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CHAPTER |
INTRODUCTION

1. Background and significance of research

Leishmaniasis is a vector-borne disease caused by Leishmania parasites which results in
almost 60,000 deaths annually." It is estimated that over 350 million people across 98 countries
including Thailand are currently at risk.” In Thailand, an increasing number of autochthonous
leishmaniasis infections has been reported; the Leishmania species which are responsible for
these cases include L. martiniquensis, L. donovani, L. infantum, as well as L. siamensis (or L.
orientalis), the latter is a novel indigenous species of Thailand. Depending on the species of the
parasite, there are various symptoms associated with leishmaniasis ranging from skin ulcers to life-
threatening internal organ failure; hence, an effective medication is in high demand. However, the
currently available medications suffer from various limitations such as high cost, lack of efficacy,

serious side effects, low bioavailability and drug resistance.”

To date, several researches have introduced a variety of synthetic compounds as potential
drug candidates for treating leishmaniasis,” one of which is a series of compounds belonging to
the class of rhodacyanine dyes. It was reported that these compounds have a diverse range of
bioactivity, including anti-cancer, anti-malarial and anti-leishmanial properties.” One of the most
potent compounds among the series was reported by M. |lhara and co-workers in 2010;" the
fluorinated rhodacyanine analogue, SJL-01, exhibited exceptionally high efficacy and excellent
selectivity index (>15000) in the in vivo testing against L. donovani; although the exact role of the
fluorine substituent in SJL-01 has not yet been clarified. Moreover, the development of SIL-01 as
an anti-leishmanial drug was limited by the low bioavailability because the in vivo inhibiting
percentage against L. donovani was decreased from 94.5% by intravenous injection to 28.0% by
oral administration.” In this regard, we reasoned that these issues can be addressed by expanding

the scope of the fluorinated rhodacyanine analogues.

Fluorine has found widespread applications in drug discovery and development owing to its
unique properties such as high electronegativity, low polarizability and the extremely strong C-F
bond strength. Installation of fluorine or perfluoroalkyl groups at the correct position in drug
molecules could lead to various beneficial effects, for instance, the increase in the potency,
metabolic stability, and membrane permeabiti‘ty.8 According to these reasons, we hypothesise
that the low bioavailability, which is the major drawback of SJL-01 could be improved by
installing perfluoroalkyl groups onto the molecule to increase its lipophilicity. In addition, it is

possible to gain more understanding on the exact roles of fluorine by studying the structure-



activity relationship of the rhodacyanine analogues with different types of the fluorine-containing
groups at different positions on the molecule. The knowledge from this study is crucial for further

development of rhodacyanine-based anti-leishmanial drugs in the future.

2. Literature review

2.1 Leishmaniasis

Leishmaniasis is a tropical and subtropical disease caused by over 20 species of the
protozoan parasites belonging to the genus Leishmania which are transmitted between
mammalian hosts by blood-sucking sand flies.” According to the World Health Organization
(WHO), leishmaniasis was classified as one of the major neglected tropical diseases (NTDs) caused
by protozoan infection, ranking second only after malaria.”® It is particularly prevalent in
underdeveloped and developing countries. Currently, there are more than 12 million people
across 98 countries infected by leishmaniasis and it is estimated that approximately 2 million new
cases will occur each year, with more than 350 million people being at risk of contracting the

. 11
disease.

Leishmania parasites alternate between two major forms throughout their life cycle (Figure
1), involving a mammalian and a sandfly stage."” Inside the sandfly’s digestive tract, Leishmania
parasites occur as the promastigotes (the infective form). Once the promastigotes are transferred
into mammal hosts through the bite of the infected female sand flies, they are phagocytized by
macrophages and transformed into amastigotes. The tissue-stage amastigotes multiply and
divide asexually through a simple division inside the host cells until bursting out and infect the
other tissues. Ultimately, new sandflies becomes infected again after taking the blood meal
through either with a skin lesion or a capillary of the mammal host. The leishmanial infection

leads to various symptoms depending on the type of the infecting Leishmania parasites.
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Figure 1 The life-cycle of Leishmania parasites, consisting of the sandfly and mammalian stages'

2.2 The clinical manifestations of leishmaniasis
Depending on the clinical presentation of the disease, leishmaniasis can be divided into
three dominant clinical syndromes. The different clinical manifestations are defined by the

species of infecting parasite and the genetic susceptibility of the host."*

2.2.1  Cutaneous leishmaniasis (CL)

Cutaneous leishmaniasis is the most common form of leishmaniasis, displaying single or
multiple skin ulcers at the bite sites (Figure 2a). This symptom is caused by several Leishmania
species, such as Leishmania major, L. mexicana, L. tropica, L. amazonensis, L. panamensis, L.
guyanensis, and L. braziliensis. Moreover, satellite lesions or nodular lymphangitis are also
observed in many CL cases. Although simple CL is often self-healing, full recovery typically takes
up to several months. During this period, the patients usually suffer from function impairment,
the development of permanent scars and susceptibility to secondary infection or even

. . . 15
progression to infect mucocutaneous tissue.



2.2.2  Mucocutaneous leishmaniasis (MCL)

Mucocutaneous leishmaniasis is the less common type and usually found in CL cases
where the secondary infection occurs through metastatic spread to reach the upper respiratory
tract mucosa. Although several Leishmania species can cause CL, only Leishmania braziliensis
can cause mucosal leishmaniasis. This could lead to extensive tissue destruction and ulceration
at the throat and mouth organs (Figure 2b). In some cases, MCL could be fatal by secondary

super-infections and/or malnutrition."

2.2.3  Visceral leishmaniasis (VL)

Visceral leishmaniasis, also known as Kala-azar or black fever, is the most severe type
with the fatality rate as high as 100% if left untreated. Several Leishmania protozoan parasites
that are responsible for causing VL, such as Leishmania donovani, L infantum, and L. tropica,
lead to a systemic disease that affects internal organs, especially the spleen, liver, and bone
marrow (Figure 2c)."’

Furthermore, many reports demonstrated that VL has emerged as a significant
opportunistic infection associated with human immunodeficiency virus (HIV)."® Both VL and HIV
are mutually reinforcing:”” HIV infection increases the risk of developing active VL by 100 to 2320
times, while VL accelerates HIV replication and progression to AIDS. As a result, the emerging
problem of HIV/VL co-infection is one of the major concerns according to the WHO. Moreover, in
some patients who have successfully treated for VL, a secondary syndrome called post-Kala-
azar dermal leishmaniasis (PKDL) may also develop. PKDL is usually associated with chronic
maculopapular or nodular rash which occurs months to years after apparently successful VL

treatment (Figure 2d).”



Figure 2 The clinical manifestations of leishmaniasis. (a) Cutaneous leishmaniasis (CL), (b)
mucocutaneous leishmaniasis (MCL), (c) visceral leishmaniasis (VL), and (d) post-Kalar

aza dermal VL*!

2.3 Current medications for the treatment of leishmaniasis

Since the disease occurs in various forms, the anti-leishmanial therapy is highly dependent
on the species of the Leishmania parasite, symptoms and geographical regions.” CL will often
self-heal; however, treatment can speed healing, reduce scarring, and decrease the risk of further
disease. MCL and VL, on the other hand, always require treatment. The current drugs that have
been used for the treatment of VL, the most severe form for leishmaniasis, include pentavalent
antimonials, pentamidine, paromomycin, amphotericin B, and miltefosine (Figure 3).” Some of

these drugs can also be used for the treatment of both CL and mcL.2

2.3.1 Pentavalent Antimonials

Pentavalent Antinonials (Sb")” (meglumine antimoniate [Glucantime®, Aventis] and
sodium stibogluconate [Pentostam®, GlaxoSmithKline]) have been used since the 1940s for the
treatment both VL and CL cases. These compounds appear to inhibit bioenergetic pathways such
as glycolysis and fatty acid oxidation in Leishmania amastigotes. However, the drawback lies in
their significant toxicities; the Sb'-induced hyperamylasemia and pancreatitis are common can be

fatal, especially in those co-infected with HIV.®



OH Glucantime
Pentostam (meglumine antimoniate)
(sodium stibogluconate)

OH
o}

NH, | HoN

o OH

HoN
NH,O OH

HO %

HO o Paromomycin

9/09 |

Pl N
ook
13
. Miltefosine

7
N

Figure 3 Drugs currently used in the treatment of leishmaniasis

2.3.2 Pentamidine

Pentamidine was discovered in the 1960s, is typically used for the treatment of
amebiasis (parasitic infection of the intestines) as well as both VL and CL.*"** Pentamidine is
known as an antibiotic since it can reversibly inhibit trypanosomal S-adenosyl-L-methionine
decarboxylase, thereby reducing the synthesis of polyamines. However, various side effects have
been reported such as hypoglycaemia and kidney problems.29 In addition, there has been a
report demonstrating that its efficacy for VL in India has progressively declined with current cure
rates of approximately 70%.” Therefore, the use of pentamidine for the treatment of VL is now

discouraged, although it is still be used under strict precaution for treatment cL

2.3.3 Paromomycin

Paramiomycin, also known as aminosidine, is an aminoglycoside which is a highly
effective and cheap anti-leishmanial drug for VL, though it shows little efficacy in CL or MCL.*
However, it was reported that paromomycin can induce acute renal failure, deafness, and

cataract formation in cats; as a result, its use has been limited, especially in human.”



2.3.4  Amphotericin B

Amphotericin B (AmB) is an active agent against most fungi and some protozoa.yl It was
first isolated from Streptomyces nodosus in 1955. The mechanisms of action are related with
binding to ergosterol and cholesterol of the cell membrane of most protozoa species and
induced the cell damage through a cascade of oxidative reactions with formation of free radicals.
In order to reduce toxicity and improve the tolerability of amphotericin, several lipid formulations
have been developed; for examples, amphotericin deoxycholate is a powerful anti-leishmanial
drug and relatively non-toxic.”> However, since it requires a slow intravenous injection, patients
are needed to be hospitalised and hence limiting the medication at rural sites. Although it is very
effective to treat many systematic fungal infections and visceral leishmaniasis, the microbial
production is very complicated due to the impurity named Amphotericin A which is a severely
toxic compound.36 Therefore, the biosynthesis to produce AmB needs some modifications of
both chemical and engineered biosynthesis to reduce its toxicity (i.e. using polypeptide synthase

)37

components)” which reflects by its high cost (cost per death ranging from 53 to 527 usD).*

2.3.5 Miltefosine

Miltefosine is the first oral drug to treat VL patients. It activates proteases in Leishmania
spp. and causes apoptotic death of the parasite.”” The mechanism may involve a combination of
several mechanism of actions, including the phospholipid metabolism and induction of
mitochondrial dysfunction. Although it is one of the most effective and safest medicines for
leishmaniasis, the access to miltefosine remains limited due to inefficient supply chains, which
ultimately links to its high cost. The price for one full adult course of miltefosine treatment is
ranging from 117 to 164 USD in the developing countries purchased by non-profit organisations

Médecins Sans Frontieres (MSF) and 33000 to 51000 USD in USA.*

2.4 Leishmaniasis in Thailand

Prior to the year 1999, leishmaniasis was considered as an imported disease in Thailand.*'
However, an increasing number of autochthonous leishmaniasis (both CL and VL) has recently
been reported in many regions, mainly the northern, southern and central Thailand. In several
cases, the patients are also co-infected with HIV/AIDS, although immunocompetent patients with
the age ranging from 3 to 81 years old were also reported (Table 1).* Among these CL and VL
cases, many Leishmania species have been identified including L. donovani, as well as the new
species, L. siamensis (recently renamed to L. orientalis) and L. martiniquensis, which were first

discovered in Thailand.”



Table 1 The autochthonous leishmaniasis cases reported in Thailand during 1996-2013*

Year Age Province Clinical forms Leishmania Treatment
(years) species
1996 3 Surat Thani VL N/A Pentamidine
2005 40 Nan VL L. donovani Amphotericin B
2006 55 Phang Nga VL L. martiniquensis Amphotericin B
2007 66 Bangkok VL L. infantum Amphotericin B
2007 81 Songkhla VL L. donovani Amphotericin B
2008 37 Chanthaburi VL L. martiniquensis Amphotericin B
2008 45 Chiang Rai CL, VL L. martiniquensis No treatment
2009 a6 Songkhla CL, VL L. martiniquensis Amphotericin B
2010 32 Trang VL L. siamensis Amphotericin B
2010 5 Satun V0L L. martiniquensis Amphotericin B
2011 30 Trang VL L. martiniquensis Amphotericin B
2011 34 CL L. martiniquensis Amphotericin B
Yangon
2011 22 Asymptomatic L. martiniquensis No treatment
(Myanmar)
2013 60 CL L. martiniquensis Amphotericin B
2012 3 Lopburi Cl N/A ltraconazole
2012 52 Lamphun VL L. martiniquensis Amphotericin B
2012 48 Chiang Mai CcL L. martiniquensis Amphotericin B
2012 38 Lamphun CL L. martiniquensis Amphotericin B
2013 28 Songkhla Asymptomatic L. martiniquensis No treatment

CL: cutaneous leishmaniasis, VL: visceral leishmaniasis. N/A means data is not available.

Regarding to the treatment of leishmaniasis in Thailand, amphotericin B was the only

available medication to treat both VL and CL during 1996-2016.* There are significant drawbacks

associated with amphotericin B including the high tendency for parasite resistance as well as its

relatively high cost. For these reasons, the leishmaniasis treatment in Thailand is not fully

effective, leading to an increasing number of leishmaniasis cases.



2.5 Rhodacyanine dyes

In the past few decades, numerous heteroaromatic compounds has emerged as potential
anti-leishmanial drug candidates,” one of which that have gained recent attention is the
rhodacyanine dye. It was originally used in textile industry as a synthetic dye and photographic
industry as a silver halide sensitizer.” Rhodacyanine is one of the polynuclear cyanine dyes
containing three heterocyclic rings: a central rhodanine ring (4-oxothiazolidine) and two
heteroaromatic rings at both ends linked by methine groups with various lengths. There are five
major classes of rhodacyanines containing the Tt-electron delocalised lipophilic cations (DCLs).*
Class | ([0, O] rhodacyanine), a general structure of rhodacyanine, contains 2 terminal
heteroaromatic rings (A, C) and one center rhodamine (4-oxothiazolidine, B) (Figure 4a). Class |l
({1, 0] rhodacyanine) is similar to those general structures but it has an additional methine group
(Figure 4b) while class IIl ([0, 0, 0] rhodacyanine, A=CH) and class V ([0, 0, 0] azarhodacyanine,
A=N) has two rhodanine rings (Figure 4c). Class IV ([0, 0] azarhodacyanine) is considered when CH

at methine group of a general structure of rhodacyanine is replaced by N atom (Figure 4d)."
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Figure 4 The skeleton of rhodacyanines (a) class | (a general structure of rhodacyanine), (b) class

II, () class Il (A=CH) and class V (A=N), and (d) class IV rhodacyanine

2.5.1 Rhodacyanines in anticancer drug discovery

In 1996, the rhodacyanine in class | named MKT-077 (Figure 5a) (formerly known as FJ-
776) was first discovered and studied its anti-cancer activity by Len Bo Chen from Harvard
Medical School in USA and the scientists from FUJIFILM Co. in Japan.*® According to their results,
MKT-077 displayed significant growth-inhibitory activity against five human cancer cell lines,
including colon cancer CX-1, breast cancer MCF-7, pancreatic cancer CRL 1420, bladder
transitional cell cancer U, and melanoma LOX. It showed the IC;, values in a range from 0.35 to
1.2 M and has a low toxicity to normal cell line (CV-1 from monkey normal kidney epithelial).

Furthermore, it also exhibits high water-solubility (>200 mg/mL). For Phase | clinical trial, 30
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patients with refractory cancer were treated with 48 mg/m?’/day of MKT-077 for 3 weeks. There
were no serious side effects, including cardiac toxicity and myelotoxicity in these patients.

MKT-077 was then considered to be a new candidate as an anti-cancer agent and its
mechanism of action was studied. Moreover, Chen and his co-worker also revealed that MKT-077
inhibits ADP-stimulated and DNP-stimulated mitochondrial respiration and relates to the electron
transfer reaction at the mitochondrial membrane. The result also showed that MKT-077 has the
sensitivity to inhibit glutamate plus malate vs succinate stimulated respiration (the energy in
mitochondria) but not inhibit NADH vs succinate linked electron transport reactions. Interestingly,
the loss of mtDNA between cancer cells (CRL 1420, CX-1) and normal cells (CV-1) in the present
of MKT-077 correlated with its low toxicity to normal cells (CRL 1420 > CX-l >> cv-0.% However,
ten patients with advanced solid cancer were treated by MKT-077 at three dose levels, including
30, 40 and 50 mg/m’/day. The result showed that MKT-077 was slightly effective for cancer
treatment; however, side effects such as renal toxicity was observed.”

The mechanism of action of MKT-077 was unclear until in 2000 when Wadhwa and co-
workers reported that MKT-077 binds to an Hsp70 family member, mortalin (mot-2), and
abrogates its interactions with the tumour suppressor protein, p53.”" In 2013, Gestwicki and co-
workers from United States discovered a novel MKT-077 analogue named JG-98 (Figure 5a),
which showed improved anti-cancer activity against MDA-MB-231 cells as well as enhanced
affinity for Hsp70 in vitro approximately 80-fold (KD = 90 nM).”” The optimizing interaction framed
by Y148, V81, P146 and F149 (Figure 5b) while the pyridinium was predicted to interact with a
region formed by Asp223, Thr224, and His225. Furthermore, the disadvantage of MKT- 077 is its
rapid metabolism in liver by P450 enzyme (t;, ~ 5 min). The metabolite identification showed
that the benzothiazole and pyridinium rings of MKT-077 are the major sites of attack by the P450

53
enzymes.
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(a) CHs 7\ e CHy 7N, o
Q=" Q==
\

O CyHs O C,Hs

MKT-077 JG-98
MDA-MB-231 EC50 1.4 mM 0.4 mM
Microsome stability T1/2 <5 min 37 min

(b)

R
BA

Figure 5 MKT-077 and its analog JG-98 are allosteric inhibitors of Hsp70 that bind in the NBD. (a)
Modification of metabolically labile positions led to more a potent and stable
analogue, JG-98. (b) Model of JG-98 binding to an allosteric pocket in Hsp70, based on
NMR and mutagenesis. JG-98 carbons coloured in cyan and Hsp70 carbons coloured in

52
green

2.5.2  Rhodacyanines and their antimalarial activities

The broad screening of numerous carbohydrates and heterocycles by lhara and his
colleagues also indicated that many compounds containing DLC moiety showed the moderate to
good anti-malarial activity while MKT-077 showed a strong anti-malarial activity (ECs, = 70 nM)
against erythrocyte of Plasmodium falciparum and moderate selective toxicity (selectivity index
= 210) (Table 2).** Furthermore, they synthesised several novel rhodacyanine derivatives to
improve the activity and to decrease the toxicity. The ECs, values of the in vitro anti-malarial
activity against P. falciparum were in the range from 4 to 300 nM. The most active agent was
MKH-57 (Figure 6a) with the ECs, = 12 nM and the selective toxicity of ECs, values for L-6/ECs,

for P. falciparum was 1000.>



12

Table 2 The anti-malarial activity and the toxicity to normal cells

ECso (M)
compounds P, falciparam’ AT selective toxicity®
quinine 1.1x107 1.0 x 10" 910
chloroquine 1.8x 10° 3.2x10” 1800
Methylene blue 1.7x10° 1.1x10° 65
rhodamine 123 3.0x 107 1.0x 10 33
MKT-077 7.0x 10° 15x 10 210
MKH-57 12x10° 12x10° 1000

°Chloroquine sensitive strain (FCR-3). °Mouse mammary tumor FM3A cells representing a model

of host. “Selective toxicity = ECs, value for FM3A/ECs, for P. falciparum.

(a) (b)
CH 713
N__ S _ /SN® CoHse
>_§7 CH I
S N CoHs
o}
N\ p-TsO
MKH-57
(o) (d)
CH CH
N o cl®
NS N S CH,
- ~ _— —— /
\ N®
S N N s N N
o) w% o} —
a2 Cl 43

IC50 = 46 mM agianst P. falciparum K1 IC50 = 65 mM agianst P. falcipar

A =576 nm (kexz 495 nm) A =563nm (A =495 nm)

em em X

d =0.014 in MeOH ® =0.014 in MeOH
Figure 6 (a) The structure of MKH-57; (b) the structure of SSJ-183. (a) The synthesised Fused

Rhodacyanines as Fluorescent Probes: (c) compound 42; (d) compound 43.

The mechanism of action of rhodacyanines for anti-malarial activity was investigated by
using the synthesised probes with stronger fluorescence than the original rhodacyanine (MKT-
077). They synthesised the new rhodacyanines 42 and 43 (Figures 6c and 6d) which displayed
the anti-malarial activities comparable to MKT-077 but fluorescence intensity was improved more
than 70 times. Compound 43 clearly showed the fluorescence localization among parasite
organelles and the lowest concentration = 5 x 10° M could be detected. Then they studied the
double stains of P. berghei-infected erythrocytes co-incubated with compound 43 and selective

fluorescent markers of subcellular organelles, including marker of nucleus (DAPI) and
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mitochondria (Mitotracker Red CMXRos®). The fluorescent microscopic images of the intracellular
distribution of 43 with DAPI was found among different organelles. In contrast, the localised
fluorescence of compound 43 was consistent with CMXRos® signal which indicated that the
rhodacyanine 43 selectively accumulated within the plasmodium mitochondria. Thus, the uptake
of rhodacyanines in mitochondria plays an important role in anti-malaria. In addition, the
benzophenoxazine dye SSJ-183 (Figure 6b) was also discovered by the same group to show a
good in vitro anti-malarial activity against P. falciparum (ICso= 7.6 nM, selectivity index >7300) and

an excellent in vivo safety test for oral doses (highest concentration = 2000 mg/kg).”®

2.5.3 Rhodacyanine analogues as anti-leishmaniasis

Apart from the anti-cancer and antimalarial property, M. lhara and co-workers later found
that the rhodacyanine dyes were also effective as other anti-parasitic agents, especially the anti-
leishmaniasis. In 2004, the same group reported the anti-leishmanial property of rhodacyanine
dyes against Leishmania rr)ajor,57 and later in 2010, the activity against Leishmania donovani was
also reported.” The evaluation of the structure-activity relationships revealed numerous features
contributing to the drug effectiveness. First, it was found that the molecules containing
benzothiazole rings at both ends exhibited greater activities comparing to other types of
heterocycles. In addition, the T-electron delocalised lipophilic cations (DLCs) feature is highly
emphasized and the optimum lengths of the methine bridges were found to be m =2 and n =1
(Figure T7a). Strikingly, replacing a hydrogen atom on the C-5 position of the benzothiazole ring
with a fluorine atom (SJL-01) enhances the in vitro activity for almost 10 times (even surpass that
of miltefosine as a drug reference) and the selectivity was improved for over 200 times (Figure
7b). The animal testing revealed that SJL-01 also exhibits high in vivo L. donovani inhibition via
intravenous administration (injected directly into the vein). However, it showed no bioavailability
when administered subcutaneously (injected into the part between the skin and muscle),
potentially due to the low membrane permeability. In addition, it also showed poor activities

when administered orally.
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(€))

(b) L. donvani IC_ (uM)  selectivity
CHs X X = H 0.106 75
N S

@E = 87_}\,\1+ or F(SJL-01)  0.011 > 15000
S— — \
S CH3
N, miltefosine 0.430 ND

ND = not determined

Figure 7 (a) The general structure of rhodacyanine; (b) the enhancement of in vitro activity

against L. donovani of the fluorinated rhodacyanine

2.6 Fluorine in drug discovery

Fluorine or fluorine-containing groups such as difluoromethyl (-CF,H), trifluoromethyl (-CF5),
difluoromethoxy (-OCF,H), trifluoromethoxy (-OCF,), and trifluoromethyl thiol (-SCF,) have found
many applications in medicinal chemistry, especially in drug design and development.58 It was
estimated that these motifs appeared in over 30 % of newly approved drugs, as well as in many
top-selling drugs such as atorvastatin (trade name: Lipitor), the most profitable drug to date.”
The installation of fluorine substituent at a suitable position on drug molecules can dramatically
improve pharmaceutical effectiveness, biological half-life, and bioabsorption of the drug due to

the unique properties of fluorine.

Among all of the elements, fluorine has the highest electronegativity (¥ = 4),%° which can
lower the pK, of its neighbouring functional groups; hence affecting the pharmacokinetic

' The small size of a fluorine atom

properties as well as the binding affinities of drug molecules.’
(van der Waals radius = 1.47 A)* is very convenient for replacing a hydrogen atom in drug
molecules since it will cause only a minor steric demand at receptor sites.”” Additionally, the
exceptionally high C-F bond strength (homolytic bond dissociation enthalpy = 441 kJ/mol) can
be exploited for preventing metabolic oxidation of drug molecules (usually by P450 enzymes in

the liver) which is one of the major problems in drug design.®” ©

Blocking the metabolic labile
sites with fluorine atoms can significantly increase the half-life of the drug in vivo as
demonstrated by the development of the cholesterol inhibitor, ezetimibe (Figure 8a),”

introduction of fluorine atoms enhanced drug effectiveness for over 50 times.
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@) G
O phenyl Oxidation OX/c/at/on Blocked
HO ezetlmlbe
ED_ =22 mekg 'day! ED, =004 mekglday!
® F 0
F NH, O F NH, O

N/\l//N‘ /\l//N
F K/N N F sitagliptin K/N 7
< +

LogD =18 ¢ LogD =25 CF,
F=9% F=80%

Figure 8 (a) The prevention from metabolic oxidation in the presence of fluorine substituent; (b)
an enhanced lipophilicity of trifluoromethyl group in sitagliptin; EDs, = median effective

dose; Log D = distribution coefficient; F = bicavailability.

Another major concern associated with drug design is the drug absorption, which directly
affects the bioavailability (F) of the drug, especially when the drug is administered orally (as a
reference, F = 100 % when a medication is administered intravenously).”’ Drug molecules can
enter living cell via two mechanisms: the active transport (a process that requires energy) and a
passive transport (a process that does not require energy). The passive transport is the more
common route and it is largely influenced by the drug permeability through cell membrane;
therefore, the lipophilicity (usually quantified by the distribution coefficient, log D) of drug

molecules is a crucial factor in this process.

Typically, the drug must be lipophilic enough to be able to enter the lipid bilayer
membrane but not too lipophilic to be permanently trapped in it. In this context, fluorine-
containing groups can be employed to fine-tune the lipophilicity of the drug molecules.”® The
introduction a fluorine atom may lead to the decrease in the lipophilicity since the molecules
become more polar due to the strong C-F bond dipotes.69 On the other hand, perfluoroalkyl
groups such as trifluoromethyl (-CF;) can significantly increase lipophilicity due to the low
polarizability of fluorine (the same principle as largely employed in the super-hydrophobic
surface of Teflon).”” For example, the enhanced lipophilicity of sitagliptin (Junavia®), a drug for
treatment of type Il diabetes mellitus, was achieved by replacement of an ethyl group with the

trifluoromethyl group (Log D increases from 1.8 to 2.5), leading to a dramatic increase in
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bioavailability from 9% to 80% (Figure 8b)."" In particular, SJL-01 also experienced the similar

problem, which could potentially be fixed by the introduction of these fluorine-containing motifs.

3. Objectives
3.1 To design, synthesise and characterise novel fluorinated analogues of rhodacyanine
3.2 To evaluate the anti-leishamanial activity of the synthesised rhodacyanine analogues

against indigenous Leishmania in Thailand and establish the structure-activity

relationship (SAR)

3.3 To investigate the mechanism of action of the synthesised rhodacyanine analogues

on the anti-leishmanial activity

4. Scope of research
4.1 Synthesise fluorinated analogues of rhodacyanine
4.2 Evaluate the bioactivity of the synthesised fluorinated rhodacyanine analogues
4.3 Establish the structure-activity relationship (SAR)

4.4 Clarify the mechanism of action of the fluorinated rhodacyanines

5. Beneficial outcome
New fluorinated rhodacyanine analogues for anti-leishmaniasis with improved activities, the

structure-activity relationship (SAR) and mechanism of action will be obtained.



