แบบจำลองการถดถอยในตัวอันดับหนึ่งที่มีค่าเป็นจำนวนเต็มด้วยการแจกแจงแบบนัย ทั่วไปของปัวซงลินด์เลย์สองพารามิเตอร์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ประยุกต์และวิทยาการคณนา ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2562
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Applied Mathematics and Computational Science

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019
Copyright of Chulalongkorn University
\(\left.\begin{array}{ll}Thesis Title \& FIRST ORDER INTEGER-VALUED AUTOREGRESSIVE \\

\& MODEL WITH A TWO-PARAMETER GENERALIZED\end{array}\right]\)| POISSON-LINDLEY DISTRIBUTION | |
| :--- | :--- |
| By | Miss Suchiraporn Bunyaris |
| Field of Study | Applied Mathematics and Computational Science |
| Thesis Advisor | Assistant Professor Jiraphan Suntornchost, Ph.D. |

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

(Assistant Professor Jiraphan Suntornchost, Ph.D.)

Examiner
(Associate Professor Nattakarn Chaidee, Ph.D.)

External Examiner
(Assistant Professor Angkana Boonyued, Ph.D.)

สุชิราภรณ์ บุนยะริส : แบบจำลองการถดถอยในตัวอันดับหนึ่งที่มีค่าเป็นจำนวนเต็ม ด้วยการแจกแจงแบบนัยทั่วไปของปัวซงสินด์เลย์สองพารามิเตอร์. (FIRST ORDER INTEGER-VALUED AUTOREGRESSIVE MODEL WITH A TWO-PARAMETER GENERALIZED POISSON-LINDLEY DISTRIBUTION) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.จิราพรรณ สุนทรโชติ, 85 หน้า.

ในการศึกษานี้ เราได้แนะนำแบบจำลองการถดถอยในตัวอันดับหนึ่งที่มีค่าเป็นจำนวน เต็มสำหรับข้อมูลการนับด้วยการแจกแจงแบบนัยทั่วไปของปัวซงลินด์เลย์สองพารามิเตอร์ ตัว ดำเนินการที่พิจารณาในการศึกษานี้คือ ตัวดำเนินการแบบทวินาม และแบบทวินามลบ สมบัติที่ สำคัญทางความน่าจะเป็นและสถิติ เช่น โมเมนต์ ความหยุดนิ่ง และฟังก์ชันสัมพันธ์อัตโนมัติ ถูก สร้างขึ้น นอกจากนี้ยังทำการประมาณค่าพารามิเตอร์ และการจำลองเชิงตัวเลขเพื่อตรวจสอบ แบบจำลองที่สร้างขึ้น สุดท้ายเราอภิปรายการประยุกต์ชช้ของแบบจำลองสำหรับชุดข้อมูลจริง

ภาควิชา	คณิตศาสตร์และ	ลายมือชื่อนิสิต
	วิทยาการคอมพิวเตอร์	ลายมือชื่อ อ.ที่ปรึกษาหลัก
สาขาวิชา	คณิตศาสตร์ปูระยุกต์.	
ปีการศึกษา	2562	

\#\# 6072005723 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE KEYWORDS : MIXED POISSON DISTRIBUTION/COUNT DATA/FIRST ORDER AUTOREGRESSIVE PROCESS/ TWO-PARAMETER/GENERALIZED POISSON-LINDLEY/ THINNING.

SUCHIRAPORN BUNYARIS : FIRST ORDER INTEGER-VALUED AUTOREGRESSIVE MODEL WITH A TWO-PARAMETER GENERALIZED POISSON-LINDLEY DISTRIBUTION. ADVISOR : ASST. PROF. JIRAPHAN SUNTORNCHOST, Ph.D., 85 pp.

In this study, we introduce the first order integer-valued autoregressive models for count data with the two-parameter generalized Poisson-Lindley distribution. The thinning operators considered in this study are the binomial and negative binomial thinning operators. Some important probabilistic and statistical properties such as moments, stationarity and autocorrelation functions are derived. Moreover, parameter estimations and numerical simulations to examine the constructed model are performed. Finally, applications of the models for real data sets are also discussed.

[^0]
ACKNOWLEDGEMENTS

First of all, I would like to thank you for my thesis advisor, Assistant Professor Dr. Jiraphan Suntornchost, for perceptive suggestions and kindness that always help me to get through all of the research problems. She inspirits and recommends me to succeed in the thesis process.

Moreover, I would like to thank and deep appreciation for my thesis committees, Assistant Professor Dr. Krung Sinapiromsaran, Associate Professor Dr. Nattakarn Chaidee and Assistant Professor Dr. Angkana Suntadkarn, for their comments and suggestions. In particular, I would like to thank all teachers who have educated and taught me important knowledge.

Finally, I would like to thank my friends for giving me many supports and experiences at Chulalongkorn University. I would like to express my gratitude to my family for their love and supports throughout my undergraduate and graduate studies.

จุพาลงกรณ์มหาวิทยาลัย
Chulalongkorn University

CONTENTS

Page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER

1 INTRODUCTION 1
2 BACKGROUND KNOWLEDGE 6
2.1 Distribution 6
2.2 Conditional distribution 10
2.3 Time series and stationary process 11
2.4 Integer-valued time series model 13
2.5 Parameter estimation 15
3 INAR(1) model with the two-parameter generalized Poisson-Lindley distribution 17
3.1 Construction of the first order integer-valued autoregressive models with the two-parameter generalized Poisson-Lindley distribution based on the binomial thinning operator ($\operatorname{BNLINAR}(1)$) 17
3.1.1 Probabilistic properties of the BNLINAR(1) model 26
3.1.2 Estimation and inference of the BNLINAR(1) model 33
3.1.2.1 Conditional least squares estimation 33
3.1.2.2 The Yule-Walker estimation 36
3.1.3 Simulation Results 36
3.1.4 Real data 37
3.1.4.1 The numbers of Skin-lesions 37
3.1.4.2 The numbers of Anorexias 39
3.2 Construction of the first order integer-valued autoregressive models with the two-parameter generalized Poisson-Lindley distribution based on the negative binomial thinning operator model (NNLINAR(1)) 40
CHAPTER Page
3.2.1 Probabilistic properties of the NNLINAR(1) model 42
3.2.2 Estimation and inference of the NNLINAR(1) model 47
3.2.2.1 Conditional least squares estimation 47
3.2.2.2 The Yule-Walker estimation 50
3.2.3 Real data 50
3.2.3.1 The numbers of Skin-lesions 51
3.2.3.2 The numbers of Anorexias 51
4 INAR(1) model with a two-parameter generalized Poisson-Lindley innovation 53
4.1 Construction of the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the binomial thinning operator (NLINARB(1)) 53
4.1.1 Probabilistic properties of the NLINARB(1) model 55
4.1.2 Estimation and inference of the NLINARB(1) model 60
4.1.2.1 Conditional least squares estimation 60
4.1.2.2 The Yule-Walker estimation 63
4.1.3 Simulation Results 63
4.1.4 Real data 65
4.1.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome (MCLS) 65
4.1.4.2 The number of earthquakes per year magnitude 7.0 or greater (1900-1998) 66
4.2 Construction of the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the negative binomial thinning operator (NLINARN(1)) 67
4.2.1 Probabilistic properties of the NLINARN(1) model 68
4.2.2 Estimation and inference of the NLINARN(1) model 73
4.2.2.1 Conditional least squares estimation 73
CHAPTER Page
4.2.2.2 The Yule-Walker estimation 76
4.2.3 Simulation Results 76
4.2.4 Real data 78
4.2.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome (MCLS) 78
4.2.4.2 The number of earthquakes per year magnitude 7.0 or greater (1900-1998). 79
5 CONCLUSIONS 80
REFERENCES 82
APPENDICES 84
VITA 85

LIST OF TABLES

Table

Page

3.1 Mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2} for the $B N L I N A R(1)$ model38
4.1 Mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2} for the $N L I N A R B(1)$ model 64
4.2 Mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2} for the $N L I N A R N(1)$ model 77

LIST OF FIGURES

Figure Page
1.1 Probability density curves of the two-parameter generalized Poisson-Lindley
distribution for different values of θ and β. 2
1.2 Development of the family of the Poisson-Lindley first order integer-valued
autoregressive models . 3
1.3 The first order integer-valued autoregressive models 4

CHAPTER I

INTRODUCTION

Recently, the stationary time series models with discrete marginal distributions attract attentions from researchers in many fields. These models are found to be superior for count data in many applications such as the number of road accidents [9], the number of insurance claim counts [16], the number of stock transactions [8] and the number of submissions to animal health laboratories [5]. The model was first introduced by McKenzie [10] as the first order non-negative integer-valued autoregressive model (INAR(1)) by applying the binomial thinning operator introduced in Steutel and van Harn [15]. In 1988, Alzaid and Al-Osh [3] constructed the integer-valued time series model with Poisson marginal. They applied the model to count data time series. However, the Poisson marginal has equidispersion. This restriction might not be suitable to non-equidispersed data [1]. Therefore, alternative distributions have been explored in literatures such as generalized Poisson, geometric and Poisson-Lindley distribution. The generalized Poisson model introduced by Alzaid and Al-Osh [4] as an extension of the Poisson distribution of accommodate non-equidispersed data by McKenzie and et al [13]. Recently, Poisson-Lindley first order integer-valued autoregressive model was introduced by Mohammadpour and Shirozhan [5]. The model has the PoissonLindley marginal distribution introduced in Sankaran [12]. This distribution belongs to a compound Poisson family which is obtained from Poisson distribution when its parameter follows a Lindley distribution. Later in 2018, Rostami and Roozegar [9] used the distribution to introduce the INAR(1) model with PoissonLindley innovations based on the binomial and the negative binomial thinning operators. Integer-valued autoregressive models has been applied in many applications with different discrete marginal distributions such as Poisson, geometric,
negative binomial and Poisson-Lindley distribution. In 2015, Bhati and Qadri [7] introduced a two-parameter generalized Poisson-Lindley distribution with parameter θ and β which are obtained from a mixed Poisson distribution when its mixing parameters follow a two-parameter Lindley distribution introduced in Shanker and Sharma [14]. This distribution is unimodal and over-dispersed. The distribution is more flexible than the Poisson-Lindley distribution. The two-parameter generalized Poisson-Lindley distribution is stated as follows. A random variable X is said to have a two-parameter generalized Poisson-Lindley distribution with parameter θ and β, denoted as $X \sim \operatorname{NGPL}(\theta, \beta)$, if

$$
P(X=x)=\frac{\theta^{2}}{(\theta+\beta)(1+\theta)^{x+1}}\left(1+\frac{\beta(x+1)}{1+\theta}\right) \quad x=0,1, \ldots \text { and } \theta, \beta \geq 0 .
$$

Figure 1.1: Probability density curves of the two-parameter generalized PoissonLindley distribution for different values of θ and β

For different values of two parameters, the probability function is evaluated and presented in Figure 1.1. From the figure, we can see that the distribution condenses and the right tail approaches to zero at a faster rate than the PoissonLindley distribution when θ increases for any fixed β. Therefore, the distribution is suitable for data having the right tail approaches to zero at a faster rate than the Poisson-Lindley distribution. Such data sets are commonly found in insurance business [7]. Therefore, the two-parameter generalized Poisson-Lindley distribution attracts attentions from many researchers. Development of the family of the Poisson-Lindley first order integer-valued autoregressive models are presented in Figure 1.2.

Figure 1.2: Development of the family of the Poisson-Lindley first order integer-valued autoregressive models

In this thesis, we apply the two-parameter generalized Poisson-Lindley to construct four new autoregressive models : (1) the first order integer-valued autoregressive models with a two-parameter generalized Poisson-Lindley distribution based on the binomial thinning operator, (2) the first order integer-valued au-
toregressive models with a two-parameter generalized Poisson-Lindley distribution based on the negative binomial thinning operator, (3) the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the binomial thinning operator and (4) the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the negative binomial thinning operator. The structure of these models are presented in Figure 1.3.

Figure 1.3: The first order integer-valued autoregressive models

In Chapter 3, we construct two first order integer-valued autoregressive models with a two-parameter generalized Poisson-Lindley distributions based on two thinning operators : (1) the binomial thinning operator, called the $\operatorname{BNLINAR}(1)$ model and (2) the negative binomial thinning operator, called the $\operatorname{NNLINAR(1)}$ model. The two models are discussed in Section 3.1 and Section 3.2, respectively. In this chapter, we derive some probabilistic properties of the constructed models such as moments and parameter estimations of the unknown parameters in the
model by using the conditional least square estimator (CLS) and the Yule-Walker estimator (YW). These estimators are compared via Monte Carlo simulations in terms of their means and variances. Moreover, we discuss some possible applications of the BNLINAR(1) model and the NNLINAR(1) model for two real count time series.

In Chapter 4, we construct two first order integer-valued autoregressive models with a two-parameter generalized Poisson-Lindley innovations based on two thinning operators : (1) the binomial thinning operator, called the NLINARB(1) model and (2) the negative binomial thinning operator, called the NLINARN(1) model. The two models are discussed in Section 4.1 and Section 4.2, respectively. In this chapter, we derive some probabilistic properties of the constructed models such as moments and parameter estimations of the unknown parameters in the model by using the conditional least square estimator and the Yule-Walker estimator. These estimators are compared via Monte Carlo simulations in terms of their means and variances. Moreover, we discuss some possible applications of the NLINARB(1) model and the NLINARN(1) model for two real count time series. Finally, we discuss some possible applications of the NLINARB(1) model and the NLINARN(1) model for two real count time series. Conclusions of our study are provided in Chapter 5.

CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, we recall some important definitions and theorems that will be used repeatedly throughout this thesis. We start with the definitions of some necessary distributions and their properties.

2.1 Distribution

In this part, we discuss some background knowledge in probability theory such as distributions and moments. Since our work will cover only discrete distributions, all properties will be discussed in the setting of discrete random variables.

Definition 2.1.1. Let X be a discrete random variable with space R_{X} and probability mass function $f(\cdot)$. The expectation of X, denoted as $E(X)$, is defined by

$$
E(X)=\sum_{x \in R_{X}} x f(x)
$$

Definition 2.1.2. Let X be a discrete random variable with space R_{X}. The variance of X, denoetd as $\operatorname{Var}(X)$, is defined by

$$
\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-(E(X))^{2} .
$$

Definition 2.1.3. Let X be a discrete random variable with space R_{X}. The probability generating function of X, denoted as $\Phi_{X}(\cdot)$, is defined by

$$
\Phi_{X}(s)=E\left(s^{X}\right)=\sum_{x \in R_{X}} s^{x} f(x) .
$$

for $s \in \mathbb{R}$.

Definition 2.1.4. Let X be a discrete random variable with space R_{X}. The moment generating function of X, denoted as $M_{X}(\cdot)$, is defined by

$$
M_{X}(s)=E\left(e^{s X}\right)=\sum_{x \in R_{X}} e^{s x} f(x)
$$

for $s \in \mathbb{R}$.

Definition 2.1.5. A random variable X is said to have the Bernoulli distribution with parameter $p(0<p<1)$, denoted as $X \sim \operatorname{Ber}(p)$, if

$$
P(X=x)=p^{x} q^{1-x}
$$

for $x \in\{0,1, \ldots\}$, where $q=1-p$.

Theorem 2.1.1. The Bernoulli random variable X with parameter p has the following properties

1. $E(X)=p$,
2. $\operatorname{Var}(X)=p q$,
จุฬาลงกรณ์มหาวิทยาลัย
3. $\Phi_{X}(s)=q+p s$,

IULALONGKORN UNIVERSITY
4. $M_{X}(s)=q+p e^{s}$.

Definition 2.1.6. A random variable X is said to have the binomial distribution with parameters $n(n \in \mathbb{N})$ and $p(0<p<1)$, denoted as $X \sim B i(n, p)$, if

$$
P(X=x)=\binom{n}{x} q^{n-x} p^{x}
$$

for $x \in\{0,1, \ldots, n\}$, where $q=1-p$.

Theorem 2.1.2. The binomial random variable X with parameters n and p has the following properties:

1. $E(X)=n p$,
2. $\operatorname{Var}(X)=n p q$,
3. $\Phi_{X}(s)=(q+p s)^{n}$,
4. $M_{X}(s)=\left(q+p e^{s}\right)^{n}$.

Definition 2.1.7. A random variable X is said to have the geometric distribution with parameter $p(0<p<1)$, denoted as $X \sim G e o(p)$, if

$$
P(X=x)=q^{x} p
$$

for $x \in\{0,1, \ldots\}$, where $q=1-p$.

Theorem 2.1.3. The geometric random variable X with parameter p has the following properties:

1. $E(X)=\frac{q}{p}$,
2. $\operatorname{Var}(X)=\frac{q}{p^{2}}$,
3. $\Phi_{X}(s)=\frac{p}{1-q s}$, for $|s|<\frac{1}{q}$,
4. $M_{X}(s)=\frac{p}{1-q e^{s}}$, for $|s|<\frac{1}{q}$,
where $q=1-p$.

Definition 2.1.8. A random variable X is said to have the negative binomial distribution with parameters $r(r \in \mathbb{N})$ and $p(0<p<1)$, denoted as $X \sim$ $N B(r, p)$, if

$$
P(X=x)=\binom{r+x-1}{x} q^{x} p^{r}
$$

for $x \in\{0,1, \ldots\}$, where $q=1-p$.
Theorem 2.1.4. The negative binomial random variable X with parameters r and p has the following properties

1. $E(X)=\frac{r q}{p}$,
2. $\operatorname{Var}(X)=\frac{r q}{p^{2}}$,
3. $\Phi_{X}(s)=\left(\frac{p}{1-q s}\right)^{r}$, for $|s|<\frac{1}{q^{\prime}}$
4. $M_{X}(s)=\left(\frac{p}{1-q e^{s}}\right)^{r}$, for $|s|<\frac{1}{q}$,
where $q=1-p$.
Definition 2.1.9. (Bhati and Qadri [7]). A random variable X is said to have the two-parameter generalized Poisson-Lindley distribution with parameters θ and β, denoted as $X \sim N G P L(\theta, \beta)$, if

$$
P(X=x)=\frac{\theta^{2}}{(\theta+\beta)(1+\theta)^{x+1}}\left(1+\frac{\beta(x+1)}{1+\theta}\right)
$$

for $x \in\{0,1, \ldots\}$ and $\theta, \beta>0$.
Theorem 2.1.5. (Bhati and Qadri [7]). Properties of the two-parameter generalized Poisson-Lindley random variable X with parameters β and θ defined in Definition 2.1.9 are as follows.

1. $E(X)=\frac{2 \beta+\theta}{\theta(\beta+\theta)}$,
2. $\operatorname{Var}(X)=\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}}$,
3. $\Phi_{X}(s)=\frac{\theta^{2}(\beta+\theta-s+1)}{(\beta+\theta)(\theta-s+1)^{2}}$, for $s \in \mathbb{R}$,
4. $M_{X}(s)=\frac{\theta^{2}\left(\beta+\theta-e^{s}+1\right)}{(\beta+\theta)\left(\theta-e^{s}+1\right)^{2}}$, for $s \in \mathbb{R}$.

Definition 2.1.10. Let X be a discrete random variable on space R_{X}. Then X has a degenerate distribution with parameter r if X is degenerated at r. That is

$$
P(\underbrace{X=x})=\left\{\begin{array}{lll}
1, & \text { for } & x=r \\
0, & \text { for } & x \neq r .
\end{array}\right.
$$

Definition 2.1.11. We say that the distribution function $F(\cdot)$ is a generalized mixture of the distribution functions $F(\cdot ; 1), F(\cdot ; 2), \ldots$ if

$$
F(x)=\sum_{i \geq 1} w_{i} F(x ; i),
$$

for all $x \in \mathbb{R}$ where w_{1}, w_{2}, \ldots are real numbers such that $\sum_{i \geq 1} w_{i}=1, \sum_{i \geq 1}\left|w_{i}\right|<\infty$ and for some index $i, w_{i}<0$.

2.2 Conditional distribution

In this part, we discuss the definitions and properties of conditional distribution, conditional mean and conditional variance.

Definition 2.2.1. Let X and Y be two random variables with joint density $f(x, y)$ and marginals $f_{1}(x)$ and $f_{2}(y)$, respectively. The conditional probability density function g of X, given (the event) $Y=y$, is defined as

$$
g(x \mid y)=\frac{f(x, y)}{f_{2}(y)}
$$

where $f_{2}(y)>0$. Similary, the conditional probability density function h of X, given (the event) $X=x$, is defined as

$$
h(y \mid x)=\frac{f(x, y)}{f_{1}(x)}
$$

where $f_{1}(x)>0$.

Definition 2.2.2. Let X and Y be discrete random variables with space R_{X}. The conditional expectation of X, given that $Y=y$, is

$$
E(X \mid Y=y)=\sum_{x \in R_{X}} x f_{X \mid Y}(x \mid y)
$$

Definition 2.2.3. Let X and Y be discrete random variables with space R_{X}. The conditional variance of X, given that $Y=y$, is

$$
\operatorname{Var}(X \mid Y=y)=E\left(X^{2} \mid Y=y\right)-(E(X \mid Y=y))^{2}
$$

Theorem 2.2.1. Properties of conditional expectation and conditional variance are as follows.

1. $E(a \mid Y)=a$ if $a \in \mathbb{R}$,
2. $E(X)=E(E(X \mid Y))$,
3. $E(X \mid Y)=E(X)$ if X and Y are independent,
4. $\operatorname{Var}(X)=E(\operatorname{Var}(X \mid Y))+\operatorname{Var}(E(X \mid Y))$.

2.3 Time series and stationary process

In this part, we state some important the concepts of time series that are necessary such as stationarity and autocorrelation function.

Definition 2.3.1. Time series $\left\{Z_{t} ; t \in \mathbb{N}\right\}$ is a series of data points indexed in $\{1,2, \ldots\}$. If Z_{t} has an integer value, the time series is called the integer-valued time series.

Definition 2.3.2. A process $\left\{Z_{t} ; t \in \mathbb{N}\right\}$ is said to be the first-order stationary if

$$
F_{Z_{t_{1}}}\left(z_{1}\right)=F_{Z_{t_{1}+k}}\left(z_{1}\right)
$$

any $t_{1} \in \mathbb{N}$ and $k \in \mathbb{Z}$. A process $\left\{Z_{t} ; t \in \mathbb{N}\right\}$ is said to be the second-order stationary if

$$
F_{Z_{t_{1}}, Z_{t_{2}}}\left(z_{1}, z_{2}\right)=F_{Z_{t_{1}+k, t_{2}+k}}\left(z_{1}, z_{2}\right)
$$

any $t_{1}, t_{2} \in \mathbb{N}$ and $k \in \mathbb{Z}$. A process $\left\{Z_{t} ; t \in \mathbb{N}\right\}$ is said to be stationary if

$$
F_{Z_{t_{1}}, Z_{t_{2}}, \ldots, Z_{t_{s}}}\left(z_{1}, z_{2}, \ldots, z_{s}\right)=F_{Z_{t_{1}+k}, Z_{t_{2}+k}, \ldots, Z_{t_{s}+k}}\left(z_{1}, z_{2}, \ldots, z_{s}\right)
$$

for any finite set of indices $\left\{t_{1}, t_{2}, \ldots, t_{s}\right\} \subset \mathbb{N}$ with $s \in \mathbb{N}$, and $k \in \mathbb{Z}$.

Definition 2.3.3. For a given real-valued process $\left\{Z_{t} ; t \in \mathbb{N}\right\}$, the mean function of the process is

$$
\mu_{t}=E\left(Z_{t}\right)
$$

The variance function of the process is

$$
\sigma_{t}^{2}=E\left(Z_{t}-\mu_{t}\right)^{2} .
$$

The covariance function of the between $Z_{t_{1}}$ and $Z_{t_{2}}$ is

$$
\gamma\left(t_{1}, t_{2}\right)=\operatorname{Cov}\left(Z_{t_{1}}, Z_{t_{2}}\right)=E\left[\left(Z_{t_{1}}-\mu_{t_{1}}\right)\left(Z_{t_{2}}-\mu_{t_{2}}\right)\right] .
$$

The correlation function between $Z_{t_{1}}$ and $Z_{t_{2}}$ is

$$
\rho\left(t_{1}, t_{2}\right)=\frac{\operatorname{Cov}\left(Z_{t_{1}}, Z_{t_{1}}\right)}{\sqrt{\operatorname{Var}\left(Z_{t_{1}}\right)} \sqrt{\operatorname{Var}\left(Z_{t_{2}}\right)}}=\frac{\gamma\left(t_{1}, t_{2}\right)}{\sigma_{t_{1}} \sigma_{t_{2}}} .
$$

For a stationary process, the mean function and the variance function are constant. That is $\mu_{t}=\mu$ and $\sigma_{t}^{2}=\sigma$, respectively. Then, the autocovariance function, γ_{k}, of Z_{t} and Z_{t+k} for any $k \in \mathbb{N}$ is defined as

$$
\gamma_{k}=\gamma(t-k, t)=\gamma(t, t+k) .
$$

The corresponding autocorrelation function, ρ_{k}, is

$$
\rho_{k}=\rho(t-k, t)=\rho(t, t+k) .
$$

2.4 Integer-valued time series model

In this part, we give the definition of the first order integer-valued autoregressive model (INAR(1)). Since the integer-valued time series discussed in our study are based on the binomial thinning operator and the negative binomial thinning operator. We first discuss the definitions and properties of the two thinning operators.

Definition 2.4.1. The binomial thinning operator, $\alpha \circ$, is defined as

$$
\begin{equation*}
\alpha \circ X=\sum_{i=1}^{X} W_{i}, \quad \alpha \in(0,1) \tag{2.1}
\end{equation*}
$$

where X is a non negative integer-valued random variable and $\left\{W_{i}\right\}_{i \geq 1}$ is a sequence of independent and identically distributed random variables with $\operatorname{Ber}(\alpha)$ distribution and is independent of X.

Theorem 2.4.1. (Steutel and van Harn [15]). The properties of the binomial thinning operator defined in Definition 2.4.1 are as follows.

1. $E(\alpha \circ X)=\alpha E(X)$,
2. $\operatorname{Var}(\alpha \circ X)=\alpha(1-\alpha) E(X)+\alpha^{2} \operatorname{Var}(X)$,
3. $\Phi_{\alpha \circ X}(s)=\Phi_{X}(1-\alpha+\alpha s)$ for $s \in \mathbb{R}$,
4. $M_{\alpha \circ X}(s)=M_{X}\left(1-\alpha+\alpha e^{s}\right)$ for $s \in \mathbb{R}$.

