",5":7,6]-furanoflavone จากกระเจาะมีฤทธิ์ต้ำนวัณโรค

ภาควิชา เภสัชเวท	ถายมือชื่อนิสิต
สาขาวิชา เภสัชเคมีและผลิตภัณฑ์ธรรมชาติ	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา 2546	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4276953033 MAJOR: PHARMACEUTICAL CHEMISTRY AND NATURAL PRODUCTS KEY WORDS: 8,9-SECOKAURANE/KAURANE/ALKALOID/FLAVONOID/COUMESTAN/ANTI MALARIAL/ANTIMYCOBACTERIAL/CYTOTOXICITY/*CROTON KONGENSIS/CROTON BIRMANICUS/MILLETTIA KANGENSIS*

JIRAPORN THONGTAN: BIOACTIVE COMPOUNDS FROM *CROTON KONGENSIS, CROTON BIRMANICUS* AND *MILLETTIA KANGENSIS* THESIS ADVISOR: ASSOC. PROF. NIJSIRI RUANGRUNGSI, Ph.D., THESIS CO-ADVISOR: MR. PRASAT KITTAKOOP Ph.D., 161 pp. ISBN: 974-17-5114-1

Chemical investigation of Croton kongensis, Croton birmanicus and Millettia kangensis, led to the isolation of four diterpenoids, seven flavonoids and an alkaloid. The structure determination of these compounds was accomplished by spectroscopic analyses (UV, IR, MS and NMR) and by comparison with previously reported data of known compounds. C. kongensis provided two new 8,9-secokauranes identified as ent-8,9-seco- 7α , 11 β -diacetoxykaura-8(14), 16-dien-9, 15-dione and ent-8, 9-seco-8, 14-epoxy- 7α -hydroxy-11 β -acetoxy-16-kauren-9,15-dione, and also gave two known diterpenes, ent-8,9-seco-7 α hydroxy-11-acetoxykaura-8(14),16-dien-9,15-dione and ent-7 β -hydroxy-15-oxokaur-16-en-18-yl acetate. C. birmanicus was isolated to yield a known glutarimide alkaloid, julocrotine. Isolation of a crude extract of *M. kangensis* afforded two new furanoflavonoids identified as 3-methoxy-6-hydroxy-[4",5":8,7]-furanoflavone and 2,5,8-trimethoxy-[4",5":6,7]-furanoflava none, a new pyranoflavonoid, 3,6-dimethoxy-2"-dimethyl-[5",6":8,7]-pyranoflavone, a new coumestan (4'-hydroxy,5,6,7-trimethoxycoumestan), a new natural product (5,8-dimethoxy-[4",5":7,6]-furanoflavone), together with two known compounds, karanjin and 3,6-dimethoxy-[4",5":8,7]-furanoflavone. The isolated compounds were evaluated for their biological activities, including antimycobacterial, antimalarial, and cytotoxic activities. ent-8,9-Seco- 7α , 11 β -diacetoxykaura-8(14), 16-dien-9, 15-dione, ent-8, 9-seco-8, 14-epoxy- 7α -hydroxy-11 β acetoxy-16-kauren-9,15-dione, ent-8,9-seco-7 α -hydroxy-11-acetoxykaura-8(14),16-dien-9.15-dione and ent-7_b-hydroxy-15-oxokaur-16-en-18-yl from C. kongensis exhibited antimycobacterial, antimalarial, and cytotoxicity activities, while julocrotine from C. birmanicus and 5,8-dimethoxy-[4",5":7,6]-furanoflavone from M. kangensis showed mild antimycobacterial activity.

Field of Study Pharmaceutical Chemistry and Natuaral Products

Acadamic year 2003	Student's signature
	Advisor's signature
	Co-Advisor's signature

ACKNOWLEDGEMENTS

I am grateful to the following persons who encouraged and supported my research fulfillment:

Associate Professor Dr. Nijsiri Ruangrungsi, my thesis advisor, for his encouragement and intensive supervision through out this work.

Dr. Prasat Kittakoop, my thesis co-advisor, National Center for Genetic Engineering and Biotechnology (BIOTEC), NSTDA, for his excellent advice, valuable guidance and hearty encouragement through out my research study.

I am grateful to the Thailand Graduated Institute of Science and Technology (TGIST), for a student grant. I would like to thank the Biodiversity Research and Training Program (BRT) for financial support.

My special thank to Professor Dr. Yodhathai Thebtaranonth, researchers and all member of Bioresource Research Unit (BRU), BIOTEC, NSTDA, Thailand Science Park, are gratefully acknowledged for providing necessary research facilities, including UV, IR, HPLC, MS and NMR.

I would like to also thank Associate Professor Dr. Palangpon Kongsaeree and Dr. Teinthong Thongpanchang, Department of Chemistry, Faculty of Sciences, Mahidol University, Thailand, for providing the X-ray diffraction, optical rotation and MS measurements.

I would like to thank the thesis committee for their constructive suggestions and critical review of this thesis.

I am also grateful to my friends at the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their friendship, kind support and encouragement through out the period.

Finally, I wish to thank Mr. Nattarooj Kasemkosin and my family for their kind understanding, love, support and encouragement.

CONTENTS

ABSTRACT (Thai)			
ABSTRACT (English)			
ACKNOWLEDGEMENTS	vi		
CONTENTS	vii		
LIST OF TABLES	xiii		
LIST OF FIGURES	xiv		
LIST OF SCHEMES	xix		
LIST OF ABBREVIATIONS AND SYMBOLS	XX		
CHAPTER			
INTRODUCTION 1			
II HISTORICAL	12		
1. Classification and Bioactivities of Diterpenes from Some			
Croton Species	12		
1.1 Casbane Diterpenes	12		
1.2 Cembrane Diterpenes	13		
1.3 Clerodane Diterpenes	14		
1.4 Cleistanthane Diterpenes	18		
1.5 Kaurane Diterpenes	18		
1.6 Labdane Diterpenes	19		
1.7 Pimarane Diterpenes	19		
1.8 Halimane Diterpenes	20		
2. Miscellaneous	20		

P	ag	ge
		. –

3.	Classification and Biological Activities of Flavonoids from			
	Millettia Species			
	3.1 Flavanones and Isoflavanones			
	3.2	Flavans and Isoflavans	24	
	3.3	Flavones and Isoflavones	25	
	3.4	Chalcones	31	
	3.5	Rotenoids	33	
	3.6	Coumarins	35	
	3.7	Quinones	35	
4.	Bios	ynthetic Relationship of Diterpenoids in Croton spp	35	
5.	Bios	ynthetic Relationship of Flavonoids in <i>Millettia</i> spp	36	
EXPERIMENTAL				
1.	Source of Material			
2.	General Techniques		38	
	2.1	Thin-Layer Chromatography	38	
	2.2	Column Chromatography	39	
		2.2.1 Vacuum Liquid Column Chromatography	39	
		2.2.2 Flash Column Chromatography	39	
		2.2.3 Gel Filtration Chromatography	39	
		2.2.4 High Performance Liquid Chromatography	40	
	2.3	Spectroscopy	40	
		2.3.1 Infrared (IR) Absorption Spectra	40	
		2.3.2 Ultraviolet (UV) Absorption Spectra	40	

III

Page

	2.3.3 Mass Spectra	40
	2.3.4 Proton and Carbon-13 Nuclear Magnetic Resonance	
	(¹ H-NMR and ¹³ C-NMR) Spectra	41
2.4	Physical Properties	41
	2.4.1 Optical Rotations	41
	2.4.2 X-ray Crystallography	41
2.5	Solvents	41
Extra	action and Isolation	42
3.1	Extraction and Isolation of Compounds from	42
	Croton kongensis	
	3.1.1 Extraction	42
	3.1.2 Isolation of Compounds from CH ₂ Cl ₂ extract	42
	3.1.3 Isolation of Compounds CK 01 amd CK 03	42
	3.1.4 Isolation of Compounds CK 02	43
	3.1.3 Isolation of Compounds CK 04	43
3.2	Extraction and Isolation of Compounds from	
	Croton birmanicus	44
	3.2.1 Extraction	44
	3.2.2 Isolation of Compounds from CH ₂ Cl ₂ extract	44
	3.2.3 Isolation of Compound CB 01	44
3.3	Extraction and Isolation of Compounds from	
	Millettia kangensis	45
	2.4 2.5 Extra 3.1 3.2	 2.3.3 Mass Spectra

3.

Х	

			Page
		3.3.1 Extraction and Isolation of Compounds from the	
		Leaves of Millettia kangensis	45
		3.3.1.1 Extraction	45
		3.3.1.2 Isolation of Compounds from CHCl ₃ extract	45
		3.3.1.3 Isolation of Compounds MK 02 and MK 07	46
		3.3.2 Extraction and Isolation of Compounds from the	
		Twigs of Millettia kangensis	47
		3.3.2.1 Extraction	47
		3.2.2.2 Isolation of Compounds from CH ₂ Cl ₂ extract	46
		3.2.2.3 Isolation of Compound MK 01	47
		3.2.2.4 Isolation of Compound MK 03	47
		3.2.2.5 Isolation of Compound MK 04	48
		3.2.2.6 Isolation of Compound MK 05	48
		3.2.2.7 Isolation of Compound MK 06	48
4.	Phys	ical and Spectral Data of Isolated Compounds	49
	4.1	Compound CK 01	49
	4.2	Compound CK 02	50
	4.3	Compound CK 03	50
	4.4	Compound CK 04	50
	4.5	Compound CB 01	51
	4.6	Compound MK 01	51
	4.7	Compound MK 02	51
	4.8	Compound MK 03	52

		4.9	Compound MK 04	52
		4.10	Compound MK 05	53
		4.11	Compound MK 06	53
		4.12	Compound MK 07	53
	5.	Biolog	gical Activities	54
		5.1	Antimycobacterial Activity	54
		5.2	Antimalarial Activity	54
		5.3	Cytotoxic Activity	54
IV	RES	SULTS	AND DISSCUSSION	55
	1.	Struct	ure Elucidation of Compounds Isolated from	
		Croto	n kongensis	56
		1.1	Structure Elucidation of Compound CK 01	56
		1.2	Structure Elucidation of Compound CK 02	60
		1.3	Structure Elucidation of Compound CK 03	64
		1.4	Structure Elucidation of Compound CK 04	67
	2.	Structure Elucidation of Compounds Isolated from		
		Croton birmanicus		71
		2.1	Structure Elucidation of Compound CB 01	71
	3.	Struct	ure Elucidation of Compounds Isolated from	
		Millet	tia kangensis	75
		3.1	Structure Elucidation of Compound MK 01	75
		3.2	Structure Elucidation of Compound MK 02	78
		3.3	Structure Elucidation of Compound MK 03	81

		3.4	Structure Elucidation of Compound MK 04	84
		3.5	Structure Elucidation of Compound MK 05	87
		3.6	Structure Elucidation of Compound MK 06	90
		3.7	Structure Elucidation of Compound MK 07	93
	4.	Biologi	cal Activities	95
		4.1	Bioactive Compounds from Croton kongensis	95
		4.2	Bioactive Compounds from Croton birmanicus	95
		4.3	Bioactive Compounds from Millettia kangensis	95
V	CO	NCLUSI	ON	97
REFE	EREI	NCES		98
APPENDIX			107	
VITA	۱			161

LIST OF TABLES

Table		Page
1	Antimycobacterial and antimalarial activities of the crude extract	55
2	The ¹ H and ¹³ C-NMR Spectral Data of <i>ent</i> -8,9- <i>seco</i> -7α-Hydroxy-11- acetoxykaura-8(14),16-dien-9,15-dione and Compound CK 01 in CDCl ₃	59
3	The ¹ H and ¹³ C-NMR Spectral Data of Compound CK 02 in CDCl ₃	63
4	The ¹ H and ¹³ C-NMR Spectral Data of Compound CK 03 in CDCl ₃	66
5	The ¹ H and ¹³ C-NMR Spectral Data of <i>ent-</i> 7β -Hydroxy-15-oxokaur-	
6	16-en-18-eyl acetate and Compound CK 04 in CDCl ₃ The ¹ H and ¹³ C-NMR Spectral Data of Julocrotine and Compound CB	70
7	01 in CDCl ₃ ¹ H and ¹³ C-NMR Spectral Data of Karanjin and Compound MK 01 in	74
	CDCl ₃	77
8	The ¹ H and ¹³ C-NMR Data of Compound MK 02 in DMSO- d_6	80
9	The ¹ H and ¹³ C-NMR Spectral Data of 3,6-Dimethoxy-[4″,5″:8,7]- furanoflavone and Compound MK 03	83
10	The ¹ H and ¹³ C-NMR Spectral Data of Compound MK 04 in CDCl ₃	86
11	The ¹ H and ¹³ C-NMR Spectral Data of Compound MK 05 in	00
12	CDCl ₃ The ¹ H and ¹³ C-NMR Spectral Data of Compound MK 06 in	89
	DMSO- <i>d</i> ₆	92
13	The ¹ H and ¹³ C-NMR Spectral Data of Compound MK 07 in DMSO- <i>d</i> ₆	94
14	Biological Activities of Compounds from	
	C. kongensis, C. birmanicus and M. kangensis	96

LIST OF FIGURES

Figure		Page
1	Croton kongensis	9
2	Croton birmanicus	10
3	Millettia kangensis	11
4	UV Spectrum of Compound CK 01 (chloroform)	108
5	IR Spectrum of Compound CK 01 (neat)	108
6	MS Spectrum of Compound CK 01	109
7	¹ H- NMR Spectrum (CDCl ₃) of Compound CK 01	109
8	¹³ C-NMR Spectrum (CDCl ₃) of Compound CK 01	110
9	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound CK 01	110
10	NOESY Spectrum (CDCl ₃) of Compound CK 01	111
11	HMQC Spectrum (CDCl ₃) of Compound CK 01	111
12	HMBC Spectrum (CDCl ₃) of Compound CK 01	112
13	UV Spectrum of Compound CK 02 (chloroform)	112
14	IR Spectrum of Compound CK 02 (neat)	113
15	MS Spectrum of Compound CK 02	113
16	¹ H- NMR Spectrum (CDCl ₃) of Compound CK 02	114
17	¹³ C-NMR Spectrum (CDCl ₃) of Compound CK 02	114
18	¹ H- ¹ H COSY Spectrum of Compound CK 02	115
19	NOESY Spectrum of Compound CK 02	115
20	HMQC Spectrum (CDCl ₃) of Compound CK 02	116
21	HMBC Spectrum (CDCl ₃) of Compound CK 02	116
22	UV Spectrum of Compound CK 03 (chloroform)	117

Figure		Page
23	IR Spectrum of Compound CK 03 (neat)	117
24	MS Spectrum of Compound CK 03	118
25	¹ H- NMR Spectrum (CDCl ₃) of Compound CK 03	118
26	¹³ C-NMR Spectrum (CDCl ₃) of Compound CK 03	119
27	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound CK 03	119
28	NOESY Spectrum (CDCl ₃) of Compound CK 03	120
29	HMQC Spectrum (CDCl ₃) of Compound CK 03	120
30	HMBC Spectrum (CDCl ₃) of Compound CK 03	121
31	UV Spectrum of Compound CK 04 (chloroform)	121
32	IR Spectrum of Compound CK 04 (neat)	122
33	MS Spectrum of Compound CK 04	122
34	¹ H- NMR Spectrum (CDCl ₃) of Compound CK 04	123
35	¹³ C-NMR Spectrum (CDCl ₃) of Compound CK 04	123
36	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound CK 04	124
37	NOESY Spectrum (CDCl ₃) of Compound CK 04	124
38	HMQC Spectrum (CDCl ₃) of Compound CK 04	125
39	HMBC Spectrum (CDCl ₃) of Compound CK 04	125
40	UV Spectrum of Compound CB 01 (chloroform)	126
41	IR Spectrum of Compound CB 01 (film)	126
42	MS Spectrum of Compound CB 01	127
43	¹ H- NMR Spectrum (CDCl ₃) of Compound CB 01	127
44	¹³ C-NMR Spectrum (CDCl ₃) of Compound CB 01	128

xvi

Figure		Page
45	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound CB 01	128
46	NOESY Spectrum (CDCl ₃) of Compound CB 01	129
47	HMQC Spectrum (CDCl ₃) of Compound CB 01	129
48	HMBC Spectrum (CDCl ₃) of Compound CB 01	130
49	UV Spectrum of Compound MK 01 (methanol)	130
50	IR Spectrum of Compound MK 01 (film)	131
51	MS Spectrum of Compound MK 01	131
52	¹ H- NMR Spectrum (CDCl ₃) of Compound MK 01	132
53	¹³ C-NMR Spectrum (CDCl ₃) of Compound MK 01	132
54	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound MK 01	133
55	NOESY Spectrum (CDCl ₃) of Compound MK 01	133
56	HMQC Spectrum (CDCl ₃) of Compound MK 01	134
57	HMBC Spectrum (CDCl ₃) of Compound MK 01	134
58	UV Spectrum of Compound MK 02 (methanol)	135
59	IR Spectrum of Compound MK 02 (film)	135
60	MS Spectrum of Compound MK 02	136
61	¹ H- NMR Spectrum (DMSO- <i>d</i> ₆) of Compound MK 02	136
62	¹³ C-NMR Spectrum (DMSO- <i>d</i> ₆) of Compound MK 02	137
63	¹ H- ¹ H COSY Spectrum (DMSO- <i>d</i> ₆) of Compound MK 02	137
64	NOESY Spectrum (DMSO- <i>d</i> ₆) of Compound MK 02	138
65	HMQC Spectrum (DMSO- <i>d</i> ₆) of Compound MK 02	138
66	HMBC Spectrum (DMSO- <i>d</i> ₆) of Compound MK 02	139
67	UV Spectrum of Compound MK 03 (methanol)	139

Figure		Page
68	IR Spectrum of Compound MK 03 (film)	140
69	MS Spectrum of Compound MK 03	140
70	¹ H- NMR Spectrum (CDCl ₃) of Compound MK 03	141
71	¹³ C-NMR Spectrum (CDCl ₃) of Compound MK 03	141
72	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound MK 03	142
73	NOESY Spectrum (CDCl ₃) of Compound MK 03	142
74	HMQC Spectrum (CDCl ₃) of Compound MK 03	143
75	HMBC Spectrum (CDCl ₃) of Compound MK 03	143
76	UV Spectrum of Compound MK 04 (chloroform)	144
77	IR Spectrum of Compound MK 04 (film)	144
78	MS Spectrum of Compound MK 04	145
79	¹ H- NMR Spectrum (CDCl ₃) of Compound MK 04	145
80	¹³ C-NMR Spectrum (CDCl ₃) of Compound MK 04	146
81	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound MK 04	146
82	NOESY Spectrum (CDCl ₃) of Compound MK 04	147
83	HMQC Spectrum (CDCl ₃) of Compound MK 04	147
84	HMBC Spectrum (CDCl ₃) of Compound MK 04	148
85	UV Spectrum of Compound MK 05 (chloroform)	148
86	¹ H- NMR Spectrum (CDCl ₃) of Compound MK 05	149
87	¹³ C-NMR Spectrum (CDCl ₃) of Compound MK 05	149
88	¹ H- ¹ H COSY Spectrum (CDCl ₃) of Compound MK 05	150
89	NOESY Spectrum (CDCl ₃) of Compound MK 05	150
90	HMQC Spectrum (CDCl ₃) of Compound MK 05	151

Figure		Page
91	HMBC Spectrum (CDCl ₃) of Compound MK 05	151
92	UV Spectrum of Compound MK 06 (chloroform)	152
93	IR Spectrum of Compound MK 06 (film)	152
94	MS Spectrum of Compound MK 06	153
95	¹ H- NMR Spectrum (DMSO- <i>d</i> ₆) of Compound MK 06	153
96	¹³ C-NMR Spectrum (DMSO- d_6) of Compound MK 06	154
97	¹ H- ¹ H COSY Spectrum (DMSO- <i>d</i> ₆) of Compound MK 06	154
98	¹ H- ¹ H NOESY Spectrum (DMSO- d_6) of Compound MK 06	155
99	HMQC Spectrum (DMSO- <i>d</i> ₆) of Compound MK 06	155
100	HMBC Spectrum (DMSO- <i>d</i> ₆) of Compound MK 06	156
101	UV Spectrum of Compound MK 07 (chloroform)	156
102	IR Spectrum of Compound MK 07 (film)	157
103	MS Spectrum of Compound MK 07	157
104	¹ H- NMR Spectrum (DMSO- <i>d</i> ₆) of Compound MK 07	158
105	¹³ C-NMR Spectrum (DMSO- <i>d</i> ₆) of Compound MK 07	158
106	¹ H- ¹ H COSY Spectrum (DMSO- <i>d</i> ₆) of Compound MK 07	159
107	NOESY Spectrum (DMSO- <i>d</i> ₆) of Compound MK 07	159
108	HMQC Spectrum (DMSO- <i>d</i> ₆) of Compound MK 07	160
109	HMBC Spectrum (DMSO- <i>d</i> ₆) of Compound MK 07	160

LIST OF SCHEMES

Scheme		Page
1	Biosynthetic relationship of diterpenes in Croton spp	36
2	Currently proposed interrelationship between flavonoid monomer	37
3	Seperation of CH ₂ Cl ₂ extract from the leaves of <i>Croton kongensis</i>	43
4	Seperation of CH ₂ Cl ₂ extract from the roots of <i>Croton birmanicus</i>	45
5	Seperation of CHCl ₃ extract from the leaves of <i>Millettia kangensis</i> .	46
6	Seperation of CH ₂ Cl ₂ extract from the twigs of <i>Millettia kangensis</i> .	49

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF ABBREVIATIONS AND SYMBOLS

α	=	Alpha
$\left[\alpha\right]^{30}{}_{\mathrm{D}}$	=	Specific rotation at 30° and sodium D line (589 nm)
β	=	Beta
br d	=	Broad doublet (for NMR spectra)
br t	=	Broad triplet (for NMR spectra)
br s	=	Broad singlet (for NMR spectra)
calcd	=	Calculated
CDCl ₃	=	Deuterated chloroform
CHCl ₃	= 🤞	Chloroform
CH_2Cl_2	= /	Dichloromethane
cm	=	Centimeter
cm ⁻¹	=	Reciprocal centimeter (unit of wave number)
¹³ C NMR	=	Carbon-13 Nuclear Magnetic Resonance
d	=	Doublet (for NMR spectra)
dd	=	Doublet of doublets (for NMR spectra)
ddd	=	Doublet of doublet of doublets (for NMR spectra)
DEPT	ส์ถ	Distortionless Enhancement by Polarization Transfer
DMSO-d6	=	Deuterated dimethyl sulfoxide
δ	<u>-</u> 10	Chemical shift
ESIMS	=	Electrospray Ionization Mass Spectrometry
ESITOFMS	=	Electrospray Ionization Time of Flight Mass Spectrometry
EtOAc	=	Ethyl acetate
g	=	Gram
¹ H NMR	=	Proton Nuclear Magnetic Resonance

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

HMBC	=	¹ H-Detected Heteronuclear Multiple Bond Coherence
HMQC	=	¹ H-Detected Heteronuclear Multiple Quantum Coherence
HPLC	=	High Perfornance Liquid Chromatography
HRESIMS	=	High Resolution Electrospray Ionization Mass Spectrometry
Hz	=	Hertz
IR	=	Infrared Spectrum
J	=	Coupling constant
Kg	=	Kilogram
L	=	Liter
λ_{max}	=	Wavelength at maximal absorption
3	=	Molar absorptivity
т	=	Multiplet (for NMR spectra)
МеОН	=	Methanol
mg	=	Milligram
$[M+H]^+$	=	Protonated molecular ion
MHz	=	Megahertz
mL	สถ	Milliliter
MW	้า	Molecular weight
m/z	<u> </u>	Mass to charge ratio
MS	=	Mass Spectrometry
NMR	=	Nuclear Magnetic Resonance Spectroscopy
NOESY	=	Nuclear Overhauser Effect Spectroscopy
0	=	Ortho

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

р	=	Para
ν_{max}	=	Wave number at maximal absorption
S	=	Singlet (for NMR spectra)
t	=	Triplet (for NMR spectra)
TLC	=	Thin Layer Chromatography
UV	=	Ultraviolet
UV-VIS	=	Ultraviolet and Visible Spectrophotometry

CHAPTER I

INTRODUCTION

The genus *Croton* belongs to the family of Euphorbiaceae. It is distributed throughout Thailand and over all tropical countries. This genus consists of about 750 species. They are either trees or shrubs, occasionally rheophytic (one introduced species and annual herb), densely or sparsely clothed with stellate hairs or shinning scales, occasionally subglabrous. Leaves alternate or pseudo-verticillate, petiolate, subentire or crenate or dentate or occasionally lobed, penninerved or sometimes palminerved at the base, biglandular at junction of petiole and lamina; stipules minute or shortly filiform, sometimes obsolete. Flowers are mostly monoecious. Inflorescenses terminal, racemose, androgynaecious. The female flowers sometimes reduced to 1 basal long-pedicelled flower. Male flower: sepals mostly 5, free, imbricate or valvate; petals 5, free, often lanate at the apex; disk-glands small, opposite the sepals; stamens 5-30, mostly lanate at the base, inflexd at the apex in bud; pistillode absence. Female flower: sepals much as in male; petals mostly or vestigial; ovary 3-locular; styles variously divided into 2 or 4 linear or thickened branches or occasionally shortly flabellate. Capsule tricoccous, smooth or shortly muricate; seeds ovoid or ellipsoid, smooth, occasionally sparely stellate-lepidote (Shaw, 1980; Shaw, 1981).