The methodology for this research project is divided into 4 stages (Figure 9). First, various
fluorine-containing building blocks (fluorinated benzothiazolium tosylate) were prepared. Next,
the fluorinated rhodacyanine analogues were synthesised starting from the prepared building
blocks. After that, those compounds were evaluated their anti-leishmanial activities against the

proliferation of promastigote and amastigote forms

martiniquensis. Finally,

mechanism of action.

Step 1

CHAPTER Il

EXPERIMENTS

the selected rhodacyanine analogues were investigated for their

C)
/CH3 OTs

N©®
Rf@[ S—CH;
s

CHs
N

N

Fluorine-containing

building blocks

0" CuHs

Rf

s ; o
Rf'@[ B= N =N __ClI
S =, —/ ®CHs

Rf and Rf = H, F, CF3, OCF3

=

of Leishmania orientalis and L.

Step 2

Biological evaluations
Promastigotes and
Axenic mastigotes
of L. orientalis and

L. martiniquensis

Rhodacyanine

Step 3 @

The mechanism of action

of the most active agent

Figure 9 An overview of the research methodology

1. Chemical synthesis
The fluorinated rhodacyanine analogues were designed and synthesised using the following
procedures according to the previous reports by M. lhara and co-workers,”

into 2 major steps, including the synthesis of fluorinated-containing building blocks (Figure 10),

5

and the synthesis of the fluorinated rhodacyanine analogues (Figure 11).

" which were divided
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b) Pathway 2 O S 5d,6d: Rf = 6-F
5e,6e: Rf = 7-F
NH, AcOH CH3 Lawesson's HN™ "CHj 5f,6f: Rf = 6-CF5
EtOAc 110 °C reagent 59,69: Rf = 6-OCF3
RE e E—— T N 5h,6h: Rf = 5,6-diF
Ac,0, DCM, r.t.
3a (Rf=p-F) 4a (Rf=p-F)

3b (Rf=p-OCF-)

4b (Rf=p-OCFa)

Figure 10 The synthesis procedures of fluorinated benzothiazolium tosylate (a) pathway 1; (b)
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Figure 11 The synthesis of fluorine-containing rhodacyanines
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1.1 Materials for chemical synthetic section

All reagents and solvents were obtained from Sigma-Aldrich (St. Louis, MO, USA), TC
Chemicals (Tokyo, Japan), Fluorochem (Hadfield, Derbyshire, UK) and Merck (Darmstadt,
Germany). All solvents for column chromatography from RCl Labscan (Samutsakorn, Thailand)
were distilled before use. Reactions were monitored by thin-layer chromatography (TLC) using
aluminium Merck TLC plates coated with silica gel 60 F,5,. Normal phase column chromatography
was performed using silica gel 60 (0.063-0.200 mm, 70-230 mesh ASTM, Merck, Darmstadt,
Germany). Proton, carbon, fluorine and two-dimensional nuclear magnetic resonance ('H, °C, F
and 2D NMR) spectra were recorded on a Bruker Avance (Ill) 400WB spectrometer. Chemical shifts
were expressed in parts per million (ppm), J values were in Hertz (Hz). High-resolution mass
spectra (HRMS) were obtained with a micrOTOF-Q Il mass spectrometer (Bruker Daltonics) with
electrospray ionization. IR spectra were recorded using the Thermo Scientific™ Nicolet™ iS50 FTIR
spectrometer with  ATR module. Melting points (Mp) were determined using a Stuart SMP20

melting point apparatus.

1.2 General procedure

1.2.1  General procedure A

]
\H ANTCH: bRy s
Br Ac,0 (1M in DCM) 6 Br(H) 1c:Rf=3-F
Rf reflux, overnight Rf 1d: Rf = 4-CF4
5 3 1e: Rf = 4,5-diF
4 3b: Rf = 4-OCF3
1a-1e, and 3b

Method . Compounds la-le and 3b were synthesised using a modified procedure.”
Substituted aniline (1.0 equiv.) was added to a round-bottom flask. The flask was fitted with a
rubber septum and purged with nitrogen gas, and acetic anhydride (1M in CH,Cl,, 1.1 equiv.) was
added at room temperature. The reaction was refluxed overnight and monitored by TLC. Upon
completion the reaction mixture was quenched with H,O. The resulting mixture was extracted
with CH,Cl,. The combined organic layers were washed with brine, dried over anh. Na,SO,,

filtered, then concentrated in vacuo to give the product.

NH, HN” “CH,

AcOH, EtOAc,
110 °C, overnight

3a
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Method . Compound 3a was synthesised using a modified procedure.73 To a solution of
substituted aniline (1.0 equiv.) in EtOAc was added acetic acid (5.0 equiv.). The mixture was
refluxed at 110 °C overnight then cooled to room temperature. After the crude mixture was
concentrated in vacuo, the resulting solid was recrystallised in EtOAc/hexanes. The solid was

collected and washed with hexanes to sgive the product.

1.2.2 General procedure B

X I
HN™ "CHs HN™ “CH;
Br(H) Lawesson's reagent Br(H)
Rf THF, rt,24h  Rf
1a-1e 2a-2e
(3a and 3b) (4a and 4b)

Compounds 2a-2e, 4a, and 4b were synthesised using a modified procedure.72
Compound 1a-1e, 3a, or 3b (1.0 equiv.) was added to a round-bottom flask. The flask was fitted
with a rubber septum, purged with nitrogen gas, then dry THF was added. Lawesson’s reagent
(0.7 equiv.) was added then the mixture was stirred at room temperature for 24 h and monitored
by TLC. Upon completion the reaction mixture was quenched with H,O and the resulting mixture
was extracted with EtOAc. The combined organic layers were washed with brine, dried over anh.
Na,SQO,, filtered then concentrated in vacuo. The crude mixture was purified by silica gel column

chromatography to give the product.

1.2.3  General procedure C
S
HN™ "CH3 Pd,(dba)s, JohnPhos, \
Br f i
KO'Bu, dlox:fme Rf \>—CH3
Rf 80 °C, overnight S

2a-2e 5b, 5¢c, 5e, 5f, 5h

The compounds 5b, 5c, 5e, 5f and 5h were synthesised using a modified procedure.72
To a solution of 2a-2e (1.0 equiv.) in 1,4-dioxane under nitrogen atmosphere; Pd,(dba); (5 mol%),
JohnPhos (7.5 mol%) and potassium tert-butoxide (1.5 equiv.) were added. The resulting mixture
was stirred at 80 °C overnight then cooled to room temperature. The reaction mixture was
filtered through Celite®, washed with EtOAc, and the filtrate was concentrated in vacuo. The

crude mixture was purified by silica gel column chromatography to provide the product.
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1.24  General procedure D
S

HN)J\CH3
N
KsFe(CN)g, NaOH \
Rf »—CH
Rf@ EtOH/H,0, 80 °C, 1 h S 3
4a and 4b 5d and 5g

Compounds 5d and 5g were synthesised using a modified procedure.74 A solution of
potassium hexacyanoferrate(lll) (3.0 equiv.) in H,O was added to a round bottom flask followed
by dropwise addition of a solution of 4a or 4b (1.0 equiv.) in the mixture of EtOH and 10% NaOH
(8.0 equiv.). The mixture was refluxed at 80 °C for 1 h or until the starting material was
completely consumed. After that, the mixture was extracted with EtOAc. The combined organic
layers were washed with brine, dried over anh. Na,SO,, filtered then concentrated in vacuo. The

crude mixture was purified by silica gel column chromatography to provide the product.

1.25 General procedure E

,Cgs OTs

N N

MeOTs

Rf Y—CH; ————> Rf S—CH

@ES ® 130°C,3h @Es s
5a-5h 6a-6h

Compounds 6a-6h were synthesised using a modified procedure.” A solution of 5a-5h

(1.0 equiv.) in methyl p-toluenesulfonate (1.3 equiv.) was stirred at 130 °C for 3 h then cooled to
room temperature. Acetone was added, and the resulting mixture was stirred at room
temperature for 1 h to allow precipitation. Then, the solid was collected using vacuum filtration

and washed with cold acetone. The solid was dried in vacuo to obtain the product.

1.2.6  General procedure F

CH3
S T

/
N® (0}
0 Rf'@[ H—CH, s
Ph- I S
N

CHs,
N
. 6a-6f Rf_@ = .
= \fs 1) Ac,0, CH3CN, 50 °C, 1 h_ S — \fs
0 ™

N
& cH, 2)NEts, 60°C.4h CoHs

7 8a-8f

Compounds 8a-8f were synthesised using the previous method.” A mixture of 7 (1
equiv.) and 6a-6f (1 equiv.) in acetonitrile was added acetic anhydride (1.4 equiv.). After stirring at
50 °C for 1 h, triethylamine (3.7 equiv.) was added and the resulting mixture was stirred at 60 °C
for an additional 4 h. Then, the solution was cooled to room temperature. The precipitate was

filtered and washed with acetonitrile. The solid was dried in vacuo to obtain the product.
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1.2.7 General procedure G

_@E MeOTs, DMF,
>_\_§77¢s 115 °C, 3 h >_\_}7/8Me

Csz C2H5

Compounds 9a-9f were synthesised using the previous method.” A mixture of 8a-8f (1
equiv.) and methyl p-toluenesulfonate (3 equiv.) in dimethylformamide was stirred at 115 °C for 3
h. After being cooled to room temperature, the mixture was stirred with acetone for further 30
min to allow precipitation. The solid formed was collected and washed with acetone to give the

product.

1.28 General procedure H

CH
N ors
Rf‘@[ )—CHs CHs
6 Gi '\i S N
a- \ —
N s =N®  Cors
YSCH3 NEt;, CH3CN, 75 °C S — — \CHS
overnight N
CzH5 O CoHs
9a-9f 10a-10q

Compounds 10a-10g were synthesised using a modified method.” To a mixture of 9a-9f
(1.0 equiv.) and 6a-6h (1.0 equiv.) in acetonitrile was added triethylamine (3.0 equiv.). The
mixture was stirred at 75 °C overnight. After being cooled to room temperature, the precipitate

formed was collected and washed with acetonitrile to give the product.

1.29 General procedure |

CH,4 CH,3
N s~ ;3 Rf N S/@Rf
d — — HCI, MeOH v — —
Rf S o 37:)\’\“@ 0Ts W Rf‘@ES o Sw:)\N\GD el
CH3 ’ CH3
N N,
0 C,Hs o) CoHs
10a-10q 1a-11q

Compounds 11a-11g were synthesised using the previous method.” The tosylate salts,
10a-10q, (1.0 equiv.) were dissolved in methanol. The resulting solution was stirred at 80 °C for
30 min before slowly adding conc. HCL. The mixture was stirred for an additional 30 min. After
cooling to room temperature, the precipitate formed was filtered and washed with methanol to

yield 11a-11q.
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1.3 Synthesis of benzothiazolium building blocks (6a-6h)
1.3.1  2,3-Dimethylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6a)

O

CHs % S//\©\

N®
@[ H—CH; CHs

S

The title compound was synthesised using the modified method.”® The mixture of
2-aminothiophenol (4.28 mL, 40 mmol, 1.0 equiv.), acetonitrile (6.23 mL, 120 mmol, 3.0 equiv.),
glacial acetic acid (40 mL), and conc. H,SO, (0.43 mL, 20 mol%) was stirred under reflux
overnight. After being cooled to room temperature, the mixture was neutralised by sat.
NaHCO4(ag) and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed
with brine, dried with anh. Na,SO,, filtered and concentrated in vacuo. The crude product was
purified by silica gel column chromatography (eluent: EtOAc/hexanes = 1:4) to give 2-
methylbenzo[dlthiazole (5a) (3.85 ¢, 26 mmol, 64% yield). Then 6a was synthesised following the
General procedure E using 5a (3.77 g, 25.3 mmol), methyl p-toluenesulfonate (5.06 mL, 32.8
mmol), to give the title compound (6.06 g, 72% yield) as a light-green solid.

'H NMR (400 MHz, DMSO-d,) § 8.40 (d, J = 8.1 Hz, 1H, ArH), 8.26 (d, J = 8.4 Hz, 1H, ArH), 7.88 (t, J
= 7.8 Hz, 1H, ArH), 7.79 (t, J = 7.7 Hz, 1H, ArH), 7.46 (d, J = 7.8 Hz, 2H, ArH), 7.08 (d, J = 7.6 Hz, 2H,
ArH), 4.18 (s, 3H, CHs), 3.15 (s, 3H, CHs), 2.26 (s, 3H, CH,); >C NMR (101 MHz, DMSO-d,) & 177.49,
145.80, 141.81, 137.93, 129.49, 128.92, 128.30, 128.28, 125.68, 124.61, 116.98, 36.33, 20.98, 17.19;
IR (neat): 1585 (C=N), 1524 (C=N), 1218 (SOs), 1187 (SO5), 1116 (C-S), 1030 (SO5), 819 (C-S), 680 (C-
S) cm™; HRMS (ESI): m/z caled for CoHoNS" [M]" 164.0528, found 164.0537; Mp: 185-187 °C.

Data consistent with the literature values”

1.3.2  4-Fluoro-2,3-dimethylbenzo[dlthiazol-3-ium 4-methylbenzenesulfonate (6b)

F CHs @O:\S//
NO Q
S\>—CH3 CH

The title compound was synthesised following General procedure A, method I using 2-

3

bromo-6-fluoroaniline (2.3 mL, 20 mmol) and acetic anhydride (1M in dichloromethane, 22 mL,
22 mmol) to give N-(2-bromo-6-fluorophenyl)acetamide (1a) (4.68 g, 100% yield) as a white solid.
Next, 1a (4.52 g, 19.5 mmol) was thionated via General procedure B using dry THF (70 mL) and
Lawesson’s reagent (6.17 ¢, 14 mmol). The crude product was purified by silica gel column

chromatography (eluent: EtOAc/hexanes = 1:20-1:4) to give N-(2-bromo-6-fluorophenyl)
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thioacetamide (2a) (4.13 g, 85% yield) as a yellow solid. Then, 2a (4.12 g, 16.6 mmol) was
subjected to General procedure C using 1,4-dioxane (60 mL), Pd,(dba); (0.76 g, 0.83 mmol),
JohnPhos (0.37 g, 1.25 mmol) and potassium tert-butoxide (2.79 g, 24.9 mmol). The crude
product was purified by silica gel column chromatography (eluent: EtOAc/hexanes = 1:20-1:4) to
provide 5-fluoro-2-methylbenzoldlthiazole (5b) (1.84 ¢, 66% vyield) as a pale-yellow oil. Finally,
5b (1.84 ¢, 11 mmol) was subjected to General procedure E using methyl p-toluenesulfonate

(2.2 mL, 14.3 mmol) to give the desired product éb (2.19 g, 56% yield) as a yellow solid.

"H NMR (400 MHz, DMSO-dy) 6 8.24 (dd, J = 6.3, 2.7 Hz, 1H, ArH), 7.91 - 7.68 (m, 2H, ArH), 7.45 (d,
J = 8.0 Hz, 2H, ArH), 7.09 (d, J = 7.8 Hz, 2H, ArH), 4.28 (s, 3H, CHs), 3.15 (s, 3H, CH,), 2.27 (s, 3H,
CH,); C NMR (101 MHz, DMSO-d,) & 178.52, 150.77 (d, U = 253.4 Hz), 145.76, 137.48, 131.27,
130.27 (d, Jer = 10.6 Hz), 129.08 (d, 2Jer = 7.6 Hz), 127.98, 125.40, 120.73 (d, *Jr = 4.5 Hz), 115.98
(d, Jer = 19.3 Hz), 39.18, 20.70, 16.94; F NMR (376 MHz, DMSO-d,) 8 -125.36; IR (neat): 1588
(C=N), 1521 (C=N), 1262 (C-F), 1216 (SO5), 1191 (SO,), 1116 (C-S), 1027 (SO,), 919 (C-F), 810 (C-9),
677 (C-S) cm™; HRMS (ESI"): m/z calcd for CoHFNS' [M]* 182.0434, found 182.0438; Mp: 203-206
°C.

1.3.3  5-Fluoro-2,3-dimethylbenzol[dlthiazol-3-ium 4-methylbenzenesulfonate (6c)
0.0
— - 4YD

s
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The title compound was synthesised following General procedure A, method | using 2-

3

bromo-5-flucroaniline (4.75 g, 25 mmol) and acetic anhydride (1M in dichloromethane, 28 mL,
27.5 mmol) to give N-(2-bromo-5-fluorophenyl)acetamide (1b) (5.62 g, 24 mmol, 96% vyield) as a
white solid. Next, 1b (5.57 g, 24 mmol) was thionated via General procedure B using dry THF
(80 mL) and Lawesson’s reagent (7.49 g, 17 mmol). The crude product was purified by silica gel
column chromatography (eluent: EtOAc/hexanes = 1:10-1:4) to give N-(2-bromo-5-fluorophenyl)
thioacetamide (2b) (4.95 g, 20 mmol, 83% vyield) as a yellow solid. Then, 2b (4.91 g, 19.8 mmol)
was subjected to General procedure C using 1,4-dioxane (66 mL), Pd,(dba); (0.91 g, 0.99 mmol),
JohnPhos (0.45 g, 1.49 mmol) and potassium tert-butoxide (3.33 g, 29.7 mmol). The crude
product was purified by silica gel column chromatography (eluent: EtOAc/hexanes = 1:10) to
provide 4-fluoro-2-methylbenzold]thiazole (5¢) (2.01 g, 12 mmol, 61% vyield) as an orange oil.
After that, 5¢ (1.95 ¢, 11.7 mmol) was subjected to General procedure E using methyl p-
toluenesulfonate (2.3 mL, 15.2 mmol) to give the title product 6c (2.23 g, 6.3 mmol, 54% yield)

as a light-green solid.
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"H NMR (400 MHz, DMSO-d,) & 8.46 (dd, J = 9.0, 5.1 Hz, 1H, ArH), 8.31 (dd, J = 9.5, 2.2 Hz, 1H,
ArH), 7.73 (td, J = 9.0, 2.3 Hz, 1H, ArH), 7.44 (d, J = 7.9 Hz, 2H, ArH), 7.08 (d, J = 7.7 Hz, 2H, ArH),
4.15 (s, 3H, CHs), 3.15 (s, 3H, CH5), 2.27 (s, 3H, CH,); °C NMR (101 MHz, DMSO-d,) & 179.53, 162.33
(d, e = 246.6 Hz), 145.76, 142.73 (d, *Jr = 12.7 Hz), 137.48, 127.94, 126.44 (d, °J = 10.1 Hz),
125.40, 124.68, 116.71 (d, “Jor = 25.0 Hz), 104.15 (d, “Jo= = 28.7 Hz), 36.36, 20.70, 17.18; ’F NMR
(376 MHz, DMSO-d) § -110.17; IR (neat): 1615, (C=N), 1596 (C=N), 1268 (C-F), 1197 (SO5), 1119 (C-
S), 1037 (SOy), 921 (C-F), 825 (C-S), 678 (C-S) cm™; HRMS (ESI"):: m/z calcd for CoHoFNS® [M]*
182.0434, found 182.0474; Mp: 181-184 °C.

1.3.4  6-Fluoro-2,3-dimethylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6d)
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The title compound was synthesised following General procedure A, method I using

3

4-fluoroaniline (4.74 mL, 50 mmol) using EtOAc (25 mL) and acetic acid (7.15 mL, 125 mmol) to
give N-(d4-fluorophenyllacetamide (3a) (5.49 g, 36 mmol, 72% yield) as an off-white solid. Next, 3a
(5.48 g, 36 mmol) was thionated via General procedure B using dry THF (120 mL) and
Lawesson’s reagent (11.03 g, 25 mmol). The crude product was purified by silica gel column
chromatography (eluent: EtOAc/hexanes = 1:9-1:1) to give N-(4-fluorophenylthioacetamide (4a)
(4.44 g, 26 mmol, 73% vyield) as a yellow solid. Then, da (4.44 g, 26 mmol) was subjected to
General procedure D using potassium hexacyanoferrate(lll) (25.44 g, 79 mmol), H,0O (75 mL),
EtOH (10 mL) and 10% NaOH(ag) (84 mL, 210 mmol). The crude product was purified by silica gel
column  chromatography (eluent: EtOAc/hexanes = 1:5-1:3) to provide 6-fluoro-2-
methylbenzo[d]thiazole (5d) (1.29 g, 7.7 mmol, 29% vyield) as a yellow solid. After that, 5d (7
mmol) was subjected to General procedure E using methyl p-toluenesulfonate (1.4 mL, 9.3

mmol) to give the title product 6d (1.65 g, 4.7 mmol, 65% yield) as a gray solid.

'H NMR (400 MHz, DMSO-d,,) & 8.49 - 8.15 (m, 2H, ArH), 7.82 (td, J = 9.0, 2.5 Hz, 1H, ArH), 7.45 (d,
J = 80 Hz, 2H, ArH), 7.09 (d, J = 7.8 Hz, 2H, ArH), 4.18 (s, 3H, CH,), 3.14 (s, 3H, CH,), 2.27 (s, 3H,
CH,); >C NMR (101 MHz, DMSO-d,) & 177.79, 160.70 (d, "Jr = 247.3 Hz), 145.78, 138.47, 137.49,
130.26 (d, Jr = 12.2 Hz), 127.96, 125.42, 118.76 (d, *Jor = 9.7 Hz), 117.89 (d, ZJor = 25.7 Hz),
110.81 (d, ZJr = 28.6 Hz), 36.41, 20.71, 17.08; °F NMR (376 MHz, DMSO-d,) & -111.72; IR (neat):
1600 (C=N), 1540 (C=N), 1241 (C-F), 1205 (SO,), 1190 (S0,), 1122 (C-F), 1022 (C-S), 910 (C-F), 887
(C-F), 820 (C-S), 691 (C-S) cm™; HRMS (ESI"):: m/z calcd for CoHoFNS' [M]™ 182.0434, found
182.0433; Mp: 173-175 °C.
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1.3.5  7-Fluoro-2,3-dimethylbenzo[d]thiazol-3-ium
4-methylbenzenesulfonate (6e)
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The title compound was synthesised following General procedure A, method | using 2-
bromo-3-flucroaniline (1.9 g, 10 mmol) and acetic anhydride (1M in dichloromethane, 11 mL, 11
mmol) to give N-(2-bromo-3-fluorophenyllacetamide (1c) (2.44 g, 10 mmol, 100% yield) as a
white solid. Next, 1c (10 mmol) was thionated via General procedure B using dry THF 20 mL
and Lawesson’s reagent (3.1 g, 7.0 mmol). The crude product was purified by silica gel column
chromatography (eluent: EtOAc/hexanes = 1:10) to give N-(2-bromo-3-
fluorophenyl)thicacetamide(2c) (1.35 g, 5.4 mmol, 54% yield) as a yellow oil. Then, 2c (1.34 g, 5.4
mmol, 1.0 equiv.) was subjected to General procedure C using 1,4-dioxane (20 mL), Pd,(dba)s
(0.25 g, 0.27 mmol), JohnPhos (0.12 g, 0.41 mmol) and potassium tert-butoxide (0.91 g, 8.1
mmol). The crude product was purified by silica gel column chromatography (eluent:
EtOAc/hexanes = 1:9-1:4) to provide 7-fluoro-2-methylbenzold]thiazole (5e) (0.61 g, 3.6 mmol,
67% yield) as an orange oil. After that, 5e (1.0 g, 6.0 mmol, 1 equiv.) was subjected to General
procedure E using methyl p-toluenesulfonate (1.2 mL, 7.8 mmol) to give the title product 6e

(0.83 g, 2.3 mmol, 39% vyield) as a dark-brown solid.

'H NMR (400 MHz, DMSO-d,) 8 8.19 (d, J = 8.5 Hz, 1H, ArH), 7.95 (td, J = 8.3, 5.4 Hz, 1H, ArH), 7.76
(t, J = 8.9 Hz, 1H, ArH), 7.44 (d, J = 8.0 Hz, 2H ArH), 7.08 (d, J = 7.8 Hz, 2H, ArH), 4.23 (s, 3H, CH,),
3.22 (s, 3H, CH,), 2.27 (s, 3H, CH,); °C NMR (101 MHz, DMSO-d,) 6 178.41, 155.80 (d, "J = 250.2
Hz), 145.75, 143.84 (d, *J = 5.3 Hz), 137.51, 131.44 (d, *Jr = 7.6 Hz), 127.97, 125.41, 116.40 (d,
“Jer = 23.0 Hz), 114.04 (d, “Jep = 17.5 Hz), 113.59 (d, “Jer = 3.9 Hz), 36.97, 20.72, 17.37; '’F NMR
(376 MHz, DMSO-d,) 6 -113.61; IR (neat): 1585 (C=N), 1254 (C-F), 1216 (SO,), 1194 (SO5), 1032 (SO-
»), 908 (C-F), 816 (C-S), 675 (C-S) cm™; HRMS (ESI"): m/z calcd for CoHoFNS™ [M]* 182.0434, found
182.0446; Mp: 171-173 °C.

1.3.6  2,3-Dimethyl-6-(trifluoromethyl)benzo[dlthiazol-3-ium 4-

methylbenzenesulfonate (6f)
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The title compound was synthesised following General procedure A, method | using 2-
bromo-4-(triflucromethylaniline (2.40 g, 10 mmol) and acetic anhydride (1M in dichloromethane,
11 mL, 11 mmol) to give N-(2-bromo-a4-(trifluoromethyl)phenylacetamide (1d) (2.75 g, 9.7 mmol,
97% vyield) as a white solid. Next, 1d (2.68 g, 9.5 mmol, 1 equiv.) was thionated via General
procedure B using dry THF (35 mL) and Lawesson’s reagent (2.93 g, 6.6 mmol). The crude
product was purified by silica gel column chromatography (eluent: EtOAc/hexanes = 1:10) to give
N-(2-bromo-d-(trifluoromethylphenyl)thiocacetamide (2d) (2.68 g, 9.0 mmol, 95% vyield) as a pale-
yellow solid. Then, 2d (2.65 ¢, 4.4 mmol) was subjected to General procedure C using 1,4-
dioxane (30 mL), Pd,(dba); (0.41 g, 0.45 mmol), JohnPhos (0.20 g, 0.67 mmol) and potassium tert-
butoxide (1.50 ¢, 13.4 mmol) were added. The crude product was purified by silica gel column
chromatography (eluent: EtOAc/hexanes = 1:10) to provide 2-methyl-6-(trifluoromethyl)benzold]
thiazole (5f) (0.52 g, 2.8 mmol, 63% yield) as a yellow solid. After that, 5f (0.49 ¢, 2.6 mmol) was
subjected to General procedure E using methyl p-toluenesulfonate (0.5 mL, 3.4 mmol) to give

the title product 6f (0.34 g, 0.9 mmol, 35% yield) as a brown solid.

"H NMR (400 MHz, DMSO-d,) & 8.91 (s, 1H), 8.49 (d, J = 8.9 Hz, 1H, ArH), 8.22 (d, J = 8.9 Hz, 1H,
ArH), 7.44 (d, J = 8.0 Hz, 2H, ArH), 7.08 (d, J = 7.9 Hz, 2H, ArH), 4.23 (s, 3H, CHs), 3.21 (s, 3H, CH,),
2.26 (s, 3H, CH,); >C NMR (101 MHz, DMSO-d,) 8 181.13, 145.54, 143.92, 137.64, 129.49, 128.02 (q,
“Jer = 32.8 Hz), 128.00, 125.89 (q, “Jor = 3.3 Hz), 125.41, 123.57 (q, "Jor = 272.7 Hz), 122.49 (q, *Jr =
4.3 Hz), 118.15, 36.48, 20.70, 17.38; "*F NMR (376 MHz, DMSO-d,) & -60.43; IR (neat): 1593 (C=N),
1535 (C=N), 1316 (C-CF5), 1213 (SO5), 1174 (SO5), 1077 (C-CF), 1030 (SO,), 919 (C-F), 808 (C-S), 675
(C-S) cm’™; HRMS (ESI): m/z caled for CigHoFsNST [MI* 232.0402, found 232.0428; Mp: 171-173 °C.