Definition 2.4.2. The negative binomial thinning operator, $\alpha *$, is defined as

$$
\begin{equation*}
\alpha * X=\sum_{i=1}^{X} Z_{i}, \quad \alpha \in(0,1) \tag{2.2}
\end{equation*}
$$

where X is a non negative integer-valued random variable and $\left\{Z_{i}\right\}_{i \geq 1}$ is a sequence of independent and identically distributed random variables with $\operatorname{Geo}\left(\frac{1}{1+\alpha}\right)$ distribution and is independent of X.

Theorem 2.4.2. (Ristic and Nastic [6]). The properties of the negative binomial thinning operator defined in Definition 2.4.2 are as follows.

1. $E(\alpha * X)=\alpha E(X)$,
2. $\operatorname{Var}(\alpha * X)=\alpha(1-\alpha) E(X)+\alpha^{2} \operatorname{Var}(X)$,
3. $\Phi_{\alpha * X}(s)=\Phi_{X}\left((1+\alpha-\alpha s)^{-1}\right)$ for $s \in \mathbb{R}$,
4. $M_{\alpha * X}(s)=M_{X}\left(\left(1+\alpha-\alpha e^{s}\right)^{-1}\right)$ for $s \in \mathbb{R}$.

Definition 2.4.3. The first order integer-valued autoregressive model based on the binomial thinning operator is defined as

$$
\begin{equation*}
X_{t}=\alpha \circ X_{t-1}+\epsilon_{t}, \tag{2.3}
\end{equation*}
$$

where the binomial thinning $\alpha \circ$ is defined in Definition 2.4.1 and the innovation process $\left\{\epsilon_{t}\right\}_{t \geq 1}$ is a sequence of independent and identically distributed (i.i.d.) random variables such that $\alpha \circ X_{t-1}$ and ϵ_{t} are independent.

Definition 2.4.4. The first order integer-valued autoregressive model based on the negative binomial thinning operator is defined as

$$
\begin{equation*}
X_{t}=\alpha * X_{t-1}+\varepsilon_{t}, \tag{2.4}
\end{equation*}
$$

where the negative binomial thinning $\alpha *$ is defined in Definition 2.4.2 and the innovation process $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ is a sequence of independent and identically distributed (i.i.d.) random variables such that $\alpha * X_{t-1}$ and ε_{t} are independent.

Definition 2.4.5. The integer-valued time series $\left\{X_{t} ; t \in \mathbb{N}\right\}$ is said to be stationary if

$$
F_{X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{s}}}\left(x_{1}, x_{2}, \ldots, x_{s}\right)=F_{X_{t_{1}+k}, X_{t_{2}+k}, \ldots, X_{t_{s}+k}}\left(x_{1}, x_{2}, \ldots, x_{s}\right)
$$

for any finite set of indices $\left\{t_{1}, t_{2}, \ldots, t_{s}\right\} \subset \mathbb{N}$ with $s \in \mathbb{N}$, and $k \in \mathbb{Z}$.

2.5 Parameter estimation

In this part, we discussion two Parameter estimations for $\operatorname{INAR}(1)$ model which are the conditional least squares estimators and the Yule-Walker estimators.

Definition 2.5.1. The conditional least squares estimators of the parameters are obtained by minimizing the function

$$
Q_{n}=\sum_{t=2}^{n}\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}
$$

where $n \geq 2$ and $E\left(X_{t} \mid X_{t-1}\right)$ is the conditional mean of X_{t}.
Definition 2.5.2. The Yule-Walker equation for $I N A R(1)$ defined as

$$
\alpha \hat{\gamma}(0)=\hat{\gamma}(1)
$$

where $\left.\hat{\gamma}(k)=\frac{1}{n} \sum_{t=1}^{n-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}\right)-\bar{X}\right)$ and $\bar{X}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$ is the sample mean.

CHAPTER III

INAR(1) MODEL WITH THE TWO-PARAMETER GENERALIZED POISSON-LINDLEY DISTRIBUTION

In this chapter, we construct two first order integer-valued autoregressive models with a two-parameter generalized Poisson-Lindley distribution based on (1) the binomial thinning operator and (2) the negative binomial thinning operator. Moreover, probabilistic properties of the constructed models and parameter estimation are demonstrated.
3.1 Construction of the first order integer-valued autoregressive models with the two-parameter generalized Poisson-Lindley distribution based on the binomial thinning operator (BNLINAR(1))

In this section, we construct the first order integer-valued autoregressive models with two-parameter generalized Poisson-Lindley distribution based on the binomial thinning operator model (BNLINAR(1)). Moreover, we investigate many properties of the constructed model such as moments, parameter estimations and perform some numerical studies.

Definition 3.1.1. The first order integer-valued autoregressive model with twoparameter generalized Poisson-Lindley distribution based on the binomial thinning operator $(\operatorname{BNLINAR}(1))\left\{X_{t}\right\}_{t \geq 1}$ is defined as

$$
\begin{equation*}
X_{t}=\alpha \circ X_{t-1}+\epsilon_{t}, \tag{3.1}
\end{equation*}
$$

where the binomial thinning $\alpha \circ$ is defined in Definition 2.4.1, $\left\{X_{t}\right\}_{t \geq 1}$ is a station-
ary process with the $\operatorname{NGPL}(\theta, \beta)$ distribution and $\left\{\epsilon_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. random variables such that $\alpha \circ X_{t-1}$ and ϵ_{t} are independent.

Theorem 3.1.1. The innovation process $\left\{\epsilon_{t}\right\}_{t \geq 1}$ has the probability generating function

$$
\begin{equation*}
\Phi_{\epsilon_{t}}(s)=\frac{(\beta+\theta-s+1)(\theta+\alpha(1-s))^{2}}{(\theta-s+1)^{2}(\theta+\beta+\alpha(1-s))} \tag{3.2}
\end{equation*}
$$

for $s \in \mathbb{R}$.

Proof. Since $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with $\operatorname{NGPL}(\theta, \beta)$, from Theorem 2.4.1(5),

$$
\Phi_{\alpha \circ X_{t-1}}(s)=E\left(s^{\left(\alpha \circ X_{t-1}\right)}\right)=\Phi_{X_{t}}(1-\alpha+\alpha s) .
$$

From (3.1) and the property that $\alpha 0 X_{t-1}$ and ϵ_{t} are independent for $s \in \mathbb{R}$,

$$
\begin{aligned}
& \Phi_{X_{t}}(s)=E\left(s^{X_{t}}\right) \\
&=E\left(s^{\alpha o X_{t-1}+\epsilon_{t}}\right) \\
& \text { คุฬาละ }
\end{aligned}
$$

From Theorem 2.1.5(3), the innovation process $\left\{\epsilon_{t}\right\}_{t \geq 1}$ has the probability generating function (pgf)

$$
\begin{aligned}
\Phi_{\epsilon_{t}}(s) & =\frac{\Phi_{X_{t}}(s)}{\Phi_{X_{t}}(1-\alpha+\alpha s)} \\
& =\frac{\theta^{2}(\beta+\theta-s+1)}{(\beta+\theta)(\theta-s+1)^{2}} \frac{(\beta+\theta)(\theta-1+\alpha-\alpha s+1)^{2}}{\theta^{2}(\beta+\theta-1+\alpha-\alpha s+1)} \\
& =\frac{(\beta+\theta-s+1)(\theta+\alpha-\alpha s)^{2}}{(\theta-s+1)^{2}(\beta+\theta+\alpha-\alpha s)} .
\end{aligned}
$$

Lemma 3.1.1. The generalized mixture

$$
\begin{align*}
g(x)= & {\left[\frac{\alpha^{2} \theta(\theta-\beta)+\theta(\theta+\beta)+2 \alpha\left(\beta^{2}-\theta^{2}\right)}{(\beta+\theta(1-\alpha))^{2}}\right] \frac{\theta}{1+\theta}\left(1-\frac{\theta}{1+\theta}\right)^{x} } \\
& +\frac{\beta(1-\alpha)}{\beta+\theta(1-\alpha)}(x+1)\left(\frac{\theta}{1+\theta}\right)^{2}\left(1-\frac{\theta}{1+\theta}\right)^{x} \\
& -\frac{\alpha \beta^{2}}{(\beta+\theta(1-\alpha))^{2}} \frac{\theta+\beta}{\theta+\beta+\alpha}\left(1-\frac{\theta+\beta}{\theta+\beta+\alpha}\right)^{x} \tag{3.3}
\end{align*}
$$

is a probability mass function where $0<\alpha<1, \theta \geq 1$, and $\beta>0$.

Proof. Let
and

$$
\begin{aligned}
& w_{1}=\frac{\alpha^{2} \theta(\theta-\beta)+\theta(\theta+\beta)+2 \alpha\left(\beta^{2}-\theta^{2}\right)}{(\beta+\theta(1-\alpha))^{2}} \\
& w_{2}=\frac{\beta(1-\alpha)}{\beta+\theta(1-\alpha)} \\
& w_{3}=-\frac{\alpha \beta^{2}}{(\beta+\theta(1-\alpha))^{2}}
\end{aligned}
$$

and let

$$
\begin{aligned}
& g_{1}(x)=\frac{\theta}{1+\theta}\left(1-\frac{\theta}{1+\theta}\right)^{x}, \\
& g_{2}(x)=(x+1)\left(\frac{\theta}{1+\theta}\right)^{2}\left(1-\frac{\theta}{1+\theta}\right)^{x}, \\
& g_{3}(x)=\frac{\theta+\beta}{\theta+\beta+\alpha}\left(1-\frac{\theta+\beta}{\theta+\beta+\alpha}\right)^{x} .
\end{aligned}
$$

Then $w_{1}+w_{2}+w_{3}=1, g_{1}(\cdot)$ is the probability mass function of $\operatorname{Geo}\left(\frac{\theta}{1+\theta}\right), g_{2}(\cdot)$ is the probability mass function of $N B\left(2, \frac{\theta}{1+\theta}\right)$ and $g_{3}(\cdot)$ is the probability mass function of $\operatorname{Geo}\left(\frac{\theta+\beta}{\beta+\theta+\alpha}\right)$. Thus,

$$
\sum_{x=0}^{\infty} g(x)=w_{1} \sum_{x=0}^{\infty} g_{1}(x)+w_{2} \sum_{x=0}^{\infty} g_{2}(x)+w_{3} \sum_{x=0}^{\infty} g_{3}(x)=1
$$

Following Mohammadpour and Shirozhan [5], we next show that $g(x) \geq 0$ for $x \in\{0,1, \ldots\}$ and the function $g(x)$ can be written as

$$
g(x)=\left(\frac{1}{1+\theta}\right)^{x} r(x),
$$

where

$$
r(x)=w_{1}\left(\frac{\theta}{1+\theta}\right)+w_{2}\left(\frac{\theta}{1+\theta}\right)^{2}(x+1)+w_{3}\left(\frac{\theta+\beta}{\theta+\beta+\alpha}\right)\left(\frac{\alpha(1+\theta)}{\theta+\beta+\alpha}\right)^{x}
$$

First, we show that $(r(x))^{\prime}>0$ for $x \in\{0,1, \ldots\}$.
Since $w_{3}<0$ and $\ln \left(\frac{\alpha(1+\theta)}{\theta+\beta+\alpha}\right)<0$,

$$
(r(x))^{\prime}=w_{2}\left(\frac{\theta}{1+\theta}\right)^{2}+w_{3}\left(\frac{\theta+\beta}{\theta+\beta+\alpha}\right)\left(\frac{\alpha(1+\theta)}{\theta+\beta+\alpha}\right)^{x} \ln \left(\frac{\alpha(1+\theta)}{\theta+\beta+\alpha}\right)
$$

>0.

Then, $(r(x))^{\prime}>0$ for $x \in\{0,1, \ldots\}$.

Moreover,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} r(x) & =\lim _{x \rightarrow \infty}\left[w_{1}\left(\frac{\theta}{1+\theta}\right)+w_{2}\left(\frac{\theta}{1+\theta}\right)^{2}(x+1)+w_{3}\left(\frac{\theta+\beta}{\theta+\beta+\alpha}\right)\left(\frac{\alpha(1+\theta)}{\theta+\beta+\alpha}\right)^{x}\right] \\
& =\lim _{x \rightarrow \infty}\left[w_{1}\left(\frac{\theta}{1+\theta}\right)+w_{2}\left(\frac{\theta}{1+\theta}\right)^{2}(x+1)\right] \\
& =+\infty
\end{aligned}
$$

Since $\theta \geq 1$, we can show that

$$
\begin{aligned}
r(0) & =w_{1}\left(\frac{\theta}{1+\theta}\right)+w_{2}\left(\frac{\theta}{1+\theta}\right)^{2}+w_{3}\left(\frac{\theta+\beta}{\theta+\beta+\alpha}\right) \\
& \geq \frac{w_{1}}{2}+\frac{w_{2}}{4}+w_{3},
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{w_{1}}{2}+\frac{w_{2}}{4}+w_{3}= & \frac{\alpha^{2} \theta(\theta-\beta)+\theta(\theta+\beta)+2 \alpha\left(\beta^{2}-\theta^{2}\right)}{2(\beta+\theta(1-\alpha))^{2}}+\frac{\beta(1-\alpha)}{4(\beta+\theta(1-\alpha))} \\
& -\frac{\alpha \beta^{2}}{(\beta+\theta(1-\alpha))^{2}} \\
= & \frac{(1-\alpha)\left(\beta^{3}+4 \beta^{2} \theta+\beta \theta(1-\alpha)(2-\alpha(\theta-2)+3 \theta)+2 \theta^{2}(1-\alpha)^{2}\right)}{4(1-\alpha+\beta)(\beta+\theta-\alpha \theta)^{2}} \\
\geq & 0 .
\end{aligned}
$$

Therefore, $g(\cdot)$ is a probability mass function.