According to Smitinand (2001), the species of genus *Croton* found in Thailand are as follow (Smitinand, 2001).

Croton acutifolius Esser	จิมิจิยา Chi-mi-chi-ya, เปล้า Plao, เปล้าแพะ
	Plao pae, มะดอไก่ Madokai (Northern).
C. argyratus Blume	เปล้า Plao (Prachuap Khiri Khun); เปล้าเงิน
	Plao ngoen (Nong Khai).
C. birmanicus Müll.Arg.	= C. tiglium L.
C. bonplandianus Daillon	เปล้าทุ่ง Plao thung (General).

2

Croton cascarilloides Raeusch.

C. caudatus Geiseler

C. columnaris Airy Shaw

C. crassifolius Geiseler

C. cumingii Müll.Arg.*C. delpyi* Gagnep.

C. griffithii Hook.f.

C. hirtus L.Her.

C. hutchinsonianus Hosseus

C. kerii Airy Shaw

C. kongensis Gagnep.

C. krabas Gagnep.

C. lachnocarpus Benth.

เปล้าเงิน Plao ngoen (Songkhla); เปล้าน้ำเงิน
Plao nam ngoen (Prachuap Khiri Khun).
กระดอหดใบขน Krado hot bai khon
(Chanthaburi); โคคลาน Kho khlan (Nakon
Ratchasima); ปริก Prik (Trang); โคคลานใบ
งน Kho khlan bai khon (General)กูเราะปริยะ
Ku-ro-pri-ya (Malay-Narathiwat).
เปล้าคำ Plao khum (Sukhothai).
ปังคื Pang khi, พังคื Phang khi (Chiang

Mai). = <u>C. crassifolius</u> Geiseler

เปล้า Plao, เปล้าน้อย Plao noi, นมน้ำเขียว Nom nam khiao (Southeastern).

ຈົก Chik, ເປດ້າ Plao (Peninsular).

เปล้าล้มลุก Plao lom luk (Peninsular).

เปล้า Plao, เปล้าแพะ Plao phae, เปล้าเลือด Plao lueat, แม่ลาเลือด Mae la lueat, เหมือนฮ้อน Mueat hon (Northern).

เปล้า Plao (General).

เปล้าเงิน Plao ngoen, เปล้าน้อย Plao noi (Northeastern); เปล้าน้ำเงิน Plao nam ngoen (Eastern); เสปอตุ Se-po-tu (Karen-Chiang Mai).

ทรายขาว Sai khon (Northern); พริกนา Prik na (Central); ฝ้ายน้ำ Fai num (Eastern).

ขี้อื่น Khi on (Southwestern).

Croton longissimus Gagnep. เปล้าน้อย Plao noi {Lampang). C. mekongensis Gagnep. เปล้าน้ำเงิน Plao num ngeon, พริกนา Prik na (Northern). C. oblongifolius Roxb .= *C. roxburghii* N.P. balakar. C. poilanei Gagnep. เปล้าใหญ่ Plao yai (Southeastern). C. pierri Gagnep. = *C. cascarilloides* Raeusch. C. robustus Kurz เปล้าเลือด Plao lueat (Lampang). C. rottleri Geiseler Gagnep. = *C. cascarilloides* Raeusch C. roxburghii N.P.Balakr. กวะวู Khwa-wu (Karen-Kanchanaburi), เปล้าใหญ่ Plao yai (Central). C. santisukii Airy Shaw เปล้าสันติสุข Plao santisuk (Southwestern). C. sepalinus Airy Shaw เปล้าเงิน Plao ngoen (Peninsular). C. siamensis Craib = C. robustus Kurz C. stellatopilosus OHba เปล้าน้อย Plao noi (Prachin Buri, Prachuap Khiri Khan) (Southeastern). C. thorelii Gagnep. เปล้าตะวัน Plao tawan (Southeastern). C. tiglium L. บะกั้งB a kang (Phare), หัสคืน Has sa Khuen (Northern), สลอด Salot, หมากของ Mak-yong (Shan-Mae Hong Son). = C. cascarilloides Raeusch C. tomentosus Müll.Arg. กวาวะ Kwa wa, ขี้อื่น Khi on (Prachuap C. trachycaulis Airy Shaw Khiri Khun). C. wallichii Müll.Arg. เปล้า Plao, เปล้านา Ploa na (General).

Croton kongensis Gagnep. is an indigeneous plant, commonly known in Thai as "Plao Ngeon" or "Plao Noi", is frequently used in folk medicine. The leaves of *C. kongensis* are used in Indo-China for various stomach disorders including ulcers, and a decoction is externally applied for furuncles and impetigo. This plant is deciduous

shrub (1.8-3 M height), basal diameter 10-15 mm, bark thin, smooth, brown; male inflo-erect, sepals with scales medially brown, sides greyish petals, filaments pale light green, anthers pale light yellow; blade dull dark green above, silvery-greyish undemeath, small leaves, and creamy white flowers (van Valkenburg and Bunyapraphatsara, 2001).

Croton birmanicus Müll.Arg. is exotic plant (Burma) known in Thai as "Has sa Khuen", is similar to *Croton tiglium*. This plant is shrub or small tree, 3-6 m high. Leaf simple, alternate, ovate, 4-7 cm wide, 7-10 cm long, brownish green. Inflorescence in axillary raceme, monoecious, pisillate flowers at base, staminate flowers upward. Fruit schizocarp, 3-lobed, 1-3 seeded (Saralamp, Chuakul, Temsiririrkkul *et al.*, 1996).

The plants in genus *Millettia* belongs to Family Leguminosae, subfamily Papilionoideae. These plants are trees or climbing shrubs, leaves odd-pinnate. Flower showy, in auxiliary racemes, often fascicled, simple or paniculate and terminal. Calyx campanulate; teeth short. Petals white or pink; standard ovate or orbicular; wing oblong. Stamens monodelphous or diadelphous, filaments filiform; anthers uniform. Ovary sessile, linear, few-ovuled; style filiform, incurved, glabrous, stigma capitate. Pod linear or oblong, coriaceous or woody, flattened or thick. Seeds lenticular or rainform (Chopra, Badhwar and Ghosh, 1965).

Latin descriptions of *Millettia kangensis* Craib, according to Craib (1927), are as follow:

Millettia kangensis Craib; species floribus inter maiores cum foliis iuvenilibus orientibus, vexillo basi calloso extra sericeo, ovario pubescente distinguenda.

Arbor circa 10 m. alta (ex Kerr); ramuli iuventute densius breviter crispatim fulvo-pubescents, mox glabri, cortice brunneo vel cinereo-brunneo obtecti, lenticellis numeriosis prominaentibus. Folia 7-9 foliolata, petiole circa 4 cm, longo incluso circa 17 cm, longa, et rhachi subteretibus vel hoc superne late canaliculato indumento ei ramulorum invenilium simili obtectis; stipulae lineares, circa 3 mm longae; folila opposite, oblonga, oblongooblanceolata vel terminali obovato, apice breviter subito acuminata, ad 8 cm longa et 4.2 cm lata, chartacea, supra primo sericea, mox adpresse pubescentia, subtus breviter molliter pubescentia, nervis lateralibus utrinque 8-IO supra conspicuis subtus prominulis, reticulatione gracili sub oculo armato subtus conspicus, petiolulo circa 3 mm longo suffulta, terminali a lateralibus fere 2 cm distante, dtipellis filiformibus pubescentibus circa 3.5 mm longis. Paniculae partials in paniculas terminals paucifoliatas vel efoliatas adflores e ramusculis lateralibus ad 3 cm, longis racemosim orti; bracteae angustae, circa 4 mm longae, deciduae; bracteolae binae, ad pedicelli apicem positae, circa 3 mm longae, angustae, deciduae; rhachis, ramuli, et pediceli densius fulvo-tomentelli vel etiam parce pubescentes; pedicelli ad I cm longi, breviter pubescentes. Calyx extra pubescens, ad 6.5 cm longus; lobi postici approximate, breves, laterals et anticus deltoidei, acuti, I.5 mm longi 2 mm lati. Vexillum oblongum, basi cordatulum, bicallosum, I.5 cm longum, 0.8 cm latum, dorso sericeum, ungui 3 mm longo suffultum; alae I4 mm longae, 4 mm latae, basi auriculatae, apicem versus angustatae, obtusae vel rotundatae, extra apicem versus sparse sericeae, ungui 5 mm longo suffultae; carnae petala basi auriculata, 12 mm longa, 4.5 mm lata, extra apice sericea, ungui 5 mm longo suffulta. Stamina monadelpha, vexillari basi tantum ab aliis libero. Ovarium I cm altum, subsessile, sericeum, stylobasi sericeo apicem versus glabro, ovules 7 (Craib, 1927).

According to Smitinand (2001), the species of genus *Millettia* found in Thailand are as follow (Smitinand, 2001).

Millettia atropurpurea Wall. M. brandisiana Kurz

M. caerulea Baker.

= Collerya atropurpurea (Wall.) Schott กระพี่งั่น Kra phi chan, งั่น Chan, พี่งั่น Phi Chan (General); ปี้จั่น Pi Chan (Northern). ปัวเปาะเด๊าะ Pua-po-do (Karen Mae Hong Son); ผักเยี่ยววัว Phak yiao wua (Nakhonsawan, Northern); หางใหลแดง Hang Lai daeng (Kanchanaburi). ปารี Pa ri (Malay-Narathiwat).

M. decipiens Prain

Millettia extensa Benth.	ก๋าวเครือ Kao khruea, กวาวเครือ Kwao
	khruea (Chiang Mai); ตานครบ Tan krop
	(Lampang).
M. glaucescens Kurz	ยะคา Ya-daa (Malay-Narathiwat); หยี่น้ำ
	Yi nam (Peninsular).
M. kangensis Craib	กระเจาะ Kra cho, ขะเจาะ Kha cho, ขะเจาะ
	น้ำ Kha cho nam (Chiang Mai).
M. kityana Craib	เครือข้าวเย็น Khruea khao yen, ลางเย็น Lang
	yen, ฮางเย็น Hang yen (Northern).
<i>M. latifolia</i> Dunn	ขะเจาะ Kha cho (General).
<i>M. leucantha</i> Kurz	กะเขาะ Kaso (Central); กระเจาะ Kra cho,
var. <i>leucantha</i>	ขะเจาะ Kha cho (Northern); กระพี้เขาควาย
	Kra phi khao khwai (Prachuap Khiri
	Khan); ขะแมบ Kha maep, คำแมบ Kham
	maep (Chiang Mai).
M. leucantha Kurz	กระเจ้าะ Kra cho, งะเจ้าะ Kha cho
var. buteoides (Gagnep.) P.K. Loc	(Lampang); กระท้อน Kra thon,
(M. buteoides Gagnep. var.	(Phetchabun Phitsanulok); ไม้กระทงน้ำผัก
siamensis Craib, M. pendula	Mai kra tong nam phak (Loei); สะท้อน
Benth.)	Sa thon (Saraburi); สาธร Sa thon (Ubon
	Ratchathani).
M. macrostachya Collett & Hemsl.	ขะเจาะน้ำ Kha cho nam (Chiang Mai).
var. macrostachya	
M. macrostachya Collett & Hemsl.	ขะเจาะหลวง Kha cho luang, ขะเจาะใหญ่

var. <i>tecta</i> Craib	Kha cho yai (Narathiwat).
Millettia pachycarpa Benth.	เกถะ Ke-tha (Karen-Chiang Mai); เครือ
	ใหล Khruea lai (Chiang Mai).
M. peguensis Ali	ตอหิ To-hi (Karen-Kanchanaburi).
(<i>M. ovalifolia</i> Kurz)	
M. pulcha Benth. Kurz	จันพอ Chan pho (Northern).
M. racemosa (Roxb.) Benth.	= Endosamara racemosa (Roxb.)R. Geesink
<i>M. sericea</i> (Vent.) Benth.	จะในโค๊ะ Cha-nai-kho, ปาตู Paa-tu
	(Malay-Narathiwat); นอเราะ No-ro
	(Malay-Yala, Pattani); ຍື່ມແນເຄ້ຳະ Yim-
	mae-ko (Malay-Yala); อ้อยสามสวน Oi
	sam suan (Nong Khai).
M. thorelii Gagnep.	= Derris thorelii Craib
M. utilis Dunn	สะท้อนน้ำผัก Sathon nam phak (Loei).
<i>M. xylocarpa</i> Miq.	กะเจ้าะ Ka cho, บะเจาะ Kha cho (General);

คะแมด Kha maet (Chiang Mai); จักงั่น

M. xylocarpa Miq.

Chakkachan (Loei); พี้พง Phi phong (Phrae); ยะดา Ya-da (Malay-Yala); ไย่ยี่ Yai-yi (Karen-Mae Hong Son); สาธร Sa thon, หยีน้ำ Yi nam (Pattani-Yala).

Several phytochemical studies on many species of Croton and Millettia have been reported but none on Croton kongensis, Croton birmanicus, and Millettia kangensis were found.

Our preliminary activity screening showed that a crude CH_2Cl_2 extract from the leaves of *Croton kongensis* exhibited antimalarial at IC_{50} 0.9 µg/mL and antimycobacterial at MIC 12.5 µg/mL activity. A crude CH_2Cl_2 extract from the root of *Croton birmanicus* showed antimycobacterial activity at MIC 100 µg/mL. These crude $CHCl_3$ extract from the leaves and CH_2Cl_2 extract from the twigs of *Millettia kangensis* exhibited antimycobacterial activity at MIC 100 µg/mL. These plant extracts were selected for phytochemical investigation. Aims of this research work are as follows:

- 1. Isolation and purification of compounds from the leaves of *Croton kongensis* Gagnep., the roots of *Croton birmanicus* Müll.Arg., and the leaves and twigs of *Millettia kangensis* Craib.
- 2. Determination of chemical structures of isolated compounds.
- 3. Evaluation of biological activities of isolated compounds.

Figure 1 Croton kongensis Gagnep. A) Whole plants, B) Leaves and inflorescence

B

Figure 2 Croton birmanicus Müll.Arg. A) Whole plant, B) Leaves

Figure 3 *Millettia kangensis* Craib A) Whole plant, B) Leaves, C) Whole plant with inflorescene, D) Inflorescene

CHAPTER II

HISTORICAL

The genus *Croton* belongs to the family Euphorbiaceae, distributed throughout Thailand, and several species have been used as ingredients in traditional medicine. Croton plants are used in folk medicine for antiinflammatory (Bettolo and Scarpati, 1979; Cai, Chen and Phillipson, 1993; Kubo, Asaka and Shibata, 1991; Mazzanti, Bolle, Matinoli et al., 1987), antibacterial (Chen, Cai and Phillipson, 1994), antimicrobial (Peres, Monache, Cruz et al., 1997), gastric ulcer (Craveiro, Andrade, Matos et al., 1980; Roengsumran, Petsom, Kuptiyanuwat et al., 2001), wound healing (Cai et al., 1993; Cai, Evans, Roberts et al., 1991; Milo, Risco, Vila et al., 2002; Pieters, De Bruyne, Mei et al., 1992), cancer (Cai et al., 1993; Cai et al., 1991; Milo et al., 2002), antitumor (Boonyarathanakornkit, Che, Fong et al., 1987; Ferrigni, Puynum, Anderson et al., 1982), dysentery (Milo et al., 2002), purgative (Asuzu, Gray and Waterman, 1988; Mazzanti et al., 1987), bronchitis, fever, malaria (Vigor, Fabre, Fouraste et al., 2002), nervous disturbances (Batatinha, de Souza-Spinosa and Bernardi, 1995), narcotic (Vigor, Fabre, Fouraste et al., 2001), aphrodisiac (Moulis and Fouraste, 1992), antidiabetic (Itokawa, Ichihara, Kojima et al., 1989; Kubo et al., 1991), antilipotropic (Itokawa et al., 1989), hypertension (Puebla, Lopez, Guerrero et al., 2003), syphilis (Babili, Moulis, Bon et al., 1998), hypoglycaemia (Maciel, Pinto, Arruda et al., 2000), and rheumatism (Cai et al., 1991). In addition, these plants showed cytotoxicity, and insecticidal activity (Smitt and Hogberg, 2002).

Croton species contain a number of diterpenes. Typical diterpenes in *Croton* spp. are casbanes, cembranes, clerodanes, cleistanthanes, kauranes, labdanes, pimaranes, and halimanes. In addition, *Croton* species also produce phorbols, polysaccharides, flavonoids, lignans, benzofurans, sesquiterpenes, polyphenols, and alkaloids.

1. Classification and Bioactivities of Diterpenes from some Croton species

1.1 Casbane Diterpenes

In 1990, Moura and co-workers isolated a new macrocyclic diterpene [1] from the stems of *Croton nepetaefolius* (Moura, Monte and Filho, 1990).

1.2 Cembrane Diterpenes

In 1998, Nareeboon isolated a new cembrane diterpene, namely 1isopropyl-4,8-dimethylcyclotetradeca-1,4,8-triol-2*E*,6*Z*,11*E*-triene-12-carboxylic acid [**2**], and two new diterpenes, 2β , 3β -dihydroxy-labda-8(17),12(13),14(15)triene [**3**] and 2β , 3β ,11-trihydroxy-16-norlabd-8(17),12(13)-dien-14-one [**4**], from leaves of *Croton joufra* (Nareeboon, 1998).

C. oblongifolius, a Thai medicinal plant, was found as a source of neocrotocembranal [5]. The compound 5 inhibited platelet aggregation induced by thrombin (IC₅₀ = 47.21 μ g/mL), and showed cytotoxicity against P-388 cells *in vitro* (IC₅₀ = 6.48 μ g/mL) (Roengsumran, Singtothong, Pudhom *et al.*, 1999).

1.3 Clerodane Diterpenes

Croton species is a rich source of clerodane diterpenes and nor-clerodane diterpenes.

In 1972, 11-dehydro-hardwickiciic acid [6] was isolated from the stems bark of *Croton oblongifolius* by Aiyar and Seshadri (Aiyar and Seshadri, 1972).

C. californicus Muell. Arg., an herbaceous shrub indigenous to the Sonoran Desert, Arizona, U.S.A., was found to posses an antimalarial (-)-hardwickiic acid [7] (Luzbetak, Torrance, Hoffmann *et al.*, 1978).

C. aromaticus L. is widely distributed in Sri Lunka, and used in ethnomedical preparations and in traditional agriculture. The air dried roots of this plant provided obtained a bioactive compound, (-)-hardwickiic acid [7], which showed insecticidal activity against *Apis craccivora* (Bandara, Wimalasiri and Bandara, 1987).

Stems of *C. sublyratus* were found to posses plaunolide [8] and plaunol B [9], which exhibited antipeptic ulcer activity (Takahashi, Kurabayashi, Kiyazawa *et al.*, 1983).

Leaves and barks of *C. haumanianus* are used in folk medicine against gastric ulcer and antihypertensive, and used as an antiepileptic drug. Chemical investigation of the petroleum ether extract of *C. haumanianus* led to the isolation of crotocorylifuran [**10**] and crotohaumanoxide (Tchissambou, Chiaroni, Riche *et al.*, 1990).

Chiromodine [11] and its monoacrtyl derivative [12] were isolated from the East Afican medicinal plant, *Croton megalocarpus* (Weckert, Hummer, Mensah *et al.*, 1992).

In 1992, MenSah, I. A. *et al.* isolated chiromodine [**13**] and epoxychiromodine [**14**] from the bark of *C. megalocarpus* (Mensah, Achenbach, Thoithi *et al.*, 1992).

Croton cajucara Benth is a Brazilian medicinal plant, commonly called Sacaca, its cortices are known for their antidiabetic and antilipotropic properties. In 1989, Itokawa *et al.* isolated nor-clerodane diterpenes, *trans*-crotonon [**15**] and dehydrocrotonin [**16**] (Itokawa *et al.*, 1989).

In 1997, Farias *et al.* studied activities of *trans*-dehydrocrotonin [16], which was isolated from the bark of *C. cajucara*. Compound 16 demonstrated a significant hypoglycemic activity in alloxan-induced diabetic rats but not in normal rat, at oral dose of 25 and 50 mg/kg body weight (Farias, Rao, Viana *et al.*, 1997). Compound 16 also showed antiulcerogenic activity on human promyelocytic leukaemia cells (Freire, Melo, Aoyama *et al.*, 2002).

C. sonderianus Muell. Arg. is used in folk medicine as a remedy for gastric disturbances. Antimicrobacterial terpenes, sonderianin [17], hardwickic acid [7], 12-hydroxyhardwickic acid [18], and sonderianial [19], were isolated from *C. sonderianus* (McChesney and Silveira, 1989).

In 1994, Silveira. and McChesney. isolated 6α -hydroxyannonence [20], 6α , 7β -dihydroxyannonence [21], and 6α , 7β -diacetoxyannonence [22], from the roots of *C. sonderianus* (Silveira and McChesney, 1994).

[18]

[17] : R = O [19] : R = α H, β OH

 $[20] : R_1 = CH_3, R_2 = \alpha OH, R_3 = H$ $[21] : R_1 = CH_3, R_2 = \alpha OH, R_3 = OH$ $[22] : R_1 = CH_3, R_2 = \alpha OAc, R_3 = OAc$

In 1992, Moulis and Fouraste isolated crovalin [23], a clerodane diterpene, from the stem bark of *Croton levatii* Guill. (Moulis and Fouraste, 1992).

1.4 Cleistanthane Diterpenes

In 1999, Siriwat isolated 3,4-*seco*-cleistantha-4(18),13(17),15-trien-3-ioc acid [24] from stem barks of *C. oblongifolius* Roxb. (Siriwat, 1999).

1.5 Kaurane Diterpenes

Croton lacciferus Linn. is a medicinally important plant commonly found in Sri Lanka and South India. The roots of *C. lacciferus* furnished three *ent*-kauranoids, 16 α -H-*ent*-kauran-17-oic acid [25], *ent*-15 β ,16-epoxykauran-17-oi [26], and *ent*-kauran-15-en-3 β ,17-diol [27]. In addition, compounds 26 and 27 showed moderate insecticidal activity against *Apis craccivora* at a dose of 5 ppm per insect against 61% and 62% mortarity, respectively (Bandara, Wimalasiri and Macleod, 1988).

In 1998, Pattamadilok, isolated a kaurane diterpene, *ent*-kaur-16-en-19-oic [28], from the stem barks of *C. oblonifolius*, a Thai medicinal plant (Pattamadilok, 1998).

The kaurane diterpene, (-)-*ent*-kaur-16-en-19-oic acid [**28**], showed significant Na⁺, K⁺-ATPase inhibitory effect (IC₅₀ = 2.2×10^{-5} M) (Ngamrojnanich, Sirimongkon, Roengsumran *et al.*, 2003).

The leaves of *Croton tonkinensis* were previously found to have an inhibitory effect on malarial parasites, and yilded an *ent*-kaurane diterpenoid *ent*-7 β -hydroxy-15oxokaur-16-en-18-yl [**29**]. A novel *ent*-kaurane diterpenoid, *ent*-1 α -acetoxy-7 β ,14 α -dihydroxy-kaur-16-en-15-on [**30**], has been isolated from this plant (Minh, Ngoc, Quang *et al.*, 2003).

1.6 Labdane Diterpenes

In 2001, Sutthivaiyakit *et al.* isolated a new labdane diterpene, 2α , 3α -dihydroxy-labda-8,12,14-triene [**31**], from a Thai medicinal plant, *C. joufra* (Sutthivaiyakit, Nareeboon, Ruangrangsi *et al.*, 2001).

1.7 Pimarane Diterpenes

From the CHCl₃ extract of leaves of *C. joufra*, 3β -hydroxy-19-*O*-acetylpimara-8,15-diene-7-one [**32**], was isolated (Sutthivaiyakit *et al.*, 2001).

1.8 Halimane Diterpenes

Non-specific strong cytotoxic compounds, crotohalimaneic acid [**33**] and crotohalimoneic acid [**34**], were isolated from *Croton oblongifolius* (Roengsumran, Pornpakakul, Muangsin *et al.*, 2004).

2. Miscellaneous

A cytotoxic alkaloid taspine [**35**] was isolated from South American Dragon's blood (*Croton* spp.) (Pieters *et al.*, 1992).

Julocrotin [**36**], a glutarimide alkaloid, was isolated from *C. humilis* (Stuart, McNeill, Kutney *et al.*, 1973) and *C. membranaceus* (Aboagye, Sam, Massiot *et al.*, 2000; Stuart *et al.*, 1973).

C. kongensis is an indigenous plant, and distributes in the North of Thailand. This plant is a shrub tree, and used as folk medicine. *C. birmanicus* is an exotic plant, similar to *Croton tiglium*. *C. birmanicus* is taller than *C. tiglium*. Several chemical studies on the *Croton* spp. have been reported but none on *C. kongensis* and *C. birmanicus*.