1.3.7  2,3-Dimethyl-6-(trifluoromethoxy)benzol[dlthiazol-3-ium 4-

methylbenzenesulfonate (6g)
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The title compound was synthesised following General procedure A, method | using

3

4-(trifluoromethoxy)aniline (1.78 mL, 20 mmol) and acetic anhydride (1M in dichloromethane, 22
mL, 22 mmol) to give N-(d-(trifluoromethoxy) phenyl)acetamide (3b) (3.12 g, 14 mmol, 71% yield)
as an off-white solid. Next, 3b (3.09 g, 14 mmol) was thionated via General procedure B using
dry THF (120 mL) and Lawesson’s reagent (11.03 g, 25 mmol). The crude product was purified by
silica gel column chromatography (eluent: EtOAc/hexanes = 1:4-1:1) to give N-(4-
(trifluoromethoxy)phenylthioacetamide (4b) (2.68 g, 11 mmol, 81% vyield) as a yellow solid. Then,

d4b (444 g, 26 mmol) was subjected to General procedure D using potassium
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hexacyanoferrate(lll) (25.44 g, 79 mmol), H,O (75 mL), EtOH (10 mL) and 10% NaOH(ag) (84 mL,
210 mmol). The crude product was purified by silica gel column chromatography (eluent:
EtOAc/hexanes = 1:20-1:10) to provide 2-methyl-6-(trifluoromethoxy)benzoldlthiazole (5¢) (1.53 g,
6.5 mmol, 59% vyield) as an orange solid. After that, 5¢ (1.50 g, 6.4 mmol) was subjected to
General procedure E using methyl p-toluenesulfonate (1.3 mL, 8.3 mmol). The crude product
was purified by silica gel column chromatography (eluent: methanol/EtOAc = 1:5-1:1) to give the
title product 6g (1.50 g, 3.6 mmol, 56% vyield) as a dark-brown solid.

R¢ 0.4 (1:1 methanol:EtOAQ), 'H NMR (400 MHz, DMSO-dy) & 8.54 (s, 1H, ArH), 8.40 (d, J = 9.2 Hz,
1H, ArH), 7.91 (d, J = 9.0 Hz, 1H, ArH), 7.44 (d, J = 7.7 Hz, 2H, ArH), 7.07 (d, J = 7.8 Hz, 2H, ArH),
4.19 (s, 3H, CH,), 3.17 (s, 3H, CHs), 2.26 (s, 3H, CH,); >C NMR (101 MHz, DMSO-d,) & 179.14, 146.79,
145.47, 140.20, 137.35, 129.99, 127.75, 125.19, 122.65, 119.76 (q, JJCF = 258.2 Hz), 118.55, 116.57,
36.24, 20.48, 16.99; F NMR (376 MHz, DMSO-d,) & -57.11; IR (neat): 1672 (C=N), 1604 (C=N), 1258
(C-F), 1170 (C-O-CF;), 1121 (SO5), 1038 (SO,), 817 (C-S), 680 (C-S) cm™; HRMS (ESI"): m/z calcd for
C,oHoFsNOS* [M]* 248.0351, found 248.0388; Mp: 75-77 °C.
1.3.8  5,6-Difluoro-2,3-dimethylbenzo[dlthiazol-3-ium 4-methylbenzenesulfonate
(6h)
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The title compound was synthesised following General procedure A, method I, using 2-
bromo-4,5-difluoroaniline (2.1 g, 10 mmol) and acetic anhydride (1M in dichloromethane, 11 mL,
11 mmol) to give N-(2-bromo-4,5-difluorophenyl)acetamide (1e) (2.4 g, 9.6 mmol, 96% vyield) as a
white solid. Next, 1e (1.54 ¢, 6.2 mmol, 1 equiv.) was thionated via General procedure B using
dry THF 25 mL and Lawesson’s reagent (1.94 g, 4.4 mmol). The crude product was purified by
silica gel column chromatography (eluent: EtOAc/hexanes = 1:20) to give N-(2-bromo-4,5-
difluoropheny)thicacetamide (2e) (1.20 g, 4.5 mmol, 73% yield) as a yellow oil. Then, 2e (1.18 g,
4.4 mmol, 1.0 equiv.) was subjected to General procedure C using 1,4-dioxane (15 mlL),
Pd,(dba); (0.20 g, 0.22 mmol), JohnPhos (0.10 g, 0.33 mmol) and potassium tert-butoxide (0.75 g,
6.7 mmol). The crude product was purified by silica gel column chromatography (eluent:
EtOAc/hexanes = 1:20) to provide 5,6-difluoro-2-methylbenzold]thiazole (5h) (0.52 g, 2.8 mmol,
63% vyield) as a yellow solid. After that, 5h (0.49 g, 2.6 mmol) was subjected to General
procedure E using methyl p-toluenesulfonate (0.5 mL, 3.4 mmol) to give the title product 6éh
(0.34 g, 0.92 mmol, 35% yield) as a brown solid.
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'H NMR (400 MHz, DMSO-d,) & 8.62 (dd, J = 10.7, 6.7 Hz, 1H, ArH), 8.53 (dd, J = 9.4, 7.9 Hz, 1H,
ArH), 7.45 (d, J = 7.9 Hz, 2H, ArH), 7.09 (d, J = 7.8 Hz, 2H, ArH), 4.15 (s, 3H, CHs), 3.14 (s, 3H, CH,),
2.28 (s, 3H, CHs); °C NMR (101 MHz, DMSO-d,) 8 179.38, 150.63 (dd, "Jor = 249.7, “Jer = 15.0 Hz),
149.29 (dd, Uy = 250.3, “Jgr = 14.6 Hz), 145.66, 138.27 (d, *Jor = 9.9 Hz), 137.58, 127.99, 125.42,
124.97 (dd, *Jr = 10.1, Y = 2.2 Hz), 112.78 (d, “Jsr = 23.9 Hz), 106.39 (d, “Jsr = 24.2 Hz), 36.70,
20.72, 17.24; F NMR (376 MHz, DMSO-d,) § -132.91 (d, J = 21.9 Hz, 1F), -134.71 (d, J = 22.0 Hz,
1F). IR (neat): 1601 (C=N), 1532 (C=N), 1271 (C-F), 1185 (SO), 1116 (SO,), 1030 (SO5), 882 (C-F), 810
(C-S), 683 (C-S) cm™; HRMS (ESI"): m/z calcd for CoHgF,NS' [MI* 200.0340, found 200.0347; Mp:
203-206 °C.

1.4 Synthesis of fluorinated rhodacyanine analogues (10c, 11a-11q)
1.4.1  N-((3-Ethyl-4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-N-

phenylpropionamide (7)

H 0
N N. }—/
. 1) Ph™ X ph PhoN s
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NEt;,110 °C, 0.5 h o,

The title compound was synthesised using the modified method.”” A mixture of 3-
ethylrhodanine (8.06 g, 50.0 mmol, 1 equiv.) and N,N’-diphenylformamidine (9.81 g, 50.0 mmol, 1
equiv.) in acetonitrile (50 mL) was heated at 70 °C for 1 h. After cooling to room temperature, the
resulting precipitates were filtered and washed with cold acetone to give the intermediate
named 3-ethyl-5-((phenylamino)methylene)-2-thioxothiazolidin-4-one (9.67 ¢, 37 mmol, 73%
yield) as a yellow solid. The intermediate (9.67 g, 37 mmol, 1 equiv.) was dissolved in propionic
anhydride (20 mL, 157 mmol, 4.2 equiv.) and triethylamine (0.4 mL, 12 mol%). The mixture was
stirred at 110 °C for 30 min. The solution was concentrated in vacuo at 75 °C and allowed to
cool to room temperature. After adding methanol into the cold solution over ice bath, the
precipitation occurred. The precipitate was collected via vacuum filtration and washed with

methanol to obtain the desired product (11.41 g, 36 mmol, 97% yield) as a yellow solid.

Re: 0.33 (1:4 EtOAC:hexanes); "H NMR (400 MHz, DMSO-d,) & 8.72 (s, 1H, methine CH ), 7.70 — 7.52
(m, 3H, ArH), 7.28 (d, J = 4.8 Hz, 2H, ArH), 4.09 (q, J = 7.1 Hz, 2H, CH,CH,), 2.25 (q, J = 7.2 Hz, 2H,
CH,CHy), 1.21 (t, J = 7.1 Hz, 3H, CH,CH), 1.13 (t, J = 7.3 Hz, 3H, CH,CH,); °C NMR (101 MHz,
DMSO-d,) & 194.12, 173.48, 168.40, 136.46, 131.32, 131.20, 130.75, 129.70, 106.07, 39.61, 28.65,
12.22, 8.94; IR (neat): 1718 (C=0O of amide), 1604 (cyclic C=0), 1443 (C-N), 1330 (C-N), 1298 (C-N),
1102 (C=S), 883 (C-S) cm™’; Mp: 172-174 °C.
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1.4.2  2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-3-methylbenzo[d]thiazol-3-ium  chloride
(11a)

The title compound was synthesised following General procedure F using 7 (32.20 g, 10
mmol), 6a (3.35 g, 10 mmol), acetonitrile (50 mL), acetic anhydride (1.32 mL, 14 mmol and
triethylamine (975 pL, 37 mmol) to give 3-ethyl-5-(2-(3-methylbenzoldlthiazol-2(3H)-ylidene)
ethylidene)-2-thioxothiazolidin-4-one (8a) as a brown solid (1.88 ¢, 5.6 mmol, 56% yield). Next, 8a
(1.68 g, 5.0 mmol) was subjected to General procedure G using methyl p-toluenesulfonate (2.3
mL, 150 mmol) and DMF (6.7 mL) to give 3-ethyl-5-(2-(3-methylbenzold]thiazol-2(3H)-
ylidene)ethylidene)-2-(methylthio)-4-oxo-4,5-dihydrothiazol-3-ium 4-methylbenzenesulfonate (9a)
as a green solid (2.08 g, 3.4 mmol, 80% yield). A mixture of 9a (100 mg, 0.19 mmol) and 6a (65
mg, 0.19 mmol) was subjected to General procedure H using acetonitrile (4.2 mL) and
triethylamine (80 uL, 0.57 mmol) to give 2-(3-ethyl-5-(2-(3-methylbenzoldlthiazol-2(3H)-
ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-3-methylbenzold]thiazol -3-jum a-
methylbenzenesulfonate (10a) as a dark-green solid (91 mg, 0.14 mmol, 74% yield). Finally, 10a
(66 mg, 0.1 mmol) was subjected to General procedure | using methanol (6.6 mL) and conc. HCl

(0.3 mL) to give the title product 11a as a dark-green solid (31 mg, 0.062 mmol, 62% vyield).

"H NMR (400 MHz, DMSO-d,) 6 8.24 (d, J = 8.0 Hz, 1H, ArH), 7.90 (d, J = 8.1 Hz, 1H, ArH), 7.84 (d, J
= 7.8 Hz, 1H, ArH), 7.74 — 7.62 (m, 2H, ArH, methine CH), 7.60 — 7.51 (m, 1H, ArH), 7.50 - 7.38 (m,
2H, ArH), 7.32 — 7.24 (m, 1H, ArH), 6.75 (s, 1H, methine CH), 5.94 (d, J = 13.3 Hz, 1H, methine CH),
8.17 (g, J = 6.8 Hz, 2H, CH,CHs), 4.06 (s, 3H, CHs), 3.72 (s, 3H, CH,), 1.27 (t, J = 7.0 Hz, 3H, CH,CH,);
“C NMR (101 MHz, DMSO-dy) & 163.62, 162.95, 162.88, 156.94, 141.89, 140.37, 134.55, 128.83,
127.57, 126.05, 125.80, 124.15, 123,95, 123.42, 122.58, 114.66, 112.40, 101.83, 90.70, 86.32, 39.52,
34.69, 32.89, 12.38 (s); IR (neat): 1673 (C=N), 1562 (C=N), 1512 (C=C), 1471 (C=0), 1342 (C-N), 1181
(C-N), 1019 (C-S), 812 (C-S) cm™; HRMS (ESIY):: m/z calcd for CpgHy,N;0S," [MIT 464.0920, found
464.0909; Mp: 254-256 °C.

Data consistent with the literature values’
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1.4.3  2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-4-fluoro-3-methylbenzol[d]thiazol-3-ium
chloride (11b)

\
O CaoHs

The title compound was synthesised following General procedure H using 9a (156 mg,
0.3 mmol, synthesised as described in the synthesis of 11a), 6b (106 mg, 0.3 mmol), acetonitrile
(70 mbL) and triethylamine (125 uL, 09 mmol) to provide 2-(3-ethyl-5-(2-(3-
methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-4-fluoro-3-
methylbenzol[dlthiazol-3-ium 4-methylbenzenesulfonate (10b) as a dark-green solid (151 mg, 0.23
mmol, 77% yield). Finally, 10b (93 mg, 0.18 mmol) was subjected to General procedure | using
methanol (9.0 mL) and conc. HCL (0.6 mL) to give the title product 11b as a dark-green solid (68
mg, 0.13 mmol, 72% yield).

"H NMR (400 MHz, DMSO-d,) 8 8.04 (d, J = 8.9 Hz, 1H, ArH), 7.88 (d, J = 7.2 Hz, 1H, ArH), 7.72 (d, J
= 13.0 Hz, 1H, methine CH), 7.58 - 7.43 (m, GH, ArH), 7.32 (t, J = 6.9 Hz, 1H, ArH), 6.72 (s, 1H,
methine CH), 6.03 (d, J = 13.1 Hz, 1H, methine CH), 4.20 — 4.12 (m, 5H, CH,CH,, CH5), 3.75 (s, 3H,
CH,), 1.26 (t, J = 7.1 Hz, 3H, CH,CH,); C NMR (101 MHz, DMSO-d,) 8 163.58, 163.17, 161.40,
161.35 (d, 'Jor = 235.1 Hz), 157.98, 150.76, 145.54, 141.89, 135.11, 127.69, 124.39, 123.31 (d, “Jr
= 25.1 Hz), 122.65, 119.70, 116.04 (d, J = 20.5 Hz), 115.99, 112.59, 110.01, 91.17, 86.02, 39.02,
37.29, 33.00, 12.36; "°F NMR (376 MHz, DMSO-dy) § -126.65; IR (neat): 1688 (C=N), 1556 (C=N),
1516 (C=C), 1469 (C=0), 1349 (C-N), 1224 (C-F), 1185 (C-N), 1021 (C-S), 921 (C-F), 808 (C-S) cm™*
HRMS (ESI™): m/z calcd for CpyH,,FN,OS,™ [M]T482.0825, found 482.0834; Mp: 231-233 °C.

1.4.4  2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothia-zolidin-2-ylidene)methyl)-5-fluoro-3-methylbenzo[d]thiazol-3-ium
4-methylben-zenesulfonate (10c)

F
CEH?%*“@ ()

The title compound was synthesised following General procedure H using 9a (100 mg,

0.19 mmol, synthesised as described in the synthesis of 11a), 6¢c (68 mg, 0.19 mmol), acetonitrile
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(4.2 mL) and triethylamine (80 pL, 0.57 mmol) to provide 2-(3-ethyl-5-(2-(3-methylbenzol[d]
thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-methylbenzold]
thiazol-3-ium 4-methylbenzenesulfonate (10c) as a dark-green solid (97 mg, 0.14 mmol, 74%

yield).

"H NMR (400 MHz, DMSO-d,) 8 8.22 (dd, J = 5.6 Hz, 1H, ArH), 7.94 — 7.69 (m, 2H, ArH), 7.63 (d, J =
12.8 Hz, 1H, methine CH), 7.48 (d, J = 7.8 Hz, 2H, ArH), 7.45 — 7.33 (m, 3H, ArH), 7.28 (s, 1H, ArH),
7.11(d, J = 7.9 Hz, 2H, ArH), 6.70 (s, 1H, methine CH), 5.92 (d, J = 13.1 Hz, 1H, methine CH), 4.16
(q,J = 6.9 Hz, 2H, CH,CH,), 3.97 (s, 3H, CH,), 3.69 (s, 3H, CHs), 2.28 (s, 3H, CH,), 1.28 (t, J = 6.9 Hz,
3H, CH,CH,); °C NMR (126 MHz, DMSO-d,) 8 164.14, 163.22, 162.73 (d, "Jzr = 250.2 Hz), 157.69,
145.38, 141.74, 138.33, 128.46, 127.81, 126.34, 125.77, 125.09, 124.54, 123.99, 123.30 (d, *Jr = 9.7
Hz), 122.77, 122.19 (d, "Jor = 9.5 Hz), 121.64, 114.64 (d, “Jr = 24.7 Hz), 112.53, 108.59 (d, “Jer =
27.2 Hz), 102.18, 91.35, 86.66, 39.19, 34.88, 33.03, 21.04, 12.60; *’F NMR (376 MHz, DMSO-d,) & -
111.16; IR (neat): 1679 (C=N), 1560 (C=N), 1493 (C=C), 1463 (C=0), 1341 (SO,), 1190 (C-N), 1124 (C-
S) 1030 (SO,), 1058 (C-S), 915 (C-F), 816 (C-S), 680 (C-S) cm™; HRMS (ESI"): m/z calcd for
CpaHy1FN;0S," [M]* 482.0825, found 482.0808; Mp: 293-295 °C.

Data consistent with the literature values’

1.45  2-(3-Ethyl-5-(2-(3-methylbenzoldlthiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-methylbenzol[dlthiazol-3-ium
chloride (11c)

CH "
N S o
@ES VI he=Z S>=):N\® Cl
N\ CH3
O CoHs

10c (65 mg, 0.1 mmol) was subjected to General procedure | using methanol (6.6 mL)
conc. HCL (0.3 mL) to give the title product 11c as a dark-green solid (40 mg, 0.07 mmol, 77%
yield).

"H NMR (400 MHz, DMSO-d) & 8.25 (dd, J = 8.8, 5.1 Hz, 1H, ArH), 7.82 (d, J = 7.7 Hz, 1H, ArH), 7.74
(d, J = 83 Hz, 1H, ArH), 7.59 (d, J = 13.1 Hz, 1H, methine CH), 7.42 - 7.32 (m, 3H, ArH), 7.30 - 7.22
(m, 1H, ArH), 6.71 (s, 1H, methine CH), 5.89 (d, J = 13.2 Hz, 1H, methine CH), 4.16 (g, J = 7.1 Hz,
2H, CH,CH,), 3.98 (s, 3H, CH,), 3.68 (s, 3H, CH5), 1.29 (t, J = 7.1 Hz, 3H, CH,CH,); >C NMR (101 MHz,
DMSO-d,) & 163.68, 163.44, 163.06, 162.66 (d, 'Jo = 285.4 Hz), 157.31, 141.76, 141.68, 134.63,
127.52, 125.01 (d, 2Jzr = 10.1 Hz), 124.21, 123.85, 122.56, 121.54, 113.53 (d, “Jr = 24.7 Hz), 112.37,
102.18 (d, “Jor = 28.9 Hz), 101.72, 90.91, 86.49, 39.00, 34.81, 32.87, 12.35; "*F NMR (376 MHz,
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DMSO-d) & -111.13; IR (neat): 1668 (C=N), 1560 (C=N), 1513 (C=C), 1466 (C=0), 1191 (C-N), 1127
(C-S), 1055 (C-S), 944 (C-F), 824 (C-S) cm™; HRMS (ESI"): m/z calcd for CpgH,,FNOS," [M]" 482.0825,
found 482.0841; Mp: 275-277 °C.

Data consistent with the literature values’

1.4.6  2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothia-zolidin-2-ylidene)methyl)-6-fluoro-3-methylbenzo[d]thiazol-3-ium
chloride (11d)

s o
N _ cl
A LS __ N®
S CHs

o CyHs

The title compound was synthesised following General procedure H using 9a (100 mg,
0.19 mmol, synthesised as described in the synthesis of 11a), 6d (68 mg, 0.19 mmol), acetonitrile
(5.0 mL) and triethylamine (80 pL, 0.57 mmol) to give 2-(3-ethyl-5-(2-(3-methylbenzo[d]thiazol-
2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-6-fluoro-3-methylbenzo[d]thiazol-3-
ium 4-methylbenzenesulfonate (10d) as a dark-green solid (87 mg, 0.13 mmol, 68% yield).
Finally, 10d (65 mg, 0.1 mmol) was subjected to General procedure | using methanol (6.6 mL)
and conc. HCL (0.3 mL) to give the title product 11d as a dark-green solid (32 mg, 0.062 mmol,
62% yield).

"H NMR (400 MHz, DMSO-d,) & 8.16 (dd, J = 7.9, 1.9 Hz, 1H, ArH), 7.80 (d, J = 8.1 Hz, 2H, ArH), 7.64
- 7.46 (m, 2H, ArH, methine CH), 7.37 (s, 2H, ArH), 7.24 (s, 1H, ArH), 6.68 (s, 1H, methine CH), 5.87
(d, J = 12.9 Hz, 1H, methine CH), 4.15 (q, J = 6.9 Hz, 2H, CH,CH,), 4.01 (s, 3H, CHs), 3.69 (s, 3H,
CHs), 1.28 (t, J = 7.0 Hz, 3H, CH,CHs); °C NMR (101 MHz, DMSO-d,) & 163.53, 163.09, 162.96,
159.30 (d, Jor = 244.8 Hz), 157.02, 141.80, 137.18, 134.51, 127.58, 124.05 (d, “Jo: = 27.6 Hz),
122.57, 116.83 (d, “Jor = 27.2 Hz), 116.70, 116.17, 112.34, 110.39, 110.10, 101.69, 90.76, 86.43,
38.96, 34.95, 32.88, 12.36; '°F NMR (376 MHz, DMSO-d,) & -114.81; IR (neat): 1685 (C=N), 1574
(C=N), 1524 (C=Q), 1477 (C=0), 1308 (C-N), 1202 (C-F), 1191 (C-N), 1124 (C-S), 1052 (C-S), 810 (C-S)
cm’™; HRMS (ESI"): m/z calcd for C,qH,,FNOS," [M]*482.0825, found 482.0831; Mp: 264-266 °C.
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1.4.7  2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothia-zolidin-2-ylidene)methyl)-7-fluoro-3-methylbenzo[d]thiazol-3-ium
chloride (11e)

F
cHs
N S
@ES = S>:)<N\® Cl@
CH
N ®
o CoHs

The title compound was synthesised following General procedure H using 9a (130 mg,
0.25 mmol, synthesised as described in the synthesis of 11a), 6e (88 mg, 0.25 mmol), acetonitrile
(6.25 mL) and triethylamine (105 pL, 0.75 mmol) to give 2-(3-ethyl-5-(2-(3-methylbenzo[d]thiazol-
2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-7-fluoro-3-methylbenzo[dlthiazol-3-
ium 4-methylbenzenesulfonate (10e) as a dark-green solid (121 mg, 0.185 mmol, 74% vyield).
Finally, 10e (109 mg, 0.17 mmol) was subjected to General procedure | using methanol (8.5 mL)

to give the title product 11e as a dark-green solid (73 mg, 0.14 mmol, 82% yield).

"H NMR (400 MHz, DMSO-d,) 8 7.86 (d, J = 7.3 Hz, 1H, ArH), 7.81 - 7.66 (m, 3H, ArH, methine CH),
754 (d, J = 8.3 Hz, 1H, ArH), 7.45 (dd, J = 16.7, 8.6 Hz, 2H, ArH), 7.29 (t, J = 7.2 Hz, 1H, ArH), 6.76
(s, 1H, methine CH), 6.25 (d, J = 13.7 Hz, 1H, methine CH), 4.18 (g, J = 6.4 Hz, 2H, CH,CH,), 4.07 (s,
3H, CH,), 3.80 (s, 3H, CH,), 1.27 (t, J = 6.4 Hz, 3H, CH,CHs); °C NMR (101 MHz, DMSO-d,) § 164.04,
163.49, 162.01, 159.39, 158.38, 156.01 (d, s = 247.2 Hz), 143.04 (d, *Jr = 5.3 Hz), 141.94, 139.63,
135.52, 130.80 (d, 7 = 7.6 Hz), 127.63, 124.30 (d, “Jor = 22.0 Hz), 122.62, 112.71, 111.54 (d, ZJr =
18.0 Hz), 110.97, 101.24, 91.80, 86.25, 39.53, 35.25, 33.25, 12.47; "°F NMR (376 MHz, DMSO-d,) & -
114.99; IR (neat): 1663 (C=N), 1556 (C=N), 1511 (C=C), 1474 (C=0), 1323 (C-N), 1245 (C-F), 1188 (C-
N), 1062 (C-S), 939 (C-F), 810 (C-S) cm™; HRMS (ESI"): m/z calcd for C,H,,FN,OS,™ [M]™ 482.0825,
found 482.0825; Mp: 268-271 °C.

1.48  2-(3-Ethyl-5-(2-(4-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-3-methylbenzo[dlthiazol-3-ium chloride
(11f)
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The title compound was synthesised following General procedure F using 7 (0.48 g, 1.5
mmol), 6b (0.53 ¢, 1.5 mmol), acetonitrile (8.0 mL), acetic anhydride (200 pL, 21 mmol) and
triethylamine (775 L, 5.5 mmol) to give 3-ethyl-5-(2-(4-fluoro-3-methylbenzold]thiazol-2(3H)-
ylidene)ethylidene)-2-thioxothiazolidin-4-one (8b) as a red solid (0.35 g, 1.0 mmol, 67% yield).
Next, 8b (0.35 g, 1.0 mmol) was subjected to General procedure G using methyl p-
toluenesulfonate (0.5 mL, 3.0 mmol) and DMF (20 mL) to give 3-ethyl-5-(2-(4-fluoro-3-
methylbenzo[dlthiazol-2(3H)-ylidene) ethylidene)-2-(methylthio)-4-oxo-4,5-dihydrothiazol-3-ium 4-
methylbenzenesulfonate (9b) as a green solid (0.29 g, 0.5 mmol, 50% yield). A mixture of 9b (108
mg, 0.2 mmol) and 6a (68 mg, 0.2 mmol) was subjected to General procedure H using
acetonitrile (5.0 mL) and triethylamine (85 pL, 0.6 mmol) to give 2-(3-ethyl-5-(2-(4-fluoro-3-
methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-3-
methylbenzo[dlthiazol-3-ium 4-methylbenzenesulfonate (10f) as a dark-green solid (64 mg, 0.1
mmol, 50% yield). Finally, 10f (58 mg, 0.09 mmol) was subjected to General procedure | using
methanol (4.5 mL) and conc. HCL (0.28 mL) to give the title product 11f as a dark-green solid (39
mg, 0.07 mmol, 78% yield).

'H NMR (400 MHz, DMSO-d,) 6 8.26 (d, J = 7.8 Hz, 1H, ArH), 7.81 (d, J = 8.0 Hz, 1H, ArH), 7.64 (dd,
J =155, 7.7 Hz, 2H, ArH), 7.60 — 7.50 (m, 2H, ArH, methine CH), 7.31 — 7.13 (m, 2H, ArH), 6.75 (s,
1H, methine CH), 5.85 (d, J = 13.1 Hz, 1H, methine CH), 4.17 (g, J = 6.8 Hz, 2H, CH,CHs), 4.04 (s, 3H
, CHs), 3.78 (s, 3H, CH,), 1.29 (t, J = 6.8 Hz, 3H, CH,CHs); °C NMR (101 MHz, DMSO-d,) 13C NMR
(101 MHz, DMSO) & 163.62, 163.11, 162.19, 156.90, 148.37 (d, 'J+ = 246.6 Hz), 140.21, 134.22,
129.53 (d, “Jer = 9.1 Hz), 128.81, 127.90, 126.23 (d, “J+ = 26.8 Hz), 125.88, 124.69 (d, *Jr = 7.2 Hz),
123.35, 118.80, 115.04 (d, “Jer = 20.5 Hz), 114.66, 103.52, 90.40, 86.66, 39.52, 35.49, 34.72, 12.26;
“F NMR (376 MHz, DMSO-d,) & -130.05; IR (neat): 1688 (C=N), 1504 (C=C), 1479 (C=0), 1337 (C-N),
1190 (C-N), 1122 (C-F), 1055 (C-S), 918 (C-F), 810 (C-S) cm™; HRMS (ESI"): m/z calcd for
CoaHp FN;OS," [M]* 482.0825, found 482.0800; Mp: 270-273 °C.