Theorem 3.1.2. The innovation sequence $\left\{\epsilon_{t}\right\}_{t \geq 1}$ of the $B N L I N A R(1)$ model defined by (3.1) process has the probability mass function

$$
f_{\epsilon}(x)=\alpha h(x)+(1-\alpha) g(x),
$$

where $h(\cdot)$ is the degenerate distribution function at zero defined in Definition 2.1.10 and $g(\cdot)$ is the probability mass function defined in Lemma 3.1.1.

Proof. From Theorem 3.1.1, the generating function of ϵ is

$$
\Phi_{\epsilon}(s)=\frac{(\beta+\theta-s+1)(\theta+\alpha(1-s))^{2}}{(\theta-s+1)^{2}(\theta+\beta+\alpha(1-s))} .
$$

The function can be written in terms of a weighted sum of three probability generating functions as follows.

$$
\Phi_{\epsilon}(s)=\alpha+(1-\alpha)\left[w_{1} \Phi_{1}(s)+w_{2} \Phi_{2}(s)+w_{3} \Phi_{3}(s)\right]
$$

where the weights are
and

$$
\begin{aligned}
& w_{1}=\frac{\alpha^{2} \theta(\theta-\beta)+\theta(\theta+\beta)+2 \alpha\left(\beta^{2}-\theta^{2}\right)}{(\beta+\theta(1-\alpha))^{2}}, \\
& w_{2}=\frac{\beta(1-\alpha)}{\beta+\theta(1-\alpha)}, \\
& w_{3}=-\frac{\alpha \beta^{2}}{(\beta+\theta(1-\alpha))^{2}},
\end{aligned}
$$

and the probability generating functions are

$$
\Phi_{1}(s)=\frac{\theta}{1+\theta-s},
$$

$$
\Phi_{2}(s)=\frac{\theta^{2}}{(1+\theta-s)^{2}},
$$

and

$$
\Phi_{3}(s)=\frac{(\beta+\theta)}{\beta+\theta+\alpha(1-s)}
$$

respectively. We can see that $w_{1}+w_{2}+w_{3}=1$. Moreover, $\Phi_{1}(\cdot)$ is the probability generating function of $\operatorname{Geo}\left(\frac{\theta}{1+\theta}\right), \Phi_{2}(\cdot)$ is the probability generating function of $N B\left(2, \frac{\theta}{1+\theta}\right)$ and $\Phi_{3}(\cdot)$ is the probability generating function of $\operatorname{Geo}\left(\frac{\theta+\beta}{\beta+\theta+\alpha}\right)$. Thus, the probability density function of ϵ can be written as

$$
f_{\epsilon}(x)=\alpha h(x)+(1-\alpha) g(x),
$$

where $h(\cdot)$ is the degenerate distribution function at zero and $g(\cdot)$ is the probability mass function defined in Lemma 3.1.1.

Definition 3.1.2. [15] A discrete distribution with the probability generating function Φ is called self-decomposable if

$$
\Phi(z)=\Phi(1-\alpha+\alpha z) \Phi_{\alpha}(z) \quad ; \alpha \in(0,1) .
$$

with Φ_{α} the probability generating function.

Corollary 3.1.1. The two-parameter generalized Poisson-Lindley distribution is self-decomposable.

Proof. From Theorem 3.1.2, the mass function of ϵ is

$$
f_{\epsilon}(x)=\alpha h(x)+(1-\alpha) g(x)
$$

where $g(\cdot)$ is the probability mass function defined in Lemma 3.1.1 and $h(\cdot)$ is the degenerate distribution function at zero. Thus, the two-parameter generalized Poisson-Lindley distribution is self-decomposable defined in Definition 3.1.2

Theorem 3.1.3. The process $\left\{X_{t}\right\}_{t \geq 1}$ defined in (3.1) can be rewritten as

$$
X_{t}= \begin{cases}\alpha \circ X_{t-1}, & \text { w.p. } \\ \alpha \circ X_{t-1}+\epsilon_{t}, & \text { w.p. } \\ 1-\alpha\end{cases}
$$

where w.p. stands for "with probability".
Thus, we can write the process X_{t} as

$$
\begin{equation*}
X_{t}=\alpha \circ X_{t-1}+I_{t} H_{t} \tag{3.4}
\end{equation*}
$$

where H_{t} has the probability mass function $g(\cdot)$ defined in Lemma 3.1.1, I_{t} is the Bernoulli with parameter α and $I_{t} H_{t}$ is independent of X_{t-k} for $k \geq 1$.

Proof. From Theorem 3.1.2 and the process (3.1), the probability mass function of ϵ is

$$
f_{\epsilon}(x)=\alpha h(x)+(1-\alpha) g(x)
$$

where $h(\cdot)$ is the degenerate distribution function at zero and $g(\cdot)$ is the probability mass function defined in Lemma 3.1.1. Then, the mass function of ϵ can be rewritten as

$$
f_{\epsilon}(x)=\left\{\begin{array}{lll}
\alpha, & \text { for } & x=0 \\
(1-\alpha) g(x), & \text { for } & x \neq 0
\end{array}\right.
$$

Let I_{t} is the Bernoulli with parameter α and H_{t} has the probability mass function $g(\cdot)$ defined in Lemma 3.1.1. Thus, we can write X_{t} as

$$
X_{t}=\alpha \mathrm{o} X_{t-1}+I_{t} H_{t}
$$

where $I_{t} H_{t}$ is independent of X_{t-k} for $k \geq 1$.

Remark 3.1.1. The marginal distribution of the model (3.4) based on the binomial thinning operator can be expressed in terms of the innovation sequence $\left\{I_{t} H_{t}\right\}$ as

$$
X_{t} \stackrel{\mathrm{~d}}{=} \sum_{j=0}^{\infty} \alpha^{j} \mathrm{o}\left(I_{t-j} H_{t-j}\right),
$$

where " $\stackrel{\text { d }}{=}$ means equal in distribution.

Proof. Note that

$$
\begin{align*}
X_{t} & =\alpha \mathrm{o} X_{t-1}+I_{t} H_{t} \\
& =\alpha \mathrm{o}\left(\alpha \circ X_{t-2}+I_{t-1} H_{t-1}\right)+I_{t} H_{t} \\
& =\alpha \mathrm{o}\left(\alpha \circ X_{t-2}\right)+\alpha \mathrm{o}\left(I_{t-1} H_{t-1}\right)+I_{t} H_{t} \\
& =\alpha \mathrm{o}\left(\alpha \mathrm{o}\left(\alpha \circ X_{t-3}+I_{t-2} H_{t-2}\right)\right)+\alpha \mathrm{o}\left(I_{t-1} H_{t-1}\right)+I_{t} H_{t} \\
& =\alpha^{3} \mathrm{o} X_{t-3}+\alpha^{2} \circ I_{t-2} H_{t-2}+\alpha \mathrm{o} I_{t-1} H_{t-1}+I_{t} H_{t} . \tag{3.5}\\
& =\sum_{j=1}^{\infty} \alpha^{j} \mathrm{o}\left(I_{t-j} H_{t-j}\right)+I_{t} H_{t} \\
& \xlongequal{\mathrm{~d}} \sum_{j=0}^{\infty} \alpha^{j} \mathrm{o}\left(I_{t-j} H_{t-j}\right),
\end{align*}
$$

where we use (3.4) to obtain (3.5).

Theorem 3.1.4. The autocovariance function, $\gamma_{k}(k \geq 1)$, of the $B N L I N A R(1)$ model $\left\{X_{t}\right\}_{t \geq 1}$ defined in Definition 3.1.1 is given by

$$
\begin{equation*}
\gamma_{k}=\operatorname{Cov}\left(X_{t}, X_{t-k}\right)=\alpha^{k} \gamma_{0} \tag{3.6}
\end{equation*}
$$

where γ_{0} is the variance of X_{t}.
Consequently, the autocorrelation function of order k, ρ_{k}, of the $\operatorname{BNLINAR}(1)$ model is

$$
\begin{equation*}
\rho_{k}=\alpha^{k} . \tag{3.7}
\end{equation*}
$$

Proof. From (3.4) and the property that $I_{t} H_{t}$ and X_{t-k} are independent, for $k \geq 1$,

$$
\begin{align*}
\gamma_{k} & =\operatorname{Cov}\left(X_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha \circ X_{t-1}+I_{t} H_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha \circ X_{t-1}, X_{t-k}\right)+\operatorname{Cov}\left(I_{t} H_{t}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(X_{t-1}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(\alpha \mathrm{o} X_{t-2}+I_{t-1} H_{t-1}, X_{t-k}\right) \\
& =\alpha^{k-1} \operatorname{Cov}\left(\alpha \circ X_{t-k}, X_{t-k}\right) \tag{3.8}\\
& =\alpha^{k} \gamma_{0}
\end{align*}
$$

By applying (3.4) recursively to obtain (3.8). Consequently, the correlation function ρ_{k} can be written as

$$
\rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\alpha^{k} .
$$

Remark 3.1.2. From (3.7), the autocorrelation function declines exponentially as k converges to infinity.

3.1.1 Probabilistic properties of the BNLINAR(1) model

In this section, we investigate many conditional properties such as conditional expectation and conditional variance of the constructed model. Since $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with the $N G P L(\theta, \beta)$. From Theorem 2.1.5, expectation and variance of X_{t} for the $B N \operatorname{LINAR}(1)$ model are given respectively

$$
\begin{align*}
E\left(X_{t}\right) & =\frac{2 \beta+\theta}{\theta(\beta+\theta)} \tag{3.9}\\
\operatorname{Var}\left(X_{t}\right) & =\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}} \tag{3.10}
\end{align*}
$$

Theorem 3.1.5. The expectation of H_{t} defined in (3.4) is

$$
E\left(H_{t}\right)=E\left(X_{t}\right)=\frac{2 \beta+\theta}{\theta(\beta+\theta)} .
$$

Proof. From (3.4), since $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with the $N G P L(\theta, \beta)$ and the fact that I_{t} and H_{t} are independent,

$$
\begin{aligned}
E\left(X_{t}\right) & =E\left(\alpha \circ X_{t-1}+I_{t} H_{t}\right) \\
& =\alpha E\left(X_{t-1}\right)+E\left(I_{t}\right) E\left(H_{t}\right) \\
& =\alpha E\left(X_{t}\right)+E\left(I_{t}\right) E\left(H_{t}\right) .
\end{aligned}
$$

Then $(1-\alpha) E\left(X_{t}\right)=E\left(I_{t}\right) E\left(H_{t}\right)$. Since $E\left(I_{t}\right)=1-\alpha$,

$$
E\left(H_{t}\right)=E\left(X_{t}\right) .
$$

Theorem 3.1.6. The expectation of H_{t}^{2} and variance of $I_{t} H_{t}$ defined in (3.4) are

1. $E\left(H_{t}^{2}\right)=\frac{\theta^{2}(2+\theta)+\beta^{2}(6-2 \alpha+2 \theta)+\beta \theta(8+3 \theta)}{\theta^{2}(\beta+\theta)^{2}}$,
2. $\operatorname{Var}\left(I_{t} H_{t}\right)=\frac{(1-\alpha)\left(2 \beta^{2}(1+\alpha+\theta)+\theta^{2}(1+\alpha+\theta)+\beta \theta(4+4 \alpha+3 \theta)\right)}{\theta^{2}(\beta+\theta)^{2}}$,
respectively.