The genus *Millettia* belongs to the family Leguminosae, these plants are used in traditional medicine as a laxative, a blood purifier, a dewormer, an analgesic, a diarrhoea (Irvine, 1961), an anti-plasmodial (Yenesew, Derese, Midiwo *et al.*, 2003), an anthelmintic, and a purgative (Perrett, Whitfield, Sanderson *et al.*, 1995). The *Millettia* spp. exhibits insecticidal (Gupta, Bhattacharyya, Mitra *et al.*, 1983; Hooker, 1973; Singhal, Baruan, Sharma *et al.*, 1983; Singhal, Sharma, Baruan *et al.*, 1982), pesticidal (Gupta *et al.*, 1983; Singhal *et al.*, 1982), fish poison (Dagne and Bekele, 1990; Singhal *et al.*, 1982), molluscicidal, and cercaricidal activities (Perrett *et al.*, 1995).

Previous chemical studies of genus *Millettia* have shown that they are a rich source of flavonoids and isoflavonoids (Hooker, 1973; Mahmoud and Waterman, 1985). Typical metabolites of *Mellettia* are flavanones, isoflavanoes, flavanes, isoflavanes, flavones, chalcones, rotenoids, coumarins, and quinones.

3. Classification and Biological Activities of Flavonoids from Millettia Species.

3.1. Flavanones and Isoflavanones.

From 1974 to 1980, *Millettia ovalifolia* had been intensively studied for chemical constituents, which led to the isolation of several flavanones, isoflavanones, flavones and chalcones. The flavanones millitenins A [**37**] and B [**38**], the chromenoflavanones, ovalichromenes A [**39**] and B [**40**], the prenylated flavanones, 7-hydroxy-6,8-di-*C*-prenylflavanone [**41**] and 7-hydroxy-8-di-*C*-prenylflavanone [**42**], were isolated from this plant (Gupta and Krishnamurti, 1976; Islam, Gupta and Krishnamurti, 1980; Khan and Zaman, 1974).

In 1980, *Millettia pachycarpa* was found to possess a prenylated dihydroflavonol [**43**] (Singhal, Sharma, Thyagarajan *et al.*, 1980).

In 1984, Baruah's group isolated a dihydroflavanol, (2*S*)-3,7,4'-trihydroxy-8,3',5'-triprenylflavanone [**44**], two flavanones, (-)-sophoranone [**45**] and its 5-hydroxy derivative [**46**], and four pterocarpans from *M. pulchra* (Baruah, Baruah, Sharma *et al.*, 1984).

 $[44] R_1 = R_2 = R_3 = H$ $[45] R_1 = OH, R_2 = R_3 = H$ $[46] R_1 = H, R_2 = R_3 = OH$

In 1989, *Millettia ferruginea* was chemically explored, and a pyranoflavanone 4'-hydroxyisolonchocarpin [47], eight isoflavones, a chalcone, and a pterocarpene, were isolated from this plant (Dagne, Bekele and Waterman, 1989).

Cytotoxic isoflavanones, pervilleanons [48] and its 3'-O-demethyl derivative [49], were isolated from *M. pervilleana* (Galeffi, Rasoanaivo, Federici *et al.*, 1997).

Sritularak's group could isolate 6-methoxy-[2",3":7,8]-furanoflavanone [**50**] and 2,5-dimethoxy-4-hydroxy-[2",3":7,8]-furanoflavan from *M. erythrocalyx* (Sritularak, Likhitwitayawuid, Conrad *et al.*, 2002a).

3.2 Flavans and Isoflavans

In 1989, Kumar, Krupadanam and Srimannarayana isolated three isoflavans, 3R(+)-millinol [51], 3R(+)-millinol-B [52], and 3R(+)-cyclomillinol [53], from a stem bark of *Millettia racemosa* (Kumar, Krupadanam and Srimannarayana, 1989). In 1994, Rao and Krupadanam isolated compounds 51, 52, 53, 3R(+)-isomillinol-B [54], 3R(-) vestitol [55], and 3R(-)-laxifloran [56], from *M. racemosa*. Compounds 53 and 55 showed significant antibacterial activity against *Staphylococcus aureus* and *Escherichia coli* (Rao and Krupadanam, 1994). Two prenylated isoflavans, neomillinol [57] and millinolol [58], were also isolated from *M. racemosa* (Rao, Prashant and Krupadanam, 1996).

In 2002, Sritularak *et al* isolated 2,5-dimethoxy-4-hydroxy-[2",3":7,8]furanoflavan [**59**] from *M. erythrocalyx* (Sritularak *et al.*, 2002a).

3.3 Flavones and Isoflavones.

In 1974, *Millettia ovalifolia* was isolated, and two flavones, milletenin C [60] and ovalifolin A [61], were obtained (Khan and Zaman, 1974).

M. auriculata was isolated to yield auriculasin [**62**] and isoauriculasin [**63**] (Minhaj, Khan, Kapoor *et al.*, 1976). Raju and Srimannarayana isolated aurmillone [**64**] from the seeds of *M. auriculata* (Raju and Srimannarayana, 1978), while Gupta's group isolated an isoflavone isoaurmillone [**65**] from the pods (Gupta *et al.*, 1983). Three new prenylated flavonones, 2'-deoxyisoauriculatin [**66**], 2'-O-methyliso auriculatin [**67**], and auriculatin [**68**], were isolated from *M. auriculata* (Rao, Prasad and Ganapaty, 1992).

[63] $R_1 = --, R_2 = OH, R_3 = H,$ [64] $R_1 = --, R_2 = OH, R_3 = --, R_3 = --, R_3 = -, R$

[**62**] R₁ = H, R₂ = OCH₃ [**65**] R₁ = OCH₃, R₂ = H

[**66**] R = H [**67**] R = OCH₃

Isolation of the aerial part of *Millettia pachycarpa* Benth. gave a new prenylated isoflavone, 5,7,4'-trihydroxy-6,3'-diprenylaisoflavone [**69**] (Singhal *et al.*, 1980). In 1981, *M. pachycarpa* was chemically explored, and four new prenylated 5-hydroxyisoflavones with 3,3 dimethyl-3-hydroxylpropyl group [**70**] and its isomers [**71**], [**72**] and [**73**] were obtained (Singhal, Sharma, Madhusudanan *et al.*, 1981). In 1983, a new prenylated isoflavone, 5,7,3'-trihydroxy-4'-methoxy-6,8-diprenylated isoflavone [**74**] was isolated from *M. pachycarpa* (Singhal *et al.*, 1983).

 $[70] R_1 = H, R_2 = OCH_3$ $[72] R_1 = R_3 = H, R_2 = OCH_3$ $[71] R_1 = OCH_3, R_2 = H$ $[73] R_1 = OH, R_2 = H, R_3 = OCH_3$

In 1984, *Millettia pulchara* was chemically investigated to afford two new ptercarpans and two new prenylated isoflavones 5,7,2',4'-tetrahydroxy-6,3'-diprenylisoflavone, together with its derivatives **75** and **76** (Baruah *et al.*, 1984).

M. hemsleyana, collected from the South of Thailand, was isolated by Mahmound and Waterman. The stem bark of *M. hemsleyana* has yielded a methylenedioxyflavone, 3',4'-methylenedioxy-7-methoxyflavone [**77**] and three chalcones (Mahmoud and Waterman, 1985).

The barks and seed pods of *M. ferruginea* (Hochst.) Bak.subsp. *ferruginea* and *darassana*, endemic to Ethiopia, provided two new isoflavones [**78,79**], a new chalcone, a new flavanone and a new pterocarpene (Dagne *et al.*, 1989). In 1990,

O-geranylated [**80**] and *O*-prenylated flavonoids [**81**] were isolated from *Millettia ferruginea* (Dagne, Bekele, Noguchi *et al.*, 1990). Dagne *et al.* also isolated three novel C-prenylated isoflavonoids [**82-84**] from the seeds of *M. ferruginea* (Dagne *et al.*, 1990).

 $[78] R_1 = R_2 = OCH_3, R_3R_4 = -OCH_2O_-, R_5 = H$ $[79] R_1 = R_2 = H, R_3 = OH, R_4 R_5 = -OCH_2O_-$

3-Hydroxy-4'-methoxyflavone [85] was isolated from the flowers of *M. zechiana* by Parvez and Ogbeide (Parvez and Ogbeide, 1989).

[86] $R_1 = OCH_3$, $R_2 = R_3 = CH_3$ [87] $R_1 = R_2 = H$, $R_3 = o$

A root bark of *M. griffoniana* was chemically investigated, and five new isoflavonoids [**89-93**], a new courmarin, and a new rotenoid, were isolated (Yanesew *et al.*, 1996; Yankep, Fomun, Bisrat *et al.*, 1998; Yankep, Mbafor, Fomun *et al.*, 2001; Yankep, Njamen, Fotsing *et al.*, 2003).

Conrauinones A, B, C and D [94-97] were isolated from the stems bark of *M. conraui* (Fuendjiep, Nkengfack, Fomun *et al.*, 1998a;b).

In 1998, Kamperdick *et al.* isolated a new furanoflavone [**98**] and a new pyranoisoflavonoid [**99**] from the leaves of *Millettia ichyochtona* (Kamperdick, Phuong, Sung *et al.*, 1998).

From the stem bark of *M. usaramensis* subsp. *usaramensis*, a new isoflavone norisojamicin [100] and anti-plasmodial compound [101] were isolated (Yanesew, Midiwo and Waterman, 1998; Yenesew *et al.*, 2003).

In 1999, a new flavonol laurentiol [**102**] was isolated from the heart wood of *M. laurentii* (Kammaing, Free, Nkengfack *et al.*, 1999).

The novel pyranoisoflavones **103 and 105** were isolated from *Millettia thonningii* (Olivares, Lwande, Monache *et al.*, 1982).

M. erythrocalyx afforded the new flavones, millettocalyxins A-C [**106-108**], and pongol methyl ether [**109**] (Sritularak, Likhitwitayawuid, Conrad *et al.*, 2002b).

Chalcone derivatives, ovalitenins A-D [**110-113**], were isolated from the seeds of *Millettia ovalifolia* (Gupta and Krishnamurti, 1977; Islam *et al.*, 1980). A new chalcone monoethoxychalcone [**114**] was obtained from *Millettia pachcarpa* (Singhal *et al.*, 1983).

Two novel chalcones, dihydromillelltenone methyl ether [115] and dihydroisomilletenone methyl ether [116] (Mahmoud and Waterman, 1985), were isolated from the stem bark of *M. hemsleyana*, while a novel 4'-*O*-geranylisoliquiritigenin [117] (Yankep, Fomun and Dagne, 1997) and a known chalcone [118] were isolated from bark and seed pods of *M. ferruginea* (Dagne *et al.*, 1989). Compound 117 was also found from the extract of *M. griffoniana*.

A new α -hydroxydihydrochalcone [**119**] was isolated from the stem bark of *Mllettia usaramensis* subsp. *usaramensis* (Yanesew *et al.*, 1998), while a new chalcone [**120**] was isolated from *M. erythrocalyx* (Sritularak *et al.*, 2002a).

In 2003, Phrutivorapongkul *et al* isolated anti-Herpes Simplex Virus (HSV) compounds [**121** and **122**], and cytotoxic compounds [**123** and **124**] from the stem barks of *Millettia leucantha* (Phrutivorapongkul, Lipipun, Ruangrungsi *et al.*, 2003).

[121] R_1R_2 -OCH₂O-, $R_3 = H$, $R_4 = R_5 = OCH_3$ [122] R_1R_2 -OCH₂O-, $R_3 = R_4 = R_5 = OCH_3$

[123] R₁ = H, R₂ = OCH₃ [124] R₁ = OCH₃, R₂ = H

3.5 Rotenoids

The roots of *Millettia pachycarpa* furnished a new rotenone, *cis*-12ahydroxyrot-2-enoic acid [125], and three known compounds [126-128]. A new rotenone griffonianone [129] was isolated from the root barks of *M. griffoniana* (Singhal *et al.*, 1982; Yankep *et al.*, 2001).

The stem bark of *M. usaramensis* subsp. *usaramensis* provided four new rotenones, (+)-12a-epimillettosin [130], (+)-usararotenoid-A [131], (+)-12-dihydrousararotenoid-A [132], and (+)-usararotenoid-B [133], and an anti-plasmodial rotenoid usararotenoid C [134] (Yanesew *et al.*, 1998; Yenesew *et al.*, 2003).

3.6 Coumarins

The seeds of *Millettia thonningii* have yielded the novel 3-phenylcoumarins, thonningine A [**136**] and thonningine B [**137**] (Khalid and Waterman, 1983). A new 3-phenylcoumarin [**138**] was isolated from *M. griffoniana* (Yankep *et al.*, 1998).

 $[136] R_1R_2 = -OCH_2O-, R_3 = R_4 = H$ $[137] R_1 = H, R_2 = OCH_3, R_3 = R_4 = H$

3.7 Quinones

A new isoflavan-quinone laurentiquinone [139] and its isomer [140] were isolated from the heartwood of *M. laurentii* (Kammaing *et al.*, 1999). An anti-inflammatory quinone [141] along with two known quinones 142 and 143 were isolated from the stem bark of *M. versicolor* (Fotsing, Yankep, Njamen *et al.*, 2003).

4. Biosynthetic Relationship of Diterpenoids in Croton spp.

The diterpenes possess twenty carbon atoms in their molecules. They are biogenetically derived from geranylgeranyl pyrophosphate (GGPP). The diterpene skeleton is the fascinating variation encountered in their core structure, these compounds could be classified into several types, such as mono-, bi-, tri-, tetra-, and pentacyclic diterpenes. The typical diterpenes in *Croton* spp. are casbane, cembrane,

clerodane, cleistanthane, kaurane, labdane, pimarane, and halimane. The relationship of diterpenes is displayed in scheme 1. In addition, the biosynthetic is also proposed (Devon and Scott, 1972).

Scheme 1 Biosynthetic relationship of diterpenes in Croton spp.

5. Biosynthetic Relationship of Flavonoids in *Millettia* spp.

Flavonoids possess fifteen carbon atoms in their basic skeleton, which are derived from shikimate and acetate-malonate pathway. The typical flavonoids in *Millettia* spp. are flavanones, isoflavanones, flavanes, isoflavanes, flavones, isoflavones, chalcones, rotenoids, coumarins, and quinines. The relationship of flavonoids is displayed in **scheme 2**. (Markham, 1982).

Scheme 2 Currently proposed interrelationships between flavonoid monomer

CHAPTER III EXPERIMENTAL

1. Source of Material

The leaves of *Croton kongensis* Gagnep. and the roots of *Croton birmanicus* Müll.Arg. were collected from Maetang District, Chiangmai Province, Northern Thailand, in November 2001. The voucher specimens of *C. kongensis* (No. NR 1291951) and *C. birmanicus* (No. NR 2291951) have been deposited at the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.

The leaves and twigs of *Millettia kangensis* Craib were collected from Maerim District, Chiangmai Province, Northern Thailand, in January 2002. The voucher specimen of *M. kangensis* (No. NR 3291951) has been deposited at the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.

2. General Techniques

2.1 Thin-Layer Chromatography (TLC)

Technique	:	One dimension, ascending.		
Adsorbent	:	Silica gel 60 F ₂₅₄ precoated on aluminium plate		
		(E. Merck).		
Layer thickness		0.2 mm		
Plate size		2 x 5.0 and 5 x 5 cm		
Detection	÷	1. Under ultraviolet light at wavelengths of 254		
		and 365 nm.		
		2. Dyeing reagents.		
		2.1 Anisaldehyde- H_2SO_4 reagent. (0.5%)		
		ethanolic solution of anisaldehyde with 5%		

sulphuric acid). Stained TLC plates give specific color spots with this reagent after heating at 80-100° C for 2-3 minutes.

2.2 Column Chromatography

2.2.1 Vacuum Liquid Column Chromatography

Adsorbent	:	a. Silica gel 60 (No. 7734) particle size 0.063-
		0.200 nm (70-230 mesh ASTM) (E. Merck).
		b. Silica gel 60 (No. 9385) particle size 0.040-
		0.063 nm (70-230 mesh ASTM) (E. Merck).
Packing method	1	Dry packing method.
Sample loading		A sample was dissolved in a small amount of
		organic solvent, mixed with a small quantity of
		adsorbent, triturated, dried and placed on the top
		of column

2.2.2 Flash Column Chromatography

Adsorbent	:	a. Silica gel 60 (No. 7734) particle size 0.063-
		0.200 nm (70-230 mesh ASTM) (E. Merck).
		b. Silica gel 60 (No. 9385) particle size 0.040-
		0.063 nm (70-230 mesh ASTM) (E. Merck).
Packing method		Slurry method.
Sample loading	:	A portion of sample was dissolved in a small
		amount of organic solvent and added to a small
		quantity of silica gel 60 with particle size 0.063-
		0.200 nm, air dried and added onto the top of
		this column, for further elution.

2.2.3 Gel Filtration Chromatography

Gel filter	:	Sephadex LH 20 (Phamacia).
Packing method	:	Gel filter was suspended in the eluent and left
		standing to swell for 24 hours prior to use. It was
		then poured into the column and allowed to set
		tightly.
Sample loading	:	The sample was dissolved in a small volume of

eluent and applied on top of the column.

2.2.4 High Performance Liquid Chromatography

High pressure pump	:	Waters 600
Detector	:	Waters 996 Photodiode array detector.
Column	:	1. LiChroCart 250-10 HPLC-Cartridge
		2. PrepNova-Pak cartridge 40x100mm, 6μm
		60°A

2.3 Spectroscopy

2.3.1 Infrared (IR) Absorption Spectra

IR spectra (KBr disc and neat film) were obtained on a Bruker vector 22 spectrophotometer (National Center for Genetic Engineering and Biotechnology, BIOTEC, NSTDA, Thailand Science Park, Pathumthani, Thailand).

2.3.2 Ultraviolet (UV) Absorption Spectra

UV (in methanol and chloroform) spectra were recorded on a Cary 1E UV-visible spectrophotometer UVIDEC-650 (National Center for Genetic Engineering and Biotechnology, BIOTEC, NSTDA, Thailand Science Park, Pathumthani, Thailand).

2.3.3 Mass Spectra

Electrospray ionization mass spectra (ESIMS) were measured on a mass spectrometer LCT (LCMS) Micromass (National Center for Genetic Engineering and Biotechnology, BIOTEC, NSTDA, Thailand Science Park), and LCMS spectra were recorded on BRUKER mass spectrometer (Department of Chemistry, Faculty of Sciences, Mahidol University, Bangkok, Thailand).

2.3.4 Proton and Carbon-13 Nuclear Magnetic Resonance (¹H-NMR and ¹³C- NMR) Spectra

¹H NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were obtained on a BRUKER AV500D spectrometer, and in some experiments the spectra were obtained on a BRUKER DRX400 spectrometer (National Center for Genetic Engineering and Biotechnology, BIOTEC, NSTDA, Thailand Science Park, Pathumthani, Thailand).

2.4 Physical Properties

2.4.1 Optical Rotations

Optical Rotations were recorded in methanol and chloroform with sodium D line (589 nm) on a JASCO DIP-370 digital polarimeter (Department of Chemistry, Faculty of Sciences, Mahidol University, Bangkok, Thailand).

2.4.2 X-ray Crystallography

X-ray Crystallographic data were measured at room temperature on a Bruker Nonius kappa CCD diffractometer (Department of Chemistry, Faculty of Sciences, Mahidol University, Bangkok, Thailand).

2.5 Solvents

Column chromatography	: 0 0	All solvents are of commercial grade and are
		redistilled prior to use.
HPLC	361	All solvents are HPLC grade.
NMR ⁹	•	All deuterated solvents are NMR grade.

3. Extraction and Isolation

3.1 Extraction and Isolation of Compounds from Croton kongensis

3.1.1 Extraction

The dried powder leaves of *C. kongensis* (1 kg) were macerated in CH_2Cl_2 (2x4L). The extracts were filtered and evaporated under reduced pressure, to give green gummy crude extract (11.11 g).

3.1.2 Isolation of Compounds from CH₂Cl₂ Extract

The CH₂Cl₂ extract was dissolved in a lot of volumn of MeOH, filtered by filter paper, and then applied on the top of column. The fraction was isolated by gel filtration chromatography (on Sephadex LH-20), MeOH as eluent. Nine fractions (80 mL each) were collected. Fraction 5 was repeatedly chromatographed on a Sephadex LH-20 and a preperative HPLC (reversed-phase C_{18} column), to yield compounds CK01 and CK 02. Fraction 4 was subjected to Sephadex LH-20 chromatography, MeOH as eluent, to furnish compound CK04. Fraction 2 was re-chromatographed on Sephadex LH-20 and silica gel chromatography, furnishing compound CK02. Detail of isolation of the CH₂Cl₂ extract of *C. kongensis* are demonstrated in **Scheme 3**.

3.1.3 Isolation of Compounds CK 01 and CK 03

Fraction 5 was subjected to Sephadex LH-20 using MeOH as eluent, to afford nine fractions (50 mL per fraction). Fraction 7 was repeatedly chromatographed on a Sephadex LH-20 with MeOH, yielding twelve fractions. Fraction 5 was rechromatographed on Sephadex LH-20 also using MeOH as eluent, to give twelve fractions. Isolation of fraction 8 by reverse phase C_{18} HPLC with 60:40 acetonitrile and water gave compounds CK 01 (20 mg) and CK 03 (9 mg).

3.1.4 Isolation of Compound CK 02

Fraction 2 was re-chromatographed on a Sephadex LH-20, MeOH as eluent. Fraction 9 was subjected to column chromatography using silica gel 60 (No. 9385) as adsorbent, 5:95 of ethyl acetate and hexane as mobile phase to furnish compound CK 02 (12 mg).

3.1.5 Isolation of Compound CK 04

Fraction 4 was subject on Sephadex LH-20, MeOH as eluent gave nine fractions (50 mL per fraction). Fraction 7 was repeatedly chromatographed on a Sephadex LH-20 with MeOH, yielding eight fractions. Purification fraction 4 by Sephadex LH-20 (MeOH as mobile phase) furnished compound CK 04 (4 mg).

Scheme 3 Separation of a CH₂Cl₂ extract from the leaves of *Croton kongensis*

3.2 Extraction and Isolation of Compounds from Croton birmanicus

3.2.1 Extraction

The dried roots of *C. birmanicus* (2 kg) were milled and macerated in CH_2Cl_2 (2x5L) and MeOH (2x5L). The extract was filtered and evaporated to dryness to give crude extract gummy (17.5 g for CH_2Cl_2 extract and 112.0 g for MeOH extract).

3.2.2 Isolation Compounds from CH₂Cl₂ Extract

The CH_2Cl_2 extract was dissolved in CH_2Cl_2 :MeOH (20:80), filtered, and then applied to Sephadex LH-20 (MeOH as eluent), to give eleven frations (100 mL each). Fraction 4 was re-chromatographed on Sephadex LH-20 (MeOH as eluent), furnishing compound CB 01 as shown in **Scheme 4**.

3.2.3 Isolation of Compound CB 01

Fractions 8-10 were combined and further isolatated by Sephadex LH-20, 20:80 of MeOH and CH_2Cl_2 as eluent to yield eleven fractions. Fraction 6 was separated by Sephadex LH-20 with 20:80 of MeOH and CH_2Cl_2 as mobile phase, yielding eight fractions. Fraction 6-8 were combined and re-chromatographed on Sephadex LH-20 (30:70 of MeOH and CH_2Cl_2 as eluent), gave fourty fractions (10 mL per fraction). Fraction 32-34 were purified by silica gel 60 (No. 7734) as adsorbent, 1% MeOH/CH₂Cl₂ as mobile phase to furnish compound CB 01 (13.8 mg).

จุฬาลงกรณมหาวทยาลย

Scheme 4 Separation of a CH₂Cl₂ extract from the roots of *Croton birmanicus*

3.3 Extraction and Isolation of Compounds from Millettia kangensis

3.3.1 Extraction and Isolation of Compounds from the Leaves of *Millettia* kangensis

3.3.1.1 Extraction

The dried powder leaves (4.3 kg) of *M. kangensis* was extracted with CHCl₃ (2x15L), filtered and evaporated, yielding deep green gum (52 g).

3.3.1.2 Isolation of compounds from CHCl₃ extract

The CHCl₃ extract (52 g) was dissolved in a small volume of CHCl₃, triturated with silica gel 60 (No. 7734), and dried under vacuum. It was separated by vacuum liquid column chromatography using a sintered glass filter

column of silica gel 60 (No. 7734). Fractions were collected (250 ml). Elution was performed in a polarity gradient manner with mixtures of hexane and ethyl acetate (100:0 to 0:100). Sixty fractions were collected, and combined similar fractions by TLC, yielding nine fractions. Fraction 8 was isolated, yielding compounds MK 02 and 07.

3.3.1.3 Isolation of compounds MK 02 and MK 07

Fraction 8 was subjected to Sephadex LH-20 (1:10 CHCl₃:MeOH as eluent), yielding six fractions (50 mL per fraction). Fraction 2 was rechromatographed on Sephadex LH-20 (1:10 CHCl₃:MeOH as eluent), which gave fifteen fractions (25 mL per fraction). Fractions 7-11 were isolated, yielding compounds MK 02 (5.4 mg) and 07 (.3 mg).

Scheme 5 Separation of a CHCl₃ extract from the leaves of *Millettia kangensis*

3.3.2 Extraction and Isolation of Compounds from the Twigs of *Millettia* kangensis

3.3.2.1 Extraction

The dried twigs (0.8 Kg) of *M. kangensis* were macerated in CH₂Cl₂ (2x3L). The extracts were filtered and evaporated under reduced pressure, to yield a deep green gum (11.4 g).