1.49  2-(3-Ethyl-5-(2-(5-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-3-methylbenzo[d]thiazol-3-ium chloride

(11g)
CHs
F N S
\CE = S>fN® of”
— \
S CH,

N

\

o CoHs
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The title compound was synthesised following General procedure F using 7 (0.32 g, 1.0
mmol), 6¢c (0.35 g, 1.0 mmol), acetonitrile (5.0 mL), acetic anhydride (135 pL, 1.4 mmol) and
triethylamine (515 L, 3.7 mmol) to give 3-ethyl-5-(2-(5-fluoro-3-methylbenzold]thiazol-2(3H)-
ylidene)ethylidene)-2-thioxothiazolidin-4-one (8c) as a red solid (0.27 ¢, 0.77 mmol, 77% yield).
Next, 8c (0.26 g 0.75 mmol) was subjected to General procedure G using methyl p-
toluenesulfonate (0.35 mL, 2.25 mmol) and DMF (1.1 mL) to give 3-ethyl-5-(2-(5-fluoro-3-
methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-2-(methylthio)-4-oxo-4,5-dihydrothiazol-3-ium  4-
methylbenzenesulfonate (9¢) as a green solid (168 mg, 0.3 mmol, 41% yield). A mixture of 9c
(108 mg, 0.2 mmol) and 6a (68 mg, 0.2 mmol) was subjected to General procedure H using
acetonitrile (5.0 mL) and triethylamine (85 pL, 0.6 mmol) to give 2-(3-ethyl-5-(2-(5-fluoro-3-
methylbenzold]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-3-methyl
benzo[d]thiazol-3-ium 4-methylbenzenesulfonate (10g) as a dark-green solid (91 mg, 0.14 mmol,
70% yield). Finally, 10g (65 mg, 0.1 mmol) was subjected to General procedure | using methanol
(6.6 mL) and conc. HCL (0.3 mL) to give the title product 11g as a dark-green solid (31 mg, 0.06
mmol, 60% yield).

'H NMR (400 MHz, DMSO-d,) & 8.25 (d, J = 9.2 Hz, 1H, ArH), 7.92 (dd, J = 17.3, 8.4 Hz, 1H, ArH),
7.83 (dd, J = 8.8, 5.6 Hz, 1H, ArH), 7.78 = 7.64 (m, 1H, ArH), 7.65 — 7.50 (m, 2H, ArH, methine CH),
7.50 - 7.36 (m, 1H, ArH), 7.12 (t, J = 8.1 Hz, 1H, ArH), 6.76 (s, 1H, methine CH), 5.92 (d, J = 12.6 Hz,
1H, methine CH), 8.17 (q, J = 7.1 Hz, 2H, CH,CHs), 4.07 (s, 3H, CH,), 3.67 (s, 3H, CHs), 1.28 (t, J = 7.1
Hz, 3H, CH,CH.); C NMR (101 MHz, DMSO-d,) & 163.74, 163.63, 162.02 (d, "J; = 231.5 Hz),
156.92, 140.39, 134.19, 128.87, 126.15, 125.94, 123.80 (d, *J; = 10.5 Hz), 123.45, 119.38, 114.79,
111.11 (d, g = 24.5 Hz), 105.08, 104.92, 103.01, 100.38 (d, ZJer = 29.0 Hz), 90.97, 86.61, 39.53,
34.77, 33.06, 12.34; "F NMR (376 MHz, DMSO-d,) & -113.59; IR (neat): 1668 (C=N), 1513 (C=0),
1468 (C=0), 1332 (C-N), 1183 (C-N), 1055 (C-S), 927 (C-F), 830 (C-S) cm™’; HRMS (ESI"): m/z calcd for
CoaHo FN,OS, [M]* 482.0825, found 482.0836; Mp: 265-267 °C.

1.4.10 2-(3-Ethyl-5-(2-(6-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-3-methylbenzo[dlthiazol-3-ium chloride
(11h)
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The title compound was synthesised following General procedure F using 7 (0.32 g, 1.0
mmol), 6d (0.35 g, 1.0 mmol), acetonitrile (5.0 mL), acetic anhydride (135 pL, 1.4 mmol) and
triethylamine (515 L, 3.7 mmol) to give 3-ethyl-5-(2-(6-fluoro-3-methylbenzold]thiazol-2(3H)-
ylidene)ethylidene)-2-thioxothiazolidin-4-one (8d) as a red solid (0.27 g, 0.75 mmol, 75% yield).
Next, 8d (0.25 g, 0.72 mmol) was subjected to General procedure G using methyl p-
toluenesulfonate (335 pL, 2.2 mmol) and DMF (1.0 mL) to give 3-ethyl-5-(2-(6-fluoro-3-
methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-2-(methylthio)-4-oxo-4,5-dihydrothiazol-3-ium  4-
methylbenzenesulfonate (9d) as a green solid (108 mg, 0.2 mmol, 28% yield). A mixture of 9d
(100 mg, 0.18 mmol) and 6a (61 mg, 0.18 mmol) was subjected to General procedure H using
acetonitrile (4.5 mL) and triethylamine (75 pL, 0.54 mmol) to give 2-(3-ethyl-5-(2-(6-fluoro-3-
methylbenzold]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-3-methyl
benzo[d]thiazol-3-ium 4-methylbenzenesulfonate (10h) as a dark-green solid (77 mg, 0.12 mmol,
66% vyield). Finally, 10h (70 mg, 0.11 mmol) was subjected to General procedure | using
methanol (5.0 mL) and conc. HCL (0.35 mL) to give the title product 11h as a dark-green solid (40
mg, 0.077 mmol, 70% vyield).

"H NMR (400 MHz, DMSO-d,) 8 8.21 (d, J = 8.0 Hz, 1H, ArH), 7.87 (d, J = 8.8 Hz, 1H, ArH), 7.77 (d, J
= 8.4 Hz, 1H, ArH), 7.66 (t, J = 7.7 Hz, 1H, ArH), 7.62 — 7.45 (m, 2H, ArH, methine CH), 7.39 (s, 1H,
ArH), 7.27 (dd, J = 22.5, 13.7 Hz, 1H, ArH), 6.72 (s, 1H, methine CH), 5.89 (d, J = 12.8 Hz, 1H,
methine CH), 4.15 (q, J = 7.0 Hz, 2H, CH,CHs), 4.05 (s, 3H, CH,), 3.68 (s, 3H, CHs), 1.27 (t, J = 7.0 Hz,
3H, CH,CH,); C NMR (101 MHz, DMSO-d,) 8 163.60, 162.87, 158.68 (d, "Jo+ = 242.0 Hz), 156.94,
140.29, 138.65, 134.32, 128.83, 128.00, 126.02, 125.81, 125.47, 123.37, 114.79 (d, “Jor = 24.7 H2),
114.60, 113.32 (d, *Jr = 8.8 Hz), 109.85 (d, “J+ = 28.8 Hz), 102.17, 90.84, 86.34, 38.91, 34.67, 33.12,
12.34; F NMR (376 MHz, DMSO-d,) § -117.86; IR (neat): 1657 (C=N), 1562 (C=N), 1505 (C=0),
1474 (C=0), 1335 (C-N), 1185 (C-S), 1063 (C-S), 905 (C-F), 805 (C-S) cm™; HRMS (ESI"): m/z calcd for
CoaHp FN;OS," [M]* 482.0825, found 482.0825; Mp: 231-234 °C.

1.4.11 2-(3-Ethyl-5-(2~(7-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-3-methylbenzo[d]thiazol-3-ium chloride
(11D

The title compound was synthesised following General procedure F using 7 (0.48 g, 1.5

mmol), 6e (0.53 g, 1.5 mmol), acetonitrile (7.5 mL), acetic anhydride (200 uL, 2.1 mmol) and
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triethylamine (775 pL, 5.5 mmol) to give 3-ethyl-5-(2-(7-fluoro-3-methylbenzold]thiazol-2(3H)-
ylidene)ethylidene)-2-thioxothiazolidin-4-one (8e) as a red solid (0.34 g, 0.96 mmol, 64% yield).
Next, 8e (0.31 g, 0.87 mmol) was subjected to General procedure G using methyl p-
toluenesulfonate (405 pL, 2.6 mmol) and DMF 1.5 mL to give 3-ethyl-5-(2-(7-fluoro-3-methyl
benzoldlthiazol-2(3H)-ylidene)ethylidene)-2-(methylthio)-4-oxo-4,5-dihydrothiazol-3-ium 4-methyl
benzenesulfonate (9e) as a green solid (303 mg, 0.56 mmol, 65% yield). A mixture of 9e (108 mg,
0.2 mmol) and 6a (67 mg, 0.2 mmol) was subjected to General procedure H using acetonitrile
(5.0 mL) and triethylamine (84 pL, 0.6 mmol) to give 2-(3-ethyl-5-(2-(7-fluoro-3-
methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-d-oxothiazolidin-2-ylidene)methyl)-3-methyl
benzo[d]thiazol-3-ium 4-methylbenzenesulfonate (10i) as a dark-green solid (100 mg, 0.15 mmol,
76% vyield). Finally, 10i (93 mg, 0.14 mmol) was subjected to General procedure | using
methanol (7.0 mL) conc. HCL (0.46 mL) to give the title product 11i as a dark-green solid (31 mg,
0.06 mmol, 43% vyield).

'H NMR (400 MHz, DMSO-d,) 8 8.25 (d, J = 8.1 Hz, 1H, ArH), 7.96 (d, J = 8.2 Hz, 1H, ArH), 7.71 (t, J
= 7.7 Hz, 1H, ArH), 7.68 — 7.53 (m, 2H, ArH, methine CH), 7.45 (dd, J = 14.1, 8.3 Hz, 2H, ArH), 7.31
(d, J = 8.2 Hz, 1H, ArH), 7.27 — 7.01 (m, 1H, ArH), 6.79 (s, 1H, methine CH), 5.96 (d, J = 13.0 Hz, 1H,
methine CH), 4.16 (g, J = 7.1 Hz, 2H, CH,CH,), 4.10 (s, 3H, CH,), 3.71 (s, 3H, CHa), 1.26 (t, J = 7.1 Hz,
3H, CH,CHs); °C NMR (101 MHz, DMSO-d) 8 163.72, 163.36, 161.10, 156.85, 155.76 (d, Jr = 244.9
Hz), 144.56 (d, *Jr = 6.0 Hz), 140.36, 133.93, 130.92, 129.56 (d, *Jor = 7.9 Hz), 128.92, 126.13 (d,
?Jer = 20.3 Hz), 123.45, 114.85, 110.16 (d, Jer = 22.5 Hz), 108.59 (d, “Jer = 2.9 Hz), 104.24, 90.92,
89.03, 86.84, 39.13, 34.87, 33.36, 12.35; F NMR (376 MHz, DMSO-d,) & -115.98; IR (neat): 1658
(C=N), 1507 (C=C), 1476 (C=0), 1344 (C-N), 1193 (C-S), 1054 (C-S), 927 (C-F) cm™; HRMS (ESI"): m/z
calcd for CogHy, FN,0S," M 482.0825, found 482.0825; Mp: 276-277 °C.

1.4.12  2-(3-Ethyl-5-(2-(3-methylbenzol[dlthiazol-2(3H)-ylidene)ethylidene)-4-
oxothia-zolidin-2-ylidene)methyl)-3-methy!l-6-
(trifluoromethyl)benzo[d]thiazol-3-ium chloride (11j)

CF;
CHs
N S o
CH
N s
O CoHs

The title compound was synthesised following General procedure H using 9a (104 mg,

0.2 mmol, synthesised as described in the synthesis of 11a), 6f (81 mg, 0.2 mmol), acetonitrile
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(5.0 mL) and triethylamine (80 L, 0.6 mmol) to provide 2-(3-ethyl-5-(2-(3-methylbenzo[d]thiazol-
2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-3-methyl-6-(triflucromethylbenzold]
thiazol-3-ium 4-methylbenzenesulfonate (10j) as a dark-green solid (93 mg, 0.136 mmol, 68%
yield). Finally, 10j (68 mg, 0.1 mmol) was subjected to General procedure | using methanol (5.0
mL) and conc. HCL (0.35 mL) to give the title product 11j as a dark-green solid (43 mg, 0.076
mmol, 76% yield).

"H NMR (400 MHz, DMSO-dy) & 8.69 (s, 1H, ArH), 8.08 — 7.92 (m, 2H, ArH), 7.85 (d, J = 7.8 Hz, 1H,
ArH), 7.69 (d, J = 12.9 Hz, 1H, methine CH), 7.52 — 7.34 (m, 2H, ArH), 7.29 (t, J = 7.6 Hz, 1H, ArH),
6.77 (s, 1H, methine CH), 6.00 (d, J = 13.1 Hz, 1H, methine CH), 4.20 (q, J = 7.0 Hz, 2H, CH,CHs),
4.07 (s, 3H, CHs), 3.76 (s, 3H, CH,), 1.28 (t, J = 7.1 Hz, 3H, CH,CH,); >C NMR (101 MHz, DMSO-d,) &
164.22, 163.95, 163.66, 158.52, 143.35, 142.01, 135.44, 127.88, 126.92, 124.71, 124.65, 124.56 (q,
Yer = 259.5 Hz), 124.30, 122.88, 121.37 (q, “Jer = 4.2 Hz), 11539, 114.64 (q, “Jer = 27.0 Hz), 112.83,
101.45, 91.58, 86.88, 39.10, 35.07, 33.25, 12.67; "°F NMR (376 MHz, DMSO-d,) & -59.96; IR (neat):
1691 (C=N), 1516 (C=C), 1469 (C=0), 1352 (C-N), 1316 (C-CF;), 1191 (C-N), 1074 (C-CF5), 819 (C-9),
799 (C-F) cm™; HRMS (ESI"): m/z caled for CosHy, FsN,0S,™ M 532.0793, found 532.0790; Mp: 244-
247 °C.

1.4.13  2-(3-Ethyl-5-(2-(3-methylbenzoldlthiazol-2(3H)-ylidene)ethylidene)-4-
oxothia-zolidin-2-ylidene)methyl)-3-methy!l-6-

(trifluoromethoxy)benzo[d]thiazol-3-ium chloride (11k)
OCF3
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The title compound was synthesised following General procedure H using 9a (156 mg,
0.3 mmol, synthesised as described in the synthesis of 11a), 6g (126 mg, 0.3 mmol), acetonitrile
(7.0 mL) and triethylamine (125 pL, 0.9 mmol) to provide 2-(3-ethyl-5-(2-(3-methylbenzo
[dIthiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-3-methyl-6-(trifluoro
methoxy)benzol[d]thia-zol-3-ium 4-methylbenzenesul fonate (10k) as a dark-green solid (145 mg,
0.2 mmol, 67% yield). Finally, 10k (72 mg, 0.1 mmol) was subjected to General procedure |
using methanol (5.0 mL) and conc. HCL (0.35 mL) to give the title product 11k as a dark-green
solid (46 mg, 0.08 mmol, 80% yield).
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'H NMR (400 MHz, DMSO-d,) 6 8.39 (s, 1H, ArH), 7.99 - 7.74 (m, 2H, ArH), 7.73 — 7.53 (m, 2H, ArH,
methine CH), 7.44 — 7.19 (m, 3H, ArH), 6.72 (s, 1H, methine CH), 5.90 (d, J = 13.4 Hz, 1H, methine
CH), 4.17 (g, J = 6.8 Hz, 2H, CH,CH,), 4.02 (s, 3H, CH,), 3.70 (s, 3H, CH,), 1.29 (t, J = 6.9 Hz, 3H,
CH,CH>); ®C NMR (101 MHz, DMSO-d,) & 163.67, 163.48, 163.11, 157.59, 145.04, 141.79, 141.68,
139.44, 139.33, 134.78, 127.60, 125.41, 124.83 (q, 'Jor = 249.4 Hz), 124.29, 122.61, 122.19 (q, et =
6.8 Hz), 116.45, 112.40, 101.48, 90.96, 86.55, 39.11, 34.91, 32.91, 12.38; “F NMR (376 MHz, DMSO-
d,) 6 -57.10; IR (neat): 1690 (C=N), 1515 (C=C), 1468 (C=0), 1352 (C-N), 1243 (C-F), 1193 (C-O-CF,),
1021 (C-S), 808 (C-S) cm™; HRMS (ESI"): m/z calcd for CusHyFsN;0,S," [MI* 548.0743, found
548.0730; Mp: 243-246 °C.

1.4.14  2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothia zolidin-2-ylidene)methyl)-5,6-difluoro-3-methylbenzo[dlthiazol-3-
ium chloride (110

CHs F
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The title compound was synthesised following General procedure H using 9a (156 mg,
0.3 mmol, synthesised as described in the synthesis of 11a), 6h (111 mg, 0.3 mmol), acetonitrile
(7.0 mL) and triethylamine (125 pL, 0.9 mmol) to give 2-(3-ethyl-5-(2-(3-methylbenzold]thiazol-
2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-5,6-difluoro-3-methylbenzoldlthiazol-
3-ium 4-methylbenzenesulfonate (100) as a dark-green solid (132 mg, 0.2 mmol, 67% yield).
Finally, 10l (87 mg, 0.13 mmol) was subjected to General procedure | using methanol (6.5 mL)

and conc. HCL (0.4 mL) to give the title product 11l as a dark-green solid (65 mg, 0.097 mmol,
75% vyield).

'H NMR (400 MHz, DMSO-d,) 6 8.41 (dd, J = 9.2, 8.0 Hz, 1H, ArH), 8.19 (dd, J = 10.8, 6.5 Hz, 1H,
ArH), 7.87 (d, J = 8.1 Hz, 1H, ArH), 7.70 (d, J = 13.3 Hz, 1H, methine CH), 7.56 — 7.43 (m, 2H, ArH),
7.31 (t, J = 7.7 Hz, 1H, ArH), 6.74 (s, 1H, methine CH), 5.97 (d, J = 13.4 Hz, 1H, methine CH), 4.18
(q, J = 6.9 Hz, 2H, CH,CH5), 4.03 (s, 3H, CH,), 3.75 (s, 3H, CH,), 1.27 (t, J = 6.9 Hz, 3H, CH,CHs); °C
NMR (101 MHz, DMSO-d,) & 163.95, 163.51, 163.35, 157.33, 151.32 (dd, "Jor = 271.2, “Jsr = 29.8
Hz), 150.46 (dd, "Jes = 249.5,%) = 28.3 Hz), 142.52, 141.88, 137.36, 134.89, 127.62, 124.32, 124.03,
122.68, 112.54, 112.14 (dd, “Jor = 23.6, 1.9 Hz), 104.16, 101.41, 91.00, 86.65, 39.01, 35.20, 32.96,
12.38; F NMR (376 MHz, DMSO-d,) 8 -134.60 (d, J = 22.2 Hz, 1F), -138.72 (d, J = 22.1 Hz, 1F); IR
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(neat): 1665 (C=N), 1554 (C=N), 1518 (C=C), 1468 (C=0), 1340 (C-N), 1224 (C-F), 1182 (C-N), 1026
(C-S), 819 (C-S) cm™; HRMS (ESI"): m/z caled for CouHyF,N0S,™ IM]* 500.0731 , found 500.0721;
Mp: 266-268 °C.

1.4.15 2-(3-Ethyl-5-(2-(5-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-methylbenzo[d]thiazol-3-ium
chloride (11m)

o CHs

The title compound was synthesised following General procedure H using 9¢ (102 mg,
0.19 mmol, synthesised as described in the synthesis of 11g), 6c (68 mg, 0.19 mmol), acetonitrile
(5.0 mL) and triethylamine (80 pL, 0.57 mmol) to give 2-(3-ethyl-5-(2-(5-fluoro-3-
methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-
methylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (10m) as a dark-green solid (107 mg,
0.16 mmol, 84% yield). Finally, 10m (88 mg, 0.13 mmol) was subjected to General procedure |
using methanol (6.0 mL) and conc. HCL (0.4 mL) to give the title product 11m as a dark-green
solid (61 mg, 0.11 mmol, 87% vyield).

"H NMR (400 MHz, DMSO-d,) § 8.27 (dd, J = 8.8, 5.1 Hz, 1H, ArH), 7.79 (dd, J = 8.6, 5.2 Hz, 1H,
ArH), 7.68 (dd, J = 9.8, 1.9 Hz, 1H, ArH), 7.49 (d, J = 13.1 Hz, 1H, methine CH), 7.42 - 7.3 (m, 1H,
ArH), 7.19 (dd, J = 10.0, 1.6 Hz, 1H, ArH), 7.08 (td, J = 8.9, 2.1 Hz, 1H, ArH), 6.69 (s, 1H, methine
CH), 5.83 (d, J = 13.1 Hz, 1H, methine CH), 4.15 (q, J = 7.1 Hz, 2H, CH,CH5), 3.95 (s, 3H, CH,), 3.60
(s, 3H, CHs), 1.30 (t, J = 7.1 Hz, 3H, CH,CH,); C NMR (101 MHz, DMSO-d,) & 164.26, 163.60,
163.50, 162.49 (d, "Jzr = 2855 Hz), 162.03 (d, U = 242.9 Hz), 157.33, 143.06 (d, *Jr = 12.2 H2),
141.60 (d, “Jer = 12.3 Hz), 134.13, 125.09 (d, *Jr = 10.4 Hz), 123.78 (d, *J+ = 10.2 Hz), 121.56,
119.17, 113.65 (d, ZJer = 24.5 Hz), 111.18 (d, “Jer = 23.7 Hz), 102.97, 102.20 (d, Y = 29.0 Hz),
100.24 (d, “Jer = 28.7 Hz), 91.19, 86.76, 39.10, 34.84, 33.00, 12.30; "°F NMR (376 MHz, DMSO-d,) & -
111.17 (1F), -113.57 (1F); IR (neat): 1671 (C=N), 1518 (C=C), 1460 (C=0), 1327 (C-N), 1268, 1199 (C-
N), 1060 (C-S), 932 (C-F) cm™; HRMS (ESI"):: m/z calcd for CygH,oF,N;0S,™ [MIT 500.0731, found
500.0724; Mp: 279-282 °C.
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1.4.16 2-(3-Ethyl-5-(2-(6-fluoro-3-methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-6-fluoro-3-methylbenzo[d]thiazol-3-ium
chloride (11n)
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The title compound was synthesised following General procedure H using 9d (102 mg,
0.19 mmol, synthesised as described in the synthesis of 11h), 6d (68 mg, 0.19 mmol), acetonitrile
(5.0 mL) and triethylamine (80 L, 0.57 mmol) to give 2-(3-ethyl-5-(2-(6-fluoro-3-
methylbenzol[dlthiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-6-fluoro-3-
methylbenzo[dlthiazol-3-ium 4-methylbenzenesulfonate (10n) as a dark-green solid (86 mg, 0.13
mmol, 68% vyield). Finally, 10n (69 mg, 0.1 mmol) was subjected to General procedure | using
methanol (5.0 mL) and conc. HCL (0.3 mL) to give the title product 11n as a dark-green solid (54
mg, 0.09 mmol, 90% vyield).

"H NMR (400 MHz, DMSO-d,) § 8.21 (d, J = 7.6 Hz, 1H, ArH), 7.89 (dd, J = 8.2, 4.3 Hz, 1H, ArH), 7.68
- 7.51 (m, 3H, ArH, methine CH), 7.37-7.11 (m, 2H, ArH), 6.74 (s, 1H, methine CH), 5.86 (d, J = 13.1
Hz, 1H, methine CH), 4.16 (g, J = 6.4 Hz, 2H, CH,CH,), 4.05 (s, 3H, CH5), 3.82 (s, 3H, CHs), 1.28 (t, J =
6.4 Hz, 3H, CH,CH,); °C NMR (101 MHz, DMSO-d,) § 163.58, 162.28, 159.36 (d, "J = 245.3 Hz),
156.98, 148.39 (d, "Jr = 246.9 Hz), 137.11, 134.27, 129.56, 127.38, 126.39 (d, YJr = 2.4 Hz), 124.78
(d, Jer = 7.5 Hz), 118.88, 117.31 (d, “Jer = 20.7 Hz), 116.89 (d, “Jsr = 24.8 Hz), 116.24 (d, Jr = 10.0
Hz), 115.09 (d, % = 20.3 Hz), 110.22 (d, “Jer = 28.6 Hz), 103.34, 90.48, 86.81, 38.96, 35.53, 35.04,
12.29; *F NMR (376 MHz, DMSO-d,) & -114.66 (1F), -130.18 (1F); IR (neat): 1662 (C=N), 1557 (C=N),
1499 C=0), 1471 (C=0), 1313 (C-N), 1204 (C-N), 1021 (C-S), 910 (C-F) cm"; HRMS (ESI"): m/z calcd
for CpaHyoF,N50S,™ [MI* 500.0731, found 500.0689; Mp: 254-256 °C.
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1.4.17 2-(3-Ethyl-5-(2-(5-fluoro-3-methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-6-fluoro-3-methylbenzo[d]thiazol-3-ium
chloride (110)

\
o CoHs

The title compound was synthesised following General procedure H using 9c (102 mg,
0.19 mmol, synthesised as described in the synthesis of 11g), 6d (68 mg, 0.19 mmol), acetonitrile
(5.0 mL) and triethylamine (80 L, 0.57 mmol) to give 2-(3-ethyl-5-(2-(5-fluoro-3-
methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-6-fluoro-3-
methylbenzo[dlthiazol-3-ium 4-methylbenzenesulfonate (100) as a dark-green solid (96 mg, 0.14
mmol, 74% yield). Finally, 100 (78 mg, 0.11 mmol) was subjected to General procedure | using
methanol (5.5 mL) and conc. HCL (0.34 mL) to give the title product 110 as a dark-green solid (47
mg, 0.085 mmol, 78% vyield).

"H NMR (400 MHz, DMSO-d,) § 8.18 (dd, J = 7.9, 2.0 Hz, 1H, ArH), 7.94 (dd, J = 9.1, 4.0 Hz, 1H,
ArH), 7.82 (dd, J = 8.6, 5.2 Hz, 1H, ArH), 7.64 — 7.56 (m, 2H, ArH, methine CH), 7.44 (dd, J = 9.4, 0.8
Hz, 1H, ArH), 7.12 (td, J = 8.4, 1.4 Hz, 1H, ArH), 6.73 (s, 1H, methine CH), 5.91 (d, J = 13.1 Hz, 1H,
methine CH), 4.17 (q, J = 6.9 Hz, 2H, CH,CHs), .06 (s, 3H, CH,), 3.68 (s, 3H, CHs), 1.28 (t, J = 7.1 Hz,
3H, CH,CHs); °C NMR (101 MHz, DMSO-dg) & 163.62, 163.26, 162.09 (d, "J = 250.4 Hz), 159.35 (d,
Yer = 245.0 Hz), 156.95, 143.30 (d, *Jor = 12.1 Hz), 137.20, 134.13, 127.94, 12751, 123.79 (d, "t =
9.6 Hz), 119.33 (d, Y = 2.2 Hz), 116.85 (d, 2 = 25.2 Hz), 116.27 (d, *Jer = 9.3 Hz), 111.12 (d, ZJrr
= 23.0 Hz), 110.26 (d, “Jer = 28.6 Hz), 102.80, 100.31 (d, “Jer = 29.3 Hz), 90.99, 86.70, 39.10, 35.03,
33.03, 12.31; "°F NMR (376 MHz, DMSO-d,) & -113.56 (1F), -114.64 (1F); IR (neat): 1690 (C=N), 1518
(C=Q), 1476 (C=0), 1343 (C-N), 1202 (C-F), 1185 (C-N), 1060 (C-S), 932 (C-F) cm™; HRMS (ESI): m/z
calcd for CogHo0F,N50S;™ [MIT500.0731, found 500.0729; Mp: 271-274 °C.
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1.4.18 2-(3-Ethyl-5-(2-(6-fluoro-3-methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-
4-oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-methylbenzo[d]thiazol-3-ium
chloride (11p)

O CoHs

The title compound was synthesised following General procedure H using 9d (102 mg,
0.19 mmol, synthesised as described in the synthesis of 11h), 6c (68 mg, 0.19 mmol), acetonitrile
(5.0 mbL) and triethylamine (80 L, 057 mmol) to give 2-(3-ethyl-5-(2-(6-fluoro-3-
methylbenzo[dlthiazol-2(3H)-ylidene)ethylidene)-d-oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-
methylbenzo[dlthiazol-3-ium 4-methylbenzenesulfonate (10p) as a dark-green solid (89 mg, 0.13
mmol, 68% yield). Finally, 10p (71 mg, 0.1 mmol) was subjected to General procedure | using
methanol (5.0 mL) and conc. HCL (0.3 mL) to give the title product 11p as a dark-green solid (48
mg, 0.087 mmol, 87% vyield).