Proof. From Theorem 2.4.1(4), the stationary property of $\left\{X_{t}\right\}_{t \geq 1}$ and the fact that $\alpha \circ X_{t-1}$ and $I_{t} H_{t}$ are independent,

$$
\begin{align*}
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(\alpha \circ X_{t-1}+I_{t} H_{t}\right) \\
& =\operatorname{Var}\left(\alpha \circ X_{t-1}\right)+\operatorname{Var}\left(I_{t} H_{t}\right) \\
& =\alpha(1-\alpha) E\left(X_{t-1}\right)+\alpha^{2} \operatorname{Var}\left(X_{t-1}\right)+\operatorname{Var}\left(I_{t} H_{t}\right) \\
& =\alpha(1-\alpha) E\left(X_{t-1}\right)+\alpha^{2} \operatorname{Var}\left(X_{t}\right)+E\left(I_{t}^{2} H_{t}^{2}\right)-\left(E\left(I_{t} H_{t}\right)\right)^{2} \\
& =\alpha(1-\alpha) E\left(X_{t-1}\right)+\alpha^{2} \operatorname{Var}\left(X_{t}\right)+E\left(I_{t}^{2}\right) E\left(H_{t}^{2}\right)-\left(E\left(I_{t}\right) E\left(H_{t}\right)\right)^{2} \\
& =\alpha(1-\alpha) E\left(X_{t}\right)+\alpha^{2} \operatorname{Var}\left(X_{t}\right)+(1-\alpha) E\left(H_{t}^{2}\right)-(1-\alpha)^{2}\left(E\left(H_{t}\right)\right)^{2} . \tag{3.11}
\end{align*}
$$

From (3.9) - (3.11) and Theorem 3.1.5, we have

$$
\begin{align*}
E\left(H_{t}^{2}\right) & =\frac{\operatorname{Var}\left(X_{t}\right)-\alpha(1-\alpha) E\left(X_{t}\right)-\alpha^{2} \operatorname{Var}\left(X_{t}\right)+(1-\alpha)^{2}\left(E\left(H_{t}\right)\right)^{2}}{(1-\alpha)} \\
& =\frac{\theta^{2}(2+\theta)+\beta^{2}(6-2 \alpha+2 \theta)+\beta \theta(8+3 \theta)}{\theta^{2}(\beta+\theta)^{2}} \tag{3.12}
\end{align*}
$$

Then we consider the variance of $I_{t} H_{t}$ and the fact that I_{t} and H_{t} are independent,

$$
\begin{align*}
\operatorname{Var}\left(I_{t} H_{t}\right) & =E\left(I_{t}^{2} H_{t}^{2}\right)-\left(E\left(I_{t} H_{t}\right)\right)^{2} \\
& =E\left(I_{t}^{2}\right) E\left(H_{t}^{2}\right)-\left(E\left(I_{t}\right) E\left(H_{t}\right)\right)^{2} \\
& =(1-\alpha) E\left(H_{t}^{2}\right)-(1-\alpha)^{2}\left(E\left(H_{t}\right)\right)^{2} \tag{3.13}
\end{align*}
$$

we substitute $E\left(H_{t}^{2}\right)$ and $E\left(H_{t}\right)$ defined in (3.12) and Theorem 3.1.5 respectively, we have

$$
\operatorname{Var}\left(I_{t} H_{t}\right)=\frac{(1-\alpha)}{\theta^{2}(\beta+\theta)^{2}}\left(2 \beta^{2}(1+\alpha+\theta)+\theta^{2}(1+\alpha+\theta)+\beta \theta(4+4 \alpha+3 \theta)\right) .
$$

Theorem 3.1.7. The $(k+1)$-step ahead conditional expectation of the $B N L I N A R(1)$
model is

$$
E\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1} x+\left(1-\alpha^{k+1}\right)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right),
$$

for $x \in\{0,1,2, \ldots\}$.

Proof.

$$
\begin{aligned}
& E\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha \circ X_{t+k-1}+I_{t+k} H_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha \circ\left(\alpha \circ X_{t+k-2}+I_{t+k-1} H_{t+k-1}\right)+I_{t+k} H_{t+k} \mid X_{t-1}=x\right)
\end{aligned}
$$

by using (3.4) to obtain the last equality. Applying (3.4) to $\left\{X_{t}\right\}_{t \geq 1}$ recursively,

$$
\begin{align*}
& E\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha^{k+1} \circ X_{t-1}+\alpha^{k} \circ I_{t} H_{t}+\alpha^{k-1} \circ I_{t+1} H_{t+1}+\cdots+I_{t+k} H_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha^{k+1} \circ X_{t-1} \mid X_{t-1}=x\right)+\sum_{h=0}^{k} E\left(\alpha^{h} \circ I_{t+k-h} H_{t+k-h} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1} x+\sum_{h=0}^{k} \alpha^{h} E\left(I_{t+k-h} H_{t+k-h}\right) \tag{3.14}\\
& =\alpha^{k+1} x+\left(\frac{1-\alpha^{k+1}}{1-\alpha}\right) E\left(I_{t} H_{t}\right),
\end{align*}
$$

where we use Theorem 2.4.1(3) to obtain (3.14).
Then, we substitute $E\left(H_{t}\right)$ defined in Theorem 3.1.5.

$$
E\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1} x+\left(1-\alpha^{k+1}\right)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right) .
$$

Remark 3.1.3. The conditional expectation $E\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional expectation $\frac{2 \beta+\theta}{\theta(\beta+\theta)}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} E\left(X_{t+k} \mid X_{t-1}=x\right) & =\lim _{k \rightarrow \infty}\left(\alpha^{k+1} x+\left(1-\alpha^{k+1}\right)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right)\right) \\
& =\frac{2 \beta+\theta}{\theta(\beta+\theta)}
\end{aligned}
$$

Theorem 3.1.8. The $(k+1)$-step ahead conditional variance for the $\operatorname{BNLINAR}(1)$ model is

$$
\begin{align*}
\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)= & \alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(I_{t} H_{t}\right) \\
& +\frac{\left(1-\alpha^{k}\right)\left(\alpha-\alpha^{k+2}\right)}{1-\alpha^{2}} E\left(I_{t} H_{t}\right) \tag{3.15}
\end{align*}
$$

for $x \in\{0,1,2, \ldots\}$.

Proof. From (3.4),

$$
\begin{align*}
& \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha \circ X_{t+k-1}+I_{t+k} H_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha \circ\left(\alpha \circ X_{t+k-2}+I_{t+k-1} H_{t+k-1}\right)+I_{t+k} H_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha^{k+1} \circ X_{t-1}+\alpha^{k} \circ I_{t} H_{t}+\alpha^{k-1} \circ I_{t+1} H_{t+1}+\cdots+I_{t+k} H_{t+k} \mid X_{t-1}=x\right) \tag{3.16}
\end{align*}
$$

$$
\begin{align*}
& =\operatorname{Var}\left(\alpha^{k+1} \circ X_{t-1}\right)+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} \circ I_{t+k} H_{t+k} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} \circ I_{t+k} H_{t+k}\right) \tag{3.17}\\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\sum_{h=0}^{k}\left(\alpha^{h}\left(1-\alpha^{h}\right) E\left(I_{t+k} H_{t+k}+\alpha^{2 h}\right) \operatorname{Var}\left(I_{t+k} H_{t+k}\right)\right) \\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\operatorname{Var}\left(I_{t+k} H_{t+k}\right) \sum_{h=0}^{k} \alpha^{2 h}+E\left(I_{t+k} H_{t+k}\right) \sum_{h=0}^{k} \alpha^{h}\left(1-\alpha^{h}\right) \\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(I_{t} H_{t}\right)+\frac{\left(1-\alpha^{k}\right)\left(\alpha-\alpha^{k+2}\right)}{1-\alpha^{2}} E\left(I_{t} H_{t}\right),
\end{align*}
$$

where we use (3.4) to obtain (3.16) and Theorem 2.4.1(4) to obtain (3.17).

Remark 3.1.4. The conditional variance $\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional variance $\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\lim _{k \rightarrow \infty}\left[\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(I_{t} H_{t}\right)+\frac{\left(1-\alpha^{k}\right)\left(\alpha-\alpha^{k+2}\right)}{1-\alpha^{2}} E\left(I_{t} H_{t}\right)\right] \\
& =\frac{\operatorname{Var}\left(I_{t} H_{t}\right)}{1-\alpha^{2}}+\frac{\alpha E\left(I_{t} H_{t}\right)}{1-\alpha^{2}} \\
& =\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}} .
\end{aligned}
$$

Theorem 3.1.9. The partial autocorrelation function of the $B N L I N A R(1)$ model at lag h is 0 where $h>1$.

Proof. For $h>1$,

$$
\begin{aligned}
\beta(h) & =\operatorname{Corr}\left(X_{h+1}-E\left(X_{h+1} \mid X_{2}, \ldots, X_{h}\right), X_{1}\right) \\
& =\operatorname{Corr}\left(X_{h+1}-\alpha X_{h}+(1-\alpha)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right), X_{1}\right) \quad \text { by using Theorem 3.1.7 } \\
& =\operatorname{Corr}\left(X_{h+1}, X_{1}\right)-\operatorname{Corr}\left(\alpha X_{h}, X_{1}\right)+\operatorname{Corr}\left((1-\alpha)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right), X_{1}\right) \\
& =\alpha^{h}-\alpha\left(\alpha^{h-1}\right) \\
& =0 .
\end{aligned}
$$

Theorem 3.1.10. The Markov process with transition probabilities of the BNLINAR(1)
model is

$$
p_{l k}=\sum_{m=0}^{\min (l, k)}\binom{l}{m} \alpha^{m}(1-\alpha)^{l-m} P\left(I_{t} H_{t}=k-m\right)
$$

where the process $I_{t} H_{t}$ is defined in (3.4).

Proof.

$$
\begin{aligned}
p_{l k} & =P\left(X_{t}=k \mid X_{t-1}=l\right) \\
& =P\left(\alpha \circ X_{t-1}+I_{t} H_{t}=k \mid X_{t-1}=l\right) \\
& =\sum_{m=0}^{\min (l, k)} P\left(\alpha \circ X_{t-1}=m \mid X_{t-1}=l\right) P\left(I_{t} H_{t}=k-m \mid X_{t-1}=l\right) \\
& =\sum_{m=0}^{\min (l, k)} P\left(\alpha \circ X_{t-1}=m \mid X_{t-1}=l\right) P\left(I_{t} H_{t}=k-m\right) \\
& =\sum_{m=0}^{\min (l, k)}\binom{l}{m} \alpha^{m}(1-\alpha)^{l-m} P\left(I_{t} H_{t}=k-m\right),
\end{aligned}
$$

by using Definition 2.4.1 and the process $I_{t} H_{t}$ is defined in (3.4).

3.1.2 Estimation and inference of the BNLINAR(1) model

In this section, we consider parameter estimation methods of the unknown parameters by (1) the conditional least squares estimator (CLS) and (2) the YuleWalker estimator (YW). These estimators are compared via Monte Carlo simulations in terms of their means and variances by using the statistical software R [11].

3.1.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and μ of the $B N L I N A R(1)$ model are obtained by minimizing the function defined in Definition 2.5.1. Let $k=0$ in the expression in Theorem 3.1.7, the conditional expectation is

$$
E\left(X_{t} \mid X_{t-1}\right)=\alpha X_{t-1}+\mu(1-\alpha),
$$

where $\mu=E\left(X_{t}\right)$. Then

$$
Q_{n}=\sum_{t=2}^{n}\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}=\sum_{t=2}^{n}\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2} .
$$

Equating the first order partial derivatives of Q_{n} with respect to μ and α to zero, we have

$$
\begin{align*}
& \left.\frac{\partial Q_{n}}{\partial \mu}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=-\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)(1-\hat{\alpha})=0 . \tag{3.18}\\
& \left.\frac{\partial Q_{n}}{\partial \hat{\alpha}}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)\left(\hat{\mu}-X_{t-1}\right)=0 . \tag{3.19}
\end{align*}
$$

From (3.18),

$$
\begin{equation*}
\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}(n-1)(1-\hat{\alpha})=0 . \tag{3.20}
\end{equation*}
$$

By solving equation (3.20), the estimation of μ can be computed as

$$
\begin{equation*}
\hat{\mu}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}}{(n-1)(1-\hat{\alpha})} . \tag{3.21}
\end{equation*}
$$

From (3.19),

$$
\begin{align*}
0= & \hat{\mu} \sum_{t=2}^{n} X_{t}-\hat{\alpha} \hat{\mu} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}^{2}(1-\hat{\alpha})(n-1)-\sum_{t=2}^{n} X_{t-1} X_{t}+\hat{\alpha} \sum_{t=2}^{n} X_{t-1}^{2} \\
& +(1-\hat{\alpha}) \hat{\mu} \sum_{t=2}^{n} X_{t-1} . \tag{3.22}
\end{align*}
$$

By solving equation (3.22) and substitute $\hat{\mu}$ in equation (3.21), the estimation of α can be computed as

$$
\hat{\alpha}_{C L S}=\frac{(n-1) \sum_{t=2}^{n} X_{t-1} X_{t}-\sum_{t=2}^{n} X_{t} \sum_{t=2}^{n} X_{t-1}}{(n-1) \sum_{t=2}^{n} X_{t-1}^{2}-\left(\sum_{t=2}^{n} X_{t-1}\right)^{2}} .
$$

From (3.21) and (3.9), we have

$$
\begin{equation*}
\frac{2 \hat{\beta}_{C L S}+\hat{\theta}_{C L S}}{\hat{\theta}_{C L S}\left(\hat{\theta}_{C L S}+\hat{\beta}_{C L S}\right)}=\hat{\mu}_{C L S}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha}_{C L S} \sum_{t=2}^{n} X_{t-1}}{(n-1)\left(1-\hat{\alpha}_{C L S}\right)} . \tag{3.23}
\end{equation*}
$$

The conditional least squares estimator of the parameters σ^{2} is obtained by minimizing the function defined in Abdulhamid et al. [2]. First, substitute $k=0$ into (3.15),

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1-\alpha) X_{t-1}+\operatorname{Var}\left(I_{t} H_{t}\right) . \tag{3.24}
\end{equation*}
$$

Substitute $\operatorname{Var}\left(I_{t} H_{t}\right)$ from (3.13) into (3.24), the conditional variance is

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1-\alpha) X_{t-1}+\left(1-\alpha^{2}\right) \sigma^{2}-\alpha(1-\alpha) \mu \tag{3.25}
\end{equation*}
$$

To obtain $\hat{\sigma}^{2}$, we follow Abdulhamid et al. [2] by minimizing the function S_{n} defined as

$$
\begin{aligned}
S_{n} & =\sum_{t=2}^{n}\left[\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}-\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)\right]^{2} \\
& =\sum_{t=2}^{n}\left[\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2}-\alpha(1-\alpha) X_{t-1}-\left(1-\alpha^{2}\right) \sigma^{2}+\alpha(1-\alpha) \mu\right]^{2} .
\end{aligned}
$$

