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ไตรทศ รจนาสันห : เฟอรมิออนมีประจุในรูหนอน 2 มิติกับสนามแมเหล็กสมมาตร

รอบแกน. (CHARGED FERMION IN TWO-DIMENSIONAL WORMHOLE WITH

AXIAL MAGNETIC FIELD) อ.ที่ปรึกษาวิทยานิพนธหลัก : รศ. ดร.ปยบุตร บุรีคำ,

47 หนา.

เราศึกษาผลกระทบจากสนามแมเหล็กบนเฟอรมิออนมีปประจุในกาลอวกาศ 1 + 2

มิติรูป “รูหนอน” โดยที่การใสสนามแมเหล็กภายนอกตลอดแนวสมมาตรรอบแกนของรู

หนอนสามารถแกหาผลเฉลยของสมการดิแรคได ในสองสถานการณคือ ฟลักซแม เหล็ก

คงที่และสนามแมเหล็กคงที่ตลอดแนวทอของรูหนอน สำหรับกรณีฟลักซแมเหล็กคงที่นั้น

สามารถทำการหาผลเฉลยทั่วไปไดอยางแนนอน แตในสวนของกรณีสนามแมเหล็กคงที่นั้น

เราจะไดผลเฉลยดวยการประมาณรูหนอนแบบสั้น ซึ่งระบบทั้งสองกรณีจะแสดงใหเห็นถึง

ทั้งอันตรกิริยาของสปนกับออรบิท และแลนดาวควอนไทเซชันสำหรับสถานะคงที่ ในระบบ

ทั้งสองจะมีพลังงานจินตภาพที่ถูกสรางโดย อันตรกิริยาของสปนกับออรบิทและอันตรกิริยา

ของสปนกับแลนดาวแมเหล็ก ซึ่งเกิดมาจากความโคงที่แทจริงของพื้นผิว พลังงานจินตภาพ

นี้สามารถตีความไดถึงการกระจัดกระจายออกและความไม เสถียรของสถานะ โดยทั่วไป

แลวสถานะของเฟอรมิออนที่มีประจุในรูหนอนนี้จะเปนโหมดกึ่งปกติ ที่อาจสื่อถึงการไม

เสถียรสำหรับพลังงานจินตภาพเชิงบวก และสื่อถึงการสลายตัวสำหรับพลังงานจินตภาพเชิง

ลบ สำหรับเฟอรมิออนที่อยูในรูหนอนในกรณีฟลักซแมเหล็กคงที่สามารถประพฤติตัวคลาย

โบซอน และมีรูปแบบสถิติใดๆ ขึ้นกับฟลักซแมเหล็กจากสนามแมเหล็กในระบบ นอกจากนี้

เราจะทำการวิเคราะหผลที่ไดในระบบแกรฟนรูหนอนอีกดวย

ภาควิชา. . . . . .ฟสิกส . . . . . . . . . . . . . . ลายมือชื่อนิสิต. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

สาขาวิชา . . . . . .ฟสิกส . . . . . . . . . . . . . ลายมือชื่อ อ.ที่ปรึกษาหลัก. . . . . . . . . . . . . . . . . . . . . . . . . . .

ปการศึกษา . . . . .2562. . . . . . . . . . . .
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## 6071939723 : MAJOR PHYSICS

KEYWORDS : MAGNETIC FIELD / FERMION / WORMHOLE / CURVED

SPACE / QUASINORMAL MODE

TRITHOS ROJJANASON : CHARGED FERMION IN TWO-

DIMENSIONAL WORMHOLE WITH AXIAL MAGNETIC FIELD.

ADVISOR : PIYABUT BURIKHAM, Ph.D., 47 pp.

We investigate the effects of magnetic field on a charged fermion in a (1+2)-

dimensional wormhole. Applying external magnetic field along the axis direction

of the wormhole, the Dirac equation is set up and analytically solved in two scenar-

ios, constant magnetic flux and constant magnetic field through the throat of the

wormhole. For the constant magnetic flux scenario, the system can be solved an-

alytically and exact solutions are found. For the constant magnetic field scenario,

with the short wormhole approximation, the quantized energies and eigenstates

are obtained. The system exhibits both the spin-orbit coupling and the Landau

quantization for the stationary states in both scenarios. The intrinsic curvature

of the surface induces the spin-orbit and spin-magnetic Landau couplings that

generate imaginary energy. Imaginary energy can be interpreted as the energy

dissipation and instability of the states. Generically, the states of charged fermion

in wormhole are quasinormal modes (QNMs) that could be unstable for positive

imaginary frequencies and decaying for negative imaginary ones. For the constant

flux scenario, the fermions in the wormhole can behave like bosons and have ar-

bitrary statistics depending on the flux. We also discuss the implications of our

results in the graphene wormhole system.
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 , σ3 =

 1 0

0 −1

 .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I

INTRODUCTION

Non-relativistic quantum mechanics in the presence of extrinsic and intrin-

sic curvature was already described 40 years ago [?, ?]. For the relativistic property

of the half-spin particle, Dirac equation reveals interesting physical consequences

of the particle constraints in (2 + 1)−dimensional spacetime system. A quantum

effect of a particle is determined by the curvature of space. Notably, an electron in

graphene [?, ?] near the Dirac points can be described as fermionic quasiparticle

obeying massless Dirac-like equation [?, ?, ?, ?, ?].

When charged particles are subjected to a magnetic field perpendicular to

a surface, the orbits will be quantized [?]. The Aharonov-Bohm(AB) effect is a

quantum mechanical phenomenon, It gives a phase shift in which a charged parti-

cle is affected by a gauge potential. When a particle travelling in the region with

zero magnetic fields, it can still acquire a phase shift [?]. For example, the charged

particles are confined to carbon nanotubes in the presence of magnetic flux [?].

The quantum hall effects [?, ?] are notable phenomena in the constrained charged

fermions with gauge fields. In the quantum system, a strain is equivalent to an

effective gauge field, e.g. electrons in deformed nanotube and graphene experience
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deformed potential generated from the strain tensors [?, ?, ?]. Freshly, there is a

number of investigation of fermions confined to a curved surface [?, ?, ?, ?, ?, ?]

as well as the implications to carbon nanotubes properties [?, ?], and applications

in curved graphene [?, ?, ?, ?, ?, ?]. Graphene is an ideal place to study behaviour

of confined charged fermions such as electrons in a two-dimensional surface since

its thickness is only roughly one-carbon-atom diameter. A sheet of graphene can

be curved, rolled, stretched, twisted and deformed or even punctured holes into.

The holes can be connected to a nanotube and become a wormhole bridging two

graphene sheets. Multiple graphene sheets can be connected with one another by

multiple wormholes forming a network of entangled electronic structure. Worm-

holes can even be built into a cage structure of schwarzite with many promising

properties [?].