"H NMR (400 MHz, DMSO-d,) & 8.29 (dd, J = 8.4, 5.4 Hz, 1H, ArH), 7.82 (dd, J = 9.7, 1.3 Hz, 1H,
ArH), 7.65 (dd, J = 5.4, 3.2 Hz, 1H, ArH), 7.57 (d, J = 13.1 Hz, 1H, methine CH), 7.44 (td, J = 9.2, 1.8
Hz, 1H, ArH), 7.24 (dd, J = 7.0, 6.3 Hz, 2H, ArH), 6.75 (s, 1H, methine CH), 5.88 (d, J = 12.9 Hz, 1H,
methine CH), 4.16 (q, J = 6.9 Hz, 2H, CH,CHs), 4.01 (s, 3H, CH,), 3.81 (s, 3H, CHs), 1.29 (t, J = 6.9 Hz,
3H, CH,CH,); C NMR (101 MHz, DMSO-d,) 8 164.57, 163.60, 162.48 (d, 'J+ = 245.3 Hz), 157.32,
148.46 (d, 'J.r = 246.8 Hz), 134.61, 129.57 (d, *J.r = 8.5 Hz), 126.47 (d, YJr = 2.7 Hz), 125.47, 125.02
(d, e = 24.1 Hz), 124.93 (d, *Jr = 21.2 Hz), 121.75, 118.91, 115.08 (d, ZJr = 21.1 Hz), 113.74 (d,
“Jer = 2.4 Hz), 103.30, 102.49, 102.20, 90.63, 86.85, 39.10, 35.47, 34.95, 12.31; ’F NMR (376 MHz,
DMSO-d,) & -110.98 (1F), -129.91 (1F); IR (neat): 1659 (C=N), 1556 (C=N), 1504 (C=C), 1455 (C=0),
1321 (C-N), 1200 (C-F), 1026 (C-S), 918 (C-F) cm™; HRMS (ESI"): m/z calcd for CogH,oF,N0S," IMIF
500.0731, found 500.0712; Mp: 274-276 °C.

1.4.19 2-(3-Ethyl-5-(2-(3-methyl-6-(trifluoromethyl)benzol[d]thiazol-2(3H)-ylidene)
ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-
methylbenzo[d]thiazol-3-ium chloride (11q)
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The title compound was synthesised following General procedure F using 7 (0.48 g, 1.5
mmol), 6f (0.61 ¢, 1.5 mmol), acetonitrile (7.5 mL), acetic anhydride (200 pL, 2.1 mmol) and
triethylamine (775 pL, 5.5 mmol) to give 3-ethyl-5-(2-(3-methyl-6-(trifluoromethyl)benzold]thiazol-
2(3H)-ylidene)ethylidene)-2-thioxothiazolidin-4-one (8f) as a red solid (0.43 g, 1.0 mmol, 67%
yield). Next, 8f (0.41 g, 1.0 mmol) was subjected to General procedure G using methyl p-
toluenesulfonate (0.5 mL, 3.0 mmol) and DMF (20 ml) to give 3-ethyl-5-(2-(3-methyl-6-
(trifluoromethylbenzold]thiazol-2(3H)-ylidene)ethylidene)-2-(methylthio)-4-oxo-4,5-dihydrothiazol
-3-ium 4-methylbenzene-sulfonate (9f) as a dark-green solid (234 mg, 0.4 mmol, 40% yield). A
mixture of 9f (234 mg, 0.4 mmol), 6c (141 mg, 0.4 mmol) was subjected to General procedure H
using acetonitrile (10.0 mL) and triethylamine (170 pL, 1.2 mmol) to give 2-(3-ethyl-5-(2-(3-methyl-
6-(trifluoromethyl) benzoldlthia-zol-2(3H)-ylidene)ethylid ene)-d-oxothiazolidin-2-ylidene)methyl)-
5-fluoro-3-methyl-benzold]thiazol-3-ium 4-methylbenzenesulfonate (10q) as a dark-green solid
(218 mg, 0.31 mmol, 77% yield). Finally, 10g (105 mg, 0.15 mmol) was subjected to General
procedure | using methanol (7.5 mL) and conc. HCL (0.5 mL) to the title product 11q as a dark-
green solid (77 mg, 0.13 mmol, 87% vyield).

"H NMR (400 MHz, DMSO-d,,) & 8.28 (s, 2H, ArH), 7.94 (d, J = 8.3 Hz, 1H, ArH), 7.76 (d, J = 8.6 Hz,
1H, ArH), 7.65 (d, J = 12.9 Hz, 1H, methine CH), 7.60 (d, J = 8.5 Hz, 1H, ArH), 7.45 (t, J = 9.0 Hz, 1H,
ArH), 6.79 (s, 1H, methine CH), 6.01 (d, J = 13.0 Hz, 1H, methine CH), 4.18 (g, J = 6.8 Hz, 2H,
CH,CHs), .07 (s, 3H, CH,), 3.74 (s, 3H, CHs), 1.27 (t, J = 6.9 Hz, 3H, CH,CH); >°C NMR (101 MHz,
DMSO-dy) 6 172.24, 165.15, 163.03, 162.79 (d, "Jr = 252.5 Hz), 157.53, 145.13, 142.18, 134.64,
133.68, 130.85, 128.33, 125.29, 123.56 (q, "Jor = 253.4 Hz), 120.40, 120.27, 114.14 (d, °Jor = 24.7
Hz), 112.67, 104.50, 102.73 (d, “Jor = 27.4 Hz), 91.64, 87.31, 39.18, 35.32, 33.28, 12.56; '°F NMR
(376 MHz, DMSO-d,) 8 -59.96 (3F), -111.03 (1F); IR (neat): 1670 (C=N), 1509 (C=C), 1468 (C=0),
1373 (C-CF,), 1311 (C-N), 1181 (C-N), 1065 (C-S), 941 (C-F) cm™; HRMS (ESI"): m/z calcd for
CosHaoFaN;0S,™ [MIT 550.0699, found 550.0699; Mp: 255-258 °C.

2. Biological evaluation

2.1 Materials for biological section

Schneider’s insect medium (Sigma-Aldrich, USA) containing 10% fetal bovine serum (FBS)
was used for Leishmania cell culture. Dulbecco’s modified Eafle’s medium (DMEM) (Gibco, life
technologies, USA) supplemented with 10% heat inactivated FBS was used for macrophages cell
culture. Phosphate buffered saline (PBS) was purchased from Apsalagen, Bangkok, Thailand. The
research grade of dimethyl sulfoxide (DMSO) (SERVA Electrophoresis GmbH, Heidelberg, Germany)
was used for the preparation of compound solution. Resazurin sodium salt (TCl, Tokyo, Japan)

was used as an indicator for colorimetric assay. Cells were inspected under an inverted
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microscope (Olympus, Japan). The fluorescence intensities were obtained using the Thermo

Scientific Varioskan® Flash microplate reader.

2.2 Cell culture

The biological evaluation was supported by Professor Dr. Padet Siriyasatien and Dr. Atchara
Phumee, Department of Parasitology, Faculty of Medicine, Chulalongkorn University. The
Leishmania martiniquensis strains, LSCM1, were isolated from the bone marrow of a Thai
immunocompetent patient from Lamphun province, northern Thailand. The isolation of this
strain was assigned WHO code MHOM/MQ/92/MAR; LEM2494. The Leishmania orientalis strains,
PCM2, were isolated from the bone marrow of a Thai immunocompetent patient from Trang
province, southern Thailand. The isolation of this strain was assicned WHO code
MHOM/TH/2010/PCM2; Trang. One hundred pLs of thawing cells was loaded into 10 mL
Schneider’s insect medium + 10% FBS in a 25-cm’ flask and maintained at 25 + 2 °C. As for
Cytotoxicity: Murine macrophage J774A.1 cell was purchased from American Type Culture

Collection and were cultured in DMEM + 10% FBS at 37 °C in 5% CO..

2.3 Cell counting method

To the solution of 20 pL of promastigote or macrophage cells in 20 pL of trypan blue
solution was gently mixed at a dilution factor of 2. Then, 10 pL of the stained cell mixtures was
transferred to the haemocytometer and incubated at room temperature for 5 min. Viable cells,
unstained cells, were counted in 5 squares under a microscope at 40x magnification. The number

of cells was calculated using the following equation:
Number of cells (cells/mL) = Average cells x 10" x dilution factor

2.4 The in vitro anti-leishmanial assays

2.4.1 The percentage of promastigote proliferation inhibition

The cultured solution of promastigotes of L. martiniquensis or L. orientalis (1 x 10°
cells/mL, 90 pL) was transferred into 96-wells plate containing the fluorinated rhodacyanines at
0.1 pM or 0.25 M (final concentration) with 1% DMSO in cultured solution. Cultures treated
without the synthesised compounds were used as negative controls and medium without cells
was used as blank. After adjusting the total volume to 100 pL using Schneider’s insect medium,

the plates were incubated further for 72 h at 25 + 2 °C. Then, the living cells were quantified

using the colorimetric assay (as described in Section 2.4.5, Chapter II).
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2.4.2  The half maximal inhibitory concentration (ICs,) evaluation of promastigote
proliferation inhibition
The cultured solution of promastigotes of L. martiniquensis or L. orientalis (1 x 10°
cells/mL, 90 pL) was transferred into 96-wells plate containing two-fold dilution of the selected
fluorinated rhodacyanines with 1% DMSO in cultured solution. Cultures treated without the
synthesised compounds were used as negative controls and medium without cells was used as
blank. After adjusting the total volume to 100 pL using Schneider’s insect medium, the plates
were incubated further for 72 h at 25 = 2 °C. Then, the living cells were quantified using the

colorimetric assay (as described in Section 2.4.5, Chapter II).

2.4.3 The percentage of axenic amastigote proliferation inhibition

The cultured solution of promastigotes of L. martiniquensis or L. orientalis (1 x 10’
cells/mL, 90 pL) was transferred into 96-wells plate containing fluorinated rhodacyanines at 0.25
uM (final concentration) with 0.5% or 1% DMSO in cultured solution. Cultures treated without the
synthesised compounds were used as negative controls and medium without cells was used as
blank. After adjusting the total volume of 100 pL using Schneider’s insect medium, the plates
were incubated further 72 h at 37 °C in 5% CO,. Then, the living cells were quantified using the

colorimetric assay (as described in Section 2.4.5, Chapter II).

2.4.4  The half maximal inhibitory concentration (ICs,) evaluation of axenic
amastigote proliferation inhibition

The promastigotes of L. martiniquensis or L. orientalis (1 x 10" cells/mL, 90 L) were
transferred into a 96-wells plate containing two-fold dilution of the selected fluorinated
rhodacyanines with 0.5% or 1% DMSO in culture solution. Cultures treated without the
synthesised compounds were used as negative controls and medium without cells was used as
blank. After adjusting the total volume to 100 pL using Schneider’s insect medium, the plates
were incubated further for 72 h at 37 °C in 5% CO,. Then, the living cells were quantified using

the colorimetric assay (as described in Section 2.4.5, Chapter II).

2.4.5 Colorimetric assay

After incubation for 72 h, 10 uL of 0.0125% resazurin in PBS was added to each well. The
resazurin solution was prepared by dissolving 12.5 mg of resazurin sodium salt (TCl, Tokyo, Japan)
in 100.00 mL of PBS, then stored at 4 °C. The plates were further incubated at 37 °C in 5% CO,
for 2-3 h. The fluorescence intensities were calculated with a fluorescence plate reader using an
excitation wavelength of 536 nm and an emission wavelength of 588 nm. The percentage of

inhibition was calculated using the formula presented below:
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FI trol) — FI (blank)] - [FI le) - FI (blank
%inhibition < [FI (control) (blank)] - [FI (sample) (blank)] 100

[FI (control) — FI (blank)]

where Fl means a fluorescence intensity

2.5 Cytotoxicity

Murine macrophage J774A.1 cell was purchased from American Type Culture Collection and
were cultured in DMEM + 10% FBS at 37 °C in 5% CO, in a humidified atmosphere. The cultures
were inspected for the parasites every 24 h under an inverted microscope (Olympus, Japan).
After that, 200 pL of J774A.1 cells (2 x 10° cells/mL) was added into 96-wells plate and allowed
cell adhesion by incubation at 37 °C in 5% CO, for 24 h. Cells were washed twice with DMEM and
99 uL of fresh medium was added followed by adding 1 uL of fluorinated rhodacyanines at the
final concentration of 0.25 pM or 4.0 uM. Then, the plates were incubated at the same conditions
for an additional 72 h. The percentages of viable cells were obtained using the mentioned

colorimetric assay (as described in Section 2.4.5, Chapter I).

3. Pharmacological properties

3.1 The in silico ADMET prediction analysis

The analysis was performed with the assistance of Associate Professor Dr. Ng Chew Hee and
Miss Mak Kit-Kay, School of Pharmacy, International Medical University, Malaysia. Briefly, QikProp
v3.9 module of Maestro v9.7 interface of Schrédinger from Schrédinger Release 2019-2 was used
to evaluate the in silico ADMET properties of the rhodacyanine analogues. Various
physicochemical descriptors were calculated, including number of reactive functional groups
(#rtvFG), octanol/water partition coefficient (QPlogPo/w), aqueous solubility level (QPlogS),
brain/blood partition coefficient (QPlogBB), central nervous system activity (CNS), apparent gut-
blood barrier permeability (QPPCaco), ICs, value for blockage of HERG K* channels (QPlogHERG),
number of likely metabolic reactions (#Metab), and percentage of human oral absorption level
(Percentage of HOA). In addition, violation of the Lipinski’s rule (vLRo5) was assessed using

obtained values for the physicochemical descriptors.

3.2 The in vitro microsomal metabolic stability

The metabolic stability of the particular compounds (11a and 11c) were measured.” This
began with buffer preparation: 66.7 mM potassium phosphate buffer (PPB, pH 7.4) was prepared
using the following procedures; (a) 1 M K,HPO, and 1 M KH,PO, in water was prepared, (b) 0.1 PPB
was then prepared by adding 8.02 mL of 1 M K,HPO, into 1.98 mL of 1 M KH,PO, and the
volume was adjusted to 100 mL with water, (c) 66.7 mL of 0.1 M PPB was diluted with water up

to 100 mL, and (d) formic acid was used to adjust the pH value of the final buffer solution. Next,
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0.2 mg/mL of all compounds were prepared by diluting a 10 mM of DMSO stock solution to 80%

ACN in water. The mixtures were kept in the freezer until processing.
A pool of human liver microsomes was obtained from Gibco® by Life Technologies (Grand

Island, NY, USA) and being kept at -80 °C. After thawing on the surface of ice bath, 110 pL
microsomes (20 mg/mL) was withdrawn from the pool of microsomes and suspended in 3890 uL
of 66.7 mM PPB (pH 7.4) in the polypropylene tube. Then, 900 uL of the previous solution was
pipetted into three tubes. 5 pL of 11a, 11c, and verapamil (0.2 mg/mL in 80% ACN) was added
into each tube. After that, 181 pL of the solution mixtures was transferred to 1.5 mL
microcentrifuge tubes and those tubes were labelled as T, Ty, Ts, Tis, T5in Which T, represents
test tube control and the numeric numbers allocated for the other four remaining tubes indicate

the incubation time. After that, all the tubes were pre-incubated together with NADPH (10 mM in

water) at 37+2 °C for 5 minutes in Julabo model SW22 shaking water bath from Chemopharm®
(Petaling Jaya, Selangor, MY). This is to mimic the body temperature to sustain microsomal
viability. Next, 25 yL of NADPH was added into all tubes (excluding T,) and incubated according
to their respective incubation time. NADPH serves as a co-factor to initiate the phase | enzymatic
oxidation reaction. As for T, instead of 25 pL of NADPH, 25 ulL of PPB was added in tube T, and
incubated for 30 min. T, serves as control to identify whether there is any non-NADPH enzymatic
degradation. During the reaction, aliquots were collected and added 200 pL termination mixtures
containing metronidazole, an internal standards (ISTD), at 0, 5, 15, and 30 min including T_to stop
the reaction. The resulting samples were then centrifuged at 10000 rpm at 4 °C for 10 min.
Afterwards, 200 ulL supernatant containing protein at the final concentration of 0.5 mg/mL
were withdrawn to analyse for its metabolic stability using Agilent HPLC 1200 infinity series linked

to a 1260 DAD VL detector (Agilent Technologies, Santa Clara, CA, USA). Aliquots (20 pL) were

injected into a Shodex™ Cg packed column with particle size of 5 pm (4.6 mm X 150 mm,
Tokyo, Japan). As in the separated experiments, 11a, 11c, and verapamil was eluted from the
column using an isocratic elution with 80% ACN and formic acid buffer (0.2%v/v) at a flow rate of
0.5 mL/min. The DAD detector was set at 378 nm for 11a, 383 nm for 11c, 278 nm for verapamil,
and 319 nm for ISTD.
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4. Electrochemistry

The electrochemical experiment was performed under the supervision of Dr. Parichatr
Vanalabhpatana, Department of Chemistry, Faculty of Science, Chulalongkorn University. With an
assistance from Miss Kantima Chitchak, a doctoral student, the cyclic voltammetry measurements
were obtained with an Autolab PGSTAT101 potentiostat/galvanostat (Eco Chemie, The Nether-
lands) using a three-electrode configuration. A glassy carbon electrode with a disk diameter of 3.0
mm was employed as a working electrode. Before use, the electrode was polished with an
aqueous suspension of alumina powder. A platinum wire served as an auxiliary electrode. All
potentials are quoted with respect to a non-aqueous silver/silver ion (Ag/Ag’) reference
electrode. This electrode was externally calibrated and has a potential of 0.542 V versus a
standard hydrogen electrode (SHE).” Cyclic voltammograms of the compounds (1.0 mM) were

recorded in a deaerated dimethylformamide (DMF) containing 0.10 M tetrabutylammonium

perchlorate (TBAP) at scan rates of 10-800 mV-s .



CHAPTER Il
RESULTS & DISCUSSIONS

1. Synthesis of benzothiazolium building blocks

With slight modifications, the 18 fluorinated rhodacyanine analogues (10c, 11a-11q) were
synthesised using the procedures reported by M. lhara and co-workers in 2010." Firstly, the
fluorine-containing benzothiazolium building blocks (6a-6h) were needed to be synthesised to
control to position of fluorine or perfluoroalkyl group in the final products. There are four steps
for this synthesis; (a) the N-acetylation of fluorine-containing o-bromoanilines, (b) the thionation
of o-bromophenylacetamides to o-bromophenylthioacetamides; (c) the intramolecular
cyclization to form the benzothiazole ring; and (d) the N-methylation of benzothiazoles to
construct the corresponding benzothiazolium salts.

For the first step, the N-acetylation of o-bromoanilines, the simple and effective method
was applied using acid anhydride (Ac,0). Unfortunately, concentrated Ac,O is a highly regulated
substance in Thailand because it is one of the important precursors to produce narcotics. To
avoid this issue, the N-acetylation was performed using a commercially available 1 M solution of
Ac,O in DCM instead. Pleasingly, fluorine-containing o-bromophenylacetamides were obtained in
excellent yields (Table 3, entries 1-6). Nonetheless, this pathway is relatively expensive due to
cost of this reagent. In one instance, a more economical method was applied using acetic acid
(AcOH) in refluxing ethyl acetate (EtOAc). Under this condition, the p-fluorophenylacetamide 3a
was successfully synthesised in excellent yield of 97% (Table 3, entry 7). Therefore, these two
possible pathways can be adapted for further N-acetylation of the aromatic amines to obtain the

desired acetamides in excellent yields.

Table 3 The N-acetylation of o-bromoanilines and anilines containing fluorine or perfluoroalkyl

group using General procedure A

(0]
NH, ! ) HN™ "CHj;
Br(H) ::etl;scelrlr;iAEfO (1M in DCM), Br(H)
Rf L 9 Rf
method II: AcOH, EtOAc,
110 °C, overnight 1a-1e (3a and 3b)
Entry Starting material Product Yield (%)

F

H
NH, 1a N\H/CH;., 100°
1 Br ©:Br0
F




Table 3 (cont.)

Entry Starting material Product Yield (%)
F NH; 1 F N_ _cH
BT o w
Br Br
F Fooy
1c
B S S & o S
Br BrO

1d H
F N CH
F NH 3
TS & o S
F Br F Br
NH, 1e H
N._CH
5 X ™o
FsC Br =~ Br O
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97"

NH,
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The product was performed using *method | and °method II.

Next, the resulting acetamides were then transformed to the corresponding thioacetamides
using Lawesson’s reagent. This reagent efficiently converts a carbonyl into a thiocarbonyl
analogue through a mechanism that is closely related to Wittig reaction (Figure 12).%° In this work,
the thionation reaction was performed in anhydrous tetrahydrofuran (THF) overnight at room

temperature under inert atmosphere to form the products (2a-2e) in moderate to excellent

yields (Table 4).
o)
s/©/ o 2.8
S7p i
S
~o
O\

Lawesson's reagent

P loves to abstract O = Br
and generates P=0

Figure 12 The proposed mechanism of thionation using Lawesson’s reagent80



Table 4 The thionation of compounds 1a-1e and 3a, and 3b using Lawesson’s
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reagent
i X
HNJ\CH3 HN" CHs
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1a-1e 2a-2e
(3a and 3b) (4a and 4b)
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After that, the intramolecular cyclization to produce benzothiazoles can be achieved
using the two possible strategies, including the use of palladium (Pd) catalyst or the use of single
electron cyclization. For the more popular method, the Pd-catalysed intramolecular cyclization
of o-bromophenylthioacetamides (2a-2e) was performed using tris(dibenzylideneacetone)
dipalladium(0) [Pd,(dba)s] in the presence of JohnPhos ligand and a base in 1,4-dioxane.”” The
corresponding benzothiazoles (5b-5h) were obtained in moderate to good vyields (Table 5).
Although this method requires expensive reagents, only a very small amounts are needed. The
proposed mechanism of this reaction involves two key steps in the catalytic cycle; oxidative
addition and reductive elimination (Figure 13). The oxidative addition involves the insertion of
palladium into the carbon bearing the halides. Then, hydrogen of thioacetamide can be
abstracted by the base to induce the insertion of thiol into the palladium(ll). Finally, reductive

elimination led to the formation of the desired benzothiazole.

Table 5 The synthesis of benzothiazoles using a palladium-catalysed intramolecular

cyclization of o-bromoarylthioamides

H
N. _CHs, Pd,(dba)s (5 mol%), N
Rf@i \[s]/ JohnPhos (7.5 mol%), Rf@[ >—
Br KO'Bu, dioxane, 80 °C, overnight S
Entry Starting material Product Yield (%)
F F
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Br S
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2b F N CH,4 5c F N
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S
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3 s 3 67
S
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F F
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N _CH
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Figure 13 The proposed mechanism of a palladium-catalysed cyclization®
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Another strategy that can be applied to perform a similar intramolecular cyclization is
Jacobson synthesis by oxidative cyclization of N-phenylthioamides carrying an unsubstituted
ortho position, using potassium ferricyanide under basic conditions. The reaction can potentially
yield two regioisomers that are difficult to separate if the two ortho-Hs are not chemically
equivalent, and therefore this method is only applicable to symmetrical substrates. In this case,
only the N-phenylthioacetamides bearing fluorine and trifluoromethyl ether at the para position
(d4a and 4b) were used because they will give the identical products due to the symmetry of the
molecule. According to the proposed mechanism reported by Y. A. Jackson and co-authors in
2004,% this reaction may involve the generation of a thiolate anion, which then undergoes one-
electron oxidation by the potassium ferricyanide (KsFe(CN)s) to produce the thiol radical. The
radical then attacks the unsubstituted ortho position followed by the second oxidation, then
elimination of one proton to regain the aromaticity (Figure 14). The products 5d and 5h were

synthesised according to this method in moderate yields (Table 6).
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Table 6 The synthesis of benzothiazoles via Jacobson cyclization using potassium

ferricyanine

H
N_ _CHj N
R \n/ KsFe(CN)s, NaOH, ¢ \>—CH3
S EtOH/H,0, 80 °C, 1 h S
4a and 4b 5d and 5h
Entry Starting material Product Yield (%)
4a H 5d
N_ _CHj N
- o e
F s F S

) N CHs, 59 N
S
F5CO F360 s

(1 (1
[Fe(CN)g]*  [Fe(CN)gl*

H ©
N LS v
Rf‘©/ \[S]/) Rf‘©/ S@ SET .

i an
[Fe(CN)gl* [Fe(CN)gl*

. N U @-N N\
Rf@: S—CH;, - Rf@i S—cH, ———FRf JCHs
S SET 1S

H

rearomatization

Figure 14 The proposed mechanism of Jacobson synthesis of the fluorinated benzothiazoles

through a single electron transfer

Additionally, the unsubstituted benzothiazole can be easily synthesised using an efficient
one-pot synthesis reported by A. H. Zeniab and co-workers in 2017.% This environmentally
friendly synthesis of benzothiazole was achieved by refluxing o-thioaniline with acetonitrile in
glacial acetic acid (AcOH) containing a catalytic amount of concentrated sulfuric acid (H,SO,).
Finally, the benzothiazole (5a) was synthesised in good yield of 65% (Figure 15). The mechanism
of this reaction could involve a nucleophilic attack of the aniline at the acid-activated acetonitrile

then condensation with the loss of ammonia led to the benzothiazole ring formation (Figure 16).
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NH, 1) AcOH, HoSO0y, reflux,3 h N,
+ CH4CN > >—CH3
SH 2) neutralisation (NaHCO3) S
5a

(65 %yield)

Figure 15 The synthesis of benzothiazole via a one-pot synthesis
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Figure 16 The proposed mechanism of the benzothiazole formation through a one-pot
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Finally, all benzothiazole intermediates were then converted into N-methylbenzothiazolium
p-toluenesulfonate using methyl p-toluenesulfonate. This reaction was operated at high-
temperature under a solvent-free condition.” Simple precipitation yielded the desired products
(5a-5f, and 5h) in practically pure forms, except for 5¢ which required purification by column
chromatography. Generally, the benzothiazolium salts are very polar and impossible to be
purified using chromatographic technique; however, the presence of -OCF; in 5g reduce its
polarity and allow for such separation. All products were obtained in moderate to excellent
yields (Table 7). The overall yields for the synthesis of the fluorine-containing benzothiazolium
building blocks were also tabulated, which were in the range of 15-60 %. The major loss in the
overall yields was in the cyclization step. Therefore, more reaction optimization on this

cyclization step may be required to further improve the efficiency of the synthesis.



Table 7 N-Methylation of benzothiazoles for the formation of fluorine-containing

benzothiazolium building blocks (6a-6h)
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2. Synthesis of fluorinated rhodacyanine analogues

After successful synthesis of the fluorine-containing benzothiazolium salts (6a-6h), they were
then used as the building blocks for the synthesis of the rhodacyanines with variation on the
position of fluorine atom or perfluoroalkyl group. According to the general structure of
rhodacyanine class Il, there are three main units connected by two methine carbons (Figure 4b).
Throughout various rhodacyanine-based anti-leishmanial structure-activity relationship studies,
the class of molecules that contain two benzothiazoles at both terminals of the 3-
ethylrhodanine was found to be the most effective. The synthesis started with 3-ethylrhodanine
as the central unit, which was then attached to a methine group using N,N’-diphenylformamidine

followed by propionic anhydride at high temperature to form compound 7 (Figure 17).”°

o
Ph. -~ _.Ph

N"ON Ph\N»\/

s._s W s
F CHCN,70°C, th S8

N 7/l - N
0 C,Hs 2) Propionic anhydride 3 \Csz

NEts, 110 °C, 0.5 h 7

Figure 17 The synthesis of compond 7

Next, the intermediate 7 was treated with the corresponding benzothiazolium building
blocks (6a-6f) in acetonitrile in the presence of acetic anhydride followed by adding
triethylamine dropwise. During the addition of the base, the colour of the solution rapidly
changed, most commonly resulted in a red solution. Then, the precipitate formed was filtered
and washed with acetonitrile to give the desired compounds (8a-8f) in moderate to good yields
(Table 8). Characterizations of these molecules were not possible due to their poor solubility in
organic solvents; therefore, the next step was continued without further characterization. The
tosylate compounds (9a-9f) were obtained in low to good yields (Table 9) via the S-methylation
of the thiol group using methyl p-toluenesulfonate. Unfortunately, these compounds also gave
complicated NMR spectra; therefore, they were subjected to the next reaction without additional
characterizations. Next, the second benzothiazole unit was incorporated by the reaction of 9a-9f
with another benzothiazolium building block (6a-6h), giving 10a-10g in moderate to excellent

yields (Table 10).