3.3.2.2 Isolation of compounds of CH₂Cl₂ extract

The CH₂Cl₂ extract was fractionated by Sephadex LH-20 (MeOH as eluent), yielding eight fractions (each 100 mL). Recrytalization of fraction 5 afforded compound MK 06. Fraction 6 was isolated by Sephadex LH-20 and HPLC, yielding compounds MK 03 and MK 04. Fraction 7 was refractionated with Sephadex LH-20 and HPLC to give compounds MK 03 and MK 06. Fraction 8 was isolated with Sephadex LH-20 and HPLC, yielding compounds MK 03, MK 05 and MK 01.

3.3.2.3 Isolation of compound MK 01

Fraction 8 was fractionated by Sephadex LH-20 (MeOH as eluent), yielding eight fractions (50 mL per fraction). Fraction 4 was isolated by RP-C₁₈ HPLC with 40:60 MeCN:H₂O, to yield compounds MK 01 (1.7 mg), MK 03 (2.6 mg), and MK 06 (6.8 mg).

3.3.2.4 Isolation of compound MK 03

Fraction 7 was isolated by Sephadex LH-20 (MeOH as eluent), obtaining as nine fractions (50 mL per fraction). Fraction 7 was purified by RP-C₁₈ HPLC (35:65 MeCN:H₂O) to yield three fractions, while fraction 1 gave compound MK 03 (12.2 mg). Fraction 2 was isolated by RP-C₁₈ HPLC (40:60 MeCN:H₂O), furnished compounds MK 03 (1.3 mg) and MK 05 (6.4 mg).

Fraction 8 was fractionated by Sephadex LH-20 (MeOH as eluent), yielding eight fractions (50 mL per fraction). Fraction 4 was isolated by RP-C₁₈ HPLC with 40:60 MeCN:H₂O, to yield compounds MK 01 (1.7 mg), MK 06 (6.8 mg), and MK 03 (2.6 mg).

3.3.2.5 Isolation of compound MK 04

Fraction 6 was isolated by Sephadex LH-20 (MeOH as eluent), yielding nine fractions (30 mL per fraction). Fraction 5 was purified by RP-C₁₈ HPLC with 25:75 MeOH:H₂O, to yield compounds MK 04 (12.2 mg) and MK 03 (26.4).

3.3.2.5 Isolation of compound MK 05

Fraction 7 was isolated by Sephadex LH-20 (MeOH as eluent), obtaining as nine fractions (50 mL per fraction). Fraction 7 was purified by RP-C₁₈ HPLC (35:65 MeCN:H₂O) to yield three fractions, while fraction 1 gave compound MK 03 (12.2 mg). Fraction 2 was isolated by RP-C₁₈ HPLC (40:60 MeCN:H₂O), which furnished compounds MK 05 (6.4 mg) and MK 03 (1.3 mg).

3.3.2.5 Isolation of compound MK 06

Fraction 5 was recrystallized from MeOH, yielding compound MK 05 (260.1 mg).

Fraction 8 was fractionated by Sephadex LH-20 (MeOH as eluent), yielding eight fractions (50 mL per fraction). Fraction 4 was isolated by RP-C₁₈ HPLC with 40:60 MeCN:H₂O, to yield compounds MK 06 (6.8 mg), MK 01 (1.7 mg), and MK 03 (2.6 mg).

Scheme 6 Separation of CH₂Cl₂ extract from the twigs of *Millettia kangensis*

4. Physical and Spectral Data of Isolated Compounds

4.1 Compound CK 01

Compound CK 01 was obtained as colourless oil, soluble in CHCl₃ (20.0 mg, 2.0×10^{-3} % based on dried weight of leaves).

UV	: λ_{max} nm (log ε), in CHCl ₃ ; 239.2 (4.46), see Figure 4
IR	: $v_{\text{max}} \text{ cm}^{-1}$, neat (CHCl ₃); 3444, 1647, see Figure 5
EITOFMS	: <i>m/z</i> ; 375.2412 [M+H] ⁺ , see Figure 6
$\left[\alpha\right]_{D}^{30}$: -54.4° (<i>c</i> 0.45, CHCl ₃)
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ , see Table 2 , and Figure 7
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ , see Table 2 , and Figure 8

4.2 Compound CK 02

Compound CK 02 was obtained as brown oil, soluble in CHCl₃ (12.0 mg, 1.2 x 10^{-3} % based on dried weight of leaves).

UV	: λ_{max} nm (log ε), in CHCl ₃ ; 241.4 (4.07) , see Figure 13
IR	: v_{max} cm ⁻¹ , neat (CHCl ₃); 2928, 1743, 1704, 1653, 1624, 1370,
	1231, 1022, 932, see Figure 14
EITOFMS	: <i>m/z</i> ; 439.2089 [M+Na] ⁺ , see Figure 15
$\left[\alpha\right]^{30}{}_{\mathrm{D}}$: -147.6° (<i>c</i> 0.575, CHCl ₃)
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ , see Table 3 , and Figure 16
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ , see Table 3 , and Figure 17

4.3 Compound CK 03

Compound CK 02 was obtained as brown oil, soluble in $CHCl_3$ (9.0 mg, 9.0 x 10^{-4} % based on dried weight of leaves).

UV	: λ_{max} nm (log ε), in CHCl ₃ ; 233.2 (3.48) nm, see Figure 22
IR	: v_{max} cm ⁻¹ , neat (CHCl ₃); 3445, 1748, 1733, 1697, 1684, 1646,
	1636, 1558, 1540, 1374, 1219, see Figure 23
EITOFMS	: m/z ; 413.1969 [M+Na] ⁺ , see Figure 24
$\left[\alpha\right]^{30}{}_{\mathrm{D}}$: -16.7° (<i>c</i> 0.45, CHCl ₃)
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ , see Table 4 , and Figure 25
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ , see Table 4 , and Figure 26

4.4 Compound CK 04

Compound CK 04 was obtained as colourless oil, soluble in CHCl₃ (4.0 mg, 4.0 x 10^{-4} % based on dried weight of leaves).

UV : λ_{max} nm (log ε), in CHCl₃; 242.8 (3.68), see **Figure 31** IR : v_{max} cm⁻¹, neat (CHCl₃); 3443, 1635, see **Figure 32**
EITOFMS	: m/z ; 383 [M+Na] ⁺ , see Figure 33
$\left[\alpha\right]^{30}{}_{D}$: -4.0° (<i>c</i> 1.0, CHCl ₃)
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ , see Table 5 , and Figure 34
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ , see Table 5 , and Figure 35

4.5 Compound CB 01

Compound CK 05 was obtained as brown oil, soluble in $CHCl_3$ (13.8 mg, 6.9 x 10^{-4} % based on dried weight of roots).

UV	: λ_{max} nm (log ε), in CHCl ₃ ; 214 (2.47), see Figure 40		
IR	: $v_{\text{max}} \text{ cm}^{-1}$, film; 350, 3063, 2931, 2856, 1726 and 1682,		
	see Figure 41		
ESIMS	: m/z ; 339.2 [M+Na] ⁺ , see Figure 42		
$\left[\alpha\right]^{30}{}_{\mathrm{D}}$: -20.6° (<i>c</i> 0.825, CHCl ₃)		
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ , see Table 6 , and Figure 43		
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ , see Table 6 , and Figure 44		

4.6 Compound MK 01

Compound MK 01 was obtained as colourless crystal, soluble in $CHCl_3$ (1.7 mg, 1.7 x 10⁻⁴% based on dried weight of twigs).

UV	: λ_{max} nm (log ε), in MeOH; 203 (3.16), 217 (3.25), 260 (3.1		
	303 (2.95), see Figure 49		
IR	: $v_{\text{max}} \text{ cm}^{-1}$, film; 3450, 2927,1637,1624 and 1458, see Figure 50		
EITOFMS	: m/z ; 293.0818 [M+H] ⁺ , see Figure 51		
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ , see Table 7 , and Figure 52		
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ , see Table 7 , and Figure 53		

4.7 Compound MK 02

Compound MK 02 was obtained as colourless plates, soluble in DMSO (5.4 mg, 1.3×10^{-4} % based on dried weight of leaves).

UV	: λ_{max} nm (log ε), in MeOH; 280 (3.02) and 308 (3.17),		
	see Figure 58		
IR	: $v_{\text{max}} \text{ cm}^{-1}$, film; 3265, 1593, 15661, 1483, 1466, 1396, 1358, 1316,		
	1229 and 1136, see Figure 59		
ESIMS	: <i>m/z</i> ; 331.3 [M+Na] ⁺ , see Figure 60		
¹ H NMR	: δ ppm, 400 MHz, in DMSO- <i>d6</i> , see Table 8 , and Figure 61		
¹³ C NMR	: δ ppm, 100 MHz, in DMSO- <i>d6</i> , see Table 8 , and Figure 62		

4.8 Compound MK 03

Compound MK03 was obtained as colourless plates, soluble in CHCl₃ (35.7 mg, 3.6×10^{-3} % based on dried weight of twigs).

: λ_{max} nm (log ε), in MeOH; 203 (2.26), 206 (2.61) and 306 (2.4		
see Figure 67		
: $v_{\text{max}} \text{ cm}^{-1}$, film; 2918, 2849, 1753 and 1473 cm ⁻¹ , see Figure 68		
: m/z ; 345.48 [M+Na] ⁺ , see Figure 69		
: δ ppm, 400 MHz, in CDCl ₃ , see Table 9 , and Figure 70		
: δ ppm, 100 MHz, in CDCl ₃ , see Table 9 , and Figure 71		

4.9 Compound MK 04

Compound MK04 was obtained as colourless plates, soluble in CHCl₃ (12.2 mg, 1.2×10^{-3} % based on dried weight of twigs).

: λ_{max} nm (log ε), in CHCl ₃ ; 282 (2.77), 312 (2.31) and 348 (2.04)
see Figure 76
: v _{max} cm ⁻¹ , film; 2919, 2845, 1735, 1473, 1463 and 1372,
see Figure 77
: <i>m/z</i> ; 323.0919 [M+H] ⁺ , see Figure 78
: δ ppm, 400 MHz, in CDCl ₃ , see Table 10 , and Figure 79
: δ ppm, 100 MHz, in CDCl ₃ , see Table 10 , and Figure 80

4.10 Compound MK 05

Compound MK05 was afforded as colourless crystals, soluble in CHCl₃ (6.4 mg, 6.4×10^{-4} % based on dried weight of twigs).

UV	: λ_{max} nm (log ε), in CHCl ₃ ; 203 (2.11), 271 (2.62), 309 (2.05),
	see Figure 85
$\left[\alpha\right]^{30}{}_{D}$	-12.4° (<i>c</i> 0.50, CHCl ₃)
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ , see Table 11 , and Figure 86
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ , see Table 11 , and Figure 87

4.11Compound MK 06

Compound MK06 was obtained as colourless needles, soluble in CHCl₃ (266.9 mg, 2.7×10^{-2} % based on dried weight of leaves).

UV	: λ_{max} nm (log ε), in CHCl ₃ ; 214 (2.56), 246 (2.93), 280 (2.75) and		
	340 (2.71), see Figure 92		
IR	: $v_{\text{max}} \text{ cm}^{-1}$, film; 2923 and 1615, see Figure 93		
EITOFMS	: m/z ; 387.1204 [M+Na] ⁺ , see Figure 94		
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ , see Table 12 , and Figure 95		
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ , see Table 12 , and Figure 96		

4.12 Compound MK 07

Compound MK07 was displayed as colourless plates, soluble in DMSO (4.3 mg, 1.0×10^{-4} % based on dried weight of leaves).

UV	: λ_{max} nm (log ϵ), in CHCl ₃ ; 280 (2.55), 302 (2.84), 343 (2.94) and
	358 (3.16), see Figure 101
IR	: $v_{\text{max}} \text{ cm}^{-1}$, film; 3374, 1731, 1621 and 1469, see Figure 102
EITOFMS	: m/z ; 365.2 [M+Na] ⁺ , see Figure 103
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ , see Table 13 , and Figure 104

5. Biological Activities

5.1 Antimycobacterial Activity

The antimycobacterial activity was assessed against *Mycobacterium tuberculosis* H37Ra using the Microplate Alamar Blue Assay (MABA). The standard drugs, isoniazid and kanamycin sulfate, used as reference compounds for the antimycobacterial assay, showed MIC values of 0.040-0.090 and 2.0-5.0 μ g/mL, respectively, in the test systems (Collins and Franzblau, 1997).

5.2 Antimalarial Activity

The antimalarial activity was evaluated against the parasite *Plasmodium falciparum* (K1, multidrug-resistant strain), which was cultured continuously according to the method of Trager and Jensen (Trager and Jansen, 1976). Quantitative assessment of antimalarial activity *in vitro* was determined by the microculture radioisotope technique based upon the method described by Desjardins, *et al.* The inhibitory concentration (IC₅₀) represents the concentration which causes 50% reduction in parasite growth as indicated by the *in vitro* uptake of [³H]-hypoxanthine by *P. falciparum*. An IC₅₀ value of 1 ng/mL was observed for the standard compound, artemisinin, in the same test system (Desjardins, Canfield, Haynes *et al.*, 1979).

5.3 Cytotoxic Activity

Cytotoxicity was determined by employing the colorimetric method described by Skehan and co-workers. The reference compound, ellipticine, exhibited activity toward Vero, KB and BC cell lines with the IC₅₀ ranges of 0.2-0.3 μ g/mL (Skehan, Storeng, Scudiero *et al.*, 1990).

CHAPTER IV

RESULTS AND DISSCUSSION

Preliminary bioactivity screening revealed that *Croton kongensis*, *Croton birmanicus*, and *Millettia kangensis* exhibited antimycobacterial and antimalarial activities. These results of bioactivities are summarized in **Table 1**.

Crude extract	Antimycobacterial activity	Antimalarial activity		
	MIC (µg/mL)	IC ₅₀ (µg/mL)		
C. kongensis				
The CH ₂ CL ₂ leaves extract	12.50	0.90		
The MeOH leaves extract	100.00	5.79		
C. birmanicus				
The CH ₂ Cl ₂ roots extract	100.00	inactive		
M. kangensis	A RIALAN			
The CH ₂ Cl ₂ leaves extract	100.00	inactive		
The CH ₂ Cl2 twigs extract	100.00	inactive		

Table 1 Antimycobacterial and antimalarial activities of the crude extract

The CH₂Cl₂ leaves extract of *C. kongensis* were isolated, yielding three 8,9secokauranes (**CK 01-03**) and a kaurane (**CK 04**). Compounds CK 01 and CK 02 are new compounds. The CH₂Cl₂ roots extract of *C. birmanicus* was isolated, furnishing a glutarimide alkaloid (**CB 01**). The CH₂Cl₂ leaves and twigs extracts from *M. kangensis* afforded five furanoflavonoids (**MK 01-05**), a pyranoflavonoid (**MK 06**), and a coumestan (**MK 07**). Compounds MK 03, 05, 06 and 07 are new compounds, while compound MK 04 is a new natural product. Structure elucidation of these compounds was performed by interpretion of their UV, IR, NMR, MS, and X-ray crystallographic data, and by comparison with previous reports. In addition, their antimycobacterial, antimalarial, and cytotoxic activities are displayed in **Table 14**.

Although there have been various classes of diterpenoids isolated from genus *Croton*, the presence of 8,9-secokauranes has never been before reported. The 8,9-secokauranes have been reported from two liverwort species and from several species

in the higher plant genus *Rabdisia* (Family Lamiaceae). This is the first report on the presence of 8,9-secokauranes in the plant genus *Croton*. Additionally, the presence of coumestan, the rare derivative of isoflavonoid, has never been before reported from genus *Millettia*. Coumestan, erosnin, has been reported from *Pachyrrhizus erosus* in 1977. This is the first report of coumestan skeleton in the plant genus *Millettia*.

1. Structure Elucidation of Compounds Isolated from Croton kongensis

1.1 Structure Elucidation of Compound CK 01

A compound CK 01 was obtained as colourless oil. CK 01 possessed a molecular formula $C_{22}H_{30}O_5$, as revealed by the ESITOFMS spectrum, showing a prominent peak at m/z 375.2412 [M+H]⁺(Figure 6). The IR spectrum displayed OH stretching at v 3444 cm⁻¹, and C=O stretching at v 1647 cm⁻¹(Figure 5). The UV absorption showed λ_{max} at 243 nm (Figure 4).

The ¹H-NMR spectrum (CDCl₃) (**Figure 7**) of compound CK01 showed signals of four methyl singlets at $\delta_H 0.88$ (3H), 1.05 (3H), 1.17 (3H), and 2.0 (3H), two singlet signals of exocyclic methylene at $\delta_H 5.33$ (1H) and 5.95 (1H), a broad singlet signal of olefinic proton at $\delta_H 7.28$ (1H), two doublet of doublet signals of $\delta_H 4.72$ (1H, J = 11.9, 4.6 Hz) and $\delta_H 5.25$ (1H, J = 5.4, 1.2 Hz), a broad singlet signal of methine proton at $\delta_H 3.6$ (1H), doublet of quartet and doublet of doublet of doublet signals of methylene protons at $\delta_H 2.34$ (1H, J = 14.7, 2.7 Hz) and $\delta_H 2.95$ (1H, J =14.7, 5.0, 1.2 Hz), and four methylene protons at $\delta_H 1.95$ -1.15.

The ¹³C-NMR spectrum (**Figure 8**) of compound CK01 revealed 22 signals, while DEPT135 spectrum (**Figure 8**) revealed four methyl carbons, six methylene carbons, five methine, and seven quaternary carbons. A carbonyl carbon and a methyl group were resonanced at δ_C 172.0 and 22.0, a characteristic of an acetate group. The downfield shift at δ_H 5.25 (H-11) and the HMBC (**Figure 12**) spectrum demonstrated that correlation from H-11 to δ_C 172.0 (C-1'), 31.0 (C-12), and 213 (C-9), establishing the first substructure of CK 01 as shown below.

The ¹H-¹H COSY spectrum (**Figure 9**) of compound CK01 displayed cross peaks from H-2 (δ_H 1.50) to H-1 (δ_H 1.60) and δ_H H-3 (1.15), from H-5 (δ_H 1.80) to H-6 (δ_H 1.92), while the HMBC spectrum revealed correlations from CH₃-20 (δ_H 1.05) to C-10 (δ_C 34.0), from H-1 (δ_H 1.26) to C-10 (δ_C 34.0), from H-1 (δ_H 1.60) to C-2 (δ_C 17.7), from H-2 (δ_H 1.5) to δ_C C-4 (54.0), from H-3 (δ_H 1.51) to C-4 (δ_C 54.0), from CH₃-19 (δ_H 1.17) to C-4 (δ_C 54.0), from H-5 (δ_H 1.8) to C-7 (δ_C 64.0), C-4 (δ_H 54.0), C-10 (δ_C 34.0), from H-5 (δ_H 1.8) to C-7 (δ_C 64), C-4 (δ_C 54), and C-10 (δ_C 34), from H-6 methylene (δ_H 1.95 and 1.52) to C-5 (δ_C 41.0), C-10 (δ_C 34), and C-7 (δ_C 64), and from H-7 (δ_H 4.72) to C-14 (δ_C 160), C-8 (δ_C 148.5), and C-15 (δ_C 194.5). Based on these spectral data, the second substructure was created as shown.

A typical of exocyclic methylene was found in CK 01, exhibiting two singlet resonances at δ_H 5.33 (1H, *s*) and δ_H 5.95 (1H, *s*). The HMBC revealed the correlation from H-17 (δ_H 5.33 and δ_H 5.95) to C-16 (δ_C 148), and C-15 (δ_C 194.5), from H-12 (δ_H 2.35 and 2.95) to C-14; from H-13 (δ_H 3.6) to C-8 (δ_C 148.5); and from H-12 to C-11. These spectral data established the third partial structure of CK 01.

Combination of the first, second and the third fragments well assembled a gross structure of CK 01. Therefore compound CK 01 was identified as *ent*-8,9-*seco*- 7α -hydroxy-11-acetoxykaura-8(14),16-dien-9,15-dione, which is a known compound

previously isolated from a New Zealand liverwort, *Lepidolaena taylorii* (Perry, Burgess, Baek et al. 1999).

CK 01 exhibited negative optical rotation ($[\alpha]^{30}_{D}$ -54.4°, *c* 0.45, CHCl₃) similar to *ent*-8,9-*seco*-7 α -hydroxy-11-acetoxykaura-8(14),16-dien-9,15-dione, and therefore compound CK 01 possessed the same stereochemistry as that of *ent*-8,9-*seco*-7 α -hydroxy-11-acetoxykaura-8(14),16-dien-9,15-dione. Proton and carbon of compound CK 01 were completely assigned by analyses of ¹H-¹H COSY (**Figure 9**), NOESY (**Figure 10**), HMQC (**Figure 11**) and HMBC (**Figure 12**) spectral data as shown in **Table 2**.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	<i>ent</i> -8,9 <i>-seco</i> -7α-hydroxy-11-aceto		Compound CK 01	
	xykaura-8(14),16-dien-9,15-dione			
	(Perry et al., 1999).			
	δ_{H} (ppm), J (Hz)	δ_C (ppm)	δ_{H} (ppm), J (Hz)	δ_C (ppm)
1	No report	31.8	1.26 (1H, <i>m</i>)	31.6
		Sec. 1	1.60 (1H, <i>m</i>)	
2	No report	17.9	1.50 (1H, <i>m</i>)	17.7
			1.65 (1H, <i>m</i>)	
3	No report	41.5	1.15 (1H, <i>m</i>)	41.4
			1.51 (1H, <i>m</i>)	
4	-	34.3	-	34.0
5	1.73 (<i>dd</i> , 6, 2)	40.6	1.8 (1H, <i>br d</i> , 6.1)	41.0
6 (<i>S</i>)	1.90 (<i>ddd</i> , 13, 6, 5)	32.4	1.95 (1H, br d, 1.0)	31.0
6 (<i>R</i>)	1.45	2014	1.52 (1H, <i>br d</i> , 1.6)	
7	4.71 (<i>dd</i> , 12, 4)	63.8	4.72 (1H, <i>dd</i> , 11.9, 4.6)	64.0
8	-	148.5	-	148.5
9	- / //	212.2	-	213.0
10	-	54.7	-	54.0
11	5.23 (<i>dd</i> , 5, 1)	77.7	5.25 (1H, <i>dd</i> , 5.5, 1.2)	76.0
12 (<i>R</i>)	2.91 (<i>ddd</i> , 14, 5, 2)	37.1	2.95 (1H, <i>ddd</i> , 14.7, 5.0,1.2)	37.0
12 (<i>S</i>)	2.32 (<i>ddd</i> , 15, 6, 3)		2.34 (1H, <i>dq</i> , 14.7, 2.7)	
13	3.57 (br m)	41.0	3.60 (1H, <i>br</i> s)	41.0
14	7.25 (<i>br d</i> , 3)	159.1	7.28 (1H, <i>d</i> , 2.8)	160.0
15	ลถาบบ	194.7	ปรการ	194.5
16		148.2	<u> </u>	148.0
17 (E)	5.24 (<i>br s</i>)	113.0	5.33 (1H, s)	112.0
(Z)	5.88 (br s)	P NOW 1	5.95 (1H, s)	
18	(ax) 0.95 (s)	34.1	0.88 (3H, s)	34.0
19	(<i>eq</i>) 1.03 (<i>s</i>)	22.2	1.17 (3H, s)	20.7
20	1.01 (s)	18.3	1.05 (3H, <i>s</i>)	18.0
1′	-	169.1	-	172.0
2'	-	20.8	2.0 (3H, <i>s</i>)	22.0

Table 2: The ¹H and ¹³C-NMR Spectral Data of *ent*-8,9-*seco*-7α-Hydroxy-11acetoxykaura-8(14),16-dien-9,15-dione and Compound CK 01 in CDCl₃

1.2 Structure Elucidation of Compound CK 02

A compound CK 02 was obtained as brown oil. A molecular formula of $C_{24}H_{32}O_6$, $[m/z \ 439.2089 \ [M+Na]^+$, calculated for 439.2097] was obtained from the ESITOFMS (**Figure 15**). The IR absorption (**Figure 14**) showed bands of C=O stretching at *v* 1743 and 1704 cm⁻¹, and the UV spectrum (**figure 13**) displayed λ_{max} at 214 nm. The optical rotation of CK02 was negative, $[\alpha]^{30}_{D}$ -147.6° (*c* 0.575, CHCl₃).

The ¹H-NMR spectrum (CDCl₃) (**Figure 16**) of compound CK02 displayed signals of five methyl singlets at δ_H 1.14 (3H, *s*), 0.97 (3H, *s*), 1.06 (3H, *s*), 2.05 (3H, *s*) and 2.02 (3H, *s*), three methine doublet of doublets at δ_H 2.12 (1H, *dd*, *J* = 7.2, 0.2 Hz), δ_H 5.55 (1H, *dd*, *J* = 12.2, 4.5 Hz), δ_H 5.28 (1H, *dd*, *J* = 5.5, 1.3), a broad singlet methine at δ_H 3.61 (1H, *br s*), two methylene doublet of doublet of doublets at δ_H 2.36 (1H, *ddd*, *J* = 14.6, 5.4, 2.8 Hz) and δ_H 2.95 (1H, *ddd*, *J* = 14.6, 5.0, 1.3 Hz), two olefinic broad singlets at δ_H 5.31 (1H, *br s*) and δ_H 5.94 (1H, *br s*), and five methylene multiplets at δ_H 1.26-0.98.