There have been many studies concerning the behaviour of electron on

curved graphene surfaces. González et al. [?] consider a wormhole attached to

two graphene sheets via 12 heptagonal defects, the defects act like effective non-

Abelian gauge flux that swaps two Dirac points on the graphene lattice [?]. Garcia

et al. [?] investigate the charged fermion in two-dimensional spherical space in

a rotating frame, study the change in the spectrum of the C60 molecule when

it is crossed by a magnetic flux tube in the z-direction, and the appearance of

an analogue of the Aharonov-Carmi phase in the system [?]. Cariglia et al. [?]

consider Dirac fermions on an essentially smooth simplified spacetime, namely a

Bronnikov-Ellis wormhole. In Ref.[?], the surface of the graphene wormhole is

realized by a two-dimensional axially-symmetric curved space of constant Gaus-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

sian curvature. The effective action of the fermion in the graphene wormhole is

then derived in the (1 + 2)-dimensional spacetime. The similarities (in the long

wormhole limit) and differences of Hilbert and event horizon are discussed. In

Ref.[?], a charged fermion in the curved surface subject to an external electric

field is analyzed in the stationary optical metric conformal to the BTZ black hole.

Firstly, the condensed matter wormhole is basically spatially curved 2-dimensional

surface, so it is (1 + 2)-dimensional. Secondly, there is no time dilatation like in

the astrophysical wormhole, it is assumed that time is not affected by the curved

surface.

In this work, we study the physical properties of a charged fermion confined

on the surface of (1+2)-dimensional wormhole in the presence of the external mag-

netic field along the axis direction of the wormhole. In chapter II, basic geometric

and gauge setup are established. In chapter III, we try to make sense of the Dirac

fermion where the Gaussian curvature is zero and positive constant. To solve for

the energy and wave function, in constant magnetic flux scenario is considered.

Analysis in special a cylinder is one of the most basic curved geometric shapes

to identify the crucial role of surface curvature. A simple study of the results

is given in terms of the angle between the spin and orbital angular momentum

of the surface-confined fermion. The special cases of hyperbolic, Beltrami, and

elliptic pseudo-sphere, to solve for the energy and wave function, two scenarios of

constant flux and constant field are considered. In chapter IV. Implications of the

graphene wormhole system are discussed in chapter V. We summarize and discuss

our results in chapter VI.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

THEORETICAL

BACKGROUNDS

2.1 Geometrical condition of curved space, and

the metric tensor, and the dreibein field

Line element in the curved spacetime is

ds2 = gµνdx
µdxν . (2.1)

For orthogonality axial symmetric coordinates the metric is given by

gµν =


−1 0 0

0 1 0

0 0 R(u)

 , (2.2)

where R(u) is a radius function of the polar coordinate system. The xµ = {ct, u, θ}

are (2 + 1)-dimensional coordinates on the spacetime, than is dual of the tangent

vector in the curved surface. In this work, we consider static and axial spacetime.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Embedding (2 + 1)-dimensional curved spacetime into the (3 + 1)-dimensional

Minkowski spacetime coordinates xµ′
= {ct, x, y, z}. The transformation matrix

between the two coordinates is then

∂xµ′

∂xν
=


1 0 0 0

0 R′(u) cos θ R′(u) sin θ
√
1− (R′(u))2

0 −R(u) sin θ R(u) cos θ 0

 . (2.3)

The Christoffel symbols Γβµν are defined as

Γβµν =
1

2
(∂µgβν + ∂νgβµ − ∂βgµν) . (2.4)

Therefore, we have

−Γuθθ = Γθuθ = Γθθu = R′(u)R(u), (2.5)

and zero otherwise.

The dreibein eaµ is then defined as

eaµ =


1 0 0

0 1 0

0 0 R(u)

 , (2.6)

where gµν ≡ eaµe
b
νηab, and ηab = diag(−1, 1, 1) in flat (1+2)-dimensions and a, b ∈

{0, 1, 2}.

The tangent vector in the meridian direction on the curved surface is

û =
∂ur⃗
∥∂ur⃗∥ = R′(u) cos θ x̂+R′(u) sin θ ŷ +

√
1− (R′(u))2 ẑ, (2.7)

and the tangent vector in the circumference direction is

θ̂ =
∂θr⃗

∥∂θr⃗∥
= − sin θ x̂+ cos θ ŷ. (2.8)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

The normal vector for the curved surface which is defined by

θ̂ × û =

√
1− (R′(u))2 cos θ x̂+

√
1− (R′(u))2 sin θ ŷ −R′(u) ẑ, (2.9)

where û and θ̂ are the tangent vectors to the curved surface. The constraint on

z follows from the relation d|⃗r|2 = dx2 + dy2 + dz2 = du2 + R2dθ2. It gives the

Hilbert horizons at R′(uH) = ±1.

2.2 Dirac equation in curved space with gauge

field

The Dirac equation for a charged fermion in curved space with an electromagnetic

field can be written as

[
γaeµa

(
−ℏ∇µ + i

e

c
Aµ

)
−Mc

]
Ψ = 0. (2.10)

Ψ = Ψ(t, u, θ) represents the Dirac spinor field, M represents the rest mass of

the particle, and Aµ is the electromagnetic four-potential. The γa are the Dirac

matrices given by

γ0 =

 i 0

0 −i

 , γk =

 0 iσk

−iσk 0

 . (2.11)

They obey the anti-commutation relations between the Clifford algebra operators

{
γa, γb

}
≡ γaγb + γbγa = 2ηab14×4. (2.12)
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The covariant derivative of the spinor interaction with gauge field in the curved

space is defined as follows

∇µ ≡ ∂µ − Γµ, (2.13)

where the spin connection Γµ [?] is

Γµ = −1

4
γaγbeνa

(
∂µ(gνβe

β
b )− eβbΓβµν

)
. (2.14)

From the Christoffel symbols equation (??), it is then easy to show

Γt = −1

4
γaγbeνa

(
∂t(gνβe

β
b )− eβbΓβνt

)
= 0,

Γu = −1

4
γaγbeνa

(
∂u(gνβe

β
b )− eβbΓβνu

)
= −1

4
γ2γ2eθ2∂u

(
gθθe

θ
2

)
+

1

4
γ2γ2eθ2e

θ
2Γθθu

= −1

4

(
1

R

)
∂u

(
R2 1

R

)
+

1

4

(
1

R2

)
(R′R)

= 0,

Γθ = −1

4
γaγbeνa

(
∂v(gνβe

β
b )− eβbΓβνθ

)
=

1

4
γ1γ2eu1e

θ
2Γθuθ +

1

4
γ2γ1eθ2e

u
1Γuθθ

=
1

4

(
γ1γ2 − γ2γ1

)( 1

R

)
(R′R)

=
1

2
γ1γ2R′.

(2.15)

In this work, we will apply an external magnetic field such that the z-

component Bz = B(z) is uniform with respect to the plane (x, y) in two different

ways: a.) the magnetic flux through the circular area enclosed by the wormhole

at a fixed z is constant, namely Bz ∼ 1/R2 and b.) the magnetic field is uniform

and constant. Due to the axial symmetry, the electromagnetic four-potential can
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be expressed in the axial gauge as

Aµ′ (t, x, y, z) =
(
0,−y

2
B,

x

2
B, 0

)
. (2.16)

Under coordinate transformations

Au =
∂x

∂u
Ax +

∂y

∂u
Ay +

∂z

∂u
Az

Au = (R′ cos θ)
(
−B

2
R sin θ

)
+ (R′ sin θ)

(
B

2
R cos θ

)
= 0,

Aθ =
∂x

∂θ
Ax +

∂y

∂θ
Ay +

∂z

∂θ
Az

Aθ = (−R sin θ)

(
−B

2
R sin θ

)
+ (R cos θ)

(
B

2
R cos θ

)
=

1

2
BR2,

the electromagnetic four-potential in the conformally flat (2 + 1)-dimensional

spacetimes as

Aµ(t, u, θ) =
∂xν′

∂xµ
Aν′(t, x, y, z) =

(
0, 0,

1

2
BR2

)
. (2.17)

The magnetic field takes the form

B⃗ = ∇⃗ × A⃗ =
(
−x

2
∂zB,−y

2
∂zB,B

)
. (2.18)

Now, the magnetic field having all x, y, z components for the constant magnetic

flux case. And x, y component are vanishing for the constant magnetic field case.