Finally, the anion exchange was performed using concentrated hydrochloric acid to furnish
the desired fluorinated rhodacyanine analogues (11a-11q) in moderate to excellent yields (Table
11). The overall yields were also tabulated in Table 11. The overall yields were relatively low,
probably due to the poor solubility of those molecules. Moreover, performing the reaction in a
small scale could exaggerate the product loss, especially during the filtration step. However,

when the reaction was scaled up from 0.2 mmol to 0.5 mmol, the overall yield for the synthesis
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of compound 11c was improved from 26% to 33%, respectively. With this believe, the scale-up
for the synthesis of these analogues could increase the yields of the overall process with the

easy synthetic protocol.

Table 8 The synthesis of fluorine-containing rhodanine 8a-8f

N/® @OTS
o Rf'~©[ S—CcH,
s . cH
Ph-N 6a-6f s AN
K;%s 1) Ac,0, CH5CN, 50°C, 1h Rf'~©[ — s
? 6 [ — %S
7,

2) NEts, 60 °C, 4 h

N\
8a-8f C,Hs

Entry Reagent Product Rf’ Yield (%)
1 6a 8a - 56
2 6b 8b 4’-F 67
3 6C 8c 5-F 7
a 6d 8d 6’-F 75
5 6e 8e 7-F 64
6 6f 8f 6'-CFs 67

Table 9 The synthesis of the tosylate salt 9a-9f

3
€I, {I
RF -
s MeOTs, DMF
§ \=(S\ps _MeOTDMF >_\_;YSCH3
9a-9f

115 °C,3h

8a-8f @ N‘CZH5 C2Hs
Entry Starting material Product Rf’ Yield (%)
1 8a 9a - 80
2 8b 9b a4’-F 50
3 8c 9c 5-F a1
a4 8d 9d 6’-F 28
5 8e 9e 7-F 65
6 8f of 6’-CF,4 40
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Table 10 Synthesis of fluorinated rhodacyanine 10a-10q

CH
" Cors 6

N® 7 s
CH Rf N .
bl % CH3 4 /CH3 Rf
13 SN Sy LA »
Rf — 6a-6h Rf* — = S
S
g N\ -SCH; . s>_\=;j>=)\ N® ot

NEt,, CH3CN, 75 °C,

9.9 " ke overnight 102109 & Gy
Starting Starting Rf’ Rf Yield (%)
Entry Product
material 1 material 2
1 9a 6a 10a - - 74
2 9a 6b 10b - a4-F 77
3 9a 6¢ 10c - 5-F 74
a4 9a 6d 10d - 6-F 68
5 9a 6e 10e - 7-F 74
6 9b 6a 10f a4’-F - 50
7 9c 6a 10g 5-F - 70
8 9d 6a 10h 6’-F - 66
9 9e 6a 10i 7-F - 76
10 9a 6f 10j - 6-CF5 68
11 9a 6g 10k - 6-OCF; 67
12 9a 6h 10l - 5,6-diF 67
13 9c 6c 10m 5-F 5-F 84
14 9d 6d 10n 6’-F 6-F 68
15 9c 6d 100 5-F 6-F 74
16 9d 6c 10p 6’-F 5-F 68
17 of 6¢ 10q 6’-CF, 5-F 77

Although the mechanism of this synthesis has not yet been reported, we propose that these
reactions could involve E1cB elimination reaction and 1,4-addition/elimination reaction. The E1cB,
the unimolecular elimination via conjugate base, generally occurs when a poor leaving group is
involved. The first step is abstraction of the most acidic proton of 3-ethylrhodanine by NEts,
generating enolate which then further attack the central carbon of N,N’-diphenylformamidine. For
the reaction to proceed to generate the methine bridge, aniline must act as a leaving group even
though it is a poor leaving group, hence the E1cB mechanism is expected. This step generates
a,ﬂunsaturated ketone which can be attacked by the enamide intermediate of benzothiazole

by a nucleophilic conjugate addition or 1,4-nucleophilic addition. The enolate then undergoes
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subsequent elimination through the 1,4-conjugate elimination reaction to result in the second
methine group. Similar reactions could occur in the step where compound 10a-10q were
synthesised. This reaction sequence lead to the formation of fully 7-electron delocalised

structures (Figure 18).

Table 11 Synthesis of fluorinated rhodacyanine analogue 11a-11q

6
7 =
CHs L e 5
/ Rf 4 73 .—IRf
Rf"@[N S/@ HCI, MeOH iy — )
__ _S___/TN® 9 . MeOH,  Rf S =& o
S VJ CHy ° 80°C,1h L T b e N Y

N > CHs
0" CuHs 0 CpHs
10a-10q 11a-11q

Entry  Substance Product Rf’ Rf Yield (%)  Overall yield (%)

1 10a 11a - 3 62 21
2 10b 11b 3 4-F 72 25
3 10c 11c o 5-F 77 26
4 10d 11d - 6-F 62 19
5 10e 11le A T-F 82 27
6 10f 11f 4’-F - 78 13
7 10g 11g 5-F - 60 13
8 10h 11h 6’-F = 70 10
9 10i 11i 7-F . 43 14
10 10j 11j 3 6-CF; 76 23
11 10k 11k z 6-OCF5 80 24
12 10l 111 - 5,6-diF 75 23
13 10m 11m 5-F 5-F 87 23
14 10n 11n 6’-F 6-F 90 13
15 100 110 5-F 6-F 78 18
16 10p 11p 6-F 5-F 87 12
17 10q 11q 6-CF,  5F 87 18
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Figure 18 The proposed mechanism of the synthesis of 11c
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3. The biological results

The eighteen rhodacyanine analogues, which include a few that have been previously
repor‘ced7 (i.e. compounds 10c, 11a, and 11c) and fifteen novel candidates, were firstly studied
on the anti-leishmanial activity against the indigenous Leishmania species in Thailand,
including Leishmania martiniquensis and L. orientalis. Due to the poor water solubility of these
compounds, they were dissolved in dimethyl sulfoxide (DMSO) and sonicated with heating for 15
minutes to prepare the stock solution at 400 uM. From the previous report,* the parasites can
tolerate a culture medium containing 1% DMSO. Therefore, the use of DMSO in such a small
concentration should not affect the biological activities. The screening test includes the study on
both stages of parasites: promastigotes (a flagellated leishmanial form) and axenic amastigotes (a
nonflagellated leishmanial form) (see in Section 2.2, Chapter 1), and cytotoxicity toward normal
cells.

First, each rhodacyanine was evaluated for its in vitro anti-leishmanial activity against
promastigote stages of L. martiniquensis strain LSCM1 at the screening concentration of 0.25 uM
and the inhibiting percentages of parasitic proliferation were tabulated in Table 12. Most
compounds can effectively kill the parasites except for compounds 11j, 11k, and 11q, which
contains 6-CF5;, 6-OCFs, and 6’-CFs, respectively. This result is become more obvious when the
concentration was decreased into 0.1 pM. Among these analogues, eight compounds, including
10c, 11c, 11g, 11i, 11, 11p, and 11a, were selected for further evaluating the half maximal
inhibitory concentration or ICs, values. All selected fluorine-containing rhodacyanines possessed
better inhibitory activity than 11a, which is the unsubstituted rhodacyanine included as the
reference. Their ICs, values were in the range of 76-272 nM compared to the value of 658 nM for
compound 11a. Although these analogues were slightly less effective than amphotericin B (IC5, =
30 nM), as discussed in Section 2.3.4 in Chapter Il, amphotericin B is an intravenous drug making it
inconvenient and costly due to the required hospitalization. When comparing with miltefosine,
all of the analogues were significantly more active. Interestingly, 11c (containing 5-F; also known
as SJL-01) exhibited significant activity with 186-fold greater efficiency than miltefosine (ICs,
values: 11c = 85 nM; miltefosine = 15.76 pM). It should be noted that the comparison was made
at the parasite level in vitro, which may not necessarily reflect the true efficacy. Nevertheless,
the activities comparable or better than existing drugs in use are welcoming signs. There was no
significant difference between the ICs, values of 11c and 10c; hence, this revealed that the

counter anion did not cause any effect to the bioactivity.
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Table 12 The in vitro anti-leishmanial activities of eighteen rhodacyanine analogues against

promastigotes of L. martiniquensis compared to the reference drugs.

B 6

7 Rf
el
Rf —= S = ©
s~ \jh?:/L AN R
N
Promastigotes of L. martiniquensis
Compounds  Rf’ Rf X %inhibition®
ICs0 ° (M)
0.1 uM 0.25 uM
10c - 5-F OTs 85.4 + 0.5 89.5 + 0.7 0.076 + 0.008
11a - - cl 210+ 15 70.8 £ 3.5 0.658 + 0.028
11b - 4-F cl 37.7 + 2.6 64.1 + 4.3 nd.’
11c - 5-F cl 82.8 + 0.7 89.3 + 1.1 0.085 + 0.015
11d - 6-F cl 57.1+09 711+ 1.1 n.d.”
11e - 7-F cl 41.1 + 2.6 85.2 + 2.8 nd.’
11f 4'-F - cl 30.0 + 2.1 73.0 £ 0.4 n.d.”
11g 5'-F - cl 76.9 + 0.5 89.2 + 0.4 0.139 + 0.005
11h 6'-F - cl 40.3 + 10.4 87.8 + 0.8 nd.’
11i 7-F ; cl 56.1 + 2.4 92.7 + 1.0 0.272 + 0.006
11j - 6:CF, — Cl 105+ 0.5 2049 + 3.3 nd.’
11k - 6-OCF,  Cl 8.7+09 27.1+1.8 nd.’
11l - 56-diF  Cl 80.6 + 2.2 91.2 £ 0.5 0.106 + 0.009
11m 5'-F 5-F cl 56.4 + 4.0 79.8 £ 0.4 nd.’
11n 6'-F 6-F Cl 176+ 13 62.9 + 1.6 nd.’
110 5'-F 6-F cl 439 + 8.0 75.9 + 2.7 nd.’
11p 6'-F 5-F cl 54.3 + 8.1 93.4 + 0.2 0.142 + 0.022
11q 6'-CF, 5-F Cl 59 + 3.2 392+ 29 n.d.”
Miltefosine inactive” inactive® 15.790 + 3.564
Amphotericin B 94.2 + 0.2 975+ 04 0.031 £ 0.016

% ICsq (the half maximal inhibitory concentration, yM) and %inhibition at specified concentration of compounds

(%) were expressed as the mean values of three replicates * standard deviations (SD). ® inactive = no significant

difference to the negative control (the absence of the test compound); n.d. = not determined.
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Since there are two indigenous Leishmania species in Thailand, one of which has been
originally discovered in Thailand is L. orientalis (previously called L. siamensis), the anti-
leishmanial activities of the eighteen rhodacyanines against the two stages of L. orientalis were

further evaluated.

According to the previous screening test, each of those compounds was investigated for its
inhibition on promastigote proliferation of L. orientalis at the concentration of 0.25 uM. The in
vitro anti-leishmanial activities were expressed in percent inhibition (%) as tabulated in Table 13.
The results show that most analogues inhibited effectively as shown by the inhibiting percentage
of more than 75%. However, two compounds, including compound 11k (compound with 6-OCF5)
and 11qg (compound with 6’-CF; and 5-F), showed relatively poor activities against this parasite.
When the concentration was reduced into 0.1 pM, the activity of some compounds dramatically
dropped, such as compound 11n, where the inhibitory percentage was abruptly diminished from
76% to 2% at the concentration of 0.25 and 0.1 pM, respectively. Eight fluorinated
rhodacyanines, including compound 10c, 11b, 11b, 11c, 11d, 11g, 11h, 11{, and 11m, and the
unsubstituted fluorinated compound (11a) were selected for further determining the ICs, values.
Surprisingly, the introduction of fluorine atom at the position 6 as in compound 11d exhibited
the most potency with the ICs, value as low as 40 nM; meanwhile, miltefosine showed almost no
efficacy for this activity. Thus, this novel fluorinated rhodacyanine can be a new candidate for
further study on the anti-leishmaniasis against promastigotes of L. orientalis, although it is still

less effective than amphotericin B.

Despite the fact that the axenic amastigote of L. martiniquensis could not be formed, it was
possible to culture this parasite stage for L. orientalis; therefore, only the anti-leishmanial activity
against axenic amastigote of L. orientalis was investigated. The screening activity of all analogues
was determined at the concentration of 0.25 uM where the result was displayed in Table 13. All
analogues that contain fluorine or perfluoroalkyl group enhanced the proliferative inhibition
against axenic amastigote of L. orientalis compared to the unsubstituted fluorinate one, however,
only the compounds showing good inhibition (more than 75%) were selected for further
determination of the ICs, values. Nine fluorinated rhodacyanine analogues, including compound
10c, 11c, 11d, 11g, 11h, 11L, 11m, 110, and 11p, exhibited the axenic proliferation inhibition with
the ICs, values ranging from 77 to 223 nM, where compound 11a showed a much poorer activity

(ICsy = 909 NM).
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Table 13 The in vitro anti-leishmanial activity against L. orientalis and the cytotoxicity.

L. orientalis J7T74A.1 macrophage
g Promastigotes Axenic amastigotes %cytotoxicity®
g %inhibition ] %inhibition? .
§ 0.1uM  0.25 uM ‘Cso” (M) 0.25 uM Coo” QM) 025uM 4.0 uM
10c  788+1.8 91.7+12 0098+0001 91.0+06 0.110+0012  nt” 31.1 + 5.6
11a 115+35 815+54 0302+0030 368+50 0909+0004 nt° 192+ 0.7
11b  675+30 929+12 0065+0004 582+15 n.d.’ n.t? 24.9 £ 0.9
11c 662+7.4 91.7+09 0.104+0001 865+29 0080+0002  nt” 269 + 1.5
11d 857+13 954+06 0040+0002 785+15 0.200+0.007 nt? 413 +£38
1le 139+7.1 88921 n.d.” 429 +47 nd.’ nt? 885+ 7.5
11f  330+74 84221 n.d.” 402+ 16 n.d.” n.t.” 134 + 4.1
11g 50129 90406 0.133+0003 922+1.3 0.134 + 0.026 nt? 370+ 1.1
11h  600+78 960+10 0088+0001 912+06 0223+0014  nt° 61.8 + 10.4
11i  inactive®  75.4 % 4.0 n.d.’ 47.9 + 0.8 n.d.” nt.” 72.8+ 88
11j 39.0+81 87.6+09 n.d.? 711+54 n.d.’ 05+1.1 333x08
11k 125+9.8 60953 nd.’ 59.2 + 2.8 n.d.” nt.” 48.6 + 9.5
11l 61.6+48 895+08 0.114+0.002 928 +0.4  0.077 + 0.001 n.t? 18.6 + 3.8
11m 575+64 815+03 0.161+0008 87.9+07 0080+0003  nt” 138+ 4.9
1ln  1.9+19 760+19 nd.” 62.1+£32 nd.’ nt’ 46.0 + 4.4
1lo 204 +44 793 %07 n.d.’ 88.9 + 0.5 0.081+0.018 nt’ 210+ 19
11p 323278 930+03 nd. 93.0 + 0.4 0.085 + 0.005 nt’ 207 £38
11q  inactive® 333 +28 n.d.” 68.4 + 8.0 n.d.” 133+ 12  522+36
MF°  inactive®  4.0+45 nd.’ 2049 + 33 nd.” 73+02 124+43
AMP 962+02 967+01 0023+0003 91.1+10 0108+0.003  nt” 167 + 1.1

? ICsq (the half maximal inhibitory concentration, pM), %inhibition at specified concentration of compounds (%),
and %cytotoxicity at specified concentration of compounds (%) were expressed as the mean values of three
replicates + standard deviations (SD). ® inactive = no significant difference to the negative control (the absence of
the test compound); n.d. = not determined; n.t. = nontoxic to murine macrophages cell line, no significant

difference to the negative control (the absence of the test compound). © MF: miltefosine; AM: amphotericin B.

It is noteworthy that the introduction of two fluorine atoms into either both terminal
benzothiazole rings or just one ring of compound 11L, 11m, 110, and 11p enhanced the activity
(ICso = 77, 80, 81, and 85 nM, respectively), which are even more potent than amphotericin B (ICs,
= 108 nM). This indicated that, in order to enhance the anti-leishmanial activity against axenic
amastigotes of L. orientalis, rhodacyanine containing at least one fluorine atom at the position 5
would give the best potency. Moreover, these rhodacyanine analogues were also tested the

cytotoxicity toward murine macrophage cell line, J774A.1 (Table 13). At the highest
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concentration at 4.0 pM, only a few compounds were toxic showing in moderate to high
%cytotoxicity, including compound 11e, 11h, and 11q (%cytotoxicity = 88%, 62%, and 52%,
respectively). Fortunately, the most potent compounds, such as 11c, has a low toxicity toward

the normal cell line.

According to this correlation, we can establish the structure-activity relationship (SAR) of the
fluorine-containing rhodacyanine analogues effecting on the in vitro anti-leishmanial activity

against L. martiniquensis and L. orientalis as follows:

core structure of fluorinated
rhodacyanine analogues

(1) Introduction of fluorine atom(s) at position 5, 6, 5, or 6 enhances the potency.

(2) The 5,6-diF rhodacyanine is the most effective compound for the axenic stage of L.
orientalis.

(3) Replacing 6’-H of compound 11c by -CF; group decreases the activity.

(4)  The rhodacyanine should not contain -CF; or -OCF5 group at position 6.

(5)  There is no significant difference between the counter anions, where X is either OTs or

CL.

4. The in silico ADMET properties

After we established the structure-activity relationship, it is crucial to understand the
pharmacokinetic and pharmacodynamic properties of these analogues for further development
into drug candidates. Moreover, the insight in the pharmacological properties of those agents
may also lead to the clarification of their mechanism of action. As for the preliminary test, we
analysed the in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity)
properties using Maestro Schrédinger’s QikProp v3.9 module with the support from Associate

Professor Dr. Ng Chew Hee and Miss Mak Kit-Kay from International Medical University, Malaysia.
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Table 14 The structure of fluorinated rhodacyanine analogues and the in silico ADMET properties

analysis
6
! 5
. CH
4 3
5 N/ S/@Rf
RF = e = O
S N® X
¢ S =X T~ ©H
7 N, 3

Code Rf Rf’ X #rtvFG QPlog QPlogS QPlogBB CNS QPPCaco QPlog Metab Percentage vLRo5

Po/w (nm-s™)  HERG of HOA
10c  5-F - OTs 0 7746 -9.410 0059 1 3901428 -6852 5 100 1
11a - - cl 0 7479 -8941 -0050 0 4015842 -6925 5 100 1
11b  4-F - cl 0 7.637 9157 0022 1 4065763 -6.838 5 100 1
11c  5F - cl 0 7746 -9.410 0059 1 3901428 -6852 5 100 1
11d  6F - cl 0 7706 -9.286 0061 1 4048873 -6784 5 100 1
11e 7-F - cl 0  7.688 9262 0042 1 4030470 -6810 5 100 1
11f - 4F 0 7585 -8993 0026 1 4041975 -6764 5 100 1
11g - 5-F 0 7741 9375 0062 1 3992543 -6.824 5 100 1
1th - 6-F Cl 0 7748 9416 0059 1 3897276 -6852 5 100 1
11i - 7-F ol 0 7659 9152 0049 1 4034.065 -6.767 5 100 1
11 6CFy - cl 0 8509 -10.498 0224 1 3977.860 -6865 5 100 2
11k 6-OCF; - cl 0 8643 -10.479 0.173 1 4020452 -6.890 6 100 2
11l 56-diF - cl 0 7946 9680 0.159 1  4040.863 -6.688 5 100 2
11m 5F 5-F Cl 0 7988 9777 0176 1 3972619 -6700 5 100 2
1in  6F 6-F Cl 0 7993 9786 0179 1 4000565 -6.707 5 100 2
11o 6F 5-F 0 7987 9775 0176 1 3989.158 -6704 5 100 2
11p 5F 6-F 0 7994 9794 0175 1 3941.058 -6.702 5 100 2
119 5F 6-CF, Cl 0 8710 -10.766 0332 1 4037635 -6681 5 100 2

® #rtvFG means number of reactive functional groups; QPlogPo/w is a predicted octanol/water partition
coefficient; QPlogS is prediction of aqueous solubility level; QPlogBB is a predicted brain/blood partition
coefficient; CNS stands for central nervous system activity; QPPCaco is a predicted apparent gut-blood barrier
permeability; QPLogHERG is a predicted ICs, value for blockage of HERG K* channels; #Metab means number of
likely metabolic reactions (1 - 8); Percentage of HOA means percentage of human oral absorption level; vLRo5,

violations to Lipinski’s rule of five.

The properties are tabulated in Table 14, where #rtvFG indicates number of reactive
functional groups: 0 = no reactive functional groups, 1 = mild presence of reactive functional
groups, 2 = high presence of reactive functional groups, all rhodacyanines have no reactive
functional group, such as -OH and -NH, group, so the values are 0. QPlogPo/w is the predicted
octanol/water partition coefficient, where the recommended range is between -2.0 to 6.5.

However, the rhodacyanine analogues express the values out of the recommended range due to
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their high hydrophobicity. This is in line with the prediction of aqueous solubility level (QPlogS),
which the recommended range is between -6.5 to 0.5. All the numbers are also out of the range.

Interestingly, all values of QPlogBB, which is the predicted brain/blood partition coefficient,
are in the middle of the recommended range (-3.0 to 1.2). In addition, for the CNS (a central
nervous system activity), where -2 means completely inactive, -1 means very low activity, 0
means low activity, 1 means medium activity, and 2 means completely active; all compounds
are considered to have medium activity to CNS except for compound 11a. This suggests that the
fluorinated rhodacyanine analogues (11b-11q) have potential to be further studied on cerebral
leishmaniasis or other diseases related to the nervous system. The predicted apparent gut-blood
barrier permeability (QPPCaco) of these analogues is relatively high as all numbers are greater
than 500 which can be accounted for by their high lipophilicity.

As for the toxicity, the predicted ICs, value for the blockage of HERG K' channels
(QPlogHERG) was calculated, where the value below than -5 is to be concerned. From the table,
it is shown that these analogues have relatively low values, hence they may result in Q-T
syndrome. The violations to Lipinski’s rule of five (vVLRo5)* is a useful criteria for evaluating the
drug-likeness of biological active molecules for orally bioavailable drug. The rule states that an
orally active drug should not violate more than of the following criteria: molecular weight less
than 500 Da, log P less than 5 (high lipophilicity), less than five H-bond donors (expressed as sum
of OH and NH groups) and less than ten H-bond accepters (expressed as sum of O and N atoms).
All of the rhodacyanine analogues violate at least one criterion, since the log P values are greater
than 5. In addition, the molecular weight of compound 11j-11q are also greater than 500 Da.
Although Ro5 is one of the most widely used factor to predict compounds that could be orally
active, exception to the rules are more than common. As an example, atorvastatin (Lipitor®), a
major drug for cardiovascular diseases, probably would not have a chance to get to clinical trials
if it were pre-evaluated by the Ro5, where the compound did not pass two criteria.*® Therefore,
Ro5 sometimes needs to be carefully used. However, all compounds exhibit exceptional
predicted human oral absorption (%6HOA) at 100%; thus, these analogues could be potentially be
developed into novel oral anti-leishmanial drugs. Due to this indication, the metabolic stability
for taking an oral administration needs to be determined; therefore, the number of metabolism
(#Metab) of fluorinated rhodacyanine analogues was predicted as shown in Table 14. Five
metabolic processes can occur with these analogues, where compound 11k (compound
containing 6-OCF;) can be metabolised through six pathways, thereby these may affect the drug

pharmacokinetics: the bioavailability, the elimination half-life, and drug clearance.



71

5. Metabolic stability

According to the previous study on a related rhodacyanine based-antimalarial drug,”
compound MKT-077 is rapidly metabolised by P450 enzyme where the t;,, is around 5 minutes
(see Section 2.5.1, Chapter I). Furthermore, the in silico ADMET properties prediction (Table 14)
revealed that a few functional groups of these analogues (i.e., aromatic ring) can be metabolised
through several enzymatic processes. Therefore, it is crucial to experimentally study the
metabolic stability of the compounds. Since, the installation of fluorine substituent at a suitable
position on drug molecules can improve the metabolic stability (as described in Section 2.6,
Chapter 1), the two rhodacyanine analogues (11a and 11c) were selected for this study to clarify
that the introduction of fluorine atom at position 5 can improve the metabolic stability or not. In
this study, verapamil, a drug which is generally known to be rapidly metabolised by liver
microsomes, was used as a positive control.

With the purpose of using fluorinated rhodacyanine as an oral drug for anti-leishmaniasis;
therefore, there is a need to perform in vitro metabolic stability testing to identify its
pharmacokinetics properties. By performing in vitro study, it allows us to predict in vivo
pharmacokinetics parameters such as bioavailability and half-life. The rationale to carry metabolic
stability testing is to design a safer way with desirable bioavailability and half-life, thereby

reducing frequent dosing and improve patient compliance.

5.1 Metabolic stability of verapamil

verapamil
Table 15 The area ratio, percentage of remaining, and metabolised verapamil in the presence of
human liver microsomes at 0, 5, 15 and 30 minutes comparing to the control

(verapamil without microsomes)

Analyte b Area ratio %Remaining
Verapamil IS area %Metabolised nR
area’ (analyte/IS area) (R)
Control 11829 857 13.803 - - -
0 min 13659 781 17.489 0.00 100.0 4.61
5 min 12426 812 15.303 12.5 87.50 4.47
15 min 11837 782 15.137 13.5 86.55 4.46
30 min 4620 724 6.381 63.5 36.49 3.60

@ Analyte area is an integrated peak area of verapamil obtained from HPLC chromatogram.

b|S area means an integrated peak area of internal standard, metronidazole, obtained from HPLC chromatogram.
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The in vitro metabolic stability of verapamil
5.00 -
y =-0.0324x + 4.6885

650 P R? = 0.8583
Slope = -0.0324

350 A

300 T T T T T 1

0 5 10 15 20 25 30
incubation time (min)

Figure 19 Metabolic stability of verapamil in human liver microsomes expressed in graph of

percentage remaining (%) against time (minute).

Calculation: with the information provided by the slope, both half-life (t,,,), the elimination rate
constant (K,), and microsomal intrinsic clearance (mCL;,,) can be calculated by using the following

equation:

(n2 -0.693

Half-life: t,,, =- = = 21.39 minutes

slope -0.0324

n2 0.693 .

The elimination rate constant: K, = — = —— = 0.032 min’
ty, 21.39

(n2 x1000

Microsomal intrinsic clearance: mCL,, =
t,,(min) x protein cocentration (mg/mL)

(n2 x1000

© 21,39 min x 0.5 (mg/mL)

= 64.78 pL/min/mg

Table 16 The microsomal intrinsic clearance of verapamil of human liver microsomes calculated

based on the available data.

Source of liver Slope ti, Protein Concentration® Ke mMCL;
microsome (0-30min) (min) (mg/mL) (min)  (u/min/mg)
Human -0.0324 21.39 0.5 0.032 64.8

® This indicates the amount of microsomal protein concentration that can bind to substance. If there is a large

amount, the mCL;; value will decrease.
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5.2 Metabolic stability of 11a

11a

Table 17 The area ratio, percentage of remaining, and metabolised 11a in the presence of
human liver microsomes at 0, 5, 15 and 30 minutes comparing to the control (11a

without microsomes)

Analyte IS Area ratio
11a . %Metabolised %Remaining (R) (nR
area’ area’ (analyte/IS area)
Control 1305 1669 0.782 - - -
0 min 1217 1549 0.786 0.00 100.0 4.61
5 min 652 1632 0.400 49.2 50.85 3.93
15 min 669 1653 0.405 48.5 51.51 3.94
30 min 460 1710 0.269 65.8 34.24 3.53

® Analyte area is an integrated peak area of compound 11a obtained from HPLC chromatogram.

b IS area means an integrated peak area of internal standard, metronidazole, obtained from HPLC chromatogram.