Taking the first order partial derivative of S_{n} with respect to σ^{2} and equating it to zero, we get

$$
\begin{aligned}
0 & =\left.\frac{\partial S_{n}}{\partial \sigma^{2}}\right|_{\sigma^{2}=\hat{\sigma}^{2}, \mu=\hat{\mu}, \alpha=\hat{\alpha}} \\
& =\sum_{t=2}^{n} 2\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]\left(\hat{\alpha}^{2}-1\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]=0 . \tag{3.26}
\end{equation*}
$$

By solving the equation (3.26), the estimation of σ^{2} can be obtained as

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} . \tag{3.27}
\end{equation*}
$$

From (3.10) and (3.27),

$$
\begin{aligned}
& \frac{2 \hat{\beta}^{2}(1+\hat{\theta})+\hat{\theta}^{2}(1+\hat{\alpha})+\hat{\beta} \hat{\theta}(4+3 \hat{\theta})}{\hat{\theta}^{2}(\hat{\beta}+\hat{\theta})^{2}} \\
& =\hat{\sigma}_{C L S}^{2}=\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} .
\end{aligned}
$$

3.1.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, μ and σ^{2} are obtained. By using Definition 2.3.3 then the sample autocovariance function of X_{t}

$$
\begin{equation*}
\hat{\gamma}(k)=\frac{1}{n} \sum_{t=1}^{n-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right), \tag{3.28}
\end{equation*}
$$

where $0 \leq k<n$ and $\bar{X}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$ is the sample mean.
From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.28), the Yule-Walker estimator of α is

$$
\hat{\alpha}_{Y W}=\frac{\hat{\gamma}(1)}{\hat{\gamma}(0)}=\frac{\sum_{t=2}^{n}\left(X_{t}-\bar{X}\right)\left(X_{t-1}-\bar{X}\right)}{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2}} .
$$

Consider $\mu=E\left(X_{t}\right)$ defined in (3.9) and $\sigma^{2}=\operatorname{Var}\left(X_{t}\right)$ defined in (3.10) and note that $S^{2}=\frac{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)}{n-1}$. The Yule-Walker estimators of μ and σ^{2} are

$$
\begin{aligned}
\hat{\mu}_{Y W} & =\bar{X}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}, \\
\hat{\sigma}^{2} Y W & =S^{2}=\frac{2 \hat{\beta}^{2}(1+\hat{\theta})+\hat{\theta}^{2}(1+\hat{\alpha})+\hat{\beta} \hat{\theta}(4+3 \hat{\theta})}{\hat{\theta}^{2}(\hat{\beta}+\hat{\theta})^{2}},
\end{aligned}
$$

respectively.

3.1.3 Simulation Results

In this section, we produce 10,000 samples from the $\operatorname{BNLINAR(1)~model~for~true~}$ parameter values in different settings (1) $\alpha=0.1, \beta=1, \theta=1$; (2) $\alpha=0.3, \beta=2, \theta=2$; (3) $\alpha=0.5, \beta=3, \theta=3$ of different sample sizes $n=50,100,500,1000,5000$ and 10000 by using the statistical software R and obtain estimators of parameters from two methods described in Section 3.1.2. Then we compare the obtained estimators in terms of their
means and variances. Table 3.1 shows mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2}.

From Table 3.1, we observe that the estimators obtained from the two estimation methods converge to the true parameters. In addition, increasing the sample size yields smaller variance. The conditional least squares estimate (CLS) and the Yule-Walker estimate (YW) are approximately the same. Considering the variance we can see that the CLS estimators have smaller variance than the YW estimators for parameters α and μ. However, the YW has smaller variance than the CLS for the parameter σ^{2}. Considering the mean, we can see that the CLS estimators converge to the true parameter faster than the YW estimators for parameters α and μ.

3.1.4 Real data

In this section, we apply the two models with two real data sets : (1) the numbers of Skin-lesions and (2) the numbers of Anorexias.

3.1.4.1 The numbers of Skin-lesions

The first example considers the numbers of Skin-lesions monthly from January 2003 to December 2009 from a region in New Zealand. The data was original introduced in Aghababaei et al. [1]. Sample mean and variance are 1.43 and 3.36, respectively. The fitted $B N L I N A R(1)$ model is

$$
X_{t}=0.2365 \circ X_{t-1}+I_{t} H_{t},
$$

The predicted values of the numbers of Skin-lesions series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=1.4142, \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+(1-\hat{\alpha}) \frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})} .
\end{aligned}
$$

$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.1,1,1,1.5,3.25)$						
n	$\hat{\alpha}_{C L S}$	$\hat{\mu}_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{Y W}$	$\hat{\sigma}_{Y W}^{2}$
50	$\begin{array}{c\|} \hline 0.0838 \\ (0.0193) \end{array}$	$\begin{gathered} 1.4796 \\ (0.0742) \end{gathered}$	$\begin{gathered} 3.1156 \\ (1.3730) \end{gathered}$	$\begin{gathered} 0.0707 \\ (0.0193) \end{gathered}$	$\begin{gathered} 1.4730 \\ (0.0766) \end{gathered}$	$\begin{gathered} 3.1751 \\ (1.3920) \end{gathered}$
100	$\begin{gathered} \hline 0.0943 \\ (0.0101) \end{gathered}$	$\begin{gathered} 1.4855 \\ (0.0372) \end{gathered}$	$\begin{gathered} 3.1740 \\ (0.7122) \end{gathered}$	$\begin{gathered} \hline 0.0848 \\ (0.0101) \end{gathered}$	$\begin{gathered} 1.4854 \\ (0.0382) \end{gathered}$	$\begin{gathered} 3.2074 \\ (0.7310) \end{gathered}$
500	$\begin{array}{\|c\|} \hline 0.0982 \\ (0.0021) \end{array}$	$\begin{gathered} 1.4969 \\ (0.0070) \end{gathered}$	$\begin{gathered} 3.2364 \\ (0.1418) \end{gathered}$	$\begin{gathered} 0.0970 \\ (0.0021) \end{gathered}$	$\begin{gathered} 1.4964 \\ (0.0079) \end{gathered}$	$\begin{gathered} 3.2386 \\ (0.1454) \end{gathered}$
1000	$\begin{array}{\|c} \hline 0.0990 \\ (0.0011) \\ \hline \end{array}$	$\begin{gathered} 1.4998 \\ (0.0032) \end{gathered}$	$\begin{gathered} 3.2453 \\ (0.0723) \\ \hline \end{gathered}$	$\begin{gathered} 0.0982 \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} 1.4983 \\ (0.0040) \\ \hline \end{gathered}$	$\begin{gathered} 3.2455 \\ (0.0717) \\ \hline \end{gathered}$
5000	$\begin{gathered} 0.0999 \\ (0.0002) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.4996 \\ (0.0007) \end{array}$	$\begin{array}{c\|} \hline 3.2493 \\ (0.0154) \end{array}$	$\begin{gathered} \hline 0.0998 \\ (0.0002) \\ \hline \end{gathered}$	$\begin{gathered} 1.4996 \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} 3.2497 \\ (0.0144) \end{gathered}$
10000	$\begin{gathered} \hline 0.0999 \\ (0.0001) \end{gathered}$	$\begin{gathered} 1.4999 \\ (0.0003) \end{gathered}$	$\begin{gathered} 3.2495 \\ (0.0077) \end{gathered}$	$\begin{gathered} 0.0999 \\ (0.0001) \end{gathered}$	$\begin{gathered} 1.4999 \\ (0.0004) \\ \hline \end{gathered}$	$\begin{gathered} 3.2497 \\ (0.0073) \end{gathered}$
$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.3,2,2,0.75,1.1875)$						
n	α_{C}	$\mu_{C L S}$	$\hat{\sigma}_{C L}^{2}$	$\hat{\alpha}_{Y V}$	$\hat{\mu}_{Y W}$	${ }^{\text {Y }}$
50	$\begin{gathered} 0.2649 \\ (0.0223) \\ \hline \end{gathered}$	$\begin{gathered} 0.7035 \\ (0.0413) \end{gathered}$	$\begin{gathered} 1.0840 \\ (0.2564) \end{gathered}$	$\begin{gathered} 0.2515 \\ (0.0218) \end{gathered}$	$\begin{gathered} 0.7018 \\ (0.0412) \end{gathered}$	$\begin{gathered} 1.1044 \\ (0.2535) \end{gathered}$
100	$\begin{gathered} 0.2815 \\ (0.0120) \end{gathered}$	$\begin{aligned} & 0.7094 \\ & (0.0214) \\ & \hline \end{aligned}$	$\begin{gathered} 1.1120 \\ (0.1271) \end{gathered}$	$\begin{gathered} 0.2758 \\ (0.0117) \end{gathered}$	$\begin{gathered} 0.7092 \\ (0.0202) \end{gathered}$	$\begin{gathered} 1.1182 \\ (0.1228) \end{gathered}$
500	$\begin{gathered} \hline 0.2956 \\ (0.0026) \end{gathered}$	$\begin{gathered} 0.7157 \\ (0.0042) \end{gathered}$	$\begin{gathered} 1.1371 \\ (0.0267) \end{gathered}$	$\begin{gathered} 0.2948 \\ (0.0026) \end{gathered}$	$\begin{gathered} 0.7143 \\ (0.0043) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.1372 \\ (0.0268) \end{array}$
1000	$\begin{gathered} \hline 0.2988 \\ (0.0013) \end{gathered}$	$\begin{gathered} 0.7270 \\ (0.0022) \end{gathered}$	$\begin{aligned} & 1.1416 \\ & (0.0136) \end{aligned}$	$\begin{gathered} 0.2971 \\ (0.0013) \end{gathered}$	$\begin{gathered} 0.7166 \\ (0.0021) \end{gathered}$	$\begin{gathered} 1.1430 \\ (0.0137) \end{gathered}$
5000	$\begin{array}{\|c\|} \hline 0.2999 \\ (0.0003) \\ \hline \end{array}$	$\begin{gathered} 0.7366 \\ (0.0004) \\ \hline \end{gathered}$	$\begin{array}{r} 1.1435 \\ (0.0032) \\ \hline \end{array}$	$\begin{gathered} 0.2997 \\ (0.0003) \\ \hline \end{gathered}$	$\begin{gathered} 0.7166 \\ (0.0004) \\ \hline \end{gathered}$	$\begin{gathered} 1.1445 \\ (0.0027) \\ \hline \end{gathered}$
10000	$\begin{gathered} \hline 0.3000 \\ (0.0000) \end{gathered}$	$\begin{aligned} & 0.7399 \\ & (0.0002) \end{aligned}$	$\begin{gathered} 1.1698 \\ (0.0015) \end{gathered}$	$\begin{aligned} & 0.2999 \\ & (0.0001) \end{aligned}$	$\begin{gathered} \hline 0.7378 \\ (0.0002) \end{gathered}$	$\begin{gathered} 1.1699 \\ (0.0013) \end{gathered}$
$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.5,3,3,0.5,0.6944)$						
n	$\hat{\alpha}_{C L S}$	$\hat{\mu}_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{\text {YW }}$	${ }_{\text {OW }}$
50	$\begin{gathered} 0.4363 \\ (0.0266) \end{gathered}$	$\begin{gathered} 0.4396 \\ (0.0496) \end{gathered}$	$\begin{gathered} 0.5286 \\ (0.6079) \end{gathered}$	$\begin{gathered} 0.4221 \\ (0.0258) \end{gathered}$	$\begin{gathered} 0.4328 \\ (0.0351) \end{gathered}$	$\begin{aligned} & 0.5801 \\ & (0.1272) \end{aligned}$
100	$\begin{gathered} 0.4680 \\ (0.0130) \end{gathered}$	$\begin{gathered} 0.4407 \\ (0.0180) \end{gathered}$	$\begin{gathered} 0.5970 \\ (0.0647) \end{gathered}$	$\begin{gathered} 0.4604 \\ (0.0135) \end{gathered}$	$\begin{gathered} 0.4403 \\ (0.0184) \end{gathered}$	$\begin{gathered} 0.6024 \\ (0.0671) \end{gathered}$
500	$\begin{gathered} 0.4925 \\ (0.0028) \end{gathered}$	$\begin{gathered} 0.4453 \\ (0.0037) \end{gathered}$	$\begin{gathered} 0.6161 \\ (0.0140) \end{gathered}$	$\begin{gathered} 0.4911 \\ (0.0028) \end{gathered}$	$\begin{gathered} 0.4442 \\ (0.0037) \end{gathered}$	$\begin{gathered} 0.6166 \\ (0.0139) \end{gathered}$
1000	$\begin{gathered} \hline 0.4967 \\ (0.0015) \end{gathered}$	$\begin{gathered} \hline 0.4459 \\ (0.0018) \end{gathered}$	$\begin{gathered} 0.6207 \\ (0.0072) \end{gathered}$	$\begin{array}{c\|} \hline 0.4959 \\ (0.0014) \\ \hline \end{array}$	$\begin{gathered} \hline 0.4460 \\ (0.0019) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 0.6217 \\ (0.0072) \\ \hline \end{array}$
5000	$\begin{gathered} 0.4993 \\ (0.0003) \\ \hline \end{gathered}$	$\begin{gathered} 0.4562 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.6215 \\ (0.0019) \end{gathered}$	$\begin{gathered} 0.4992 \\ (0.0003) \end{gathered}$	$\begin{gathered} 0.4462 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.6229 \\ (0.0014) \end{gathered}$
10000	$\begin{gathered} \hline 0.5000 \\ (0.0001) \end{gathered}$	$\begin{array}{\|c} \hline 0.4772 \\ (0.0001) \end{array}$	$\begin{gathered} 0.6458 \\ (0.0016) \end{gathered}$	$\begin{gathered} 0.5000 \\ (0.0001) \\ \hline \end{gathered}$	$\begin{gathered} 0.4729 \\ (0.0001) \\ \hline \end{gathered}$	$\begin{gathered} 0.6464 \\ (0.0007) \\ \hline \end{gathered}$