From the Dirac equation (??), we will expand[
γ0et0∂ct + γ1eu1∂u + γ2eθ2

(
∂θ − Γθ − i

e

ℏc
Aθ

)
+

Mc

ℏ

]
Ψ = 0,[

γ0∂ct + γ1∂u + γ2 1

R

(
∂θ −

1

2
γ1γ2R′ − i

eB

2ℏc
R2

)
+

Mc

ℏ

]
Ψ = 0,

we have used the anti-commutation relations (??), so that[
γ0∂ct + γ1

(
∂u +

R′

2R

)
+ γ2 1

R

(
∂θ − i

eB

2ℏc
R2

)
+

Mc

ℏ

]
Ψ = 0. (2.19)
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The Dirac equation (??) can be written in the form Mc
ℏ + i∂ct iD

−iD Mc
ℏ − i∂ct

Ψ = 0, (2.20)

the differential operator D is then defined as

D ≡ σ1

(
∂u +

R′

2R

)
+

σ2

R

(
∂θ − i

Φ

Φ0

)
, (2.21)

where Φ =
∫
B⃗ · da⃗ = πR2B and the magnetic flux quantum is defined as Φ0 ≡

hc/e.

The first term is equivalent to the Dirac equation with the pseudo gauge

potential Aũ(u) ≡ iℏcR′/2eR in the u-direction. It is generated by the curvature

along the θ-direction, Γθ. In this sense, the intrinsic gravity connection can be

interpreted as the effective (imaginary) gauge connection (in the locally perpen-

dicular direction) that leads to the complexity of the energy and the emergence of

the QNMs and unstable modes on a surface with the negative Gaussian curvature.

The second term is similar to a spin-orbit-curvature coupling potential [?].

In the presence of external magnetic field B⃗ = ∇⃗ × A⃗ along the z-direction,

the charged fermion moving in θ-direction is expected to form a stationary state

with quantized angular momentum and energy, i.e. the Landau levels in the curved

space with hole.

The Dirac spinor Ψ(t, u, θ) should be stationary state

Ψ(t, u, θ) = e−
i
ℏEteimθ

 χ(u)

φ(u)

 , (2.22)
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where χ(u), φ(u) are two-component spinors, for stationary states, the wave func-

tion needs to be single-valued at every point in spacetime, Ψ(t, u, θ) must be a

periodic function in θ ∈ [0, 2π], the orbital angular momentum quantum number

m = 0,±1,±2, ... . Now, the equation takes the following form

(
E +Mc2

)
χ(u) + iℏcDφ(u) = 0, (2.23)

(
E −Mc2

)
φ(u) + iℏcDχ(u) = 0. (2.24)

Using equation (??) in (??), leads to

0 =D2φ(u) +
(E −Mc2)

ℏc
(E +Mc2)

ℏc
φ(u),

0 =D2φ(u) +
E2 −M2c2

ℏ2c2
φ(u),

then

D2φ(u) =

[
σ1

(
∂u +

R′

2R

)
σ1

(
∂u +

R′

2R

)
+

iσ2

R

(
m− Φ

Φ0

)
iσ2

R

(
m− Φ

Φ0

)
+σ1

(
∂u +

R′

2R

)
iσ2

R

(
m− Φ

Φ0

)
+

iσ2

R

(
m− Φ

Φ0

)
σ1

(
∂u +

R′

2R

)]
φ(u)

=

[
∂2
u +

R′

R
∂u +

(
R′

2R

)2

+
R′′

2R
− 1

2

(
R′

R

)2

− 1

R2

(
m− Φ

Φ0

)2

−iσ1σ2 R
′

R2

(
m− Φ

Φ0

)
− iσ1σ2

R

Φ′

Φ0

]
φ(u).

The Pauli matrices satisfy a useful identity σiσj = δij + iϵijkσk, we have Klein-

Gordon-like equation

0 = φ′′(u)+
R′

R
φ′(u)+

[
R′′

2R
+

ḿσ3R′ − ḿ2 − (R′/2)2

R2
+

σ3

R

Φ′

Φ0

+ k2

]
φ(u), (2.25)

where the new orbital angular momentum in the presence of magnetic flux ḿ =

m− Φ
Φ0

[?]. We have used the momentum parameter k2 ≡ (E2 −M2c4)/ℏ2c2 and

σ3 is a spin-state index corresponding to spin up or down of the fermion.
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In this work, we consider the wave function to be regular in the constant

Gaussian curved space and will not specify the boundary condition at the Hilbert

horizons. The Gaussian curvature is given by the simple expression

K ≡ −R′′(u)

R(u)


> 0 (closed space),

= 0 (flat space),

< 0 (open space).

(2.26)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

FERMION FIELD IN POSITIVE

GAUSSIAN CURVATURE

3.1 Flat Space

First of all, we will start to consider the Dirac fermion in a flat place when

R(u) = u. It’s easy to show the Gaussian curvature (??) becomes zero, the effects

of “gravity” is vanish. In this section, we investigate the Landau quantization for

the constant magnetic field B⃗ = B0ẑ, uniform magnetic field is perpendicular to

the place. Klein-Gordon-like equation (??) takes the following form

0 =φ′′(u) +
1

u
φ′(u) +

k2 −

(
ḿ− σ3

2

)2

u2

φ(u),

0 =φ′′(u) +
1

u
φ′(u) +

k2 −

(
m− Φ

Φ0

− σ3

2

)2

u2

φ(u).

(3.1)
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The solution of fermion in the flat place of Eq.(??) are a Bessel function of haft-

integer order (Hankel functions), It’s defined by

φκ(u) = AκJj (ku) + BκYj (ku) , (3.2)

where j = (m− Φ/Φ0 − κ/2) is the total angular momentum quantum number,

and κ is a spin-state index corresponding to spin up (κ = +1) or down (κ = −1) of

the fermion for each eigenvalue of σ3. Energies of the fermion in this case depend

on choices boundary condition.

Example, if the wave solution is vanish at u = u0 and φκ(0) are finite → Bκ = 0.

We assume that the condition Jj(αn0m) ≡ 0 then requires that ku0 is equal to one

of the zeros of the Bessel function, we have ku0 = αn0m where n0 is the radial

quantum numbers

En0mκ = ±

√
M2c4 +

ℏ2c2
u2
0

α2
n0m

3.2 Cylindrical Geometry

To understand essential physics of the magnetized charged fermion in the curved

spaces, consider a simple case when R(u) is constant, i.e. a cylindrical tube. In this

case, the intrinsic (Gaussian) curvature is zero, so we can identify which effects are

induced by the “gravity”. Both cases of the magnetic field and flux become same

constant value for B⃗. Klein-Gordon-like equation (??) its obtained by R′(u) → 0,
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and the axial direction z = u. We then have

0 =φ′′(z) +

[
k2 −

(
ḿ

R

)2
]
φ(z)

0 =φ′′(z) +

[
k2 −

(
m− Φ/Φ0

R

)2
]
φ(z)

0 =φ′′(z) +

[
k2 −

(m
R

)2
+

eB0

ℏc
m−

(
eB0

2ℏc

)2

R2

]
φ(z).