The in vitro metabolic stability of 11a
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Figure 20 Metabolic stability of 11a in human liver microsomes expressed in graph of percentage

remaining (%) against time (minute).

Calculation: with the information provided by the slope, both half-life (t,,,), the elimination rate
constant (K.), and microsomal intrinsic clearance (mCL;,) can be calculated by using the following

equation:
(n2 -0.693

Half-life: t,,, =- = 23.73 minutes

slope  -0.0292
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n2 0.693 .
The elimination rate constant: K, = — = ——  =0.029 min’
t0 23.73

(n2 x1000

Microsomal intrinsic clearance: mCL,, =
t,,(min) x protein cocentration (mg/mL)

(n2 x1000

"~ 23.73 min x 0.5 (mg/mL)

= 58.45 yL/min/mg

Table 18 The microsomal intrinsic clearance of verapamil of human liver microsomes calculated

based on the available data.

Source of liver Slope ti,, Protein Concentration® K. mCL;,
microsome (0-30min)  (min) (mg/mL) (min™) (uL/min/mg)
Human -0.0292 23.73 0.5 0.029 58.45

@ This indicates the amount of microsomal protein concentration that can bind to substance. If there is a large

amount, the mCL;,; value will decrease.

5.3 Metabolic stability of 11c

Table 19 The area ratio, percentage of remaining, and metabolised 11c in the present of human

liver microsomes at 0, 5, 15 and 30 minutes comparing to the control (11c without

microsomes)

Analyte IS Area ratio
11c . b %Metabolised %Remaining (R)  nR
area area’ (analyte/IS area)
Control 1207 1577 0.765 - - -
0 min 1217 1659 0.734 0.00 100.0 4.61
5 min 1003 1608 0.624 15.0 85.03 4.44
15 min 752 1632 0.461 37.2 62.81 4.14
30 min 491 1697 0.289 60.6 39.44 367

 Analyte area is an integrated peak area of compound 11c obtained from HPLC chromatogram.

® IS area means an integrated peak area of internal standard, metronidazole, obtained from HPLC chromatogram.
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The in vitro metabolic stability of 11c
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Figure 21 Metabolic stability of 11c in human liver microsomes expressed in graph of percentage
remaining (%) against time (minute).

Calculation: with the information provided by the slope, both half-life (t,,), the elimination rate

constant (K.), and microsomal intrinsic clearance (mCL,,) can be calculated by using the following

equation:
(n2 -0.693

Half-life: t, ,, = - = = 22.43 minutes

slope -0.0309

N2 0.693 .

The elimination rate constant: K, = — = —— = 0.031 min’
ti 22.43

(n2 x1000

Microsomal intrinsic clearance: mCL, =
t,,(min) x protein cocentration (mg/ml)

(N2 x1000

© 2243 min x 0.5 (mg/ml)

= 61.82 pyL/min/mg

Table 20 The microsomal intrinsic clearance of verapamil of human liver microsomes calculated

based on the available data.

Source of liver Slope ty, Protein Concentration® K. mMCL;
microsome (0-30min)  (min) (mg/mL) (min")  (uL/min/mg)
Human -0.0309 2243 0.5 0.031 61.82

® This indicates the amount of microsomal protein concentration that can bind to substance. If there is a large

amount, the mCL;; value will decrease.
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5.4 A comparison of the metabolic stabilities between three compounds

The in vitro metabolic Stability of 11a, 11c, and
verapamil a
80 4 11c
g il
£ verapami
€60 - P
©
£
Q40 -
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20
O | | | | | 1
0 5 10 15 20 25 30
Time in minutes

Figure 22 The percentage remaining of each compounds against the incubation times in the

presence of human liver microsomes

Table 21 Comparison the in vitro metabolic stability of compound 11a, 11c, and verapamil by

human liver microsomes

Compounds t,, (minutes) mCL;,(uL/min/mg)
11a 23.73 58.45
11c 22.43 61.82
verapamil 21.39 64.80

As for the results in Table 21, the half-life (t;,) of 11a and 11c is 24 and 22 minutes,
respectively. This indicates that the two selected compounds are rapidly metabolised by human
liver microsomes, which contain a pool of CYP-enzymes. The key reaction mainly involves phase |
oxidation reaction.?” As a result, the calculated drug clearance is quite rapid (~58-62 uL/min/mg),
and the presence of fluorine does not improve this metabolic stability. Nevertheless, these
stability values are in the same range as verapamil, which is a currently used drug. This suggests
that this class of compound can still be useful, although further structural optimization should

be performed to improve their metabolic stability.

6. Electrochemistry
Recently, the fluorescent rhodacyanines previously reported in 2016 was shown to interact

with  Plasmodium falciparum mitochondria. Thus, the uptake of the rhodacyanines in
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mitochondria plays an important role in its anti-malarial activity (as described in Section 2.5.2,
Chapter I). However, the mechanism of action of these fluorinated rhodacyanine analogues for
anti-leishmaniasis has not yet been clarified. In a search for the mechanism of action, one of the
most relevant mechanism involves to the generation of reactive oxygen species (ROS) or reactive
nitrogen species (RNS), where the imbalance between ROS and the cellular defence system is
called oxidative stress leading to parasite death by apoptosis. Therefore, numerous molecules
have been synthesised by introducing what relates to the functional group or structure that can
produce ROS.

For example, nitro-containing semicarbazone derivatives were reported to show anti-
leishmanial activities against L. infantum in 2015.% Since the introduction of nitro group can
induce the ROS generation, the authors determined the reduction potential using cyclic
voltammetry to clearly explain the correlation between the anti-leishmanial activities and the
reduction potentials of the semicarbazone derivatives. Interestingly, the most potent compound
exhibits the lowest reductive potential. This suggests us to suspect that the fluorinated
rhodacyanine analogues may also induce ROS generation. Although each of these analogues
does not contain a nitro group, the corresponding cationic benzothiazoles were redox active, and
their oxidative and reductive potentials had been elucidated using cyclic voltammetry.” Besides,
we propose that the introduction of fluorine atom could affect the reductive potentials due to
its high electronegativity (see Section 2.6, Chapter I) through the inductive effect.

The protocol for the cyclic voltammetry measurements of the selected rhodacyanines: 11a,
11c, and 11g in this work was modified from the previous report mentioned above (with the
support from Dr. Parichatr Vanalabhpatana and Miss Kantima Chitchak), using a glassy carbon

electrode  containing  tetrabutylammonium  perchlorate-dimethylformamide  (TBAP-DMF)

electrolyte at a scan rate of 100 mV+s". The cyclic voltammograms are displayed in Figure 23
with the potential scans ranging from -1.80 to +0.90 V, where the electrolyte solution was
collected as a background showing in Figure 23a (dashed line). The peak potential was negatively
screened from -0.70 to -1.80 V, and meanwhile the reduction peak of 11a keep rising to a single
irreversible combined wave with a broad shoulder starting at -1.53 V and a peak potential of
approximately -1.35 V. As for the oxidation screened from -0.7 to +0.9 V, the oxidation of this
compound indicates the three consecutive irreversible anodic waves with the peak potentials of
+0.30, +0.49, and +0.72 V, while a small cathodic peak at -0.34 V was obtained through the
reverse scan (+0.9 to -0.7 V). Furthermore, the peak potential of two selected fluorinated
rhodacyanines (11c and 11g) were negatively and positively scanned with the same condition
ranging from -1.8 to +0.9 V. Their cyclic voltammograms are illustrated in Figure 23b. Since the

only difference between these two compounds (11c and 11¢g) and 11a is the introduction of
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fluorine substituent at position 5-F and 5’-F, the electrochemical behaviors are comparable to
11a (non-fluorine substituent analogue). Furthermore, the scan rate studies (i.e., plots of cathodic
peak currents versus square root of scan rates) of 11a, 11c, and 11g as exhibited in Figure 24
demonstrate linear behavior which indicates the diffusion-controlled reduction processes of

these analogues.
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Figure 23 Cyclic voltammograms recorded with a glassy carbon electrode (area = 0.071 cm?) at
100 mV-s™ for DMF containing 0.10 M TBAP in the presence of 1.0 mM (a) 11a (solid
lines) and DMF containing only 0.10 M TBAP (dashed lines); (b) 11c and 11g.
Potential scans go from -0.70 to -1.80 to -0.70 V and -0.70 to +0.90 to -0.70 V.

All electrochemical information obtained from the cyclic voltammograms of these three
rhodacyanine analogues were tabulated in Table 22. Interestingly, we found the similar
correlation to a previous report™ that the most potent rhodacyanine 11c expressed the lowest
reductive potential. Thus, the introduction of fluorine at position 5 on the benzothiazolium ring
could slightly enhance the ROS generation compared to the unsubstituted benzothiolium
analogue. Due to the electron acceptor of the benzothiazolium ring, the introduction of a
fluorine atom at the meta-position (5-F) of the benzothiazolium cation could enhance its ability
to accept an electron by the electron withdrawing effect of the fluorine. Furthermore, it is
noteworthy to highlight that the introduction of fluorine atom to the rhodacyanine induces a
slight positive shift of the cathodic peak potential (~40-60 mV). Although the results might not
pinpoint the exact mechanism of action of these rhodacyanine analogues against Leishmania
parasites proliferation, it serves as a preliminary results for further investigation on the in vitro or

in vivo intracellular ROS generation.



Table 22 Peak potential values for cyclic voltammograms of 11a, 11c, and 11g.

79

6
! 5
. CH
4 3
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Rfl@ S __/TN® C|9
¢ S CH
7' N\ 3
(e CoHsg
Reduction Oxidation
Compound Rf’ Rf (forward) (forward) (reverse)
Eoer (V) Eoar (V) Epar (V) Eps (V) Eocrr (V)
11a - - -1.35 +0.30 +0.49 +0.72 -0.34
11c - 5-F -1.29 +0.32 +0.48 +0.65 -0.25
11g 5-F - -1.31 +0.33 +0.49 +0.65 -0.27

Eqc = cathodic peak potential; and Ep, = anodic peak potential.
The potential is quoted with respect to Ag/Ag" reference electrode having a potential of 0.542 V versus standard

hydrogen electrode (SHE).?8
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Figure 24 Cyclic voltammograms recorded with a glassy carbon electrode (area = 0.071 cm?)
from -0.70 to -1.80 to -0.70 V at 10-800 mV:s" in DMF containing 0.10 M TBAP
and 1.0 mM (A) 11a, (B) 11c, and (C) 11g. (D) to (F) depict the corresponding plots
of cathodic peak current obtained from the cyclic voltammograms of 11a, 11c,

and 11g, respectively, versus square root of scan rate.



CHAPTER IV
CONCLUSION

In conclusion, fifteen novel and three known fluorinated rhodacyanine analogues were
successfully synthesised over four steps with overall yields ranging from 10% to 27%. The anti-
leishmanial activities were investigated against promastigote and axenic amastigote stages of
Leishmania martiniquensis and L. orientalis, the indigenous Leishmania species in Thailand.
Comparing with the unsubstituted rhodacyanine (11a) as a reference compound, most of the
fluorinated analogues exhibited greater inhibitions towards Leishmania parasite proliferation. It
should be noted that some analogues such as 11c, 11l, 11m, 110, and 11p are more potent
than the currently available antileishmanial drugs, such as miltefosine and amphotericin B. The
structure-activity relationship (SAR) illustrated that the different positions of fluorine atom
significantly affect the anti-leishmanial activity, whereas the presence of -CF; and the -OCF;
substituents substantially decreased the anti-leishmanial activity. This trend could be explained
by the decrease in aqueous solubility predicted by the in silico ADMET properties analysis of
these analogues. Although they are rapidly metabolised by human liver microsomes, further
metabolic enzymes (i.e., P450 enzymes) as well as in vivo test should be investigated to obtain
more understanding about metabolic stability of these compounds. Other predicted ADMET
properties also suggested that this rhodacyanine class might be developed into oral anti-
leishmanial drugs and their suitability for treating cerebral leishmaniasis or other disease related
to the nervous system. The apparent correlation of the less negative reduction potentials of the
two fluorinated rhodacyanine analogues (11c and 11g) compared to 11a (non-fluorinated one) in
the electrochemical study with their enhanced anti-leishmanial activities encourages further
investigation related to the free radical mechanism of action, such as the intracellular ROS
generation leading to parasite apoptosis. This development of fluorinated rhodacyanine
analogues for anti-leishmaniasis not only identified some potent analogues that warrant further in
vivo studies, but also provide highly important information for the development of even more

effective rhodacyanine-based anti-leishmanial drugs in the future.
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APPENDIX A
NMR and HRMS spectra of 6a-6h
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2,3-Dimethylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6a)

"HNMR (400 MHz, DMSO) 8 8.40
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Figure 25 "H NMR spectrum of 6a
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Figure 26 °C NMR spectrum of 6a
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4-Fluoro-2,3-dimethylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6b)

‘H NMR (400 MHz. DMS0) & 8.24 (dd. J= 63, 2.7 Hz. 1H). 791 - 768 (m, 2H). 745 (d J=8.0 Hz, 2H). 700 (d. J= 7.8 Hz, 2H), 4 28 (s, 3H), 3.15 (s, 3H). 227 (s. 3H).
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Figure 29 “CNMR spectrum of 6b



“F NMR (376 MEz, DMSO0) § -123.36 (s).
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Figure 30 "“F NMR spectrum of 6b
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5-Fluoro-2,3-dimethylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6c)

H NMR. (400 MHz, DMSO) & 846 (dd J=9.0. 5.1 Hz. 1H) 831 (dd J=9.5.2.2 Hz, 1H), 7.73 (td. J=9.0, 2.3 Hz, 1H). 744 (dJ= 7.9 Hz. 7H), 7.08 (d. /= 7.7 Hz 2H). 415 (s. 3H). 3.15 (s, 3H). 227 (s. 3H)
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Figure 32 'H NMR spectrum of 6c

1C NMR (101 Mz, DMSO) & 179.53 (s). 162.33 (d, 7= 246.6 Ha), 145.76 (s), 142.73 (d, 7= 12.7 Ha), 13748 (s). 127.94 (s), 126.44 (d. 7= 10.1 Hz), 125.40 (s), 124.68 (s). 116.71 (. 7= 25.0 Hz), 104.15 (. J=
28.7 Hz), 36.36 (5), 20.70 (s), 17.18 (s).
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Figure 33 C NMR spectrum of 6c



“F NMR (376 MHz. DMS0) & -110.17 {s),
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Figure 34 “F NMR spectrum of 6c
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6-Fluoro-2,3-dimethylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6d)

'H NMR. (400 MHz, DMSO) & 849 - 8.15 (m, 2H), 7.82 (td, /= 2.0, 2.5 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.09 (d, /= 7.8 Hz, 2H), 4.18 (s, 3H), 3.14 (5, 3H), 227 (s, 3H).
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Figure 36 'H NMR spectrum of 6d

CNMR (101 MHz, DMSO0) § 177.79 (s), 160.70 (d, J= 2473 Ha), 145.78 (), 138.47 (s), 13749 (s), 130.26 (d, 7= 12.2 Ha), 127.96 (s), 125.42 (s), 118.76 (4 7= 9.7 B, 117.89 (d, J=25.7 K, 110.81 (d, J=

8.6 Hz), 36.41 (s). 20.71 (s). 17.08 (s).
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*F NMR. (376 MHz, DMS0) 8 -111.72 (s).
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T-Fluoro-2,3-dimethylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6e)

'H NMR. (400 MHz, DMSO) & 8.19 (d, J= 8.5 Hz, 1H), 7.95 (td, J= 8.3, 5.4 Hz, 1H), 7.76 (t, J= 8.0 Hz, 1H), 744 (d, J= 8.0 Hz, 2H), 7.08 (d, J=7.8 Fz, 2E), 4.23 (s, 3, 3.22 (s, 3H), 227 (s, 3H)
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Figure 40 "H NMR spectrum of 6e

“CNMR (101 MHz, DMSO) 8 17841 (s). 155.80 (d, J=250.2 Hz), 145.75 (s). 143.84 (4. /= 3.3 Hz), 13751 (s), 131.44 (d. J= 7.6 Hz), 127.97 (s), 125.41 (s), 116.40 (4. J=23.0 Hz), 114.04 (4, J=17.5 Hz),
11359 (d, J= 3.9 Hz), 36.97 (s), 20.72 (s), 1737 (s).
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Figure 41 °C NMR spectrum of 6e



°F NMR (376 MHz, DMSO) & -113.61 (s).
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2,3-Dimethyl-6-(trifluoromethyl)benzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6f)

'H NMR. (400 MHz, DMS0)  8.91 (s, 1H), 849 (d, /= 8.9 Hz, 1H), 8.22 (4, J=8.9 Hz, 1H), 7.44 (d, J= 8.0 Hz, 2H), 7.08 (d, /= 7.9 Hz, 2H), 423 (s, 5H), 3.21 (s, 5H), 2.26 (s, 3H)
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Figure 44 'H NMR spectrum of 6f

5C NMR (101 MHz, DMSO0) & 181.13 (s), 145.54 (s), 143.92 (5), 137.64 (s), 12949 (s), 128.02 (q, /= 32.8 Hz), 128.00 (s), 125.89 (q,./=3.3 Hz), 123.41 (s), 123.57 (q, /=272.7 Hz), 122.49 (q,/= 4.3 Hz), 118.15 (s),
3648 (). 20.70 (<. 1738 (s).
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Figure 45 C NMR spectrum of 6f
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“F NMR (376 MEz, DMS0) & -60.43 (s).
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2,3-Dimethyl-6-(trifluoromethoxy)benzo[d]thiazol-3-ium 4-methylbenzenesulfonate (6g)

'H NMR (400 MEz, DMSO) & 8.54 (s, 1H), 840 (d, J=9.2 Hz, 1H), 7.91 (d, /= 0.0 Hz, 1H), 744 (4, 7= 7.7 Hz, 2H), 7.07 (d, /= 7.8 Hz, 2H), 4.19 (s, 3H), 3.17 (s, 3H), 2.26 (s, 3H).
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“F NMR (376 MHz, DMS0) § -37.11 ().
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5,6-Difluoro-2,3-dimethylbenzo[dlthiazol-3-ium 4-methylbenzenesulfonate (6h)

'"HNMR (400 MHz. DMSO) & 8.62 (dd. J=10.7.6.7 Hz. 1H). .53 (dd. 7=9.4. 79 Hz. 1H). 7.45 (d. /=72 Hz. 2H). 7.09 (d.J=7.8 Hz. 2H). 4.15 (5. 3H). 3.14 (. 3H). 2.28 (s. 3H).
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Figure 52 'H NMR spectrum of 6h

C NMR (101 MEz, DMSO) & 17938 (<), 150.63 (dd, J=249.7, 13,0 Hz), 14929 (dd, J=250.3, 14.6 Hz), 143.66 (s), 13827 (d, J= 9.9 Hz), 137.58 (s), 127.99(s), 125.42 (s}, 124.97 (dd, J=10.1, 2.2 Hz), 112.78
(d, J=23.9 Hz), 106,30 (d, J=24.2 ), 36.70 (s), 20.72 (s), 17.24 (s).
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“F NME. (376 MHz, DMSO) & -132.91 (d, /=219 Hz), -134.71 (d, 7= 22.0 Hz).
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APPENDIX B
NMR and HRMS spectra of 7, 10c, and 11a-11q
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N-((3-Ethyl-4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-N-phenylpropionamide (7)

'H NMR. (400 MHz, CDCL) & 8.72 (s, 1), 7.70— 7.52 (m, 3H), 7.28 (d, /= 4.8 Hz, 2H), 4.00 (q, /= 7.1 Hz, 2H), 223 (g, /=72 Hz, 2H), 121 (¢, /= 7.1 Hz, 3H), 1.13 (¢, J= 7.3 Hz, 3H).
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Figure 57 °C NMR spectrum of 7
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-
ylidene)methyl)-3-methylbenzo[d]thiazol-3-ium chloride (11a)

HNMR (400 MHz, DMSO) & 8.24 (d. 7= 8.0 Hz, 1K), 790 (d. /= 8.1 Hz, 1), 7.84 (d. 7= 7.8 Hz, 1H), 7.74 - 7.62 (m, 2). 7.60 - 7.51 (m, LH), 7.50 — 7.38 (m, 2H), 7.32 - 7.24 (m. 1H). 6.75 (s, 1H), 5.04 (d. 7=

133 Hz, 1H), 4.17 (g, J=6.6 Hz, 2H), 406 (s. 3H), 3.72 (s. 3H), 1.27 (. /= 7.0 Hz, 3H)
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Figure 58 'H NMR spectrum of 11a

CNMR (101 MHz, DMSO) & 163.62 (s), 162.95 (s), 162.88 (s), 156.94 (s), 141.89 (s), 14037 (s), 134.55 (s), 128.83 (s), 127.57 (s), 126.05 (s). 125.80 (s), 124.15 (s), 123.95 (s), 123.42 (s), 122.58 (s). 11466 (s),
112.40 (s), 101.83 (s), 90.70 (s), 86.32 (s), 39.52 (s), 34.69 (s), 32.89 (s), 12.38 (s).
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Figure 59 C NMR spectrum of 11a
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-
ylidene)methyl)-4-fluoro-3-methylbenzo[d]thiazol-3-ium chloride (11b)

H NMR (400 MHz, DMSO) 5 8.04 (d, J=89Hz, 1H), 788 (d. /=72 Hz, 1H), 7.72 (d.J= 130 Hz, 1H). 758 — 743 (m_4H), 732 (. J=69 Bz 1H). 672 (s, 1H), 6.03 (d,J= 131
375 (s, 3H), 126 (¢, 7= 7.1 Hz, 3H)
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Figure 61 'H NMR spectrum of 11b

15C NMR (101 MHz, DMSO0) § 163.58 (s), 16317 (s), 161.40(s), 161.35 (d, J=235.1 H), 15708 (s), 15076 (s), 14554 (s), 14189 (s), 135.11 (s), 127.69 (s}, 12439 (s), 123 31 (d, /=251 Hz), 12263 (s), 119.70
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Figure 62 °C NMR spectrum of 11b
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*F NMR. (376 MHz, DMSO0) & -126.63 (5),
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Mass Spectrum List Report
Analysis Info Acquisition Date  3/18/2019 9:52:50 PM
Analysis Name  D:\Data\Data Service\190318\TL-B05-P1_RC8_01_2342.d
Method nv_pos_5min_profile_190214.m Operator Cu.
Sample Name  TL-B05-P1 Instrument / Ser¥ micrOTOF-Q Il 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0Bar
Focus Nat active Set Capillary 4000 vV Set Dry Heater 200C
Scan Begin 100 m/z Set End Plate Offset 500V Set Dry Gas 8.0 min
Scan End 1500 m/z Set Collision Cell RF 250.0 Vpp Set Divert Valve Waste
Intens. +MS, 0.09-0.17min #(5-10)
4820834
J /
@Es —__ s>=):N+ F
\ .
100 N cl
o |\
11b
809 m/z calcd for CpHyFN;OS3* [M*] 482.0825
60 458 8300 474 8158
462.8258 486.8604
452 8356 471.8315 493.8173
404 477.8369 4908172
468.8201 4968153
20_ ‘ ‘ ‘ l ‘
o ‘I"‘I"HI‘IL L [Hnt!glt ul) ||‘l||| ‘lll i l!aln}; ‘ JJJI‘I ‘JI\A L \}I"H‘\‘ H\‘ ‘\ Hhu
450 455 460 465 470 475 480 485 490 495 miz

Figure 65 HRMS spectrum of 11b



116

2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-
ylidene)methyl)-5-fluoro-3-methylbenzo[d]thiazol-3-ium 4-methylbenzenesulfonate (10c)

H NMR (400 Mz, DMS0) & 821 (d, 7= 5.6 Hz, 1H), 7.94 — 769 (m, 2H), 7.63 (d, /= 12.8 Hz, 1H), 748 (d, /= 7.8 Hz, 2H), 744 — 7.3 (m, 3H), 728 (s, 1E), .11 (4, 7= 7.8 Hz, 2H), 6.70 (s, 15, 5.2
(d, J=131 Hz, 1), 416 (q, 7= 6.9 Hz, 2H), 3.97 (s, 3H), 3.69 (s, 3H), 228 (s, 3H), 1.28 (t, /=69 Hz, 3H),
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Figure 66 'H NMR spectrum of 10c
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-

ylidene)methyl)-5-fluoro-3-methylbenzo[d]thiazol-3-ium chloride (11c)

H NMR (400 MHz, DMSO) & 8.25 (dd, J= 8.8, 5.1 Hz, 1H), 7.82 (d, /= 7.7 Hz, 1H), 7.74 (d, 7= 8.3 Hz, H), 7.50 (d, /= 13.1 Hz, 1H), 742 - 7.32 (m, 3H), 730 7.2 (m, 1H). 6.71 (s, 1H), 5.89 (d, /= 13.2 Hz, 1K),

416(q.J="7.1Hz. 2H), 3.98 (s, 3H). 3.68 (s, 3H), 129 (. /=7.1 Hz. 3H)
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Figure 70 'H NMR spectrum of 11c
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“F NMR (376 Mz DMS0) & -111.13 (s).
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Mass Spectrum List Report
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-

ylidene)methyl)-6-fluoro-3-methylbenzo[d]thiazol-3-ium chloride (11d)
H NMR (400 Mz, DMSO) & 8.16 (dd, /=79, 19 Hz, 1H), 7.80 (d, /= 8.1 Hz, 2H), 764 — 7.46 (m, 2H), 737 (s, 2H), 724 (s, 1), 6.68 (s, 1H), 5,87 (d, /= 12.8 Hz, 1H), 4.15 (q, /= 6.9 Hz, 2H), 4.01 (s, 3H),

369 (s.3H). 1.28 (t./= 70 Hz 3H)
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" NMR (376 MHz, DMSO0) & -114.81 (s)
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Mass Spectrum List Report

Analysis Info Acquisition Date  3/18/2019 9:34:43 PM
Analysis Name D:\Data\Data Service\190318\TL-A61-P1_RC5_01_2339.d
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-
ylidene)methyl)-7-fluoro-3-methylbenzo[d]thiazol-3-ium chloride (11e)

"H NMR (400 MHz, DMSO) & 7.86 (d, /= 7.3 Hz, 1H), 7.81— 766 (m, 3H), 7.54 (4 /=83 Hz, 1H), 745 (dd. /= 16.7, 8.6 Hz, 7). 7.29 (t, /=72 Hz, 1H), 6.76 (s, 1H), 625 (d /= 13.7Hz. 1H), 418 (q. /=64

1.28
127
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Hz, 2H), 407 (s, 3H), 3.80 (s, 3H), 127 (t, /= 6.4 Hz, 3H).
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Figure 80 'H NMR spectrum of 11e
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“F NMR (376 MHz, DMSO) & -114.99 (s).
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Figure 83 2D NMR spectra of 11e (a) COSY; (b) HSQC; and (c) HMBC spectrum
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Mass Spectrum List Report

Analysis Info Acquisition Date  4/1/2019 9:12:40 PM
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Sample Name  TL-B52-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 3.0Bar
Focus Not active Set Capillary 4000V Set Dry Heater 200C
Scan Begin 100 miz Set End Plate Offset 500V Set Dry Gas 8.0 I/min
Scan End 1500 m/z Set Collision CellRF 2500 Vpp Set Divert Valve Waste
Intens4 +MS, 1.23-1.46min #(73-87)
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Figure 84 HRMS spectrum of 11e



130

2-(3-Ethyl-5-(2-(4-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-

oxothiazolidin-2-ylidene)methyl)-3-methylbenzol[d]thiazol-3-ium chloride (11f)

"H NMR (400 MHz, DMSO) & 8.26 (d, J= 7.8 Hz, 1H), 7.81 (4, /= 8.0 Hz, 1H), 764 (dd, J=15.5, 7.7 Hz, 2H), 7.60— 7.50 (m. 25). 731 - 7.13 (m. 2H). 6.75 (s, 1H), 5.85(d. J=13.1 Hz, 1H), 417 (g, J=6 8 F.
2H). 4.04 (s. 2H). 3.78 (s. 2H). 129 (t. J= 6.8 Hz. 3H).
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Figure 85 'H NMR spectrum of 11f

C NMR (101 MHz. DMSO) & 163 62 (s). 16311 (s). 16219 (s), 156.90 (s). 14837 (d. J=246.6 Hz), 14021 (s). 13422 (s), 120.53 (d. J=9.1 Hz). 128.81(s). 12790 (s). 12623 (d. =26 8 Hz), 12588 (s). 124 69
(d, =72 Hz), 12333 (s), 118.80 (s), 113.04 (d, J=20.5 Hz), 114.66 (s), 103.52 (s), 90.40 (s), 86.66 (s), 30.52 (s), 35.49 (s, 34.72 (s), 12.26 (s).
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Figure 86 °C NMR spectrum of 11f



“F NMR (376 MHz. DMS0) & -130.03 (5).
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Mass Spectrum List Report

Analysis Info Acquisition Date  3/18/2019 10:50:32 PM
Analysis Name  D:\Data\Data Service\190318\TL-B42-P1_RD8_01_2351.d

Method nv_pos_5min_profile_190214.m Operator CU.