Table 3.1: Mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2} for the BNLINAR(1) model

Substituting parameter estimates $\hat{\alpha}=0.2365$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=1.4142$.

$$
\hat{X}_{t}=0.2365 \hat{X}_{t-1}+1.0797, \quad t=2,3, \ldots, 72 .
$$

The expectation and variance computed from the $B N L I N A R(1)$ model are 1.414 and 3.356 , respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

3.1.4.2 The numbers of Anorexias

The second example considers the numbers of Anorexias monthly from January 2003 to December 2009 from a region in New Zealand. Sample mean and variance are 0.82 and 2.90 , respectively. The fitted $B N L I N A R(1)$ is

$$
X_{t}=0.4909 \circ X_{t-1}+I_{t} H_{t}
$$

The predicted values of the numbers of Anorexias series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \beta+\theta}{\theta(\beta+\theta)}=0.8313, \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+(1-\hat{\alpha}) \frac{2 \beta+\theta}{\theta(\beta+\theta)} .
\end{aligned}
$$

Substituting parameter estimates $\hat{\alpha}=0.4909$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=0.8313$.

$$
\hat{X}_{t}=0.4909 \hat{X}_{t-1}+0.4232, \quad t=2,3, \ldots, 72 .
$$

The expectation and variance computed from the $B N L I N A R(1)$ model are 0.831 and 2.900 , respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

3.2 Construction of the first order integer-valued autoregressive models with the two-parameter generalized Poisson-Lindley distribution based on the negative binomial thinning operator model (NNLINAR(1))

In this section, we construct the first order integer-valued autoregressive models with two-parameter generalized Poisson-Lindley distribution based on the negative binomial thinning operator model (NNLINAR(1)). Moreover, we investigate many properties of the constructed model such as moments, parameter estimations and perform some numerical studies.

Definition 3.2.1. The first order integer-valued autoregressive model with two-parameter generalized Poisson-Lindley distribution based on the negative binomial thinning operator (NNLINAR(1)) $\left\{X_{t}\right\}_{t \geq 1}$ is defined as

$$
\begin{equation*}
X_{t}=\alpha * X_{t-1}+\varepsilon_{t}, \tag{3.29}
\end{equation*}
$$

where the negative the binomial thinning $\alpha *$ defined in Definition 2.4.2, $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$ distribution and $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. random variables such that $\alpha * X_{t-1}$ and ε_{t} are independent.

Theorem 3.2.1. The innovation process $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ has the probability generating function

$$
\begin{equation*}
\Phi_{\varepsilon_{t}}(s)=\frac{(\beta+\theta-s+1)(\theta+\alpha \theta-\alpha \theta s+\alpha-\alpha s)^{2}}{(\theta-s+1)^{2}(1+\alpha-\alpha s)(\theta+\beta+\alpha \theta+\alpha \beta-\alpha(\beta+\theta+1) s)}, \tag{3.30}
\end{equation*}
$$

for $s \in \mathbb{R}$.

Proof. Since $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$, from Theorem 2.4.2(5),

$$
\Phi_{\alpha * X_{t-1}}(s)=E\left(s^{\left(\alpha * X_{t-1}\right)}\right)=\Phi_{X_{t}}\left((1+\alpha-\alpha s)^{-1}\right) .
$$

From (3.29) and the property that $\alpha * X_{t-1}$ and ε_{t} are independent, for $s \in \mathbb{R}$,

$$
\begin{aligned}
\Phi_{X_{t}}(s) & =E\left(s^{X_{t}}\right) \\
& =E\left(s^{\alpha * X_{t-1}+\varepsilon_{t}}\right) \\
& =E\left(s^{\alpha * X_{t-1}} s^{\varepsilon_{t}}\right) \\
& =E\left(s^{\left(\alpha * X_{t-1}\right)}\right) E\left(s^{\varepsilon_{t}}\right) \\
& =\Phi_{\alpha * X_{t-1}}(s) \Phi_{\varepsilon_{t}}(s) \\
& =\Phi_{X_{t}}\left((1+\alpha-\alpha s)^{-1}\right) \Phi_{\varepsilon_{t}}(s) .
\end{aligned}
$$

From Theorem 2.1.5(3), the innovation process $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ has the probability generating function

$$
\begin{aligned}
\Phi_{\varepsilon_{t}}(s) & =\frac{\Phi_{X_{t}}(s)}{\Phi_{X_{t}}\left((1+\alpha-\alpha s)^{-1}\right.} \\
& =\frac{\theta^{2}(\beta+\theta-s+1)}{(\beta+\theta)(\theta-s+1)^{2}} \frac{(\beta+\theta)\left(\theta-(1+\alpha-\alpha s)^{-1}+1\right)^{2}}{\theta^{2}\left(\theta-(1+\alpha-\alpha s)^{-1}+1+\beta\right)} \\
& =\frac{\beta+\theta-s+1}{(\theta-s+1)^{2}} \frac{(\theta+\alpha \theta-\alpha \theta s-1+1+\alpha-\alpha s)^{2}}{(1+\alpha-\alpha s)(\beta+\alpha \beta-\alpha \beta s+\theta+\theta \alpha-\alpha \theta s-1+1+\alpha-\alpha s)} \\
& =\frac{(\beta+\theta-s+1)(\theta+\alpha \theta-\alpha \theta s+\alpha-\alpha s)^{2}}{(\theta-s+1)^{2}(1+\alpha-\alpha s)(\theta+\beta+\alpha+\alpha \theta+\alpha \beta-\alpha(\beta+\theta+1) s)} .
\end{aligned}
$$

Theorem 3.2.2. The autocovariance function, $\gamma_{k}(k \geq 1)$, of the $N N L I N A R(1)$ model $\left\{X_{t}\right\}_{t \geq 1}$ defined in Definition 3.2.1 is given by

$$
\begin{equation*}
\gamma_{k}=\operatorname{Cov}\left(X_{t}, X_{t-k}\right)=\alpha^{k} \gamma_{0} \tag{3.31}
\end{equation*}
$$

where γ_{0} is the variance of X_{t}.
Consequently, the autocorrelation function of order k, ρ_{k}, of the NNLINAR(1) model is

$$
\begin{equation*}
\rho_{k}=\alpha^{k} . \tag{3.32}
\end{equation*}
$$

Proof. From (3.29) and the property that ε_{t} and X_{t-k} are independent, for $k \geq 1$,

$$
\begin{align*}
\gamma_{k} & =\operatorname{Cov}\left(X_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha * X_{t-1}+\varepsilon_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha * X_{t-1}, X_{t-k}\right)+\operatorname{Cov}\left(\varepsilon_{t}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(X_{t-1}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(\alpha * X_{t-2}+\varepsilon_{t-1}, X_{t-k}\right) \\
& =\alpha^{k-1} \operatorname{Cov}\left(\alpha * X_{t-k}, X_{t-k}\right) \tag{3.33}\\
& =\alpha^{k} \gamma_{0} .
\end{align*}
$$

By applying (3.29) recursively to obtain (3.33). Consequently, the correlation function ρ_{k} can be written as

$$
\rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\alpha^{k} .
$$

Remark 3.2.1. From (3.32), the autocorrelation function declines exponentially as k converges to infinity.

3.2.1 Probabilistic properties of the NNLINAR(1) model

In this section, we investigate many conditional properties such as conditional mean and conditional variance of the constructed model. Since $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$. From Theorem 2.1.5, mean and variance of X_{t} for the NNLINAR(1) model are given respectively by

$$
\begin{align*}
E\left(X_{t}\right) & =\frac{2 \beta+\theta}{\theta(\beta+\theta)}, \tag{3.34}\\
\operatorname{Var}\left(X_{t}\right) & =\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}} . \tag{3.35}
\end{align*}
$$

Theorem 3.2.3. The expectation of ε_{t} defined in Definition 3.2 .1 is

$$
E\left(\varepsilon_{t}\right)=(1-\alpha) E\left(X_{t}\right)
$$

where $E\left(X_{t}\right)$ is defined in (3.34).

Proof. From (3.29), since $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$,

$$
\begin{aligned}
E\left(X_{t}\right) & =E\left(\alpha * X_{t-1}+\varepsilon_{t}\right) \\
& =\alpha E\left(X_{t}\right)+E\left(\varepsilon_{t}\right) .
\end{aligned}
$$

Then $E\left(\varepsilon_{t}\right)=(1-\alpha) E\left(X_{t}\right)$.

Theorem 3.2.4. The variance of ε_{t} defined in (3.29) is

$$
\operatorname{Var}\left(\varepsilon_{t}\right)=\left(1-\alpha^{2}\right) \operatorname{Var}\left(X_{t}\right)-\alpha(1+\alpha) E\left(X_{t}\right),
$$

where $E\left(X_{t}\right)$ and $\operatorname{Var}\left(X_{t}\right)$ are defined in (3.34) and (3.35), respectively.

Proof. From (3.29), since $\left\{X_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$,

$$
\begin{aligned}
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(\alpha * X_{t-1}+\varepsilon_{t}\right) \text { NIVERSITY } \\
& =\operatorname{Var}\left(\alpha * X_{t-1}\right)+\operatorname{Var}\left(\varepsilon_{t}\right) \\
& =\alpha(1+\alpha) E\left(X_{t-1}\right)+\alpha^{2} \operatorname{Var}\left(X_{t-1}\right)+\operatorname{Var}\left(\varepsilon_{t}\right) .
\end{aligned}
$$

Then, $\left(1-\alpha^{2}\right) \operatorname{Var}\left(X_{t}\right)=\alpha(1+\alpha) E\left(X_{t}\right)+\operatorname{Var}\left(\varepsilon_{t}\right)$.
Consequently, $\operatorname{Var}\left(\varepsilon_{t}\right)=\left(1-\alpha^{2}\right) \operatorname{Var}\left(X_{t}\right)-\alpha(1+\alpha) E\left(X_{t}\right)$.

Theorem 3.2.5. The $(k+1)$-step ahead conditional expectation of the $N N L I N A R(1)$ model is

$$
E\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1} x+\left(1-\alpha^{k+1}\right)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right),
$$

for $x \in\{0,1,2, \ldots\}$.

Proof.

$$
\begin{aligned}
E\left(X_{t+k} \mid X_{t-1}=x\right) & =E\left(\alpha * X_{t+k-1}+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha *\left(\alpha * X_{t+k-2}+\varepsilon_{t+k-1}\right)+\varepsilon_{t+k} \mid X_{t-1}=x\right),
\end{aligned}
$$

by using (3.29) to obtain the last equality. Applying (3.29) to $\left\{X_{t}\right\}_{t \geq 1}$ recursively,

$$
\begin{align*}
E\left(X_{t+k} \mid X_{t-1}=x\right) & =E\left(\alpha^{k+1} * X_{t-1}+\alpha^{k} * \varepsilon_{t}+\alpha^{k-1} * \varepsilon_{t+1}+\cdots+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha^{k+1} * X_{t-1} \mid X_{t-1}=x\right)+\sum_{h=0}^{k} E\left(\alpha^{h} * \varepsilon_{t+k-h} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1} x+\sum_{h=0}^{k} \alpha^{h} E\left(\varepsilon_{t+k-h}\right) \tag{3.36}\\
& =\alpha^{k+1} x+\left(\frac{1-\alpha^{k+1}}{1-\alpha}\right) E\left(\varepsilon_{t}\right) \\
& =\alpha^{k+1} x+\left(1-\alpha^{k+1}\right)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right),
\end{align*}
$$

where we use Theorem 2.4.2(3) to obtain (3.36).

Remark 3.2.2. The conditional expectation $E\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional expectation $\frac{2 \beta+\theta}{\theta(\beta+\theta)}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} E\left(X_{t+k} \mid X_{t-1}=x\right) & =\lim _{k \rightarrow \infty}\left(\alpha^{k+1} x+\left(1-\alpha^{k+1}\right)\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right)\right) \\
& =\frac{2 \beta+\theta}{\theta(\beta+\theta)}
\end{aligned}
$$

Theorem 3.2.6. The $(k+1)$-step ahead conditional variance for the $N N \operatorname{LINAR}(1)$ model is

$$
\begin{gather*}
\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\varepsilon_{t}\right) \\
+\frac{\alpha\left(1-\alpha^{k}\right)\left(1-\alpha^{k+1}\right)}{1-\alpha^{2}} E\left(\varepsilon_{t}\right), \tag{3.37}
\end{gather*}
$$

for $x \in\{0,1,2, \ldots\}$.