(3.3)

Assuming the solution in the form φ(u) ∼ exp [ikzz] to obtain the energy eigen-

value,

k2 =
E2 −M2c4

ℏ2c2
= k2

z +

(
m− Φ/Φ0

R

)2

,

then

E (kz,m) = ±

√
M2c4 + ℏ2c2k2

z +

(
ℏc
R

)2(
m− Φ

Φ0

)2

. (3.4)

3.3 Spherical Geometry

In this section, we focus on a surface of positive constant Gaussian curvature

when R(u) = d cos(ϕ) where the zenith angle is defined by ϕ ≡ u/r. With this

choice of R(u), we perform the following

X(u) ≡ r

d
R′(u) = − sinϕ,

dX

du
= −R(u)

rd
,

d2X

du2
= −R′(u)

rd
= −X

r2
. (3.5)

From the Pythagorean theorem, we get

r2
(
dX

du

)2

= 1−X2. (3.6)
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Eq.(??) becomes

0 =

(
dX

du

)2

φ′′(X) +
d2X

du2
φ′(X) +

R′

R

dX

du
φ′(X) +

(
k2 +

R′′

2R

)
φ(X)

+

[
ḿσ3R′ − ḿ2 − (R′/2)2

R2
+

σ3

R

Φ′(u)

Φ0

]
φ(X),

0 =

(
1−X2

r2

)
φ′′(X) +

(
−X

r2
+

d
r
X

−rddX
du

dX

du

)
φ′(X) +

(
k2 +

d
r
dX
du

−2rddX
du

)
φ(X)

+

[
ḿσ3 d

r
X − ḿ2 −

(
d
2r
X
)2(

−rddX
du

)2 +
σ3

−rddX
du

Φ′(u)

Φ0

]
φ(X)

0 =
(
1−X2

)
φ′′(X)− 2Xφ′(X) +

(
k2r2 − 1

2

)
φ(X)

+

[
ḿσ3dX − ḿ2r2 −

(
d
2
X
)2

(1−X2) d2
− σ3r

d

Φ′(X)

Φ0

]
φ(X).

(3.7)

Consider the electron confined on the spherical surface with the constant magnetic

flux scenario; Φ′(u) = 0, Eq.(??) takes the form

0 =(1−X2)φ′′(X)− 2Xφ′(X) +

k2r2 − 1

4
+

ḿσ3X
r

d
−
(
ḿ
r

d

)2
− 1

4
1−X2

φ(X).

(3.8)

Now, we assume the solution φ(κ)(X) = (1−X)ά(1 +X)β́P (κ)(X) where P (κ)(X)

is a component corresponding to the state for spin up or down (κ = +1 or −1),

σ3φ(X) = (1−X)ά(1 +X)β́

 P (+)(X)

P (−)(X)

 . (3.9)
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We then see that

φ(κ)′(X)

(1−X)ά(1 +X)β́
=P (κ)′(X) +

β́ − ά−
(
β́ + ά

)
X

1−X2
P (κ)(X),

φ(κ)′′(X)

(1−X)ά(1 +X)β́
=P (κ)′′(X) + 2

β́ − ά−
(
β́ + ά

)
X

1−X2
P (κ)′(X)

+

(
β́ − ά

)2
− β́ − ά

(1−X2)2
P (κ)(X)

+ 2

(
ά− β́

)(
β́ + ά− 1

)
X

(1−X2)2
P (κ)(X)

+

(
β́ + ά

)(
β́ + ά− 1

)
X2

(1−X2)2
P (κ)(X),

(3.10)

then

−2Xφ(κ)′(X)

(1−X)ά(1 +X)β́
=− 2XP (κ)′(X) + 2

(
ά− β́

)
X +

(
ά + β́

)
X2

1−X2
P (κ)(X),

−2Xφ(κ)′(X)

(1−X)ά(1 +X)β́
=− 2XP (κ)′(X)− 2

(
ά + β́

)
P (κ)(X)

+ 2
ά + β́ +

(
ά− β́

)
X

1−X2
P (κ)(X),

(3.11)
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and

(1−X2)φ(κ)′′(X)

(1−X)ά(1 +X)β́
=
(
1−X2

)
P (κ)′′(X) + 2

[
β́ − ά−

(
ά + β́

)
X
]
P (κ)′(X)(

β́ − ά
)2

− β́ − ά +
(
β́ + ά

)(
β́ + ά− 1

)
X2

1−X2
P (κ)(X)

2

(
ά− β́

)(
β́ + ά− 1

)
X

1−X2
P (κ)(X),

(1−X2)φ(κ)′′(X)

(1−X)ά(1 +X)β́
=
(
1−X2

)
P (κ)′′(X) + 2

[
β́ − ά−

(
ά + β́

)
X
]
P (κ)′(X)

−
(
β́ + ά

)(
β́ + ά− 1

)
P (κ)(X)

+ 2
ά
(
ά− 1

)
+ β́

(
β́ − 1

)
1−X2

P (κ)(X)

+ 2

(
ά− β́

)(
β́ + ά− 1

)
X

1−X2
P (κ)(X).

(3.12)

The equation of motion (??) can be rewritten as

0 =
(
1−X2

)
P (κ)′′(X) + 2

[
β́ − ά−

(
β́ + ά + 1

)
X
]
P (κ)′(X)

+

[
k2r2 − 1

4
−
(
ά + β́

)(
ά + β́ + 1

)]
P (κ)(X)

+

ḿκ
r

d
X −

(
ḿ
r

d

)2
− 1

4
1−X2

+ 2
ά2 + β́2 +

(
ά2 − β́2

)
X

1−X2

P (κ)(X),

(3.13)

we obtain

0 =
(
1−X2

)
P (κ)′′(X) + 2

[
β́ − ά−

(
β́ + ά + 1

)
X
]
P (κ)′(X)

+

[
k2r2 −

(
β́ + ά +

1

2

)2
]
P (κ)(X),

(3.14)

where we assume(
ḿ
r

d

)2
+

1

4
= 2ά2 + 2β́2, ḿκ

r

d
= 2β́2 − 2ά2,

ά = Λά

(
1

4
− ḿ

κ

2

r

d

)
, β́ = Λβ́

(
1

4
+ ḿ

κ

2

r

d

)
,

(3.15)
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where Λά,Λβ́ = ±1. Eq.(??) is Jacobi Differential Equation, the energy levels

become

k2r2 −
(
β́ + ά+

1

2

)2

= n(n+ 2β́ + 2ά + 1)

k2r2 =
E2 −M2c4

ℏ2c2
r2 =

(
n+ β́ + ά +

1

2

)2

,

then

E2
m,n,κ = M2c4 + ℏ2c2k2

m,n,κ

= M2c4 +
ℏ2c2

r2

(
n+

1

2
+ β́ + ά

)2

.