The ¹³C NMR spectrum (**Figure 17**) of compound CK02 revealed 24 signals, and the DEPT135 (**Figure 17**) spectral data revealed the presence of five methyl carbons, six methylene carbons, five methine carbons, and eight quaternary carbons. Two acetate groups were found in CK 02, having two singlet resonances of carbonyl at C-1' (δ_C 169.0) and C-1" (δ_C 169.7), two singlet resonances of methyl groups at C-2' (δ_C 20.6) and C-2" (δ_C 20.9). In addition, the HMBC spectral data (**Figure 21**) demonstrated the correlation from H-11 (δ_H 5.28) to C-1' (δ_C 169.0), and from H-7 (δ_H 5.55) to C-1" (δ_C 169.7), placing an acetate at C-11 and C-7, respectively.

The ¹H-¹H COSY spectrum (**Figure 18**) of compound CK 02 revealed correlations from H-1(δ_H 1.26) to H-3 (δ_H 1.59), from H-2 (δ_H 1.48) to H-3 (δ_H 1.59), from H-5 (δ_H 1.81) to H-6 (δ_H 1.98), and from H-7 (δ_H 5.55) to H-6 (δ_H 1.45 and 1.98). The HMBC spectrum of CK 02 demonstrated correlations from H-5 to C-9 (δ_C 212.1), from H-7 to C-8 (δ_C 145), C-14 (δ_C 159.3), C-1"(δ_C 169.7), C-6 (δ_C 32.3), and C-15 (δ_C 193.5), and from H-6 to C-8 (δ_C 145.0), C-7 (δ_C 66.3). Therefore, the first substructure of CK 02 was assembled as shown

The ¹H-NMR spectrum of CK 02 displayed two broad singlet signals at δ_H 5.31 and δ_H 5.94, attributable to an exocyclic methylene. The HMBC correlations from H-7 (δ_H 5.55) to C-8, C-14, C15 and C-1', from H-11 (δ_H 5.28) to C-9 and C-11, from H-12 (δ_H 2.36 and 2.95) to C-9, C-13, C-14 and C-16, from H-14 (δ_H 7.23) to C-15 and C-16, and from H-17 (δ_H 5.31 and 5.94) to C-13 and C-16. The construction of the second partial structure was by analyses of the above spectral data..

The HMBC spectrum displayed correlations from CH₃-18 (δ_H 1.14) to C-4 (δ_C 34.2), C-3 (δ_C 41.4) and C-5 (δ_C 40.4), from CH₃-19 (δ_H 0.97) to C-4 (δ_C 34.2), C-3 (δ_C 41.4) and C-5 (δ_C 40.4), from CH₃-20 (δ_H 1.06) to C-1 (δ_C 32.3), C-5 (δ_C 40.4), C-9 (δ_C 212.1), and C-10 (δ_C 54.6), and from H-5 (δ_H 1.81) to C-4 (δ_C 34.2), and C-5 (δ_C 40.4). Therefore, the third partial structure is created.

On the basis of these spectral data compound CK 02 was assigned as an acetate derivative of the known *ent*-8,9-*seco*-7 α -hydroxy-11-acetoxykaura-8(14),16-dien-

9,15-dione and identified as *ent-*8,9-*seco-*7 α ,11 β -diacetoxykaura-8(14),16-dien-9,15dione (compound CK 01). Proton and carbon of compound CK 02 were completely assigned by analyses of ¹H-¹H COSY (**Figure 18**), NOESY (**Figure 19**), HMQC (**Figure 20**) and HMBC (**Figure 21**) spectral data as shown in **Table 2**.

Compound CK 02

Compound CK 02 exhibited a negative rotation similar to that of compound CK 01, so it is therefore reasonable to assume that the absolute configuration of compound CK 02 is the same as that of compound CK 01. Moreover, the coupling constants at H-7 (δ_H 5.55, dd, 12.2 and 4.5 Hz of CK 02; δ_H 4.71, dd, 12 and 4 Hz of CK 01) and H-11 (δ_H 5.28, dd, 5.5 and 1.3 Hz of CK 02; δ_H 5.23, dd, 5 and 1 Hz of CK 01) of compound CK 02 were also relatively close to those of CK01.

Position	δ_{H} (ppm), J (Hz)	δ_C (ppm)
1	1.26 (1H, <i>m</i>)	32.3
	1.57 (1H, <i>m</i>)	
2	1.48 (1H, <i>m</i>)	17.8
	1.60 (1H, <i>m</i>)	
3	1.51 (1H, <i>m</i>)	41.4
	1.59 (1H, <i>m</i>)	
4	- ///	34.2
5	1.81 (1H, <i>dd</i> , 6.1, 1.2)	40.4
6	1.45 (1H, <i>m</i>)	32.3
	1.98 (1H, <i>m</i>)	
7	5.55 (1H, <i>dd</i> , 12.2, 4.5)	66.3
8		145.0
9		212.1
10	mart - many	54.6
11	5.28 (1H, <i>dd</i> , 5.5, 1.3)	77.6
12	(<i>α</i>) 2.36 (1H, <i>ddd</i> , 14.6, 5.4, 2.8)	31.7
	(β) 2.95 (1H, <i>ddd</i> , 14.6, 5.0, 1.3)	
13	3.61 (1H, <i>br</i> s)	41.1
14	7.23 (1H, <i>d</i> , 2.7)	159.3
15	-	193.5
16		147.8
17 (E)	5.31 (1H, <i>br</i> s)	112.9
(<i>Z</i>)	5.94 (1H, <i>br s</i>)	
18	1.14 (3H, <i>s</i>)	33.8
19	0.97 (3H, <i>s</i>)	22.0
20	1.06 (3H, <i>s</i>)	18.2
1'	-	169.0
2'	2.08 (3H, s)	20.6
1″	-	169.7
2″	2.02 (3H, s)	20.9

Table 3: The ¹H and ¹³C-NMR Spectral Data of Compound CK 02 in CDCl₃

1.3 Structure Elucidation of Compound CK 03

A compound CK 03 was obtained as brown oil. A molecular formula of $C_{22}H_{30}O_6 [m/z \ 413.1969 [M + Na]^+$, calculated for $[C_{22}H_{30}O_6 + Na]^+$, 413.1940] was obtained from the ESITOFMS spectrum (**Figure 24**). The IR absorption (**Figure 23**) showed bands of OH-stretching at *v* 3445 cm⁻¹, C=O stretching at *v* 1748 and 1733 cm⁻¹, and the UV spectrum (**Figure 22**) displayed λ_{max} at 233 nm. The optical rotation of CK 03 was negative, $[\alpha]^{30}_{D}$ -16.7° (*c* 0.45, CHCl₃).

The ¹H and ¹³C NMR (CDCl₃) spectra of CK 03 (**Figures 25 and 26**) resembled those of the 8,9-secokauranes CK 01 and CK 02, but an olefinic proton signal ($\delta_{\rm H}$ 7.23) in CK 01 and CK 02 were replaced by an oxygenated methine signal ($\delta_{\rm H}$ 3.84) in CK 03. These ¹H and ¹³C NMR spectral data, together with the evidence from the ESITOFMS spectrum, indicated that compound CK 03 is an oxidized form of CK 01 in which the double bond C-8/C-14 (δ_C 64.7/60.9) is epoxidized. The HMBC spectrum (**Figure 30**) helped place an acetate ester at C-11 (δ_C 77.6), showing the correlations from H-11(δ_H 5.39) to C-1' (δ_C 168.8) and from the singlet methyl (at $\delta_{\rm H}$ 2.08, H-2') to C-1'. Based upon these spectral data, compound CK 03 was identified as *ent*-8,9-*seco*-8,14-epoxy-7 α -hydroxy-11 β -acetoxy-16-kauren-9,15-dione. The protons and carbons in CK 03 were completely assigned by analysis of its 2D NMR spectra (**Table 4**)(**Figures 25, 26, 27, 28, 29 and 30**).

The absolute stereochemistry of compound CK 03 was assumed to be the same as that of compounds CK 01 and CK 02 due to the similarity of negative rotations observed. The orientation of the epoxide in compound CK 03 was evident from the NOESY spectrum (**Figure 28**) whereupon H-13 (δ_H 3.28) showed a more intense cross peak with H-12 α (δ_H 2.27) than with H-12 β (δ_H 2.94), while the H-14 (δ_H 3.84) epoxy proton exhibited a cross peak with H-12 β (δ_H 2.94). These spectral data implied

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	δ_{H} (ppm), J (Hz)	$\delta_C ({ m ppm})$	
1	1.34 (1H, <i>m</i>)	32.0	
	1.66 (1H, <i>m</i>)		
2	1.52 (1H, <i>m</i>)	17.7	
	1.63 (1H, <i>m</i>)		
3	1.51 (1H, <i>m</i>)	41.5	
	1.56 (1H, <i>m</i>)		
4	-	34.5	
5	2.12 (1H, <i>dd</i> , 7.2, 0.8)	39.0	
6	1.20 (1H, <i>m</i>)	34.2	
	1.95 (1H, <i>m</i>)		
7	4.73 (1H, <i>dd</i> , 11.8, 3.4)	61.8	
8	- / / / = - \	64.7	
9	-	211.6	
10	- A ANTER OTTAL	54.3	
11	5.39 (1H, <i>dd</i> , 6.1, 1.4)	77.6	
12	(<i>α</i>) 2.27 (1H, <i>ddd</i> , 15.1, 6.1, 3.6)	30.5	
	(β) 2.94 (1H, ddd, 15.1, 4.6, 1.6)		
13	3.28 (1H, br t, 1.5)	38.7	
14	3.84 (1H, <i>s</i>)	60.9	
15	- الل	195.8	
16	- v	146.8	
17 (E)	5.36 (1H, <i>d</i> , 1.6)	118.2	
(Z)	6.01 (1H, <i>br s</i>)		
18	1.12 (3H, <i>s</i>)	33.9	
19	1.00 (3H, <i>s</i>)	21.6	
20	1.08 (3H, s)	18.1	
1′	-	168.8	
2′	2.08 (3H, s)	20.6	

Table 4: The ¹H and ¹³C-NMR Spectral Data of Compound CK 03 in CDCl₃

1.4 Structure Elucidation of Compound CK 04

Compound CK 04 was obtained as colorless oil. It was assigned the molecular $C_{22}H_{32}O_4$ by ESITOFMS [*m*/*z* 383 [M + Na]⁺(**Figure 33**). The IR adsorption bands (**Figure 32**) showed OH-stretching at *v* 3443 cm⁻¹, and C=O stretching at *v* 1635 cm⁻¹. The UV spectrum (**Figure 31**) of CK 04 showed λ_{max} at 230 nm, and the optical rotation of CK 03 was negative, $[\alpha]^{30}_{D}$ -4.0° (*c* 1.0, CHCl₃).

The ¹H-NMR spectrum (CDCl₃) (**Figure 34**) of compound CK 04 displayed signals of three methyl singlets at $\delta_H 0.84$ (3H, *s*), 1.15 (3H, *s*), and 2.11 (3H, *s*), five methylene multiplets at $\delta_H 2.08$ (2H, *m*), $\delta_H 1.56$ (2H, *m*), 1.50 (2H, *m*), 1.65 (2H, *m*), and $\delta_H 1.72$ (2H, *m*), a methylene doublet of doublet of triplet at 1.92 (2.6, 6.2, 13.3), a methylene triplet of doublet and doublet of triplet at $\delta_H 1.81$ (1H, *dt*, 3.2, 12.8) and $\delta_H 0.75$ (1H, *td*, 3.2, 13.1), a methylene singlet at $\delta_H 5.3$ (1H, *s*) and $\delta_H 3.88$ (1H, *s*), a methylene doublet at $\delta_H 3.67$ (1H, *d*, 11.1) and $\delta_H 3.88$ (1H, *d*, 11.2), a methylene singlets at $\delta_H 5.3$ (1H, *s*) and $\delta_H 4.05$ (1H, *dd*, 11.8, 4.4), a methine doublet at $\delta_H 1.25$ (1H, *d*, 8.5), two methine broad singlets at $\delta_H 1.30$ (1H, *br s*) and $\delta_H 3.12$ (1H, *br s*), and a methine doublet of doublet at 4.05 (1H, *dd*, 11.8, 4.4).

The ¹³C-NMR spectral data (**Figure 35**) revealed three methyl carbons at δ_C 17.6 (19-CH₃), δ_C 18.2 (20-CH₃), and δ_C 21.2 (2'-CH₃), nine methylene carbons at δ_C 17.4 (C-2), δ_C 18.0 (C-11), δ_C 27.7 (C-6), δ_C 28.0 (C-14), δ_C 32.8 (C-12), δ_C 35.5 (C-3), δ_C 39.0 (C-1), δ_C 72.4 (C-18), and δ_C 115.0 (C-17), four methine carbons at δ_C 37.6 (C- 13), δ_C 46.3 (C-5), δ_C 71.0 (C-7), and δ_C 51.8 (C-9), and six quaternary carbons at δ_C 36.4 (C-4), δ_C 39.7 (C-10), δ_C 58.4 (C-8), and δ_C 149.2 (C-16), δ_C 171.3 (C-1') and δ_C 209.8 (C-15).

The ¹H-NMR spectral data (**Figure 34**) exhibited resonances of an acetate group at $\delta_H 2.10$ (3H, *s*), an oxygenated methine proton at $\delta_H 4.05$ (1H, *dd*, 11.8, 4.4), and a methylene proton bearing oxygen at $\delta_H 3.67$ (1H, *d*, 11.1) and $\delta_H 3.88$ (1H, *d*, 11.2). The ¹H-¹H COSY spectrum (**Figure 36**) demonstrated for the cross peak of methylene proton from $\delta_H 0.75$ (H-1) to $\delta_H 1.52$ and 1.65 (H-2), from $\delta_H 1.52$ (H-2) to $\delta_H 1.45$ (H-3), and from $\delta_H 4.05$ (H-7) to $\delta_H 1.72$ (H-6). The HMBC spectrum (**Figure** **39**) showed correlations from $\delta_H 0.84$ (18-CH₃) to $\delta_C 36.4$ (C-4), from $\delta_H 3.67$ and $\delta_H 3.88$ (H-18) to $\delta_C 171.3$ (C-1'), from $\delta_H 2.11$ (2'-CH₃) to $\delta_C 171.3$ (C-1'), from $\delta_H 1.25$ (H-5) to $\delta_C 39.0$ (C-1) and $\delta_C 51.8$ (C-9), from $\delta_H 1.15$ (20-CH₃) to $\delta_C 39.7$ (C-10), and from $\delta_H 1.72$ (H-6) to $\delta_C 71.0$ (C-7) and $\delta_C 58.4$ (C-8). Based on these spectral data the first substructure of compound CK04 is propossed as shown below.

The ¹H-¹H COSY spectrum (**Figure 36**) of compound CK 04 displayed a correlation between δ_H 3.12 (H-13) to δ_H 2.08 (H-14), while the HMBC spectrum of compound CK04 showed the correlations from δ_H 4.05 (H-7) to δ_C 209.8 (C-15), from δ_H 2.08 (H-14) to δ_C 58.4 (C-8), δ_C 209.8 (C-15), δ_C 149.2 (C-16), and from δ_H 5.3 and δ_H 6.0 (H-17) to δ_C 149.2 (C-16), δ_C 37.6 (C-13), δ_C 209.8 (C-15) and δ_C 58.4 (C-8), therefore the second fragment of compound CK 04 is assembled as shown.

Combination of the first and the second fragments established a gross structure of CK 04. Therefore compound CK 04 was identified as *ent-7β*-hydroxy-15-oxokaur-16-en-18-eyl acetate, which is a known compound previously isolated from a Vietnamese folk medicine, *Croton tonkinensis* (Son, Giang and Taylor 2000).

Compound CK 04

Compound CK 04 exhibited negative optical rotation ($[\alpha]^{30}_{D}$ -4.0°, *c* 1.0, CHCl₃) similar to *ent*-7 β -hydroxy-15-oxokaur-16-en-18-eyl acetate, and therefore compound CK 04 possibly possessed the same stereochemistry as that of *ent*-7 β -hydroxy-15-oxokaur-16-en-18-eyl acetate (Son *et al.* 2000). Proton and carbon of compound CK 04 were completely assigned by analyses of ¹H-¹H COSY (**Figure 36**), NOESY (**Figure 37**), HMQC (**Figure 38**) and HMBC (**Figure 39**) spectral data as shown in **Table 5**.

Compound CK 04

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	<i>ent</i> -7β-Hydroxy-15-oxokaur-16-en-		Compound CK 04	
	18-eyl acetate (CDCl ₃ ,	400MHz)	(CDCl ₃ , 500 MH	Iz)
	(Son <i>et al.</i> 2000)			
	δ_{H} (ppm), J (Hz)	δ_C (ppm)	δ_{H} (ppm), J (Hz)	δ_C (ppm)
1	α 1.79 (<i>ddd</i> , 3.5, 3.5, 13.0)	38.9	α 1.81 (1H, dt, 3.2, 12.8)	39.0
	$\beta 0.74 (tdq, 13.0, 4.0, 0.9)$		β 0.75(1H, <i>td</i> , 3.2, 13.1)	
2	α 1.65 (<i>m</i>)	17.5	1.52 (1H, <i>m</i>)	17.4
	β 1.50 (<i>m</i>)		1.49 (1H, <i>m</i>)	
3	α 1.38 (br d, 4.2)	35.4	1.45 (1H, <i>m</i>)	35.4
	β 1.35 (<i>m</i>)		1.35 (1H, <i>m</i>)	
4	-	36.4	-	36.4
5	1.28 (<i>dd</i> , 12.6, 1.8)	46.3	1.30 (1H, <i>d</i> , 12.5)	46.3
6	α 1.45 (q, 12.0)	27.7	1.72 (2H, <i>m</i>)	27.7
	β 1.70 (<i>ddd</i> , 12.0, 4.4, 1.6)			
7	4.05 (<i>dd</i> , 4.4, 12.0)	70.8	4.05 (1H, <i>dd</i> , 11.8, 4.4)	71.0
8	- 3.57	58.3	-	58.4
9	1.23 (br d, 8.5)	51.8	1.25 (1H, d, 8.5)	51.8
10	-	39.6	-	39.7
11	α 1.70 (<i>m</i>)	18.0	1.65 (1H, <i>m</i>)	18.0
	β 1.47 (<i>m</i>)	Aggeder	1.50 (1H, <i>m</i>)	
12	α 1.96 (<i>tdd</i> , 13.0, 6.2, 2.7)	32.8	1.98 (2H, <i>ddt</i> , 2.6, 6.2, 13.3)	32.8
	β 1.70 (<i>m</i>)			
13	3.10 (<i>m</i>)	37.6	3.12 (1H, <i>br s</i>)	37.6
14	2.07 (br d)	27.9	2.08 (2H, <i>m</i>)	27.8
15	ັດວາມພົ	209.7	2005	209.8
16	- 6161 1116 3	149.2	-91119-	149.2
17	5.29 (<i>t</i> , 1.1)	115.0	5.3 (1H, <i>s</i>)	115.0
ີລ	5.97 (<i>t</i> , 1.1)	191981	6.0 (1H, <i>s</i>)	
18	3.66 (<i>d</i> , 10.8)	72.3	3.67 (1H, <i>d</i> , 11.1)	72.4
	3.87 (<i>d</i> , 10.8)		3.88 (1H, <i>d</i> , 11.2)	
19	0.84 (s)	17.5	0.84 (3H, <i>s</i>)	17.6
20	1.14 (<i>d</i> , 0.9)	18.2	1.15 (3H, <i>s</i>)	18.2
1′	-	171.2	-	171.3
2'	2.10 (s)	21.1	2.11 (3H, <i>s</i>)	21.2

Table 5: The ¹H and ¹³C-NMR Spectral Data of *ent*-7β-Hydroxy-15-oxokaur-16en-18-eyl acetate (Son *et al.* 2000) and Compound CK 04 in CDCl₃

2. Structure Elucidation of Compounds Isolated from Croton birmanicus

2.1 Structure Elucidation of Compound CB 01

Compound CB 01 was obtained as brown oil. A molecular formula of $C_{18}H_{24}N_2O_3 m/z$ 339.2 [M+Na]⁺ was obtained from the ESIMS spectrum (**Figure 42**). The IR spectrum (**Figure 41**) showed bands of NH stretching at *v* 3350 cm⁻¹, CH₃ stretching at *v* 3063 cm⁻¹, CH₂ stretching at *v* 2931 cm⁻¹, C=O stretching at *v* 1726 and 1682 cm⁻¹, and the UV spectrum (**Figure 40**) displayed λ_{max} at 214 nm. The optical rotation of CB 01 was negative, $[\alpha]^{30}_{D}$ -20.6° (*c* 0.825, CHCl₃).

The ¹H NMR (CDCl₃) spectral data (**Figure 43**) of CB 01 displayed the signals of five non- equivalent methylene protons at $\delta_H 2.77$ (H-14, t, 7.7), $\delta_H 3.94$ (H-13, m), $\delta_H 2.66$ (H-4, dd, 5.2), $\delta_H 2.45$ and $\delta_H 1.62$ (H-5, m), and $\delta_H 1.41$ and $\delta_H 1.62$ (H-10, m), two methine protons at $\delta_H 4.41$ (H-6, m), and $\delta_H 2.14$ (H-9, m), five aromatic protons at $\delta_H 7.14$ (H-16 and H-20, m), $\delta_H 7.22$ (H-17 and H-19, m), and $\delta_H 7.15$ (H-18, m), and an exchangeable NH at $\delta_H 6.20$ (H-7, br d, 5.0).

The ¹³C NMR and DEPT135 spectral data (**Figure 44**) of CB 01 revealed 16 signals of two methyl carbons at δ_C 11.9 (C-11) and δ_C 17.4 (C-12); five methylene carbons at δ_C 24.6 (C-5), δ_C 27.4 (C-10), δ_C 31.8 (C-4), δ_C 34.1 (C-14), and δ_C 41.8 (C-13), two methine carbons at δ_C 51.4 (C-6) and δ_C 43.1 (C-9); six aromatic carbons at δ_C 126.7 (C-18), δ_C 128.6 (2xC, C-17 and C-19), δ_C 129.1 (2xC, C-16 and C-20) and δ_C 138.3 (C-15); and three carbonyl carbons at δ_C 171.1 (C-3), δ_C 172.0 (C-1), and δ_C 177.0 (C-8).

The ¹H-¹H COSY spectrum (**Figure 46**) of CB 01 displayed cross peak from δ_H 2.45 to δ_H 1.62, from δ_H 2.74 to δ_H 2.66, and from δ_H 1.62 to δ_H 1.43, while the HMQC spectrum (**Figure 47**) of CB 01 showed correlations from 2.45 and 1.62 (H-4) to 24.6 (C-4), from δ_H 2.74 and δ_H 2.66 (H-5) to 31.8 (C-5), and from δ_H 1.62 and δ_H 1.43 (H-10) to 27.4 (C-10).

A typical resonance of 1-substituted benzene ring in CB 01 could be observed, exhibiting three multiplet resonances at δ_H 7.14 (2H, *m*), δ_H 7.15 (1H, m), and δ_H 7.22

(2H, m). The ¹³C and HMQC spectral data indicated signals of 1-substituted benzene ring at δ_C 129.1 (2xC), 128.6 (2xC), 126.7 (1xC) and 138.0 (1xC) assignable to C-16 (C-20), C-17 (C-19), C-18 and C-15, respectively. The ¹H-¹H COSY spectrum of CB 01 displayed cross peak from δ_H 3.98 (H-14) to δ_H 2.77 (H-13), while the ¹H-¹³C correlation of HMBC(**Figure 48**) demonstrated the correlations from H-16 (H-20) to C-18 and C-14, from H-17 (H-19) to C-16 (C-20) and C-15, from H-14 to C-13, C-15 and C-16 (C-20), and from H-13 to C-15. Based on these spectral data, a monosubstituted aromatic ring in CB 01 is constructed as shown below.

The ¹H-¹H COSY spectrum of CB 01 revealed the cross peaks from δ_H 2.74 and 2.66 (H-5) to δ_H 2.45 and 1.62 (H-4), from δ_H 4.41 (H-6) to δ_H 2.74 and 2.66 (H-5) and δ_H 6.2 (H-7), from δ_H 1.62 and 1.43 (H-10) to δ_H 1.10 (12-CH₃), and from δ_H 2.15 (H-9) to δ_H 1.10 (11-CH₃). The HMBC spectrum of CB 01 showed the correlations from H-4 to δ_C 171.1 (C-3), from H-6 to δ_C 172.0 (C-1), from H-9 to δ_C 177 (C-8), and from H-10 to δ_C 11.9 (C-11), from 11-CH₃ to δ_C 27.4 (C-10) and δ_C 43.1 (C-9), and from 12-CH₃ to δ_C 43.1 (C-9) and δ_C 27.4 (C-10). The ¹H-¹H COSY spectrum of CB 01 revealed the correlation of NH proton and H-6, and the downfield resonance of H-6 suggested the presence of amide linkage in CB 01. Therefore the second partial structure of compound CB 01 is assembled as shown.