Sample Name  TL-B42-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 200
Scan Begin 100 m/z Set End Plate Offset  -500 V Set Dry Gas 8.0 I/min
Scan End 1500 m/z Set Collision Cell RF  250.0 Vpp Set Divert Valve Waste
Intens. +MS, 0.12-0.27min #(7-186)|
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Figure 89 HRMS spectrum of 11f
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2-(3-Ethyl-5-(2-(5-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-
ylidene)methyl)-3-methylbenzold]thiazol-3-ium chloride (11¢g)

"H NMR (400 Mk, DMSO0) & 825 (d, 7= 92 Hz, 1H), 792 (dd, /= 17.3, 8.4 Bz, 15, 7.83 (dd, J= 8.5, 3.6 Hz, 1H), 7.78 — 7.64 (m, 15), 7.58 (dd, J= 19.4, 10.7 Hz, 2H), 7.50— 7.36 m, 1), 712 (t, J= 8.1 Hz, 15,
6.76 (s, 1H). 5.92 (d, J=12.6 Hz. 1H), 4.17 (q, J="7.1 Bz, 2H), 407 (s. 3E), 3.67 (s, 3H), 1.28 (¢, J=71 . 3E)
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Figure 90 'H NMR specturm of 11g

C NMR (101 MEEz. DMSO) 3 163 74 (s). 163.63 (s), 162.02 (d, J=2315 Hz). 156,92 (s). 140.39 (s). 13419 (s). 128.87 (s), 126.15 (s). 12594 (s). 123 80 (d. J= 10.5 Hz). 123 45 (s). 11938 (s). 114.79 (s). 111.11
(d J=245 Hz). 105.08 (s). 104.92 (s). 103.01 (s). 10038 (d. J=29.0 Hz), 80.97 (s). 86,61 (s). 30.53 (s). 34.77 (s). 33.06 (s). 1234 (s).
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"°F NMR (376 MEz, DMSO) § -113.59 (),
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Mass Spectrum List Report

Analysis Info Acquisition Date  3/18/2019 9:28:17 PM
Analysis Name  D:\Data\Data Service\190318\TL-A60-P1_RC4_01_2338.d
Method nv_pos_5min_profile_190214.m Operator CuU.
Sample Name  TL-A60-P1 Instrument / Ser# micrOTOF-Q II 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 200 T
Scan Begin 100 m/z Set End Plate Offset  -500 V Set Dry Gas 8.0 I/min
Scan End 1500 m/z Set Collision Cell RF ~ 250.0 Vpp Set Divert Valve Waste
Intens. +MS, 1.38-1.43min #(82-85)
x10° 482.0836
1.2 .
F N S
1.0 —___°S =N*
S \ ¢
N
0.8 0 AN
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Figure 94 HRMS spectrum of 11g
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2-(3-Ethyl-5-(2-(6-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-3-methylbenzo[d]thiazol-3-ium chloride (11h)

'HNMR (400 MHz, DMSO) & 8.21 (d. = 8.0 Hz, 1H), 787 (d, /= 8.8 Bz, 1H), 7.77 (d, J=8.4 Bz, 1H), 7.66 (t, J=7.7 Hz, 1H), 7.62 — 745 (m, 2H), 7.39 (s, 1H), 7.27 (dd, J=22.5, 13.7 Hz, 1H), 6.72 (s, 1),
589(d J=128 Hz 1H) 415 (q. /= 7.0 Hz 2H), £.05 (s, 3H). 3.68 (s, 3H). 127 (¢, J="7.0 Hz 3H).

Augl}ZEIlEftkhI]Dl S Zmamoana T g S :f:q‘é’ 2 ang
i 3% BEERZRAARG iz 2338 E 858
chula_proton 2D(O/N) Vo % (NGB R 7
CHy
!
1 L
NS =N o
AN
O qp T
IHNMR

F(s: 1) 1| [Le M@
777 || 7.39 6.72 5.89 25 3& 1.27

2,961
I

312

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
f1 (ppm)

Figure 95 'H NMR spectrum of 11h

€ NMR (101 MEz, DMSO) & 163.60 (s), 162.87 (s), 138.68 (d, /= 242.0 Hz), 136.94 (s), 140.29 (s), 138.63 (5), 134.32 (s), 128.83 (s), 128.00 (s), 126:02 (5), 125.81 (s), 125,47 (5), 12337 (s), 114.79.(d, J=24.7
Hz), 11460 (s), 113.32(d, J= 8.8 Hz), 109.85 (d, /= 28.8 Hz), 102.17 (s), 90.84 (s), 86.34 (s), 38.91 (5), 34.67 (s), 33.12 (s), 1234 (s),
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YF NMR (376 Mz, DMS0) & 11786 (s).
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Mass Spectrum List Report

Analysis Info Acquisition Date  8/13/2019 4:13:49 PM
Analysis Name  D:\Data\Data Service\190813\TL-A65-P1_RA6_01_2873.d

Method nv_pos_6min_profile_wguardcol_190624.m Operator Cu.

Sample Name  TL-A65-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 200 C
Scan Begin 100 m/z Set End Plate Offset -500 Vv Set Dry Gas 8.0 I/min
Scan End 1500 m/z Set Collision Cell RF 250.0 Vpp Set Divert Valve Waste
Intens. +MS, 1.34-1.49min #(80-89)
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Figure 99 HRMS spectrum of 11h
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2-(3-Ethyl-5-(2-(7-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-3-methylbenzo[d]thiazol-3-ium chloride (11i)

"H NMR (400 MHz, DMS0) & 8.25 (4. J=8.1 Hz, 1H), 796 (d. /=82 Hz. 1H), 7.71 (¢, /="7.7 Hz, 1H), 768 — 7.53 (m, 2H), 745 (ad, /= 14.1, 8.3 Hz, 2H), 731 (4. /=82 Hz, 1H), 7.27— 7.01 {m, 1), 6.79 (s, 1H).
5.96(d, /= 13.0 Hz, 1H), 4.16 (g, /= 7.1 Hz, 2H), 4.10 (s, 3H), 3.71 (s, 3H), 1.26 (t, /= 7.1 Ez, 3H).
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Figure 100 'H NMR spectrum of 11i

'C NMR (101 Mz, DMSO) & 163.72 (s), 163.36 (s), 161.10 (s), 136.85 (s), 155.76 (d, J=244.0 Hz), 144.36 (d, J= 6.0 Hz), 140.36 (s), 133.93 (s), 130.92 (s), 120.56 (d, J= 7.9 Ha), 128.92 (s), 126.13 (d, J=20.3
Hz), 123.45 (s), 11485 (s), 110.16 (d, 7= 22.5 Hz), 108.59 (d, J=2.9 Hz), 104.24 (s), 90.92 (s}, 89.03 (s), 86.84 (s), 30.13 (5), 34.87 (s), 33.36 (s), 12.33 (s).
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Figure 101 °C NMR spectrum of 11i



"F NMR. (376 MHz, DMSO) & -115.98 (s),
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Figure 102 “F NMR spectrum of 11i
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Mass Spectrum List Report

Analysis Info Acquisition Date  4/1/2019 8:27:30 PM
Analysis Name  D:\Data\Data Service\190401\TL-B53-P1_RC6_01_2448.d
Method nv_pos_5min_profile_190214.m Operator Cu.
Sample Name  TL-B53-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 2007C
Scan Begin 100 m/z Set End Plate Offset 500V Set Dry Gas 8.0 Vmin
Scan End 1500 miz Set Collision Cell RF 250.0 Vpp Set Divert Valve Waste
Interga +MS, 1.39-1.44min #(B3-86)
X 4820825
6_
/
N S
—\___ S . \N+
S \ cr
F N
4 0] AN
1i

m/z calcd for Co4H,,FN;0S;* [M*] 482.0825

2] 483.0843
484.0801
435_|0305
1
416 418 480 482 484 486 488 490 492 494 miz

Figure 104 HRMS spectrum of 11i
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-

ylidene)methyl)-3-methyl-6-(trifluoromethyl)benzold]thiazol-3-ium chloride (11j)

H NMR (400 MHz, DMSO0)  8.69 (s, 1H), 8.08 — 7.92 (m, 2H), 7.85 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 12.9 Hz, 1), 7.52 - 7.34 (m, 2H), 729 (t, /= 7.6 Hz, 1H), 6.7 (s, 1H), 6.00 (d, 7= 13.1 Kz, 1H), 420

(q,J= 7.0 Hz, 2H), 4.07 (s, 3H), 3.7 (s, 3H), 128 (t, 7= 7.1 Kz, 3H)
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Figure 105 'H NMR spectrum of 11;

CNMR (101 MHz, DMSO) & 164.22 (s), 163.95 (s), 163.66 (s), 158.52 (s), 143.35 (s), 142.01 (s), 135.44 (s), 127.88 (s), 12692 (s), 124.71 (s), 12463 (s), 124.56 (q, = 259.5 Ha), 12430 (s), 122.88 (s), 121.37

(q.7=42Hz), 11539 (). 11464 (q, /= 27.0 Hz), 112.83 (5), 10145 (s). 91.58 (s), 86.38 (s). 39.10(s). 35.07 (5), 33.25 (). 12.67 (s)
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F NMR (376 Mz, DMSO) & -39.96 (s).
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Mass Spectrum List Report

Analysis Info Acquisition Date  4/1/2019 8:51:13 PM
Analysis Name D:\Data\Data Service\190401\TL-A77-P1_RD2_01_2452.d
Method nv_pos_5min_profile_190214.m Operator CuU.
Sample Name  TL-A77-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 200 C
Scan Begin 100 m/z Set End Plate Offset -500 vV Set Dry Gas 8.0 l/min
Scan End 1500 m/z Set Collision Cell RF 250.0 Vpp Set Divert Valve Waste
Intens. +MS, 0.29-0.40min #(17-24)
x104
532.0790
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N S
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—____S . N*
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1.0+ 11]
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Figure 109 HRMS spectrum of 11j
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-
ylidene)methyl)-3-methyl-6-(trifluoromethoxy)benzo[dlthiazol-3-ium chloride (11k)

HNMR (400 MHz. DMSO) & 839 (s. 1H). 7.99 — 7.74 (m, 2H), 7.73 — 7.53 (m_ 2H). 744 — 7.19 (m. 3H), 6 T2 (s, 1H). 590 (d. J= 13.4 Bz 1H). 417 (q. J= 6.8 Hz. 2H) 402 (s. 3H). 3.70 (s. 3H). 129 (£ J=69 Hz,
3H).
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C NMR (101 MHz. DMS0) 8 163 67 (s), 163 48 (). 163 11 (s). 15759 (s). 14504 (s), 141.79 (s). 14168 (s). 13044 (s)_ 13933 (s), 134.78(s), 127.60 (s). 12541 (s). 124 83 (q J =249 4 Hz), 12420 (s), 12261 (s).
122.19 (q, J=6.8 Hz), 116.45 (), 112.40 (s), 101.48 (s), 20.96 (s), 86.55 (), 32.11 (s), 34.91 (s), 32.91 (s), 1238 (s).
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YF NMR (376 MEz, DMS0) & -57.10 (s).
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Mass Spectrum List Report

Analysis Info

Analysis Name

Method nv_pos_5min_profile_190214.m
Sample Name  TL-B28-P1

Comment

Acquisition Date  3/18/2019 10:18:35 PM

Di\Data\Data Service\190318\TL-B28-P1_RD3_01_2346.d

Operator Cu.
Instrument / Ser¥ micrOTOF-Q 1l 10335

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000 Vv Set Dry Heater 20T
Scan Begin 100 m/z Set End Plate Offset 500V Set Dry Gas 8.0 Vmin
Scan End 1500 miz Set Collision Cell RF 250.0 Vpp Set Divert Valve Waste
lnteil;se +MS, 0.09-0.22min #(5-13)
548 0730 OCF3
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—___S >Z):N+
804 S \al
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e} AN
546.7969 1k
60
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Figure 114 HRMS spectrum of 11k
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2-(3-Ethyl-5-(2-(3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-oxothiazolidin-2-
ylidene)methyl)-5,6-difluoro-3-methylbenzo[d]thiazol-3-ium chloride (111)

HNMR (400 MHz, DMSO) § 8.41 (dd, J=9.2, 8.0 Hz, 1H), 8.19 (dd, 7= 10.8, 6.5 Hz, 1H), 787 (d, /= 8.1 Hz, 1H), 7.70 (d, J= 13.3 Hz, 1H), 756 — 7.43 (m, 2H), 731 (t, /= 7.7 Hz, 1H), 6.74 (s, [H), 5.97 (d, J
=134 Hz, 1H), 4.18 (q, /= 6.9 Hz, 2H), 4.03 (s, 3H), 3.75 (s, 3H), 1.27 (1. 7= 6.9 Hz, 3H).
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Figure 115 "H NMR spectrum of 11l

CNMR (101 MEz, DMSO) & 163.93 (s), 163.51 (s), 163.35 (s), 157.33 (s), 15132 (dd, 7= 2712, 29.8 Ha), 150.46 (dd, 7= 240.5, 283 Ha), 142.52 (s), 141.88 (s), 13736 (s), 134.89 (s), 127,62 (s), 124.32 (s),
124.03 (s). 122,68 (s), 112.34 (), 112.14 (dd, J= 23 6, 1.9 Hz), 104.16 (s). 101.41 (5). 9100 (s), 86.63 (s). 39.01 (s). 33.20 (5). 32.96 (s). 1238 (s)
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“F NMR (376 MHz, DMSO) & -134.60 (d, /=222 Hz), -138.72 (d. /=22.1 Hz).
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Mass Spectrum List Report

Analysis Info Acquisition Date  3/18/2019 9:59:17 PM
Analysis Name  D:\Data\Data Service\190318\TL-B06-P1_RD1_01_2343.d
Method nv_pos_5min_profile_190214.m Operator CuU.
Sample Name  TL-B06-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 200C
Scan Begin 100 m/z Set End Plate Offset -500 V Set Dry Gas 8.0 /'min
Scan End 1500 m/z Set Collision CellRF  250.0 Vpp Set Divert Valve Waste
Intens. +MS, 0.09-0.19min #(5-11)
500.0721
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Figure 119 HRMS spectrum of 11l
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2-(3-Ethyl-5-(2-(5-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-methylbenzo[dlthiazol-3-ium chloride (11m)

H NMR (400 MHz, DMS0) & 827 (dd, J=88. 5.1 Hz, 1H), 7.79 (dd. = 8.6 2 Hz, 1H), 7.68 (dd. J= 98, 19 Hz, 1H), 740 (d.J= 13.1 Hz. 1H). 742 = 734 (m, 1E). 719 (dd. 7= 10.0, 1.6 Hz, 1H), 708 (¢td, J=
8.9,2.1 Hz, 1H), 6.69 (s, H), 5.83 (d, /= 13.1 Hz, 1H), .15 (q, /= 7.1 Hz, 2H), 3.95 (s, 3H), 3.60 (s, 3H), 1.30 (t, J= 7.1 Hz, 3H).
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CNMR (101 MEz, DMSO) 5 16426 (s). 163 60 (s). 163.50 (s). 16249 (d, 7= 245.5 Hz). 162.03 (d. 7= 242.9 Hz), 157.33 (s), 143.06 (d. /= 12.2 Ha). 141.60 (d, J= 123 He), 134.13 (s), 125,00 (d J= 104 Ez),
123.78 (d, J=102 Hz), 12156 (s). 119.17 (s), 113.65 (d, J=24.5 Hz), 11118 (d, /=237 Hz), 102.87 (s), 102.20 (d, /= 29.0 ), 10024 (d. J=28.7 Hz), 9119 (s). 86.76 (s), 39.10 (s), 34.84 (s), 33.00 (s). 12.30 (s)
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Figure 121 C NMR spectrum of 11m



FNMR. (376 MHz, DMS0) & -111.17 (s), -113.57 (s)
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Mass Spectrum List Report

Analysis Info Acquisition Date  3/18/2019 10:25:02 PM

Analysis Name  D:\Data\Data Service\190318\TL-B38-P1_RD4_01_2347.d

Method nv_pos_5min_profile_190214.m Operator Cu.

Sample Name  TL-B38-P1 Instrument / Ser# micrOTOF-Q Il 10335

Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
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Scan Begin 100 m/z SetEnd Plate Offset  -500V Set Dry Gas 8.0 I/min

Scan End 1500 m/z Set Collision Cell RF 250.0 Vpp Set Divert Valve Waste
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Figure 124 HRMS spectrum of 11m
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2-(3-Ethyl-5-(2-(6-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-6-fluoro-3-methylbenzo[dlthiazol-3-ium chloride (11n)

HNMR (400 MHz, DMS0) & 821 (d, J=7.6 Hz, 1H), 7.89 (dd, 7= 8.2, 4.3 Hz, 1K), 7.68 - 7.51 (m, 35), 7.37 - 7.11 (m, 2H), 6.74 (s, 1H), 386 (d, 7= 13.1 Kz, 1H), 416 (g, /= 6.4 Hz, 2H), 405 (s, 3H), 3.82 (s, 3H),
128(t J=64Hz, 3H)
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Figure 125 'H NMR spectrum of 11n

C NMR (101 MHz, DMSO) 8 163.58 (s), 162.28 (s), 15936 (d, 7= 245.3 Ha), 136.98 (s), 14839 (d, /= 2469 Ha), 13711 (s), 13427 (s), 129.56 (s), 127.38 (s), 126.39 (d. J= 2.4 Hz), 124.78 (d, 7= 7.5 Hz),
11888 (s), 11731 (d, 7= 20.7 Hz), 116.89 (d, J=24.8 Hz), 116.24 (d, J= 10.0 Hz), 115.00 (d, /= 20.3 H), 110.22 (d, J=28.6 Hz), 103.34 (s), 20.48 (s), 86.81 (5), 38.96 (5), 35.53 (s), 35.04 (s), 1229 (s).
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Figure 126 C NMR spectrum of 11n



"“F NMR (376 MHz, DMSO) & -114.66 (5), -130.18 (s).
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Mass Spectrum List Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

TL-B41-P1

Acquisition Date  3/18/2019 10:44.05 PM

D:\Data\Data Service\190318\TL-B41-P1_RD7_01_2350.d
nv_pos_5min_profile_190214.m

Operator Cu.
Instrument / Ser# micrOTOF-Q Il 10335

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 200C
Scan Begin 100 m/z Set End Plate Offset -500 Vv Set Dry Gas 8.0 I/min
Scan End 1500 m/z Set Collision Cell RF 250.0 Vpp Set Divert Valve Waste
Intens. F +MS, 0.14-0.29min #(8-17)
500.0689
125 /
N S
—__ S o \N+
1004 F s \ cr
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11n
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Figure 129 HRMS spectrum of 11n
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2-(3-Ethyl-5-(2-(5-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-6-fluoro-3-methylbenzo[d]thiazol-3-ium chloride (110)

HNMR (400 MHz, DMSO0) & 8.18 (dd, J = 7.9, 2.0 Hz, 1H), 7.94 (dd, J=9.1, 4.0 Hz, 1), 7.82 (dd, J= 8.6, 5.2 Ha, 1H), 7.64 - 7.56 (m, 2H), 7.4 (dd, 7=0.4, 0.8 Hz, 1H), 6.73 (s, 1H), 5.91 (d, 7= 13.1 Hz, IH),
417(q.J=6.9 Hz, 7H), 406 (s, 3H), 3 68 (s, 3H). 128 (¢ J= 7.1 Hz 3H)
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Figure 130 'H NMR spectrum of 110

*CNMR (101 MHz, DMS0) & 163 62 (s), 163 26 (s), 162.09 (d, J= 2504 Hz). 15935 (d_J= 245 0 Hz). 156 95 (s). 143 30 (d, /= 12.1 Hz), 13720 (s). 13413 (s), 127.94 (s). 12751 (). 123.79 (d, J=9.6 Ha).
11933 (d, 7= 22 Hz). 116 85 (d. /=25 2 Hz). 11627 (d. J=9.3 Hy). 11112 (d. =230 Hz). 110.26 (d, .J =28 6 Hz), 102.80 (s). 10031 (d, 7 =120 3 Hz) 2092 (s). 86.70 (s). 39.10 (s). 35.03 (s). 33.03 (s). 1231 (s)
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Figure 131 °C NMR spectrum of 110
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'F NMR (376 MHz, DMS0) & -113.56 (s), -114.64 (s).
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Figure 133 2D NMR spectra of 110 (a) COSY; (b) HSQC; and (c) HMBC spectrum
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Mass Spectrum List Report

Analysis Info Acquisition Date 8/13/2019 4:33:05 PM
Analysis Name  D:\Data\Data Service\190813\TL-B39-P1_RA8_01_2876.d
Method nv_pos_6min_profile_wguardcol_190624.m Operator Cu.
Sample Name  TL-B39-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 200C
Scan Begin 100 m/z SetEnd Plate Offset ~ -500V Set Dry Gas 8.0 Vmin
Scan End 1500 miz Set Collision Cell RF  250.0 Vpp Set Divert Valve Waste
Intens. +MS, 1.14-1.26min #(68-75)
x104 500.0729
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Figure 134 HRMS spectrum of 110
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2-(3-Ethyl-5-(2-(6-fluoro-3-methylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-4-
oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-methylbenzo[dlthiazol-3-ium chloride (11p)

'HNME. (400 MHz, DMSO) & 829 (dd, J=84 54 Hz 1H), 7.82 (dd. J=9.7, 1.3 Hz, 1H), 7.63 (dd, /=54, 32 Hz, 1H), 7.57 (d. /= 13.1 Hz, 1H), 744 (td. J=92, 18 Hz, 1H). 724 (dd. J=7.0,63 Hz. 2H), 6.75
(s. 1H). 5.88(d. J= 12.9 Hz 1H). 4.16 (q..7= 6.9 Hz. 2H). 4.01 (5. 3H). 3.81 (s. 3H). 1.29 (t. /= 6.9 Hz. 3H).
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Figure 135 "H NMR spectrum of 11p

CNMR (101 MEz, DMSO) 8 164.57 (s), 163.60 (s). 162.48 (d, J=245.3 Hz), 15732 (s), 148.46 (d, J= 246.8 Kz), 13461 (s), 120.57 (d, J= 8.5 Hz), 12647 (d, J=2.7 Ha), 125.47 (), 125.02 (d, 7= 24.1 Ha),
12493 (d, J=212 Hy), 121.75 (s). 11891 (s), 115.08 (d. =211 Hz). 113.74 (d, J= 24.4 Hz). 10330 (s), 10249 (s). 102.20 (s). 90.63 (s). 86.85 (s). 30.10 (5). 35.47 (s). 34.95 (s). 1231 (s).
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Figure 136 °C NMR spectrum of 11p



F NMR. (376 MHz, DMSO0) & -110.98 (s), -120.91 (s).
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Figure 138 2D NMR spectra of 11p (a) COSY; (b) HSQC; and (c) HMBC spectrum
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Mass Spectrum List Report

Analysis Info Acquisition Date  3/18/2019 10:37:47 PM
Analysis Name  D:\Data\Data Service\190318\TL-B40-P1_RD6_01_2349.d
Method nv_pos_5min_profile_190214.m Operator Cu.
Sample Name  TL-B40-P1 Instrument / Ser# micrOTOF-Q I 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 200C
Scan Begin 100 m/z Set End Plate Offset -500Vv Set Dry Gas 8.0 I/min
Scan End 1500 m/z Set Collision Cell RF  250.0 Vpp Set Divert Valve Waste
Intens. +MS, 0.12-0.24min #(7-14
5000712
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F
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—\__ S . \N+
F S \ o
N
300+ 0 \
11p
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Figure 139 HRMS spectrum of 11p
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2-(3-Ethyl-5-(2-(3-methyl-6-(trifluoromethyl)benzo[d]thiazol-2(3H)-
ylidene)ethylidene)-4-oxothiazolidin-2-ylidene)methyl)-5-fluoro-3-
methylbenzo[d]thiazol-3-ium chloride (11q)

HNMR. (400 MEz, DMSO) & 8.28 (s, 2H), 794 (d, /= 83 Hz, 1H), 776 (d, /= 8.6 Hz, 1H), 765 (d /= 12.9 Ez, 1K), .60 (d. J=8.5 Kz, 1K), 745 (1. /= 0.0 Kz, 1K), 6.79 (s, 1K), 6.01 (d. /= 13.0 Ez, 1K), 4.18
(q.J7= 6.8 Hz 2H), 407 (s, 3H), 3.74 (s, 3H). 127 (¢, J= 6 9 Hz, 3H)
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Figure 140 'H NMR spectrum of 11q

CNMR (101 MHz, DMSO0)  172.24 (s), 165.15 (s). 163.03 (s), 162.79 (d. /= 252.5 Ha), 157,53 (s), 145.13 (s). 142.18 (). 134.64 (5), 133.68 (s), 130.85 (s). 12833 (s), 125.29 (s). 123.56 (q, /= 233.4 Hz), 120.40
(), 12027 (), 114.14 (d, 7= 24.7 Ha), 112.67(s), 104.50 (s), 102.73 (d, J= 27.4 Hz), 91.64 (s), 8731 (s), 39.18 (s), 35.32 (s), 33.28 (s), 12.56 (s).
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Figure 141 °C NMR spectrum of 11q
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*F NMR (376 MHz, DMS0) & -39.96 (), -111.03 (s).

Aug21-2018-tkh003 - -
TLB15-P1 _IAthleS_ZPUllS tkh003
chula_19F deciH_1 chula_19FdecH chula_18F _deciH_1 chula_19FdecH

-39.85 -60.05

-59.95
1 (ppm)

Augz1-2018-tkh0o3
TL-B15-P1
chula_19F deciH_1 chula_19FdecH

T T T
-1111 41112 -1113
ppm)

T T T
-110.8 -110.9 -111.0
]

Ao bl uMMMMMuWMIMWMMHMWWH

6 -1ID -éD -B‘D -‘;D -S‘D -5‘0 -.':‘D -éﬂ -Q‘D -llﬂﬂ -1‘10 -1‘20 -130 -140 -150 -160 -170 -180 -IIQD
f1 (ppm)
" 19
Figure 142 ~F NMR spectrum of 11q
(a)
: |
W N ‘ \
F, = S,
i 5>x;->=/L \cu, of ‘
.
o 11:]\——@45
cosy ‘ L k
ha I | M
Jun17-2019-tkh0o1 "
TL-B15-d
F1
-2
L]
3

S
f1 (ppm)

o

- r6
—3

7

-8




176

(b)
CH
g
-
o 11:]\—(:
HSQC k
ST YR
un17-2019-tkhoo1 &= Lo
-B1 s
= . F10
‘;‘ 20
H F20
- %
- = - a0
¥
3 Fso
=
_$ F60
* =70
=
4 r0 E
- é 90 =
- I =
3 100
: 3
- EY F110
- :_ 120
- - g
> 130
- T
'i 140
,:‘ F150
i k160
_;. 170
E‘.S 8‘.0 7:5 7.‘[] 6.‘5 6:0 5:5 S:EI 4‘.5 41[] 3‘5 3‘[] 2‘5 2:[] 1:5 IIEI l]‘5 [II[I
f2 (ppm)
(o]
Mass Spectrum List Report
Analysis Info Acquisition Date  8/13/2019 4:20:15 PM
Analysis Name  D:\Data\Data Service\190813\TL-B15-P1_RA7_01_2874.d
Method nv_pos_6min_profile_wguardcol_190624.m Operator CU.
Sample Name  TL-B15-P1 Instrument / Ser# micrOTOF-Q Il 10335
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 200T
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