(3.16)

Depending on the sign choices of β́, ά, the resulting equation of motion and the

corresponding energy levels will be dependent or independent of the spin-orbit

coupling term ∼ κmr/d. The exact solution can be expressed as

Ψ(t, ϕ, θ) = e− i
ℏEm,n,κteimθ


−iℏcDφ(ϕ)

Em,n,κ +Mc2

φ(ϕ)

 , (3.17)

where φ(κ)(ϕ) = φm,n,κ(1 + sinϕ)α(1− sinϕ)βP (κ)(− sinϕ). The function P (κ)(Y )

is the Jacobi polynomials

P (κ)(Y ) = P (2ά,2β́)
n (Y )

=
(−1)n

2nn!
(1− Y )−2ά(1 + Y )−2β́ dn

dY n

[
(1− Y )2ά(1 + Y )2β́(1− Y 2)n

]

=
n∑

j=0

 n+ 2ά

n− j


 n+ 2β́

j

(Y − 1

2

)j(Y + 1

2

)n−j

,

(3.18)

for integer n and z

n

 =


Γ(z + 1)

Γ(n+ 1)Γ(z − n+ 1)
for n > 0,

0 for n < 0.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

FERMION FIELD IN

NEGATIVE GAUSSIAN

CURVATURE

In this chapter, we focus on a surface of negative constant Gaussian curvature

when R(u) = d coshq(u/r). And R(u) is based on a q-deformation of the usual

hyperbolic functions [?, ?] which are defined by

coshq(x) ≡
ex + qe−x

2
, sinhq(x) ≡

ex − qe−x

2
, tanhq(x) =

sinhq(x)

coshq(x)
. (4.1)

Hence the deformed hyperbolic functions satisfy trigonometric identity :

cosh2
q(x)− sinh2

q(x) = q,

d

dx
sinhq(x) = coshq(x),

d

dx
tanhq(x) =

q

cosh2
q(x)

.

(4.2)

They reduce to hyperbolic functions when q equal 1. There are special cases, i.e.

Wormhole, Beltrami wormhole, and Elliptic pseudosphere when the deformation

parameter q = 1, 0,−1 respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

(a) (b)

(c)

Figure 4.1: Geometric structure of the curved surface where d is a radius at

minimum radius function R(u = 0). And r is the scale parameter of the

curved surfaces along u direction. (a) Hyperbolic pseudosphere(wormhole) sur-

face where R(u) = d coshq(u/r). The Hilbert horizons of the wormhole are at

uH = r ln
(
r/d±

√
r2/d2 + 1

)
where q = 1. (b) Beltrami pseudosphere(Beltrami

wormhole) surface. The Hilbert horizon of Beltrami surface is at uH = r ln (2r/d)

where q = 0. (c) elliptic pseudosphere surface, gives the Hilbert horizons at

uH = r ln
(
r/d±

√
r2/d2 − 1

)
where q = −1.

4.1 Wormhole Geometry

Now performing the similar transformations using

X(u) = rR′(u)/d = sinhq(u/r). (4.3)
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4.1.1 The constant magnetic flux scenario

The equation of motion (??) then takes the form

0 =(q +X2)φ′′
(q)(X) + 2Xφ′

(q)(X) +

k2r2 +
1

4
+

ḿσ3X
r

d
−
(
ḿ
r

d

)2
+

q

4
q +X2

φ(q)(X),

(4.4)

and we now appeal to the solution from Section ??, φ(q,κ)(X) = (
√
q+ iX)α(

√
q−

iX)βP(q,κ)(X), where a next step follows from Eq.(??)−(??), the equation of mo-

tion (??) can be rewritten as

0 =
(
q +X2

)
P′′
(q,κ)(X) + 2 [i (β − α)

√
q + (β + α+ 1)X]P′

(q,κ)(X)

+

[
k2r2 +

1

4
+ (α+ β) (α + β + 1)

]
P(q,κ)(X)

+

ḿκ
r

d
X −

(
ḿ
r

d

)2
+

q

4
q +X2

+ 2
i (α2 − β2)

√
qX − α2 − β2

q +X2

P(q,κ)(X),

(4.5)

we obtain

0 = (1− Y 2)P′′
(q,κ)(Y ) + 2 [(α− β)− (β + α + 1)Y ]P′

(q,κ)(Y )

−

[
k2r2 +

(
β + α +

1

2

)2
]
P(q,κ)(Y ),

(4.6)

where X ≡ −i
√
qY , and this is fulfilled if

α = Λα

(
1

4
+

iκ
√
q

ḿr

2d

)
, β = Λβ

(
1

4
− iκ

√
q

ḿr

2d

)
, (4.7)

where Λα,Λβ = ±1. We then have the energy levels

E2
m,n,κ = M2c4 + ℏ2c2k2

m,n,κ = M2c4 − ℏ2c2

r2

(
n+

1

2
+ α + β

)2

. (4.8)

Finally, the solutions of Eq.(??) is

φ(q,κ)(X) = φ0(
√
q + iX)α(

√
q − iX)βP (2α,2β)

n (iX/
√
q). (4.9)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

Note that the solutions have the following properties,

P (2α,2β)∗
n (Y ) = (−1)nP (±2α,±2β)

n (Y ), for α = ±β∗. (4.10)

For α = β∗, the Jacobi polynomial is real for even n, or imaginary for odd n.

Notably for this case, the spatial wave function φ(q,κ)(X) for even n is also real

and the energy Em,n,κ (Λα,Λβ) given by

Em,n,κ (+,+) = ±
√

M2c4 − ℏ2c2
r2

(n+ 1)2, (4.11)

and

Em,n,κ (−,−) = ±
√

M2c4 − ℏ2c2
r2

n2, (4.12)

these depend only on the quantum number n. This energy is independent of the

spin-orbit and magnetic field. In addition, They have negative momentum square

p2u along u-direction, that also have dependency on the coupling between orbital

angular momentum and the magnetic field. This leads to a new pu-diffusive modes

that depend on the spin of the fermion in the wormhole. The pu-diffusive modes

can have either real or imaginary energy depending on the quantum number n

and the magnetic field in comparison to the rest-mass energy.

On the other hand, for another sign choice α = −β∗

Em,n,κ (+,−) = ±

√
M2c4 − ℏ2c2

r2

(
n+

1

2
+

iκ
√
q

ḿr

d

)2

, (4.13)

and

Em,n,κ (−,+) = ±

√
M2c4 − ℏ2c2

r2

(
n+

1

2
− iκ

√
q

ḿr

d

)2

. (4.14)

The energy from Eqs.(??) and (??) contains the interaction between the spin-

orbit coupling ∼ κm (independent of the magnetic field), and the Landau coupling
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between the magnetic field and the spin (orbital) angular momentum ∼ κBmB.

Notably, it also contains the term proportional to the spin-orbit-flux interaction

∼ κmΦ, orbit-orbit couplings ∼ m2, and the flux-flux couplings ∼ Φ2. The spin-

orbit and orbit-orbit terms are purely gravitational and kinematical since they are

independent of the magnetic field. Regardless of the magnetic field, the imaginary

parts in the energy expression have the gravitational origin. They are originated

from the curvature of the wormhole and we will see in Sections ?? and ?? where

the curvature vanishes. A complex quantity which can be interpreted as the

quasinormal modes (QNMs). For the QNMs with negative imaginary parts, the

curvature effects leak the energy of the fermion away from the wormhole as long

as the angle δ = arccosR′ between the σ3-spin component and orbital angular

momentum is not π/2 ( where δ is the angle between the σ3-spin component and

the z-axis). For these states, the fermion will either slowly decay away or be

spun off the wormhole due to the curvature effect. A special case occurs when

m− Φ/Φ0 = 0 where the imaginary spin-orbit coupling term vanishes.