The HMBC spectrum of CB 01 assisted in placing the connection between the first partial and the second partial structure, showing the correlation from H-13 to C-1 and C-3.

Based on these spectral data, the gross structure of compound CB 01 was identified as julocrotine, a glutarimide alkaloid, which was previously isolated from *Julocroton montevidensis* Klotzsch (Nakano, Djerassi, Corral *et al.* 1961), *Croton humilis* (Stuart, McNeill, Kutney *et al.* 1973), and *Croton membranaceus* (Aboagye, Sam, Massiot *et al.* 2000). Proton and carbon of compound CB 01 were completely assigned by analyses of ¹H-¹H COSY (Figure 45), NOESY (Figure 46), HMQC (Figure 47) and HMBC (Figure 48) spectral data as shown in Table 6.

0/

Compound CB 01

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	Julocrotoine (300 MHz, CDCl ₃)		CB 01 (400 MHz, CDCl ₃)	
	(Aboagye et al. 2000)			
	$\delta_{H}(\mathrm{ppm}), J(\mathrm{Hz})$	δ_C (ppm)	δ_{H} (ppm), J (Hz)	δ_C (ppm)
1	-	171.7	-	172.0
2	_	-	-	-
3	-	170.9	-	171.1
4	2.72 (<i>m</i>)	31.6	2.74 (1H, <i>m</i>)	31.8
			2.66 (1H, <i>m</i>)	
5	2.51 (<i>m</i>)	24.3	2.45 (1H, <i>m</i>)	24.6
	1.71 (<i>m</i>)		1.62 (1H, <i>m</i>)	
6	4.52 (<i>dd</i>)	51.0	4.41(1H, <i>td</i> , 7.8, 5.4)	51.4
7 (NH)	6.38 (br s)	-	6.20 (1H, <i>br d</i> , 5.0)	-
8	- / 8	176.6	-	177.0
9	2.23	42.8	2.15 (1H, q, 6.7)	43.1
10	1.48 (<i>m</i>)	27.1	1.43 (1H, <i>m</i>)	27.4
	1.71 (<i>m</i>)	all pland by	1.62 (1H, <i>m</i>)	
11	0.95 (<i>dd</i>)	11.7	0.87 (3H, <i>t</i> , 8.5)	11.9
12	1.19 (<i>d</i>)	17.1	1.10 (3H, <i>d</i> , 6.9)	17.4
13	4.01 (<i>m</i>)	41.4	3.94 (2H, <i>m</i>)	41.8
14	2.82 (<i>t</i>)	33.6	2.77 (2H, <i>t</i> , 7.8)	34.1
15	- e - e	138.0	-	138.0
16	7.21 (<i>m</i>)	128.8	7.14 (1H, <i>m</i>)	129.1
17	7.29 (<i>m</i>)	128.3	7.22 (1H, <i>m</i>)	128.6
18	7.29 (<i>m</i>)	126.5	7.15 (1H, <i>m</i>)	126.7
19	7.29 (<i>m</i>)	128.3	7.22 (1H, <i>m</i>)	128.6
20	7.21 (<i>m</i>)	128.8	7.14 (1H, <i>m</i>)	129.1

Table 6: The ¹H and ¹³C-NMR Spectral Data of Julocrotine (Aboagye *et al.* 2000) and Compound CB 01 in CDCl₃

3. Structure Elucidation of Compounds Isolated from Millettia kangensis

3.1 Structure Elucidation of MK 01

The compound MK 01 was obtained as colourless crystal. The molecular formular $C_{18}H_{12}O_4$ was determined by ESITOFMS (**Figure 51**), showing $[M+H]^+$ peak at *m/z* 293.0818 (*calc.* for $C_{18}H_{13}O_4$ 293.0814). The IR spectrum (**Figure 50**) of MK 01 revealed the presence of a conjugated carbonyl stretching at *v*1637, and aromatic ring stretching at *v* 1624 and 1458 cm⁻¹. The UV spectrum (**Figure 49**) demonstrated the absorption at λ_{max} at 303, 260, 217, 203 nm.

The ¹H-NMR (CDCl₃) spectral data of MK 01 (**Figure 52**) displayed a characteristic of a1-substituted aromatic ring, showing a doublet of doublet signal at $\delta_H 8.16$ (2H, dd, J = 8.0, 2.1 Hz), and multiplet signal at $\delta_H 7.56$ (3H, m). The ¹³C and HMQC spectrum (**Figures 53 and 56**) of MK 01 showed signals of mono-substituted aromatic ring at δ_C 130.6 (C-1'), 128.0 (C-2' and C-6'), 128.2 (C-3' and C-5'), and 130.2 (C-4'). The HMBC spectrum (**Figure 57**) of MK 01 further revealed the correlation from H-2' to C-3', C-4', C-1', and C-2. Based upon these spectral data, the first substructure was constructed.

Typical signals of an anellated furan ring on the ¹H NMR spectrum of MK 01, showing two doublets at δ_H 7.19 (1H, *d*, 2.2 Hz) and at δ_H 7.76 (1H, *d*, 2.2 Hz). The coupling constant of 8.8 Hz for δ_H 8.21 (1H, *d*, 8.8 Hz) and δ 7.56 (1H, *d*, 8.8 Hz) indicated *ortho* coupling between H-5 and H-6, while the HMQC spectrum showed the attachment of H-5 (δ_H 8.81) to C-5 δ_C (121.5), and H-6 (δ_H 7.56) to C-6 (δ_C 109.57). The HMBC spectrum of MK 01 exhibited correlations from H-6 to C-8, C-10, and C-5, from H-5 to C-4, and from 3-OCH₃ protons to C-3. The assignment of the second partial structure of MK 01 was established as shown.

Combination of the two fragments as described earlier led to the construction of a gross structure of MK 01. Finally, the structure of MK 01 was confirmed by X-ray crystallography. Compound MK 01 was therefore identified as 3-hydroxy-[4",5":8,7]furanoflavone (Karanjin), which is a known agent previously isolated from *Millettia leucantha* (Phrutivorapongkul, Lipipun, Ruangrungsi *et al.* 2003). Proton and carbon of compound MK 01 were completely assigned by analyses of ¹H-¹H COSY (**Figure 54**), NOESY (**Figure 55**), HMQC (**Figure 56**) and HMBC (**Figure 57**) spectral data as shown in **Table 7**.

The structure of compound MK 01 is confirmed by single-crystal X-ray diffraction analysis.

ORTEP PLOT of MK 01

Position	Karanjin (CDCl ₃ , 400 Hz)		Compound MK 01 (CDCl ₃ , 400 Hz)	
	(Phrutivorapongkul et al., 2003)			
	δ_{H} (ppm), J (Hz)	δ_C (ppm)	δ_{H} (ppm), J (Hz)	δ_C (ppm)
2	-	154.9	_	153.4
3	-	141.8	-	141.3
4	-	175.3	-	174.8
5	8.21 (1H, <i>d</i> , 8.8)	121.8	8.21 (1H, <i>d</i> , 8.8)	121.5
6	7.56 (1H, m)	110.0	7.56 (1H, <i>m</i>)	109.6
7	-	158.2	-	157.5
8	-	117.0	-	116.7
9		150.0	-	148.3
10	- / / b	119.7	-	118.3
1′		131.1	-	130.6
2'	8.15 (1H, <i>m</i>)	128.4	8.16 (1H, <i>dd</i> , 8.0, 2.1)	128.0
3'	7.56 (1H, <i>m</i>)	128.7	7.56 (1H, <i>m</i>)	128.2
4′	7.56 (1H, <i>m</i>)	130.7	7.56 (1H, <i>m</i>)	130.2
5'	7.56 (1H, <i>m</i>)	128.7	7.56 (1H, <i>m</i>)	128.2
6′	8.15 (1H, <i>m</i>)	128.4	8.11 (1H, <i>dd</i> , 8.0, 2.1)	128.0
2″	7.77 (1H, <i>d</i> , 2.4)	145.6	7.76 (1H, <i>d</i> , 2.2)	145.3
3″	7.19 (1H, dd , $J = 2.4$,	104.2	7.19 (1H, <i>d</i> , 2.2)	103.8
	1.2)			
3-OCH ₃	3.93 (3H, s)	60.3	3.93 (3H, s)	59.8
I	ิลถาบนา	91819	เรการ	

 Table 7: ¹H and ¹³C-NMR Spectral Data of Karanjin and Compound MK 01

จุฬาลงกรณมหาวิทยาลย

3.2 Structure Elucidation of MK 02

Compound MK 02 was obtained as colourless plate. The ESIMS (**Figure 60**) exhibited a peak of $[M+Na]^+$ at m/z 331.3, calculated for $C_{18}H_{12}O_5$. The UV absorptions (**Figure 58**) bands appeared at λ_{max} 308 and 208 nm. The IR spectrum (**Figure 59**) showed conjugated carbonyl stretching at v 1592.5 cm⁻¹ and OH stretching at v 3265 cm⁻¹.

The ¹H-NMR spectrum (DMSO- d_6) (Figure 61) exhibited typical signals of 1substituted benzene ring showing a multiplet signal at δ_H 7.59 (3H, *m*) and a doublet of doublet signal at δ_H 8.11 (2H, *dd*, J = 1.85, 7.98 Hz). The ¹³C and HMQC spectral data indicated signals of 1-substituted benzene ring at δ_C 128.20 (2xC), 128.80 (2xC), 130.72 (1xC) and 130.68 (1xC) assignable to C-2' (C-6'), C-3'(C-5'), C-4' and C-1', respectively. The ¹H-¹H COSY (Figure 63) showed a correlation between δ_H 7.59 (H-4', H-6') and 8.11 (H-2', H-5'), while the ¹H-¹³C correlation of HMBC (Figure 66) demonstrated the correlations from H-2' to C-1', C-4' and C-2, and from H-3' to C-2' and C-4'. Based on these spectral data, a mono-substituted aromatic ring in MK 02 was constructed as shown below.

The singlet signal at δ_H 7.33 was assigned to H-5, and the HMBC spectrum showed the correlations from H-5 to C-7 (δ_C 147.5 ppm), C-10 (δ_C 120.0 ppm) and C=O (δ_C 173.6 ppm). Chemical shifts of ¹³C-NMR spectrum (**Figure 62**) of MK 02 at δ_C 140.65 (C-6), 147.5 (C-7), 147.2 (C-2"), 143.3 (C-9), 153.9 (C-2) and 140.7 (C-3) indicated that these carbons were oxygenated double bonds. Based on these spectral data, the second partial structure of MK 02 was created as shown.

The ¹H-NMR spectrum of MK 02 showed the characteristic of anellated furan ring with the signals at δ_H 8.19 (H-2", d, J = 2.17 Hz) and δ_H 7.44 (H-3", d, J= 2.09Hz). The HMQC spectrum (**Figure 65**) revealed the attachment of furan protons to its corresponding carbons at δ_C 147.2 (C-2") and δ_C 104.9 (C-3"). The ¹H-¹H COSY spectrum showed the correlation between H-3" and H-2", while the HMBC spectrum showed the correlations from H-2" to C-3", C-7 and C-8, and from H-3" to C-7 and C-8. The third fragment of MK 02 is shown below.

The NOESY spectrum (**Figure 64**) of MK 02 demonstrated the correlations between 6-OH and H-5, and between 3-OCH₃ and H-6'. The HMBC spectrum exhibited the correlation from 3-OCH₃ protons to C-3.

On the basis of these spectral data, a gross structure of MK 02 was established as shown below. Compound MK 02 was therefore identified as 3-methoxy-6-hydroxy-[4",5":8,7]-furanoflavone. MK 02 is an oxidized form of MK 01, and it is a new compound. Assignment of protons and carbons of MK 02 is in **Table 8**.

Position	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}({\rm ppm})$
2	-	153.9
3		141.7 ^a
4	-	173.6
5	7.33 (1H, <i>s</i>)	102.6
6		140.6 ^a
7		147.5
8		118.8
9	- salah	143.2 ^a
10		120.0
1′	and the second	130.6
2'	8.11 (1H, <i>dd</i> , 7.98, 2.14)	128.2
3'	7.58 (1H, <i>m</i>)	128.8
4′	7.59 (1H, <i>m</i>)	130.7
5'	7.58 (1H, <i>m</i>)	128.8
6′	8.11 (1H, <i>dd</i> , 7.98, 2.14)	128.2
2″	8.19 (1H, <i>d</i> , 2.17)	147.2
3″	7.45 (1H, <i>d</i> , 2.09)	104.9
3-OCH ₃	3.83 (3H, <i>s</i>)	59.7
6-OH	10.80 (1H, <i>br s</i>)	1111-191

 Table 8: The ¹H and ¹³C-NMR Spectral Data of Compound MK 02 in DMSO-d₆

^a Assignments may be exchangeable.

3.3 Structure Elucidation of MK 03

Compound MK 03 was obtained as colourless plate. The molecular formular was determined as $C_{19}H_{14}O_5$ by ESITOFMS (**Figure 69**), observing for $[M+Na]^+$ at m/z 345.48. The IR spectrum (**Figure 68**) of MK 03 revealed the presence of a conjugated carbonyl at v 1753 cm⁻¹, and the UV spectrum (**Figure 67**) exhibited absorptions at λ_{max} 203, 206 and 306 nm.

The ¹H-NMR (CDCl₃) spectrum (**Figure 70**) of MK 03 showed signals at $\delta_H 3.92$ (3H, *s*), 4.10 (3H, *s*), 7.18 (1H, *d*, J = 2.3 Hz), 7.54 (3H, *m*), 7.55 (1H, s), 7.75 (1H, *d*, J = 2.0 Hz) and 8.13 (2H, *dd*, J = 7.9, 1.8 Hz) ppm. The ¹³C-NMR spectrum (**Figure 71**) of MK 03 demonstrated signals at δ_C 56.6, 60.3, 100.1, 104.9, 118.9, 126.8, 128.5, 128.8, 130.7, 131.2, 141.7, 145.2, 146.1, 148.3, 154.8 and 175, while the DEPT135 spectrum(**Figure 71**) revealed the presence of eight methine, two methyl, and nine quaternary carbons. Evidence from IR spectrum and ¹³C NMR data suggested that compound MK 03 is a flavonoid.

The pattern with doublet of doublet at δ_H 8.13 (2H, dd, J = 7.9, 1.8 Hz) and multiplet at δ_H 7.54 (3H, *m*) were typical signals of a mono-substituted aromatic ring. The ¹³C and HMQC spectra (**Figures 71 and 74**) indicated signals of 1-substituted benzene ring at δ_C 128.5 (2xC), 128.8 (2xC), 130.7 (1xC), and 131.2 (1xC) assignable to C-2' (or C-6'), C-3' (or C-5'), C-4', and C-1', respectively. The HMBC spectrum (**Figure 75**) of MK 03 revealed the correlation from H-2' (or H-6') to C-1', C-3' (or C-5'), C-4', and C-2. These spectral data assisted in the construction of the first partial structure of MK 03 as shown.

The ¹H NMR spectrum of MK 03 further exhibited two doublet signals at δ_H 7.18 (1H, *d*, 2.3 Hz) and δ_H 7.55 (1H, *d*, 2.0 Hz), while the ¹H-¹H COSY spectrum (**Figure 72**) displayed the correlation between these two protons (H-2" and H-3"). The

HMBC spectrum of MK 03 showed the correlation from H-2" to C-7 (δ_C 148.3), C-8 (δ_C 118.9), and C-3" (δ_C 104.9), and from H-3" to C-7, C-8, and C-2". The above spectral data led to the construction of the second partial structure of MK 03 as shown.

The ¹H NMR spectrum of MK 03 displayed two methoxy singlets at δ_H 3.92 and δ_H 4.10, while the ¹H-¹³C correlation of HMBC spectrum showed the correlation from 3-OCH₃ protons to C-3 and from 6-OCH₃ protons to C-6, establishing the attachment of 3-OCH₃ and 6-OCH₃. A singlet methine signal at δ_H 7.55 (1H, *s*) on aromatic ring A was assignable to H-5 by the HMBC correlations from H-5 to C-7 (δ_C 148.3), C-9 (δ_C 145.2), and C-4 (δ_C 175.0). Chemical shifts of ¹³C-NMR spectrum of MK 03 at δ_C 154.8 (C-2), 141.7 (C-3), 175 (C-4), 145.2 (C-6), 148.3 (C-7), 145.2 (C-9), and 146.1 (C-2") indicated that these carbons were oxygenated double bonds. The NOESY spectrum (**Figure 73**) of MK 03 demonstrated the correlations between 6-OCH₃ and H-5. Analysis of these spectral data assisted in the construction of the third substructure of MK 03 as shown.

Combination of the three fragments mentioned above led to the assignment of a gross structure of MK 03 (**Table 9**). Therefore compound MK 03 was identified as 3,6-dimethoxy-[4",5":8,7]-furanoflavone, which is a known substance previously isolated from *M. ichthyochtona* (Kamperdick 1998). Protons and carbons of MK 06 were assigned as shown in **Table 9**.

Table 9: The ¹H and ¹³C-NMR Spectral Data of 3,6-Dimethoxy-[4",5":8,7]furanoflavone and Compound MK 03

Position	3,6-Dimethoxy-[4",5":8,7]-furano		Compound MK 03	
	flavone (CDCl ₃ , 300 MHz)		(CDCl ₃ , 400 MHz)	
	(Kamperdick 1998)			
	δ_{H} (ppm), J (Hz)	δ_C (ppm)	$\delta_{H}(\text{ppm}), J(\text{Hz})$	δ_C (ppm)
2	-	154.6	-	154.8
3	-///8	141.5	-	141.7
4	-////	174.8	-	175.0
5	7.56 (1H, s)	99.8	7.55 (1H, s)	100.1
6	-	144.1	-	145.2
7	-	148.1	-	148.3
8	-	118.7	-	118.9
9		144.9	-	145.2
10	-	120.4	-	126.8
1′	-	131.0	-	131.2
2'	8.14 (1H, <i>dd</i> , 7.9, 1.2)	128.3	8.13 (1H, <i>dd</i> , 7.9, 1.8)	128.5
3'	7.56 (1H, <i>m</i>)	128.6	7.54 (1H, <i>m</i>)	128.8
4′	7.56 (1H, <i>m</i>)	130.5	7.54 (1H, <i>m</i>)	130.7
5'	7.56 (1H, <i>m</i>)	128.6	7.54 (1H, <i>m</i>)	128.8
6'	8.14 (1H, <i>dd</i> , 7.9, 1.2)	128.6	8.13 (1H, <i>dd</i> , 7.9, 1.8)	128.5
2″	7.77 (1H, <i>d</i> , 1.9)	145.9	7.75 (1H, <i>d</i> , 2.0)	146.1
3″	7.18 (1H, <i>d</i> , 1.9)	104.7	7.18 (1H, <i>d</i> , 2.3)	104.9
3-OCH ₃	3.93 (3H, <i>s</i>)	60.2	3.92 (3H, <i>s</i>)	60.3
6-OCH ₃	4.11 (3H, <i>s</i>)	56.5	4.10 (3H, <i>s</i>)	56.6

3.4 Structure Elucidation of MK 04

The compound MK 04 was obtained as colourless plate. A molecular formula of $C_{19}H_{14}O_5$ for MK04 was deduced from the ESITOFMS spectrum (**Figure 78**), $[M+Na]^+$ observed at m/z = 345.0742. The IR spectrum (**Figure 77**) of MK 04 revealed the presence of a conjugated carbonyl at v 1735 cm⁻¹, and the UV spectrum (**Figure 76**) exhibited absorptions at λ_{max} 282, 312 and 348 nm.

The ¹H-NMR (CDCl₃) spectrum (**Figure 79**) of MK 04 prominently exhibited signals of a methoxyl group at δ_H 4.10 and 4.26, a singlet signal of aromatic proton at δ_H 6.74 (1H, H-3), multiplet signals of five aromatic protons at δ_H 7.53 (2H, H-3' and H-5'), 7.54 (1H, H-4') and 7.98 (2H, H-2' and H-6'), two doublet signals typically for furan ring at δ_H 7.04 (1H, *d*, *J* = 2.2 Hz) and 7.65 (1H, *d*, *J* = 2.3 Hz) as H-3" and H-2".

Analysis of ¹³C-NMR and DEPT135 spectral (**Figure 80**) data of MK 04 revealed the presence of nine quaternary, eight methine, and two methyl carbons. Compound MK 04 possessed 1-substituted benzene ring, as revealed by analysis of its spectral data.

The ¹H-¹H COSY spectrum (**Figure 81**) exhibited the correlation of H-2' (or H-6') and H-3' (or H-5'), while the ¹H-¹³C HMQC spectrum (**Figure 83**) showed the attachment between H and C, e.g. H-2' (H-6') to C-2' (C-6'), and H-3' (H-5') to C-3' (C-5'). The long range ¹H-¹³C signals on the HMBC spectrum (**Figure 84**) were observed from H-3' to C-4', C-2' and C-1', and from H-2' to C-4' and C-1'. These spectral data assisted in the construction of the first partial structure of MK 04 as shown.

The downfield shift and coupling constant of 2 Hz for H-2" and H-3" are typical to an anellated furan ring. The HMBC correlations were seen from H-2" to C-

3", C-7 and C-8, and from H-3" to C-2" and C-7, leading to the assignment of furan ring in MK 04.

Two downfield singlet methoxy signals at δ_H 4.10 (5-OCH₃) and 4.26 (8-OCH₃) demonstrated the HMBC correlations to carbons at respective δ_C 147.1 (C-5) and 131.8 (C-8), indicating that the methoxy groups situated at C-5 and C-8. These spectral data implied the presence of the third fragment in MK 04 as shown.

A singlet signal at δ_H 6.75 (H-3) correlated to C-2, C-1' and C-9, as observed on the HMBC spectrum of MK 04. The NOESY spectrum (**Figure 82**) of MK 04 demonstrated the correlations between 5-OCH₃ and H-3". The carbonyl carbon of MK 04 exhibited a signal at δ_C 178.7 which is a characteristic of a flavonoid skeleton. Combination of all partial structures mentioned earlier led to the assemble a gross structure for MK 04.

Based upon these spectral data, compound MK 04 is a new natural product, and identified as 5,6-dimethoxy-[4", 5";6,7]-furanoflavone. Protons and carbons of MK 04 were assigned as shown in **Table 10**.

 Table 10: The ¹H and ¹³C-NMR Spretral Data of Compound MK 04 in CDCl₃

Position	δ_{H} (ppm), J (Hz)	δ_C (ppm)
2		161.7
3	6.77 (1H, s)	107.4
4	500	178.7
5	- 6664	147.6
6		119.8
7	A VOLCANO HA	149.5
8		131.7
9	a <u>-</u>	147.1
10	-	114.0
1'	-	130.5
2'	7.98 (1H, <i>m</i>)	126.3
3'	7.53 (1H, <i>m</i>)	129.2
4′ 6	7.53 (1H, <i>m</i>)	131.7
5'	7.53 (1H, <i>m</i>)	129.2
6'	7.98 (1H, <i>m</i>)	126.3
2″	7.65 (1H, <i>d</i> , 2.3)	145.8
3″	7.04 (1H, <i>d</i> , 2.2)	105.4
5-OCH3	4.10 (3H, <i>s</i>)	62.6
8-OCH ₃	4.26 (3H, <i>s</i>)	61.8
3.5 Structure Elucidation of MK 05

A compound MK 05 was obtained as colourless crystal. The UV spectrum (Figure 85) showed λ_{max} at 203, 271 and 309 nm.

The ¹H and ¹³C NMR (CDCl₃) spectral (**Figures 86** and **87**) of MK 05 revealed that compound MK 05 was flavonoid derivative. A typical flavonoid carbonyl carbon was observed at δ_C 189.0. The characteristics of 1-phenyl substitution were also observed in MK 05, showing δ_H at 7.64 (*br d*, J = 7.3 Hz, H-2'or H-6'), 7.47 (*m*, H-3' or H-5') and 7.41 (*m*, H-4') with δ_C at 125.5 (2xC, (C-2' or C-6')), 128.2 (2xC, (C-3' or C-5')), and 128.4 (1xC, (C-4')).

Interestingly, there was a low field methoxy group (δ_H 3.05) and nonequivalent methylene protons at δ_H 3.00 (1H, d, J = 16.1 Hz) and δ_H 3.08 (1H, d, J = 16.1 Hz). The HMBC (**Figure 91**) well established the substructure shown below, correlations were observed from H-3' (or H-5') to C-1', H-2' (or H-6') to C-2; H-3 to C-2, C-4, and C-1', and 2-OCH₃ protons to C-2.

The other partial structure of MK 05 was constructed as shown. The furan on the aromatic ring showed typical resonances at δ_H 6.96 (d, J = 2.3 Hz) and 7.55 (d, J = 2.3 Hz) with ¹³C resonances at respective δ_C 105.3 and 143.9. The NOESY spectrum (**Figure 89**) of MK 05 showed the correlation between 5-OCH₃ protons and H-3", placing the position 5-OCH₃ and the furan on the aromatic ring as shown. The HMBC spectrum showed the correlation from 8-OCH₃ protons to a carbon with δ_C at 130.0 (C-8), and this upfield resonance of C-8 was from the shielding effect of the adjacent oxygen atoms at C-7 and C-9, readily confirming the presence of oxygenated C-7, C-8, and C-9 in MK 05.