4.1.2 The constant magnetic field scenario

The equation of motion (??) then takes the form

0 = φ′′
(q)(u) +

R′

R
φ′
(q)(u) +

(
k2 +

eB

ℏc
m+

R′′

2R

)
φ(q)(u)

+

[
R′σ3m−m2 −

(
R′

2

)2
R2

−
(
eB

2ℏc

)2

R2 +
eB

2ℏc
σ3R′

]
φ(q)(u).

(4.15)
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By using relationships from Eq.(??)−(??), and we assume the solution φ(q,κ)(X) =

(
√
q + iX)α0(

√
q − iX)β0P0(q,κ)(X), Eq.(??) now becomes

0 = (q +X2)P′′
0(q,κ)(X) + [A+BX]P′

0(q,κ)(X) +
[
C+DX + EX2 + k2r2

]
P0(q,κ)(X).

(4.16)

The coefficient parameters are defined as the following

A = 2i(α0 − β0)
√
q, B = 2(α0 + β0 + 1),

C = (α0 + β0)(α0 + β0 + 1) +
1

4
+

eB

ℏc
mr2 −

(
rd

2

eB

ℏc

)2

q,

D =
rd

2

eB

ℏc
κ, E = −

(
rd

2

eB

ℏc

)2

,

(4.17)

where we again assume

α0 = Λα0

(
1

4
+

iκ
√
q

mr

2d

)
, β0 = Λβ0

(
1

4
− iκ

√
q

mr

2d

)
; Λα0 ,Λβ0 = ±1.

(4.18)

So as to find the solution to Eq.(??), we first obtain the asymptotic solution

for large X, having the solutions: PLarge(X) = exp[±
√
−EX] = exp[± rd

2
eB
ℏc X].

Rewriting the solution for all region as

P0(q,κ)(X) =⇒ PLarge(X)P0(q,κ)(X).

The equation of motion (??) then takes the form

0 = (q+X2)P′′
0(q,κ)(X)+

[
F + GX +HX2

]
P′
0(q,κ)(X)+

[
I+ k2r2 + JX

]
P0(q,κ)(X),

(4.19)
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where the parameters are defined as

F =A± 2q
√
−E = 2i(α0 − β0)

√
q ± qrd

eB

ℏc
,

G =B = 2(α0 + β0 + 1),

H =± 2
√
−E = ±rd

eB

ℏc
,

I =C− qE±
√
−EA =

(
α0 + β0 +

1

2

)2

+ rd
eB

ℏc

[
m
r

d
± i(α0 − β0)

√
q
]
,

J =D±B
√
−E = rd

eB

ℏc

[κ
2
± (α0 + β0 + 1)

]
.

(4.20)

Now to find the solution to Eq.(??). The wave function can be solved exactly for

small X = sinhq(u/r) < 1 implies that R′(uH) =
d
r

sinhq(uH/r) = 1 −→ r < d in

terms of the Jacobi polynomials as we will show in the following. For small X, so

we obtain

0 ≈ (1− Y 2)P′′
0(q,κ)(Y ) +

[
−i
√
q
F − GY

]
P′
0(q,κ)(Y )−

[
I+ k2r2

]
P0(q,κ)(Y ), (4.21)

where X ≡ −i
√
Y , this has solution in the form of the Jacobi polynomials

(P0(q,κ)(Y ) = P
(α1,β1)
n (Y )), given conditions

2α1 = G− 2 +
i
√
q
F =4β0 ±

√
qrd

eB

ℏc
,

2β1 = G− 2− i
√
q
F =4α0 ∓ i

√
qrd

eB

ℏc
,

n (n+ 1 + α1 + β1) =−
[
I+ k2r2

]
,

(4.22)

given the energy levels

E2
m,n,κ =M2c4 + ℏ2c2k2

m,n,κ

=M2c4 − ℏ2c2

r2

(
n+

1

2
+ α0 + β0

)2

− d

r
ℏceB

[
m
r

d
± i(α0 − β0)

√
q
]
.

(4.23)
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For the choice PLarge(X) = exp[− rd
2

eB
ℏc X]. On the one hand,

Em,n,κ(+,+) =±
√
M2c4 − ℏ2c2

r2
(n+ 1)2 − ℏcm(1 + κ)eB, (4.24)

and

Em,n,κ(−,−) =±
√
M2c4 − ℏ2c2

r2
n2 − ℏcm(1− κ)eB, (4.25)

the energy given by Eqs.(??),(??) have an energy splitting between the spin up

(κ = +1) and down (κ = −1) proportional to 2ℏcmeB. This is the spin-orbit-

magnetic coupling. Nevertheless, for enough large n,m,B, the energy becomes

purely imaginary since the negative interaction energy is larger than the rest-mass

energy. On the other hand, the energy given by Eqs.(??),(??) become complex

number with the imaginary part depending on both the spin-orbit and the external

magnetic field. The QNMs always exist for nonzero m and magnetic field in this

case.

Em,n,κ(+,−) =±

√
M2c4 − ℏ2c2

r2

(
n+

1

2
+ i

κmr

d
√
q

)2

− ℏc
(
m− i

rd

2

√
q

)
eB,

(4.26)

and

Em,n,κ(−,+) =±

√
M2c4 − ℏ2c2

r2

(
n+

1

2
− i

κmr

d
√
q

)2

− ℏc
(
m+ i

rd

2

√
q

)
eB.

(4.27)

Consequently, The solutions of Eq.(??) is

φ(q,κ)(X) = φ0(
√
q + iX)α0(

√
q − iX)β0 exp

[
−rd

2

eB

ℏc
X

]
P (α1,β1)
n (Y ), (4.28)

where X = −i
√
qY = sinhq(u/r).
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4.2 Beltrami Geometry

For q = 0 and R(u) = d
2
eu/r, the Beltrami actually ends at the Hilbert horizon

uH = r ln(2r/d), R(uH) = r (where R′(uH = 1)).

4.2.1 The constant magnetic flux scenario

The equation of motion (??) becomes

0 = φ′′(u) +
1

r
φ′(u) +

[
k2 +

1

4r2
+ 2

ḿσ3

dr
e−u/r −

(
2
ḿ

d

)2

e−2u/r

]
φ(u). (4.29)

The general solution can be expressed in the form

φ(q=0,m,κ)(u) = Z
ρ
2 e−Z/2

[
C1 1F1

(
ρ− κ

2
, ρ, Z

)
+ C2 U

(
ρ− κ

2
, ρ, Z

)]
, (4.30)

where we define ρ ≡ (1 − 2ikr)/2 and Z(u) = 4ḿr
d

e−u/r that takes the value Z ∈

[4ḿr/d, 0] for u ∈ [0,∞) respectively. 1F1 and U is the confluent hypergeometric

function of the First kind and second kind.

Regularity at Z = 4ḿr/d > 1 demands that the series of the hypergeometric

function truncates at finite power of Z giving the energy quantization

E2
n = M2c4 + ℏ2c2k2

n = M2c4 − ℏ2c2

r2

(
n+

1− κ

2

)2

. (4.31)

Significantly, the energies do not depend on the magnetic field and the orbital

angular momentum at all, only the wave functions have ḿ dependence. All ḿ

states degenerate in each energy level En. They have still the negative momentum

square along u direction.
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A special solution for m = Φ/Φ0 where the magnetic flux is quantized to

integer values, this gives the solutions are decaying plane wave travelling along

the u direction, in and out of the surface. The wave has zero effective angular

momentum.

φ(q=0,m=Φ/Φ0,κ)(u) = C1 e−u/2re−iku + C2 e−u/2reiku. (4.32)

4.2.2 The constant magnetic field scenario

Which in the constant magnetic field scenario the equation of motion (??) takes

the form

0 = φ′′(u) +
1

r
φ′(u) +

[
k2 +

1

4r2
+ 2

mσ3

rd
e−u/r −

(
2
m

d

)2
e−2u/r

]
φ(u)

+

[
dσ3

4rL2
eu/r − d2

16L4
e2u/r + m

L2

]
φ(u),

(4.33)

where L ≡
√

ℏc/eB is the magnetic length. In order to find the solution to

Eq.(??), we approximate by considering the situation when the magnetic length

is larger than d, the terms containing d/L2 is insignificant. For representative

B = 10 T → L = 8.1 nm, the radius parameter d a needs to be smaller for the

approximation to be valid. The resulting equation of motion (??) takes the form

0 ≈ φ′′(u) +
1

r
φ′(u) +

[
k2 +

1

4r2
+

m

L2
+ 2

mσ3

rd
e−u/r −

(
2
ḿ

d

)2

e−2u/r

]
φ(u),

(4.34)

which is exactly the same as Eq.(??) with substitution ḿ → m and k2 → k2 +

m/L2. The solutions are thus the same with the replacement above. That leads

to the energy quantization

E2
n = M2c4 − ℏ2c2

r2

[(
n+

1− κ

2

)2

+m
r2

L2

]
. (4.35)
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4.3 Elliptic Geometry

For elliptic pseudosphere all formulae of the wormhole cases can be used. No-

tably since q = −1, the parameters α, β and α0, β0 become purely real and we can

simply make replacement √
q → i in all the results of the wormhole cases. The

spin-orbit and all magnetic induced coupling terms in equations (??),(??),(??),

(??) become real. For choice the sign of parameters (Λα,Λβ) and (Λα0 ,Λβ0) as

(+,−) and (−,+), the QNMs only occur for highly excited states which require

the coupling terms ∼ n and/or ḿ are larger than the rest-mass energy ∼ Mc2. In

this case, the energies are purely imaginary when QNMs appear. Highly excited

states with large n could become normal modes if the coupling terms ∼ κ,m,B

has opposite sign and cancel with the n-term somehow under the square root.

This depends on the relative sign between the interaction energy. Interestingly

for fixed n, larger the interaction energy results in QNMs with shorter lifetime,

i.e., larger Im E. For (+,+) and (−,−) modes are not affected by the worm-

hole geometry, they are diffusive modes for highly excited states. Topologically,

the elliptic surface is distinctively different from the hyperbolic(wormhole) and

Beltrami ones. They QNMs for low n states in contrast to the hyperbolic and

Beltrami cases because the space starts at R(u = 0) = 0, so the modes cannot

leak out through the hole, resulting in the absence of QNMs for low n states in

contrast to the wormhole and Beltrami cases.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

IMPLICATION FOR

GRAPHENE SYSTEM

Graphene’s hexagonal lattice, stability is due to its tightly packed carbon atoms.

A carbon atom in graphene has one σ−bond with each of its three neighbors and

one π−bond that is oriented out of plane. The analyses and main results of our

work are generic for any charged fermion spatially confined to a two-dimensional

surface in the presence of the axial magnetic field. The curved surface can be made

from any kind of conductor, semimetal or semiconductor as long as the excited

quasiparticles can move freely along the curved surface. A special case worthwhile

mentioning is the zero-band gap semiconductor graphene where the electrons in

the conducting band from the 2pz orbitals behave like a massless fermion above

the Fermi energy around the Dirac points in the momentum space. Because of

this, electrons in graphene can thus be described by a relativistc Dirac equation

with replacement c → vF = 1× 106 m/s (see e.g. Ref.[?] for an excellent review).

In the continuum limit where the radius of the wormhole a is much larger than
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the lattice size [?], we can make the following identification in the above analyses

χκ=+,− =⇒ φA,B
K

φκ=+,− =⇒ φA,B
K′

(5.1)

where K(K ′) is one of the Dirac point K(K ′) and A, B are the two inequivalent

atomic sites in the unit cell of the graphene lattice. φA,B
K(K′) are the corresponding

wave functions of the fermion at each site. The energy of quasiparticles around the

Dirac point K(K ′) in the graphene wormhole can be calculated with replacement

M → 0, c → vF (without changing the definition of the magnetic flux quantum

Φ0 = hc/e and the magnetic length L =
√
ℏc/eB. In SI unit where the electric

charge e is measured in Coulombs, Φ0 and L do not originally contain c). Now

the energies from (??),(??),(??),(??) are purely imaginary implying that they

are purely unstable (exponentially growing) or decaying modes analogous to over

damped modes of oscillator. The other modes have both real and imaginary parts

of the energy and thus are QNMs. The QNM in graphene wormhole can be

interpreted about the quasiparticles with a quantum state has a finite lifetime τ .

The energy scale of the fermion in the graphene wormhole is of the order of

E ∼ ℏvF/r = 0.658 eV nm/r. Naturally this is the same order as the electronic

energy in the carbon nanotube with the similar radius and length. Curvature

effects, however, play a crucial role in the wormhole case where the imaginary

energy is induced via the spin-orbit coupling and interaction between angular

momentum and the external magnetic field. Remarkably in the constant flux

scenario at mass less, the spin-orbit and spin-magnetic interaction energy become

real as shown in Eqs. (??) and (??). In this case, the diffusive part of energy
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characterized by the quantum number n.

The lifetime of the fermionic states of the graphene wormhole is characterized

by τ = 1/ImE which is also of the order of the inverse of ℏvF/r = 0.658 eV nm/r.

For r = 1− 1000 nm −→ τ = 10−6− 10−3 ns, a considerably short period of time.

Interestingly for a macroscopic graphene wormhole of radius 100 µm, the lifetime

could be as long as 0.1 ns. For the constant flux scenario, the lifetime is purely

determined by the quantity ℏvF/r and independent of the angular momentum and

the flux. For Eqs. (??) and (??) of the constant field scenario, m < 0 states in

the presence of magnetic field can become stable with infinite lifetime when the

quantity under the square root becomes negative and the energy takes the real

values. These are the Landau states. Such long-lived states require sufficiently

high magnetic field B and low n so that the Landau interaction is dominant. For

e.g. n = 0 −→ r = 10 nm, the magnetic field B has to be larger than 6.58 T so

that L > r for the dominant Landau interaction in Eq.(??).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

Summary

We consider charged fermion in a two-dimensional wormhole in the presence

of the external magnetic field with axial symmetry. Assuming uniform field in

the plane perpendicular to the direction of the field, we consider energy levels of

fermion in two scenarios, constant flux through the wormhole throat and constant

field. The curvature connection of wormhole generates effective gauge connection

resulting in the induced spin-orbit coupling of the fermion on the wormhole. The

coupling is genuinely “gravitational” since it exists even in the absence of the

magnetic field and it is vanishing when the wormhole is flat, e.g. cylindrical

wormhole. When the magnetic field is turned on along the wormhole axis, the spin-

orbit-magnetic coupling is also generated in addition to the conventional Landau

coupling between the angular momentum of the fermion and the magnetic field.