A gross structure of MK 05 was assembled by combination of the two partial structures, leading to a flavanone structure uniquely decorated with a methoxy group at C-2. On the basis of these spectral data, compound MK 05 was identified as a new compound, 2,5,8-trimethoxy-[4", 5":6, 7]-furanoflavanone. Proton and carbon of compound CK 04 were completely assigned by analyses of ¹H-¹H COSY (**Figure 88**), NOESY (**Figure 89**), HMQC (**Figure 90**) and HMBC (**Figure 91**) spectral data as shown in **Table 11**.

Position	$\delta_{H}(\text{ppm}), J(\text{Hz})$	δ_C (ppm)		
2	-	104.5		
3	3.00 (1H, d, J = 16.1)	51.1		
	3.08 (1H, <i>d</i> , <i>J</i> = 16.1)			
4	-	189.0		
5	-	149.2		
6		130.0		
7		151.6		
8		115.6		
9		146.9		
10		111.0		
1′		138.4		
2'	7.67 (1H, $br d, J = 7.3$)	125.5		
3′	7.47 (1H, <i>m</i>)	128.3		
4′	7.41 (1H, <i>m</i>)	128.4		
5′	7.47 (1H, <i>m</i>)	128.3		
6′	7.67 (1H, br d, J = 7.3)	125.5		
2″	7.55 (1H, <i>d</i> , 2.3)	143.9		
3″	6.92 (1H, <i>d</i> , 2.3)	105.3		
2-OCH ₃	3.05 (3H, <i>s</i>)	50.4		
5-OCH ₃	4.09 (3H, <i>s</i>)	61.2		
6-OCH ₃	4.06 (3H, <i>s</i>)	61.1		

Table 11: The ¹H and ¹³C-NMR Spectral Data of Compound MK 05 in CDCl₃

จุฬาลงกรณ์มหาวิทยาลัย

3.6 Structure Elucidation of Compound MK 06

Compound MK 06 was obtained as a colorless needle. The molecular formula was determined as $C_{22}H_{20}O_5$ by ESITOFMS $[M+Na]^+$ (Figure 94) for *m/z* 387.1204 (387.1240). The IR bands (Figure 93) showed C-O stretching of conjugated carbonyl at *v* 1615 cm⁻¹, and C-H stretching of CH₃ at *v* 2923 cm⁻¹. The UV spectrum (Figure 92) showed λ_{max} at 350, 341, and 285 nm.

The ¹H-NMR spectrum (**Figure 95**) (DMSO-*d*₆) of MK 06 exhibited typical signals of 1-substituted aromatic ring, showing a doublet of doublet for H-2' (H-6') at δ_H 8.04 (2H, *dd*, 7.9, 1.8), a multiplet for H-3' (H-5') at δ_H 7.58 (2H, *m*), and a multiplet for H-4' at δ_H 7.58 (1H, *m*). The ¹³C-NMR and HMQC spectral (**Figures 96** and **99**) data also confirmed the presence 1-substituted benzene ring, showing signals at δ_C 130.7 (1xC), 128.1 (2xC), 128.8 (2xC), and 130.3 (1xC) assignable to C-4', C-2' (C-6'), C-3' (C-5'), and C-1', respectively. The ¹H-¹H COSY (**Figure 97**) showed a correlation between H-2' (or H-4') and H-3' (or H-5'), while the HMBC spectrum (**Figure 100**) showed correlation from H-2' to C-2, and from H-5' to C-1' Based on these spectral data, the first partial structure of compound MK 06 was created as shown.

The ¹H-NMR spectrum further revealed a methyl singlet at δ_H 1.46 (6H, *s*) deduced to geminal methyl groups (H-4" and H-5") and two doublet signals at δ_H 5.95 (1H, *d*, *J* = 10.0 Hz) and δ_H 6.90 (1H, *d*, *J* = 10.0 Hz). The HMBC spectrum displayed correlations from two methyl groups (H-4" and H-5") to C-2" and C-3", from H-2" to C-3" and C-8, and from H-1" to C-3", C-7 and C-9, leading to the assignment of an anellated pyrano ring attactched at C-7 and C-8. The HMBC spectral data showed correlations from H-5 to carbons at δ_C 145.7 (C-7), δ_C 146.6 (C-9), and δ_C 172.9 (C-4), from δ_H 3.88 (3H, s) to δ_C 146.8 (C-6), and from δ_H 3.81 (3H, s) to δ_C 140.4 (C-3).

The NOESY spectrum (**Figure 98**) of MK 06 showed the correlation between 6-OCH₃ protons and H-5. On the basis of these spectral data, the second partial structure was assigned as shown.

Combination of the first and second fragment led to the construction of a gross structure of MK 06. Compound MK 06 was therefore identified as 3,6-dimethoxy-2"-dimethyl-[5",6":8,7]-pyranoflavone.

MK 06

The spectrum of compound MK 06 is confirmed by single-crystal X-ray diffraction analysis. Protons and carbons of MK 06 were assigned as shown in **Table 12**.

ORTEP PLOT of MK 06

Position	$\delta_{H}(\text{ppm}), J(\text{Hz})$	δ_C (ppm)		
2	-	153.9		
3	-	140.4		
4	-	172.9		
5	7.34 (1H, <i>s</i>)	103.9		
6	-	146.8		
7	-	145.7		
8	-	109.9		
9	- 9 =	146.6		
10	-	116.7		
1′		130.3		
2'	8.04 (1H, <i>dd</i> , <i>J</i> = 7.9, 1.7)	128.1		
3′	7.58 (1H, <i>m</i>)	128.8		
4′	7.57 (1H, <i>m</i>)	130.7		
5′	7.58 (1H, <i>m</i>)	128.8		
6′	7.57 (1H,m)	128.1		
1″	6.90 (1H, <i>d</i> , <i>J</i> = 10.0)	114.7		
2″	5.95 (1H, <i>d</i> , <i>J</i> = 10.0)	131.3		
3″	-	78.2		
2xCH ₃	1.46 (6H, <i>s</i>)	27.6		
3-OCH ₃	3.81 (3H, <i>s</i>)	59.7		
6-OCH ₃	3.88 (3H, s)	55.8		

Table 12: The ¹H and ¹³C-NMR Spectral Data of Compound MK 06 in DMSO-*d*₆

จุฬาลงกรณ์มหาวิทยาลย

3.7 Structure Elucidation of MK 07

The compound MK07 was obtained as colourless plate. The ESIMS (**Figure 103**) suggested molecular formular of MK 07 as $C_{18}H_{14}O_7$, showing a peak of $[M+Na]^+$ at m/z 365.2. The IR bands (**Figure 102**) revealed signals of OH stretching at v 3374 cm⁻¹, α,β conjugated lactone ring at v 1731 cm⁻¹, and aromatic moiety at v 1621 and 1469 cm⁻¹. The UV spectrum (**Figure 101**) showed λ_{max} at 208, 302 and 358 nm.

The ¹H-NMR spectrum (DMSO- d_6) of MK 07 (**Figure 104**) showed three signals on an aromatic ring at δ_H 7.82 (1H, d, 8.60), 6.92 (1H, dd, 8.59, 2.06) and 6.87(1H, d, 2.05), a typical for an ABX aromatic apin system. The ¹H-¹H COSY spectrum (**Figure 106**) showed connectivities between H-2' and H-3', and between H-3' and H-5'. The ¹³C-NMR spectrum (**Figure 105**) displayed a C-4' hydroxyl carbon at δ_C 160.3. The upfield carbonyl carbon at δ_C 161.4 ppm suggested the presence of conjugated cyclic ester, and the HMBC (**Figure 109**) correlations could be well observed from H-2' to C-4', and from H-3' to C-1'. Based on spectral data substructure of MK 07 was created as shown.

The HMQC (**Figure 108**) data revealed that three methoxyl protons located at δ_H 3.78, 3.88 and 3.89 ppm, belong to δ_C 56.3, 61.4 and 63.2. The ¹H-¹³C HMBC spectrum showed correlations from δ_H 3.88(5-OCH₃) to δ_C 147.1 (C-5), δ_H 3.78 (6-OCH₃) to δ_C 140.7 (C-6), and δ_H 3.89 (7-OCH₃) to δ_C 156.6 (C-5). The HMBC spectrum also showed the correlation from H-8 to C-10, C-9, and C-6. Thus, the combination of HMBC and HMQC spectral data demonstrated that three methoxyl groups and H-8 were located on ring A.

Based on these spectral data, MK 07 was identified as 4'hydroxy,5,6,7-trimethoxycoumestan, this is the fisrt report of a coumestan skeleton from *Millettia* spp. Proton and carbon of compound MK 07 were completely assigned by analyses of ¹H-¹H COSY (**Figure 106**), NOESY (**Figure 107**), HMQC (**Figure 108**) and HMBC (**Figure 109**) spectral data as shown in **Table 13**.

MK 07

Position	$\delta_{H}(\text{ppm}), J(\text{Hz})$	δ_C (ppm)		
2	- 22/2/2/2/2	161.4		
3	(Status and Sha	102.7		
4	-	156.7		
5	A PROVINCE	147.1		
6	-	140.7		
7	-	153.6		
8	7.32 (1H, <i>s</i>)	93.3		
9	-	151.8		
10	ໂລວເພັດວິດແພ	110.4		
1′ 6		104.2		
2'	7.82 (1H, <i>d</i> , 8.60)	123.3		
3′	6.92 (1H, <i>dd</i> , 8.59, 2.06)	114.2		
4'	101 11 0 0 000 11	160.3		
5'	6.87 (1H, <i>d</i> , 2.05)	103.0		
6′	-	155.1		
5-OCH ₃	3.88 (3H, s)	61.4		
6-OCH ₃	3.78 (3H, s)	56.8		
7-OCH ₃	3.89 (3H, s)	63.2		

Table 13: The ¹H and ¹³C-NMR Spectral Data of Compound MK 07 in DMSO-d₆

4. Biological Activities

The results of biological activities including antimycobacterial, antimalarial, and cytotoxicity are shown in **Table 14**.

4.1 Bioactive Compounds from Croton kongensis

Compounds CK 01, 02, 03 and 04 exhibited significant antimalarial (*Plasmodium falciparum* K1), antimycobacterial (*Mycobacterium tuberculosis* H37Ra) and cytotoxicity (KB cell, BC cell and NCI-H187) activities. These results are demonstrated in **Table 14**.

4.2 Bioactive Compound from Croton birmanicus

Compound CB 01 has displayed mild antimycobacterial activity against *Mycobacterium tuberculosis*, and this result is in **Table 14**. CB 01 did not exhibit cytotoxicity.

4.3 Bioactive Compounds from Millettia kangensis

Compounds MK 01, 02, 03, 05, 06, and 07 did not possess antimycobacterial and antimalarial activities (**Table 4**), while compound MK 04 exhibit only mild antimycobacterial activity. All isolated compounds had no cytotoxicity.

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

Compound	Antimalarial ^a	Antimycobacterial ^b	Cytotoxicity IC ₅₀ (µg/mL)*			
	activity	activity	Vero cell	KB cell ^c	BC cell ^d	NCI-H187 ^e
	$IC_{50}(\mu g/mL)$	MIC (µg/mL)				
CK 01	2.1	6.25	0.90	1.25	1.13	0.32
CK 02	2.8	25.0	3.16	13.84	inactive	1.10
CK 03	2.7	6.25	0.99	3.39	2.16	0.42
CK 04	1.3	6.25	N.D.	N.D.	inactive	inactive
CB 01	inactive	100	>50	inactive	inactive	inactive
MK 01	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MK 02	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MK 03	inactive	inactive	>50	inactive	inactive	inactive
MK 04	inactive	200	>50	inactive	inactive	inactive
MK 05	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MK 06	inactive	inactive	>50	inactive	inactive	inactive
MK 07	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

 Table 14 Biological Activities of Compounds from C. kongensis, C. birmanicus

 and M. kangensis

^a Antimalarial activity against *Plasmodium falciparum*, K 1 multi-drug resistant strain.

^b Antimycobacterial activity against *Mycobacterium tuberculosis* H37Ra.

^c KB cell, Human epidermoid carcinoma cell lines of nasopharynx.

^d BC cell, Human breast cancer cell lines.

^e NCI-H187, Human small cell lung cancer cell lines.

N.D.; Not determined.

* IC₅₀ (μ g/mL) > 20; inactive

>10-20; weakly active

5-10; moderately active

< 5; strongly active

CHAPTER V

CONCLUSION

Two new 8,9 secokauranes namely, *ent*-8,9-*seco*-7 α ,11 β -diacetoxykaura-8(14),16-dien-9,15-dione (CK 02) and ent-8,9-seco-8,14-epoxy-7 α -hydroxy-11 β acetoxy-16-kauren-9,15-dione (CK 03), were isolated from Croton kongensis leaves along with two known compounds *ent*-8,9-*seco*-7 α -hydroxy-11-acetoxykaura-8 (14),16-dien-9,15-dione (CK 01), and compound ent-7\beta-hydroxy-15-oxokaur-16-en-18-yl acetate (CK 04). A known glutarimide alkaloid, julocrotine (CB 01), was isolated from the roots of Croton birmanicus. Two new furanoflavoniods as 3methoxy-6-hydroxy-[4",5":8,7]-furanoflavone (MK 02) and 2,5,8-trimethoxy-[4",5":6,7]-furanoflavanone (MK 05), a novel pyranoflavonoid, 3,6-dimethoxy-2"dimethyl-[5",6":8,7]-pyrano flavone (MK 06), a new coumestan, 4'-hydroxy,5,6,7trimethoxycoumestan (MK 07), together with a new natural product (synthetically known) 5,8-dimethoxy-[4",5":7,6]-furanoflavone (MK 04), and two known compounds, karanjin (MK 01) and 3,6-dimethoxy-[4",5":8,7]-furanoflavone (MK 03), were isolated from the leaves and twigs of *Millettia kangensis*. Ent-8,9-seco-7 α ,11 β diacetoxykaura-8(14),16-dien-9,15-dione (CK 02), ent-8,9-seco-8,14-epoxy-7 α hydroxy-11*β*-acetoxy-16-kauren-9,15-dione (CK 03), ent-8,9-seco-7*α*-hydroxy-11acetoxykaura-8(14),16-dien-9,15-dione (CK 01), ent-7\beta-hydroxy-15-oxokaur-16-en-18-yl acetate (CK 04) showed significant antimalarial activity against *Plasmodium* falciparum (at IC₅₀ 2.8, 2.7, 2.1, and 1.3 µg/mL, respectively), antimycobacterial activity against Mycobacterium tuberculosis H37Ra (at MIC 25.0, 6.25, 6.25, and 6.25 μ g/mL, respectively). In addition, CK 01, CK 02 and CK 03 exhibited strongly active toward Vero and NCI-H187 cell lines, and compounds CK 01 and CK 03 showed strongly active against BC cell line. Julocrotine (CB 01) from the roots of C. birmanicus showed mild antimycobacterial against Mycobacterium tuberculosis H37Ra at MIC 100 µg/mL. A new natural product 3,6-dimethoxy-[4",5":8,7]furanoflavone (MK 04) showed only mild antimycobacterial activity against Mycobacterium tuberculosis H37Ra at MIC 200 µg/mL, whereas 3,6-dimethoxy-2"dimethyl-[5",6":8,7]-pyranoflavone (MK **06**) and 3,6-dimethoxy-[4",5":8,7]furanoflavone (MK 03) possessed no antimycobacterial and cytotoxic activities.

REFFERENCES

- Aboagye, F. A., Sam, G. H., Massiot, G. and Lavaud, C., 2000. Julocrotine, a glutarimide alkaloid from *Croton membranaceus*. <u>Fitoterapia</u>, 71: 461-462.
- Aiyar, V. N. and Seshadri, T. R., 1972. 11-Dehydro(-)-hardwickic acid fron *Croton oblongifolius*. <u>Phytochemistry</u>, 11: 1473-1476.
- Asomaning, W. A., Amoako, C., Oppong, I. V., Phillips, W. R., Mensah, I. A., Twum,
 E. Y. O., Waibel, R. and Achenbach, H., 1995. Pyrano- and dihydrofuranoisoflavones from *Millettia thonningii*. Phytochemistry, 39: 1215-1218.
- Asuzu, I.U., Gray, A. I. and Waterman, P. E., 1988. The extraction, isolation and identification of the purgative component of *Croton penduliflorus* seed oil. <u>J.</u> <u>Ethnopharmacology</u>, 23: 267-271.
- Babili, F. E., Moulis, C., Bon, M., Respaud, M. J. and Fouraste, I., 1998. Three furano-diterpenes from the bark of *Croton campestris*. <u>Phytochemistry</u>, 48(1): 165-169.
- Bandara, B. M. R., Wimalasiri, W. R. and Bandara, K. A. N. P., 1987. Isolation and insecticidal activity of (-)-hardwickiic acid from *Croton aromaticus*. <u>Planta</u> <u>Med.</u>, 53: 575.
- Bandara, B. M. R., Wimalasiri, W. R. and Macleod, J. K., 1988. Ent-kauranes and oleananes from *Croton Lacciferus*. Phytochemistry, 27(3): 869-871.
- Baruah, P., Baruah, N. C., Sharma, R. P., Baruah, J. N., Kulanthaivel, P. and Herz, W., 1984. Flavonoids from *Millettia pulchra*. *Phytochemistry*, 23(2): 443-447.
- Batatinha, M. J. M., de Souza-Spinosa, H. and Bernardi, M. M., 1995. Croton zehntneri: possible central nervous system effects of the essential oil in rodents. J. Ethnopharmacology, 45: 53-57.
- Bettolo, R. M. and Scarpati, M. L., 1979. Alkaloids of *Croton draconoides*. <u>Phytochemistry</u>, 18: 520.
- Boonyarathanakornkit, L., Che, C., Fong, H. H. S. and Farnsworth, N. R., 1987. Constituents of *Croton crassifolius* roots. <u>Planta Med.</u>, 54: 61-62.
- Cai, Y., Chen, Z. P., and Phillipson, J. D., 1993. Diterpenes from *Croton lechleri*. <u>Phytochemistry</u>, 32(3): 755-760.
- Cai, Y., Evans, F. J., Roberts, M. F., Phillipson, J.D., Zenk, M. H. and Gleba, Y. Y., 1991. Polyphenolic compounds from *Croton lechleri*. <u>Phytochemistry</u>, 30(6): 2033-2040.

- Chen, Z. P., Cai, Y. and Phillipson, J. D., 1994. Studies on the anti-tumour, antibacterial, and wound-healing properties of dragon's blood. <u>Planta Med.</u>, 60: 541-545.
- Chopra, R. N., Badhwar, R. L. and Ghosh, S., 1965. <u>Poisonous plants of India vol.I.</u> 289-356. The National Printing Works, New Dehli.
- Collins, L. and Franzblau, S.G., 1997. Microplate alamar blue assay versus BACTEC
 460 system for high-throughput screening of compounds against
 Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents
 Chemother, 41(5): 1004-1009.
- Craib, W. G., 1927. <u>Contributions to the flora of Siam</u>. Additameutum XX, 56-72, Bull. Misc. Inform., Kew, London.
- Craveiro, A. A., Andrade, C. H. S., Matos, F. J. A., Alencar, J. W. and Dantas, T. N. C., 1980. Fixed and volatile constituents of *Croton aff. nepetifolius*. <u>J. Nat.</u> <u>Prod.</u>, 43(6): 756-757.
- Dagne, E. and Bekele, A., 1990. C-prenylated isoflavones from *Millettia ferruginea*. <u>Phytochemistry</u>, 29(8): 2679-2682.
- Dagne, E., Bekele, A., Noguchi, H., Shibuya, M. and Sankawa, U., 1990. *O*-Geranylated and *o*-prenylated flavonoids from *Milletia ferruginea*. <u>Phytochemistry</u>, 29(8): 2671-2673.
- Dagne, E., Bekele, A. and Waterman, P. E., 1989. The flavonoids of *Millettia ferruginea* subsp. *ferruginea* and subsp. *darassana* in Ethiopia. <u>Phytochemistry</u>, 28(7): 1897-1900.
- Desjardins, R. E., Canfield, C. J., Haynes, J. D. and Chulay, J. D., 1979. Quantitative assessment of antimalarial activity *in vivo* by semiautomated microdilution technique. <u>Antimicrob. Agents Chemother</u>, 16: 710-718.
- Devon, T. K. and Scott, A. I., 1972. <u>Handbook of naturally occurring compounds</u>: New York and London: Academic press.
- Farias, R. A. F., Rao, V. S. N., Viana, G. S. G., Sileria, E. R., Maciel, M. A. M. and Pinto, A.C., 1997. Hypoglycemic effect of *trans*-dehydrocrotonin, a norclerodane diterpene from *Croton cajucara*. <u>Planta Med.</u>, 63: 558-560.
- Ferrigni, N. R., Puynum, J. E., Anderson, B., Jacobsen, L. B., Nichols, D. E., Moore, D. S. and McLaughlin, J. L., 1982. Modification and evalutation of the potato disc assay and antitumor screening of Euphorbiaceae seeds. <u>J. Nat. Prod.</u>, 45(6): 679-686.

- Fotsing, M. T., Yankep, E., Njamen, D., Fomun, Z. T., Nyasse, B., Bodo, B., Recio, M. C., Giner, R. M. and Rios, J. L., 2003. Identification of an anti-inflammatory principle from the stem bark of *Millettia versicolor*. <u>Planta Med.</u>, 69: 767-770.
- Freire, A. C. G., Melo, P. S., Aoyama, H., Haun, M., Durán, N. and Ferreira, C. V., 2002. Cytotoxic effect of the diterpene lactone dehydrocrotonin from *Croton cajucara* on human promyelocytic leukemia cells. <u>Planta Med.</u>, 69: 67-69.
- Fuendjiep, V., Nkengfack, A. E., Fomun, Z. T., Sondengam, B. L. and Bodo, B., 1998a. Conrauinones A and B, two new isoflavones from stem bark of *Millettia conraui*. J. Nat. Prod., 61: 380-383.
- Fuendjiep, V., Nkengfack, A. E., Fomun, Z. T., Sondengam, B. L. and Bodo, B., 1998b. Conrauinones C and D, two isoflavonoids from stem bark of *Millettia conraui*. <u>Phytochemistry</u>, 47(1): 113-115.
- Galeffi, C., Rasoanaivo, P., Federici, E., Palazzino, G., Nicoletti, M. and Rasolondratovo, B., 1997. Two prenylated isoflavanones fron *Millettia pervilleana*. <u>Phytochemistry</u>, 45: 189-192.
- Gupta, B. B., Bhattacharyya, A. B., Mitra, S. R. and Adityachaudhury, N., 1983.
 Isoaurmillone, and isoflavone from the pods of *Millettia auriculata*.
 <u>Phytochemistry</u>, 22(5): 1306-1307.
- Gupta, B. B. and Krishnamurti, M., 1976a. Prenylated flavanones from *Millettia ovalifolia* seeds. <u>Phytochemistry</u>, 15: 832-833.
- Gupta, B. B. and Krishnamurti, M., 1977. New dibenzoylmethane and chalcone derivatives from *Millettia ovalifolius*. Phytochemistry, 16: 1104-1105.
- Gupta, R. K. and Krishnamurti, M., 1976b. Chromenoflavanones from *Millettia ovalifolia*. <u>Phytochemistry</u>, 15: 2011.
- Hooker, J. D., 1973. <u>The flora of British India; vol II</u> Sabiaceae to Cornaceae. Jayyed Press, New Delhi.
- Irvine, F. R., 1961. Woody plants of Ghana: Oxford University Press, London.
- Islam, A., Gupta, B. B. and Krishnamurti, M., 1980. Furanochalcone and prenylated flavanones from *Millettia ovalifolia* seeds. <u>Phytochemistry</u>, 19: 1558-1589.
- Itokawa, H., Ichihara, Y., Kojima, H., Watanabe, K. and Takeya, K., 1989. Norclerodane diterpenes from *Croton cajucara*. <u>Phytochemistry</u>, 28(6): 1667-1669.

- Kammaing, P., Free, S. N. Y. F., Nkengfack, A. E., Folefoc, G. and Fomun, Z.T., 1999. An isoflavan-quinone and a flavonol from *Millettia laurentii*. Phytochemistry, 51: 829-832.
- Kamperdick, C., Phuong, N. M., Sung, T. V. and Adam, G., 1998. Flavones and isoflavones from *Millettia ichthyochtona*. Phytochemistry, 48(3): 577-579.
- Khalid, S. A. and Waterman, P. E., 1983. Thonningine-A and Thonningine-B: two 3-phenylcoumarins from the seeds of *Millettia thonningii*. <u>Phytochemistry</u>, 22 (4): 1001-1003.
- Khan, H. and Zaman, A., 1974. Extractives of *Millettia ovalifolia*. <u>Tetrahedron</u>, 30: 2811-2815.
- Krishnamurti, M., Sambhy, Y.R. and Seshadri, T.R., 1970. Chemical study of Indian yam beans (*Pachyrrhizus erosus*):isolation of two new rotenoids; 12ahydroxydolineone and 12a-hydroxypachyrrhizone. <u>Tetrahedron</u>, 26: 3023-3027.
- Kubo, I., Asaka, Y. and Shibata, K., 1991. Insect growth inhibitory nor-diterpenes, cis-dehydrocrotonin and trans-dehydrocrotonin, from Croton cajucara. <u>Phytochemistry</u>, 30(8): 2545-2546.
- Kumar, R. J., Krupadanam, G. L. D. and Srimannarayana, G., 1989. Isoflavans from *Millettia racemosa*. <u>Phytochemistry</u>, 28(3): 913-916.
- Luzbetak, D. J., Torrance, S. J., Hoffmann, J. J. and Cole, J. R., 1978. Isolation of (-)-hardwickiic acid and 1-triacontanol from *Croton californicus*. <u>J. Nat. Prod.</u>, 42 (2): 315-316.
- Maciel, M. A. M., Pinto, A. C., Arruda, A. C., Pamplona, S. G. S. R., Vanderlinde, F. A., Lapa, A. J., Echevarria, A., Grynberg, N. F., Côlus, I. M. S., Farias, R. A. F., Costa, A. M. L., Rao, V. S. N., 2000. Ethnopharmacology, phytochemistry and pharmacology: a successful combination in the study of *Croton cajucara*. J. Ethnopharmacology, 70: 41-45.
- Mahmoud, E. N. and Waterman, P. E., 1985. Flavonoids from the stem bark of *Millettia hemsleyana*. <u>Phytochemistry</u>, 24(2): 369-371.
- Manitto, P., 1981. Biosynthesis of natural products: Ellis Horwood Ltd., England.
- Markham, K. R., 1982. <u>Techniques of Flavonoid Identification</u>. Academics press, New York.

- Mazzanti, G., Bolle, P., Matinoli, L., Piccinelli, D., Grgurina, I., Animati, F. and Mugne, Y., 1987. *Croton macrostachys*, a plant used in traditional medicine: purgative and inflamatory activity. <u>J. Ethnopharmacology</u>, 19: 213-219.
- McChesney, J. D. and Silveira, E. R., 1989. 12-Hydroxyhardwickic acid and sonderianial, neo-clerodanes from *Croton sonderianus*. <u>Phytochemistry</u>, 28 (12): 3411-3414.
- Mensah, I. A., Achenbach, H., Thoithi, G. N., Waibel, R. and Mwangi, J. W., 1992. Epoxychiromodine and other constituents of *Croton megalocarpus*. <u>Phytochemistry</u>, 31(6): 2055-2058.
- Milo, B., Risco, E., Vila, R., Iglesias, J. and Cañigueral, S., 2002. Characterization of a fucoarabinogalactan, the main polysaccharide from the gum exudate of *Croton urucurana*. J. Nat. Prod., 65: 1143-1146.
- Minh, P. T. H., Ngoc, P. H., Quang, D. N., Hashimoto, T., Takaoka, S. and Asakawa, Y., 2003. A novel ent-kaurane diterpenoid from *Croton tonkinensis* Gagnep. <u>Chem. Pharm. Bull.</u>, 51(5): 590-591.
- Minhaj, N., Khan, H., Kapoor, S. K. and Zaman, A., 1976. Extractives of *Millettia auriculata*. <u>Tetrahedron</u>, 32: 749-751.
- Moulis, C. and Fouraste, I., 1992. Levatin, an 18-norclerodane diterpene from *Croton levatii*. J. Nat. Prod., 55(4): 445-449.
- Moura, V. L. A., Monte, F. J. O. and Filho, R. B., 1990. A new casbane-type diterpenoid from *Croton nepetaefolius*. J. Nat. Prod., 53(6): 1566-1571.
- Nakano, T., Djerassi, C., Corral, R. A. and Orazi, O. O., 1961. Structure of julocrotine. J. Org. Chem., 26: 1184-1191.
- Nareeboon, P., 1998. <u>Chemical constituents and some bioactivities of leaves of Croton</u> <u>joufra</u>. Master's Thesis, Department of Chemistry, Graduate School, Ramkhamhaeng University.
- Ngamrojnanich, N., Sirimongkon, S., Roengsumran, S., Petsom, A. and Kamimura, H., 2003. Inhibition of Na⁺, K⁺-ATPase activity by (-)-*ent*-kaur-16-en-19-oic acid and its derivatives. <u>Planta Med.</u>, 69: 555-556.
- Olivares, E. M., Lwande, W., Monache, F. D. and Bettolo, G. B. M., 1982. A pyranoisoflavone from seeds of *Millettia thonningii*. <u>Phytochemistry</u>, 21(7): 1763-1765.
- Parvez, M. and Ogbeide, O. N., 1989. 3-Hydroxy-4'-methoxyflavone from *Millettia* zechiana. <u>Phytochemistry</u>, 29(6): 2043-2044.

- Pattamadilok, D., 1998. <u>Chemical constituents of Croton oblongifolius stem bark from</u> <u>Chinat.</u> Master's Thesis, Department of Chemistry, Graduate School, Chulalongkorn University.
- Peres, M. T. L. P., Monache, F. D., Cruz, A. B., Pizzolatti, M. G. and Yunes, R. A., 1997. Chemical composition and antimicrobial activity of *Croton urucurana* Baillon (Euphorbiaceae). J. Ethnopharmacology, 56: 223-226.
- Perrett, S., Whitfield, P. J., Sanderson, L. and Bartlett, A., 1995. The plant molluscicide *Millettia thonningii* (Leguminosae) as a topical antischistosomal agent. J. Ethnopharmacology, 47: 49-54.
- Perry, N. B., Burgess, E. J., Baek, S. H., Weavers, R. T., Geis, W. and Mauger, A. B., 1999. 11-Oxygenated cytotoxic 8,9 secokauranes from a New Zealand liverwort, *Lepidolaena taylorii*. <u>Phytochemistry</u>, 50: 423-433.
- Perry, N. B., Burgess, E. J. and Tangney, R. S., 1996. Cytotoxic 8,9-secokaurane diterpenes from a New Zealand Liverwort, *Lipidolaena taylorii*. <u>Tetrahedron Lett.</u>, 37: 9387-9390.
- Phrutivorapongkul, A., Lipipun, V., Ruangrungsi, N., Kirtikara, K., Nishikawa, K., Maruyama, S., Watanabe, T. and Ishikawa, T., 2003. Studies on the chemical constituents of stem bark of *Millettia leucantha*: Isolation of new chalcones with cytotoxicity, anti-herpes simplex virus and anti-inflammatory avtivities. <u>Chem. Pharm. Bull.</u>, 51(2): 187-190.
- Pieters, L., De Bruyne, T., Mei, G., Lemière, G., Berghe, D. V. and Vlietinck, J., 1992. *In vitro* and *in vivo* biological activity of South American dragon's blood and its constituents. <u>Planta Med.</u>, 58(1): 582-583.
- Pieters, L., De Bruyne, T., Claeys, M., Vlietinck, A., Calomme, M., and Berghe, D. V., 1993. Isolation of a dihydrobenzofuran lignan from South America dragon's blood (*Croton* spp.) as an inhibitor of cell proliferation. J. Nat. Prod., 56(6): 899-906.
- Puebla, P., López, J. L., Guerrero, M., Carrón, R., Martín, M. L., Román, L. S. and Feliciano, A. S., 2003. Neo-clerodane diterpenoids from Croton schiedeanus. <u>Phytochemistry</u>, 62: 551-555.
- Raju, K. V. S. and Srimannarayana, G., 1978. Aurmillone, a new isoflavone from the seeds of *Millettia auriculata*. <u>Phytochemistry</u>, 17: 1065-1066.
- Rao, C. P. and Krupadanam, G. L. D., 1994. An isoflavan from *Millettia racemosa*. <u>Phytochemistry</u>, 35(6): 1597-1599.

- Rao, C. P., Prasad, Y. R. and Ganapaty, S., 1992. Three prenylated isoflavones from *Millettia auriculata*. <u>Phytochemistry</u>, 31(3): 1015-1017.
- Rao, C. P., Prashant, A. and Krupadanam, G. L. D., 1996. Two prenylated isoflavans from *Millettia racemosa*. <u>Phytochemistry</u>, 41(4): 1223-1224.
- Roengsumran, S., Petsom, A., Kuptiyanuwat, N., Vilaivan, T., Ngamrojnanich, N., Chaichantiyuth, C. and Phuthong, S., 2001. Cytotoxic labdane diterpenoids from *Croton oblongifolius*. <u>Phytochemistry</u>, 56: 103-107.
- Roengsumran, S., Pornpakakul, S., Muangsin, N., Sangvanich, T., Singtothong, P., Chaichit, N., Puthong, S. and Petsom, A., 2004. New halimane diterpenoids from *Croton oblongifolius*. <u>Planta Med.</u>, 70: 87-89.
- Roengsumran, S., Singtothong, P., Pudhom, K., Ngamrojnanich, N., Petsom, A. and Chaichantiyuth, C., 1999. Neocrotocembranal from *Croton oblonggifolius*. <u>J.</u> <u>Nat. Prod.</u>, 62: 1163-1164.
- Saralamp, P., Chuakul, W., Temsiririrkkul, R. and Clayton, T., 1996. <u>Medicinal Plants</u> <u>in Thailand Volumn 1</u>: 77, Amarin Printing and Publihing Public Co., Ltd., Bangkok.
- Shaw, H. K. A., 1980. The Euphorbiaceae platrobeae of Australia. <u>Kew Bulletin</u>, 35 (3): 614.
- Shaw, H. K. A., 1981. The Euphorbiaceae of Sumata. Kew Bulletin, 36(2): 283.
- Silveira, E. R. and McChesney, J. D., 1994. 6,7-Oxygenated neo-clerodane furan diterpenes from *Croton sonderianus*. <u>Phytochemistry</u>, 36(6): 1457-1463.
- Singhal, A. K., Baruan, N. C., Sharma, R. P. and Baruan, J. N., 1983. A chalcone and an isoflavone from *Millettia pachycarpa* seeds. <u>Phytochemistry</u>, 22(4): 1005-1006.
- Singhal, A. K., Sharma, R. P., Baruan, J. N., Govindan, S. V. and Herz, W., 1982. Rotenoids from roots of *Millettia pachycarpa*. <u>Phytochemistry</u>, 21(4): 946-951.
- Singhal, A. K., Sharma, R. P., Madhusudanan, K. P., Thyagarajan, G., Herz, W. and Govindan, S. V., 1981. New prenylated isoflavones from *Millettia pachycarpa*. <u>Phytochemistry</u>, 20(4): 803-804.
- Singhal, A. K., Sharma, R. P., Thyagarajan, G., Herz, W. and Govindan, S. V., 1980. New prenylated isoflavones and a prenylated dihydroflavonol from *Millettia pachycarpa*. <u>Phytochemistry</u>, 19: 929-934.

- Siriwat, K., 1999. <u>Chemical constituents and biological activity from stem barks of</u> <u>Croton oblongifolius Roxb. from Amphur Dan Sai, Loei province</u>. Master's Thesis, Department of Chemistry, Graduate School, Chulalongkorn University.
- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahom, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R., 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. <u>J. Natl. Cancer Inst.</u>, 82(13): 1107-1112.
- Smitinand, T., 2001. <u>Thai Plant names</u>: (botanical names-verancular names) revised edition. The Forest Herbarium, Royal Forest Department, Bangkok.
- Smitt, O. and Hogberg, H. E., 2002. Syntheses of a prenylbisabolane diterpene, a natural insecticide from *Croton linearis*, and of the bisabolane sesquiterpenes
 (-)-delobanone and (-)-epi-delobanone. <u>Tetrahedron</u>, 58: 7691-7700.
- Son, P. T., Giang, P. M. and Taylor, W. C., 2000. An *ent*-kaurane diterpenoid from *Croton tonkinensis* Gagnep. <u>Aust. J. Chem.</u>, 53: 1003-1005.
- Sritularak, B., Likhitwitayawuid, K., Conrad, J. and Kraus, W., 2002a. Flavonoids from the roots of *Millettia erythrocalyx*. <u>Phytochemistry</u>, 61: 943-947.
- Sritularak, B., Likhitwitayawuid, K., Conrad, J., Vogler, B., Reeb, S., Klaiber, I. and Kraus, W., 2002b. New flavones from *Millettia erythrocalyx*. <u>J. Nat. Prod.</u>, 65: 589-591.
- Stuart, K. L., McNeill, D., Kutney, J. P., Eigendorf, G. and Klein, K. F., 1973. Isolation and synthesis of glutamine and glutarimide derivatives from *Croton humilis*. <u>Tetrahedron</u>, 29: 4071-4075.
- Sutthivaiyakit, A., Nareeboon, P., Ruangrangsi, N., Ruchirawat, S., Pisutjaroenpong, S. and Mahidol, C., 2001. Labdane and pimarane diterpenes from *Croton joufra*. <u>Phytochemistry</u>, 56: 811-814.
- Takahashi, S., Kurabayashi, M., Kiyazawa, E., Haruyama, H. and Ogiso, A., 1983.
 Plaunolide, a furanoid diterpene from *Croton sublyratus*. <u>Phytochemistry</u>, 22 (1): 302-303.
- Tchissambou, L., Chiaroni, A., Riche, C. and Khuong-Huu, F., 1990. Crotocorylifuran and crotohaumanoxide, new diterpenes from *Croton Haumanianus* J. Leonard. <u>Phytochemistry</u>, 46(15): 5199-5202.
- Trager, W. and Jansen, J. B., 1976. Human malaria parasites in continuous culture. <u>Science</u>, 193(4254): 673-674.

- van Valkenburg, J. L. C. H. and Bunyapraphatsara, N., 2001. Medicinal and poisonous plants 2. <u>Plant resources of South-East Asia</u>, 12(2): 198. Backhuys Publishers, Leiden.
- Vigor, C., Fabre, N., Fourasté, I. and Moulis, C., 2001. Three clerodane diterpenoids from *Croton eluteria* Bennett. <u>Phytochemistry</u>, 57: 1209-1212.
- Vigor, C., Fabre, N., Fouraste, I., and Moulis, C., 2002. Neoclerodane diterpenoids from *Croton eluteria*. J. Nat. Prod., 65: 1180-1182.
- Weckert, E., Hummer, K., Mensah, I. A. and Achenbach, H., 1992. The absolute configuration of chiromodine. <u>Phytochemistry</u>, 31(6): 2170-2172.
- Yanesew, A., Midiwo, J. O. and Waterman, P. E., 1996. Four isoflavones from seed pods of *Millettia dura*. Phytochemistry, 41(3): 951-955.
- Yanesew, A., Midiwo, J. O. and Waterman, P. E., 1998. Rotenoids, isoflavones and chalcones from the stem bark of *Millettia usaramensis* subspecies *usaramensis*. <u>Phytochemistry</u>, 47(2): 295-300.
- Yenesew, A., Derese, S., Midiwo, J.O., Oketch-Rabah, H. A., Lisgarten, J., Palmer, R., Heydenreich, M., Peter, M. G., Akala, H., Wangui, J., Liyala, P. and Waters, N. C., 2003. Anti-plasmodial activities and x-ray crystal structures of rotenoids from *Millettia usaramensis* subspecies *usaramensis*. <u>Phytochemistry</u>, 64: 773-779.
- Yankep, E., Fomun, Z. T., Bisrat, D., Dagne, E., Hellwig, V. and Steglich, W., 1998.
 O-Geranylated isoflavones and a 3-phenylcourmarin from *Millettia* griffoniana. <u>Phytochemistry</u>, 49(8): 2521-2523.
- Yankep, E., Fomun, Z. T. and Dagne, E., 1997. An O-geranylated isoflavone from Millettia griffoniana. <u>Phytochemistry</u>, 46(3): 591-593.
- Yankep, E., Mbafor, J. T., Fomun, Z. T., Steinbeck, C., Messanga, B. B., Ntasse, B., Budzikiewicz, H., Lenz, C. and Schmickler, H., 2001. Further isoflavoid metabolites from *Millettia griffoniana* (Bail). <u>Phytochemistry</u>, 56: 363-368.
- Yankep, E., Njamen, D., Fotsing, M. T., Fomum, Z. T., Mbanya, J. C., Giner, R. M., Recio, M. C., Máñez, S. and Ríos, J. L., 2003. Griffonianone D, an isoflavone with anti-inflammatory activity from the root bark of *Millettia griffoniana*1. J. Nat. Prod., 66(9).

APPENDIX

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 4 UV Spectrum of Compound CK 01 (chloroform)

Figure 5 IR Spectrum of Compound CK 01 (neat)

Figure 6 MS Spectrum of Compound CK 01

Figure 7¹H- NMR Spectrum (CDCl₃) of Compound CK 01

Figure 8¹³C NMR and DEPT Spectra of (CDCl₃) Compound CK 01

Figure 9 ¹H-¹H COSY Spectrum (CDCl₃) of Compound CK 01

Figure 11 HMQC Spectrum (CDCl₃) of Compound CK 01

Figure 12 HMBC Spectrum (CDCl₃) of Compound CK 01

Figure 13 UV Spectrum of Compound CK 02 (chloroform)

Figure 14 IR Spectrum of Compound CK 02 (neat)

Figure 15 MS Spectrum of Compound CK 02

Figure 16¹H- NMR Spectrum (CDCl₃) of Compound CK 02

Figure 17 ¹³C NMR and DEPT Spectra (CDCl₃) of Compound CK 02

Figure 18¹H-¹H COSY Spectrum (CDCl₃) of Compound CK 02

Figure 19 NOESY Spectrum (CDCl₃) of Compound CK 02

Figure 21 HMBC Spectrum (CDCl₃) of Compound CK 02

Figure 22 UV Spectrum of Compound CK 03 (chloroform)

Figure 23 IR Spectrum of Compound CK 03 (neat)

Figure 24 MS Spectrum of Compound CK 03

Figure 25¹H- NMR Spectrum (CDCl₃) of Compound CK 03

Figure 26¹³C NMR and DEPT Spectra (CDCl₃) of Compound CK 03

Figure 27 ¹H-¹H COSY Spectrum (CDCl₃) of Compound CK 03

Figure 28 NOESY Spectrum (CDCl₃) of Compound CK 03

Figure 29 HMQC Spectrum (CDCl₃) of Compound CK 03

Figure 30 HMBC Spectrum (CDCl₃) of Compound CK 03

Figure 31 UV Spectrum of Compound CK 04 (chloroform)

Figure 32 IR Spectrum of Compound CK 04 (neat)

Figure 33 MS Spectrum of Compound CK 04

Figure 34¹H- NMR Spectrum (CDCl₃) of Compound CK 04

Figure 35¹³C-NMR Spectrum (CDCl₃) of Compound CK 04

Figure 36 ¹H-¹H COSY Spectrum (CDCl₃) of Compound CK 04

Figure 37 NOESY Spectrum (CDCl₃) of Compound CK 04

Figure 38 HMQC Spectrum (CDCl₃) of Compound CK 04

Figure 39 HMBC Spectrum (CDCl₃) of Compound CK 04

Figure 40 UV Spectrum of Compound CB 01 (chloroform)

Figure 41 IR Spectrum of Compound CB 01 (film)

Figure 42 MS Spectrum of Compound CB 01

Figure 43 ¹H- NMR Spectrum (CDCl₃) of Compound CB 01

Figure 44 ¹³C NMR and DEPT Spectra (CDCl₃)of Compound CB 01

Figure 45 ¹H-¹H COSY Spectrum (CDCl₃) of Compound CB 01

Figure 46 NOESY Spectrum (CDCl₃) of Compound CB 01

Figure 47 HMQC Spectrum (CDCl₃) of Compound CB 01

Figure 48 HMBC Spectrum (CDCl₃) of Compound CB 01

Figure 49 UV Spectrum of Compound MK 01 (methanol)

Figure 50 IR Spectrum of Compound MK 01 (film)

Figure 51 MS Spectrum of Compound MK 01

Figure 52 ¹H- NMR Spectrum (CDCl₃) of Compound MK 01

Figure 53 ¹³C NMR and DEPT Spectra (CDCl₃) of Compound MK 01

Figure 54¹H-¹H COSY Spectrum (CDCl₃) of Compound MK 01

Figure 55 NOESY Spectrum (CDCl₃) of Compound MK 01

Figure 56 HMQC Spectrum (CDCl₃) of Compound MK 01

Figure 58 UV Spectrum of Compound MK 02 (methanol)

Figure 59 IR Spectrum of Compound MK 02 (film)

Figure 60 MS Spectrum of Compound MK 02

Figure 61 ¹H- NMR Spectrum (DMSO-*d*₆) of Compound MK 02

Figure 62 ¹³C NMR and DEPT Spectra (DMSO- d_6) of Compound MK 02

Figure 63 ¹H-¹H COSY Spectrum (DMSO-*d*₆) f Compound MK 02

Figure 64 NOESY Spectrum (DMSO-d₆) of Compound MK 02

Figure 65 HMQC Spectrum (DMSO-d₆) of Compound MK 02

Figure 66 HMBC Spectrum (DMSO-*d*₆) of Compound MK 02

Figure 67 UV Spectrum of Compound MK 03 (methanol)

Figure 68 IR Spectrum of Compound MK 03 (film)

Figure 69 MS Spectrum of Compound MK 03

Figure 70¹H- NMR Spectrum (CDCl₃) of Compound MK 03

Figure 71 ¹³C NMR and DEPT Spectra (CDCl₃) of Compound MK 03

Figure 72¹H-¹H COSY Spectrum (CDCl₃) of Compound MK 03

Figure 73 NOESY Spectrum (CDCl₃) of Compound MK 03

Figure 74 HMQC Spectrum (CDCl₃) of Compound MK 03

Figure 75 HMBC Spectrum (CDCl₃) of Compound MK 03

Figure 76 UV Spectrum of Compound MK 04 (chloroform)

Figure 77 IR Spectrum of Compound MK 04 (film)

Figure 78 MS Spectrum of Compound MK 04

Figure 79¹H- NMR Spectrum (CDCl₃) of Compound MK 04

Figure 80¹³C NMR and DEPT Spectra (CDCl₃) of Compound MK 04

Figure 81 ¹H-¹H COSY Spectrum (CDCl₃) of Compound MK 04

Figure 82 NOESY Spectrum (CDCl₃) of Compound MK 04

Figure 83 HMQC Spectrum (CDCl₃) of Compound MK 04

Figure 84 HMBC Spectrum (CDCl₃) of Compound MK 04

Figure 85 UV Spectrum of Compound MK 05 (chloroform)

Figure 86¹H- NMR Spectrum (CDCl₃) of Compound MK 05

Figure 87¹³C NMR and DEPT Spectra (CDCl₃) of Compound MK 05

Figure 88 ¹H-¹H COSY Spectrum (CDCl₃) of Compound MK 05

Figure 89 NOESY Spectrum (CDCl₃) of Compound MK 05

Figure 90 HMQC Spectrum (CDCl₃) of Compound MK 05

Figure 91 HMBC Spectrum (CDCl₃) of Compound MK 05

Figure 92 UV Spectrum of Compound MK 06 (chloroform)

Figure 93 IR Spectrum of Compound MK 06 (film)

Figure 94 MS Spectrum of Compound MK 06

Figure 95 ¹H- NMR Spectrum (DMSO-*d*₆) of Compound MK 06

153

Figure 96¹³C-NMR Spectrum (DMSO-*d*₆) of Compound MK 06

Figure 97 ¹H-¹H COSY Spectrum (DMSO-*d*₆) of Compound MK 06

Figure 98 NOESY Spectrum (DMSO- d_6) of Compound MK 06

Figure 99 HMQC Spectrum (DMSO-d₆) of Compound MK 06

Figure 100 HMBC Spectrum (DMSO-d₆) of Compound MK 06

Figure 101 UV Spectrum of Compound MK 07 (chloroform)

Figure 102 IR Spectrum of Compound MK 07 (film)

Figure 103 MS Spectrum of Compound MK 07

Figure 104¹H- NMR Spectrum (DMSO-*d*₆) of Compound MK 07

Figure 105¹³C NMR and DEPT Spectra (DMSO-*d*₆) of Compound MK 07

Figure 106 ¹H-¹H COSY Spectrum (DMSO-*d*₆) of Compound MK 07

Figure 107 NOESY Spectrum (DMSO-d₆) of Compound MK 07

Figure 109 HMBC Spectrum (DMSO-d₆) of Compound MK 07

Miss Jiraporn Thongtan was born on December 3, 1965 in Bangkok, Thailand. She received her Bachelor's degree of Science in Chemistry from Ramkhamhaeng University in 1992, and Master's degree of Science in Applied Chemistry from Ramkhamhaeng University in 1997. She received a student grant from theThailand Graduated Institute of Science and Technology (TGIST).

Publication

Thongtan, J., Kittakoop, P., Ruangrugsi, N., Saenboonrueng, J., and Thebtaranonth, Y. 2003. New antimycobacterial and antimalarial 8,9-secokaurane diterpenes from *Croton kongensis*. J. Nat. Prod., 66(6): 868-870.

Poster Presentations

- Thongtan, J., Kittakoop, P., Ruangrugsi, N., and Saenboonrueng, J. Antimycobacterial and antimalarial principle from *Croton kongensis*. NRCT-JSPS CORE UNIVERSITY SYSTEM: The sixth NRCT-JSPS Joint Seminar in Pharmaceutical Sciences; Drug Development Through Biopharmaceutical Sciences. December 2-4, 2003, Bangkok, Thailand.
- Thongtan, J., Kittakoop, P., Ruangrugsi, N., and Saenboonrueng, J. Antimycobacterial and antimalarial compounds from *Croton kongensis* and *Croton birmanicus*. The 20th Annual Research Meeting in Pharmaceutical Sciences, December 1, 2003, Bangkok, Thailand.