This new interaction is the combined effect of gravity and gauge field on the

charged fermion.

When a fermion is confined to the 2-dimensional curved space its σ3-spin

component is perpendicular to the surface (since the dreibein is locally defined in

the tangent space of the surface) while the orbital angular momentum is pointing
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along the z-direction. The spin-orbit coupling ∼ σ⃗3 · mẑ is thus generated for

generic curved spaces with curvature. For cylindrical tube, the spin-orbit coupling

disappears together with the Landau coupling between spin and the magnetic field.

The only remaining interaction is the orbital-magnetic Landau coupling. Note

that the σ3-spin component is pointing along the direction of the normal vector

of the curvature of surface since the dreibein eaµ is defined on the tangent space

of the curved surface. Also, because R′(u) = cos δ where δ is the angle between

the σ3-spin component and the z axis, the spin-orbit coupling term can thus be

rewritten as ∼ σ⃗3 · mẑ = σm cos δ = σmR′. The spin-orbit coupling vanishes

when R′ = cos δ = 0 or δ = π/2, i.e. when the normal vector of the surface is

perpendicular to ẑ (see Figure ??).

For both constant flux and constant field scenarios in every choice of solution

parameters, sufficiently highly excited states with large n will always give QNMs.

The energy naturally leaks out of the wormhole when the fermion is sufficiently

excited. This is consistent with the existence of Hilbert horizons [?] at finite

uH = r ln
(
r

d
±
√

r2

d2
+ q

)
,

where the wormhole geometry ends. Highly excited fermion lives at larger u and

it will leak out of the wormhole through the Hilbert horizons.

On the other hand, the spin-orbit coupling always generate QNMs since the

coupling (on the wormhole) itself is imaginary ∼ iκm. The origin of this term

can be traced back to the pseudo gauge connection Aú which is purely imaginary.

Remarkably, the curvature connection Γθ (i.e. “gravity”) generates an effective
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(pseudo) gauge connection that is purely imaginary resulting in the complexity of

the energy and the existence of the QNMs. Physically, imaginary energy should

be interpreted as the energy dissipation and instability. Energy dissipation cor-

responds to the case with ImE < 0. Instability stems from the enhancement in

time of the wave function when ImE > 0. A state with high orbital angular mo-

mentum m tends to leak energy faster due to larger imaginary part of the QNMs.

Note that the spin-orbit coupling term in the equation of motion is zero when

R′ = cos δ = 0 (at midpoint of the throat or in the case of cylindrical tube) and

maximum when R′ = cos δ = 1 at the Hilbert horizon. At Hilbert horizon, the

surface is merging to the plane and perpendicular to ẑ.

Emergence of QNMs in this (2 + 1)−dimensional wormhole should be com-

pared with the situation in astrophysical or gravitational traversable wormhole in

(3 + 1)−dimensions. In Refs.[?, ?, ?], ringing of astrophysical wormhole results

in the QNMs due to the leaking-out waves into the asymptotically flat infinity

and the throat (and subsequently to the other asymptotically flat region). The

traversable (3+ 1)−dimensional wormhole has no event horizon and is the analog

of our (2 + 1)−dimensional “wormhole” (minus the time dilatation in the latter).

Choosing only the leaking-out bound ry condition leads to singling out only the

decaying QNMs. In our case, we keep all possible boundary conditions in this

work since they are useful in the generic scattering processes.

The curvature connection of curved spaces generates effective gauge connec-

tion resulting in the induced spin-orbit coupling of the fermion on the surface.

The coupling is genuinely gravitational since it exists even in the absence of the
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magnetic field. Adding external magnetic fields in the tangent direction to the

surface, the new interaction is the combined effect of gravity and gauge field on

the charged fermions, appearing in the terms of the angular momentum of the

fermion and the magnetic field. The interplay between the curvature connec-

tion of the wormhole and the induced (pseudo) gauge connection demonstrates

an interesting kind of gauge-gravity duality. The real gravity connection can be

interpreted as the imaginary (effective) gauge connection (in the locally perpen-

dicular direction on the surface) that leads to the complexity of the energy and

the emergence of the QNMs and unstable modes. Adding external magnetic field

induces a new imaginary coupling term proportional to the field that only exists

when there is curvature and they will vanish when the curvature is zero as we can

see again in sections ?? and ??. The new curvature-spin-magnetic field coupling

similarly leads to the emergence of QNMs and unstable modes.

The gauge field in the wormhole can change the total angular momentum of

the charged fermions, altering their statistics accordingly (see Ref.[?] for discussion

in cylinder). The effective orbital quantum number is given by ḿ = m − Φ/Φ0.

Since the magnetic flux quantum is Φ0 = hc/e = 4.13567 × 10−15 Tm2; for B =

10 T and d =
√

Φ0/2πB = 8.11 nm, we then have ḿ = m−1/2 and the total

angular momentum becomes integer. The fermion quasiparticle(e.g. electron or

hole) would behave like a boson with charge e, the electron charge. It should

be emphasized that these boson-like fermions are not pairs of fermions like the

Cooper pairs, their statistics are simply altered by global boundary condition in

the presence of the magnetic field. It is possible to store condensated boson-like
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(when the flux is half of odd-integer number of Φ0) fermions in the wormhole

connecting e.g. two graphene sheets and control their behaviour by changing

either the magnetic field or the shape of the wormhole. This could potentially

lead to a number of profound electronic properties and future applications.

Conversely, if the constant flux is trapped within a vortex for instance in the

type II superconductors, the quasiparticle in this case is the Cooper pairs with

charge 2e which is a boson satisfying the Klein-Gordon equation given also by

Eq.(??). The Cooper pairs on the vortex surface will remain boson for integer

values of Φ/Φ0. In the interior of the vortex where the flux is smaller, the statis-

tics become arbitrary (non-Bose-Einstein statistics) and the Cooper pairs cannot

condensate. In this way, we can conclude that there is a minimum magnetic flux

(above zero) when Φ/Φ0 = 1/2, i.e., below which the Bose-Einstein condensation

cannot occur and the region within this vortex is in the non-superconducting phase

(superconducting phase can occur for zero flux as long as the angular momentum

of the charged particles is also zero, i.e. no vortex). This is one way to argue the

existence of the magnetic flux quantum in type II superconductor. Generically, we

can calculate the radius a at which statistics of quasiparticles exchange between

fermion and boson to be

d = L
√
2n+ 1 ;n = 0, 1, 2, ... (6.1)

At these radii on the graphene wormholes, boson-like fermions should condensate

at the ground state within the hole at sufficiently low temperature T < ℏvF/kBd =

7639 Knm/d. To achieve condensation at room temperature T = 300 K, we need

d ≲ 25.5 nm implying also from Eq.(??) that 1 ≲ B for n = 0.
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