Proof. From (3.29),

$$
\begin{align*}
& \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha * X_{t+k-1}+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha *\left(\alpha * X_{t+k-2}+\varepsilon_{t+k-1}\right)+\varepsilon_{t+k} \mid X_{t-1}=x\right) \tag{3.38}\\
& =\operatorname{Var}\left(\alpha^{k+1} * X_{t-1}+\alpha^{k} * \varepsilon_{t}+\alpha^{k-1} * \varepsilon_{t+1}+\cdots+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha^{k+1} * X_{t-1}\right)+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} * \varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} * \varepsilon_{t+k-h}\right) \tag{3.39}\\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\sum_{h=0}^{k}\left(\alpha^{h}\left(1+\alpha^{h}\right) E\left(\varepsilon_{t+k-h}\right)+\alpha^{2 h} \operatorname{Var}\left(\varepsilon_{t+k-h}\right)\right) \\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\operatorname{Var}\left(\varepsilon_{t}\right) \sum_{h=0}^{k} \alpha^{2 h}+E\left(\varepsilon_{t}\right) \sum_{h=0}^{k} \alpha^{h}\left(1-\alpha^{h}\right) \\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\varepsilon_{t}\right)+\frac{\alpha\left(1-\alpha^{k}\right)\left(1-\alpha^{k+1}\right)}{1-\alpha^{2}} E\left(\varepsilon_{t}\right),
\end{align*}
$$

where we use (3.29) to obtain (3.38) and Theorem 2.4.2(4) to obtain (3.39).
Remark 3.2.3. The conditional variance $\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional variance $\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\lim _{k \rightarrow \infty}\left[\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\varepsilon_{t}\right)+\frac{\alpha\left(1-\alpha^{k}\right)\left(1-\alpha^{k+1}\right)}{1-\alpha^{2}} E\left(\varepsilon_{t}\right)\right] \\
& =\frac{\operatorname{Var}\left(\varepsilon_{t}\right)}{1-\alpha^{2}}+\frac{\alpha E\left(\varepsilon_{t}\right)}{1-\alpha^{2}} \\
& =\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}} .
\end{aligned}
$$

Theorem 3.2.7. The Markov process with transition probabilities of the $N N L I N A R(1)$ model is

$$
\begin{equation*}
p_{l k}=\sum_{m=0}^{k}\binom{l+m-1}{m}\left(\frac{1}{1+\alpha}\right)^{l}\left(\frac{\alpha}{1+\alpha}\right)^{m} P\left(\varepsilon_{t}=k-m\right) \mathbf{I}(l \neq 0)+P\left(\varepsilon_{t}=k\right) \mathbf{I}(l=0), \tag{3.40}
\end{equation*}
$$

where the process ε_{t} is defined in (3.29).

Proof.

$$
\begin{aligned}
p_{l k} & =P\left(X_{t}=k \mid X_{t-1}=l\right) \\
& =P\left(\alpha * X_{t-1}+\varepsilon_{t}=k \mid X_{t-1}=l\right) . \\
& =\sum_{m=0}^{k} P\left(\alpha * X_{t-1}=m \mid X_{t-1}=l\right) P\left(\varepsilon_{t}=k-m\right) \mathbf{I}(l \neq 0)+P\left(\varepsilon_{t}=k\right) \mathbf{I}(l=0) \\
& =\sum_{m=0}^{k}\binom{l+m-1}{m}\left(\frac{1}{1+\alpha}\right)^{l}\left(\frac{\alpha}{1+\alpha}\right)^{m} P\left(\varepsilon_{t}=k-m\right) \mathbf{I}(l \neq 0)+P\left(\varepsilon_{t}=k\right) \mathbf{I}(l=0) .
\end{aligned}
$$

3.2.2 Estimation and inference of the NNLINAR(1) model

In this section, we consider parameter estimation methods of the unknown parameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker estimator (YW). These estimators are compared via Monte Carlo simulations in terms of their means and variances by using the statistical software R [11].

3.2.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and μ of the $N N \operatorname{LINAR}(1)$ model are obtained by minimizing the function defined in Definition 2.5.1. Let $k=0$ in the expression in Theorem 3.2.5, the conditional expectation is

$$
E\left(X_{t} \mid X_{t-1}\right)=\alpha X_{t-1}+\mu(1-\alpha)
$$

where $\mu=E\left(X_{t}\right)$. Then

$$
Q_{n}=\sum_{t=2}^{n}\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}=\sum_{t=2}^{n}\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2} .
$$

Equating the first order partial derivatives of Q_{n} with respect to μ and α to zero, then

$$
\begin{align*}
& \left.\frac{\partial Q_{n}}{\partial \mu}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=-\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)(1-\hat{\alpha})=0 . \tag{3.41}\\
& \left.\frac{\partial Q_{n}}{\partial \hat{\alpha}}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)\left(\hat{\mu}-X_{t-1}\right)=0 . \tag{3.42}
\end{align*}
$$

From (3.41),

$$
\begin{equation*}
\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}(n-1)(1-\hat{\alpha})=0 . \tag{3.43}
\end{equation*}
$$

By solving the equation (3.43), the estimation of μ can be computed as

$$
\begin{equation*}
\hat{\mu}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}}{(n-1)(1-\hat{\alpha})} . \tag{3.44}
\end{equation*}
$$

From (3.42)

$$
\begin{align*}
0= & \hat{\mu} \sum_{t=2}^{n} X_{t}-\hat{\alpha} \hat{\mu} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}^{2}(1-\hat{\alpha})(n-1)-\sum_{t=2}^{n} X_{t-1} X_{t}+\hat{\alpha} \sum_{t=2}^{n} X_{t-1}^{2} \\
& +(1-\hat{\alpha}) \hat{\mu} \sum_{t=2}^{n} X_{t-1} . \tag{3.45}
\end{align*}
$$

By solving equation (3.45) and substitute $\hat{\mu}$ in equation (3.44), the estimation of α can be computed as

$$
\hat{\alpha}=\frac{(n-1) \sum_{t=2}^{n} X_{t-1} X_{t}-\sum_{t=2}^{n} X_{t} \sum_{t=2}^{n} X_{t-1}}{(n-1) \sum_{t=2}^{n} X_{t-1}^{2}-\left(\sum_{t=2}^{n} X_{t-1}\right)^{2}} .
$$

From (3.42) and (3.34), we have

$$
\frac{2 \hat{\beta}_{C L S}+\hat{\theta}_{C L S}}{\hat{\theta}_{C L S}\left(\hat{\theta}_{C L S}+\hat{\beta}_{C L S}\right)}=\hat{\mu}_{C L S}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha}_{C L S} \sum_{t=2}^{n} X_{t-1}}{(n-1)\left(1-\hat{\alpha}_{C L S}\right)} \text {. }
$$

The conditional least squares estimator of parameter σ^{2} is obtained by minimizing the function defined in Abdulhamid et al. [2]. First, substitute $k=0$ into (3.37),

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1-\alpha) X_{t-1}+\operatorname{Var}\left(\varepsilon_{t}\right) . \tag{3.46}
\end{equation*}
$$

Substitute $\operatorname{Var}\left(\varepsilon_{t}\right)$ from Theorem 3.2.4 in (3.46), the conditional variance is

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1+\alpha) X_{t-1}+\left(1-\alpha^{2}\right) \sigma^{2}-\alpha(1+\alpha) \mu . \tag{3.47}
\end{equation*}
$$

To obtain $\hat{\sigma}^{2}$, we follow Abdulhamid et al. [2] by minimizing the function S_{n} defined as

$$
\begin{aligned}
S_{n} & =\sum_{t=2}^{n}\left[\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}-\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)\right]^{2} \\
& =\sum_{t=2}^{n}\left[\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2}-\alpha(1+\alpha) X_{t-1}-\left(1-\alpha^{2}\right) \sigma^{2}+\alpha(1+\alpha) \mu\right]^{2} .
\end{aligned}
$$

Taking the first order partial derivative of S_{n} with respect to σ^{2} and equating it to zero, we get

$$
\begin{aligned}
0 & =\left.\frac{\partial S_{n}}{\partial \sigma^{2}}\right|_{\sigma^{2}=\hat{\sigma}^{2}, \mu=\hat{\mu}, \alpha=\hat{\alpha}} \\
& =\sum_{t=2}^{n} 2\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]\left(\hat{\alpha}^{2}-1\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]=0 . \tag{3.48}
\end{equation*}
$$

By solving the equation (3.48), the estimation of σ^{2} can be obtained as

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} . \tag{3.49}
\end{equation*}
$$

From (3.35) and (3.49)

$$
\begin{aligned}
& \frac{2 \hat{\beta}^{2}(1+\hat{\theta})+\hat{\theta}^{2}(1+\hat{\theta})+\hat{\beta} \hat{\theta}(4+3 \hat{\theta})}{\hat{\theta}^{2}(\hat{\beta}+\hat{\theta})^{2}} \\
& =\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} .
\end{aligned}
$$

3.2.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, μ and σ^{2} are obtained. By using Definition 2.3.3, the sample autocovariance function of X_{t}

$$
\begin{equation*}
\hat{\gamma}(k)=\frac{1}{n} \sum_{t=1}^{n-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right), \tag{3.50}
\end{equation*}
$$

where $0 \leq k<n$ and $\bar{X}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$ is the sample mean.
From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.50), the Yule-Walker estimator of α is

$$
\hat{\alpha}_{Y W}=\frac{\hat{\gamma}(1)}{\hat{\gamma}(0)}=\frac{\sum_{t=2}^{n}\left(X_{t}-\bar{X}\right)\left(X_{t-1}-\bar{X}\right)}{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2}} .
$$

Consider $\mu=E\left(X_{t}\right)$ defined in (3.34) and $\sigma^{2}=\operatorname{Var}\left(X_{t}\right)$ defined in (3.35) and note that $S^{2}=\frac{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2}}{n-1}$. The Yule-Walker estimators of μ and σ^{2} are

$$
\begin{aligned}
\hat{\mu}_{Y W} & =\bar{X}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}, \\
\hat{\sigma}^{2} Y W & =S^{2} \\
\hat{\sigma}^{2} & =\frac{2 \hat{\beta}^{2}(1+\hat{\theta})+\hat{\theta}^{2}(1+\hat{\theta})+\hat{\beta} \hat{\theta}(4+3 \hat{\theta})}{\hat{\theta}^{2}(\hat{\beta}+\hat{\theta})^{2}},
\end{aligned}
$$

respectively.

3.2.3 Real data

In this section, we apply the two models with two real data sets : (1) the numbers of Skin-lesions and (2) the numbers of Anorexias.

3.2.3.1 The numbers of Skin-lesions

The first example considers the numbers of Skin-lesions monthly from January 2003 to December 2009 from a region in New Zealand. The data was originally introduced in Aghababaei et al. [1]. Sample mean and variance are 1.43 and 3.36, respectively. The fitted $N N L I N A R(1)$ model is

$$
X_{t}=0.2365 * X_{t-1}+\varepsilon_{t},
$$

The predicted values of the numbers of Skin-lesions series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=1.4142 \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+(1-\hat{\alpha}) \frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}
\end{aligned}
$$

Substituting parameter estimates $\hat{\alpha}=0.2365$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=1.4142$.

$$
\hat{X}_{t}=0.2365 \hat{X}_{t-1}+1.0797, \quad t=2,3, \ldots, 72 .
$$

The expectation and variance computed from the NNLINAR(1) model are 1.4142 and 3.356 , respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

3.2.3.2 The numbers of Anorexias

The second example considers the numbers of Anorexias monthly from January 2003 to December 2009 from a region in New Zealand. The data was original introduced in Aghababaei et al. [1]. Sample mean and variance are 0.82 and 2.90, respectively. The fitted $N N \operatorname{LINAR}(1)$ is

$$
X_{t}=0.4909 * X_{t-1}+\varepsilon_{t},
$$

The predicted values of the numbers of Anorexias series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \beta+\theta}{\theta(\beta+\theta)}=0.8313 \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+(1-\hat{\alpha}) \frac{2 \beta+\theta}{\theta(\beta+\theta)} .
\end{aligned}
$$

Substituting parameter estimates $\hat{\alpha}=0.4909$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=0.8313$.

$$
\hat{X}_{t}=0.4909 \hat{X}_{t-1}+0.4232, \quad t=2,3, \ldots, 72 .
$$

The expectation and variance computed from the $N N L I N A R(1)$ model are 0.831 and 2.900 , respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

CHAPTER IV

INAR(1) MODEL WITH A
 TWO-PARAMETER GENERALIZED POISSON-LINDLEY INNOVATION

In this chapter, we construct two first order integer-valued autoregressive models with a two-parameter generalized Poisson-Lindley innovation based on (1) the binomial thinning operator and (2) the negative binomial thinning operator. Moreover, probabilistic properties of the constructed models and parameter estimation are demonstrated.
4.1 Construction of the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the binomial thinning operator (NLINARB(1))

In this section, we construct the first order integer-valued autoregressive model with two-parameter generalized Poisson-Lindley innovation based on the binomial thinning operator model (NLINARB(1)). Moreover, we investigate many properties of the constructed model such as expectations, parameter estimations and perform some numerical studies.

Definition 4.1.1. The first order integer-valued autoregressive model with two-parameter generalized Poisson-Lindley innovation based on the binomial thinning operator (NLI$\operatorname{NARB}(1))\left\{X_{t}\right\}_{t \geq 1}$ is defined as

$$
\begin{equation*}
X_{t}=\alpha \circ X_{t-1}+\epsilon_{t} \tag{4.1}
\end{equation*}
$$

where the binomial thinning $\alpha \circ$ is defined in Definition 2.4.1 and $\left\{\epsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$ defined in Definition 2.1.9 such that $\alpha \circ X_{t-1}$ and ϵ_{t} are independent.

Theorem 4.1.1. The autocovariance function, $\gamma_{k}(k \geq 1)$, of the $\operatorname{NLINARB(1)~model~}$ $\left\{X_{t}\right\}_{t \geq 1}$ defined in Definition 4.1.1 is given by

$$
\begin{equation*}
\gamma_{k}=\operatorname{Cov}\left(X_{t}, X_{t-k}\right)=\alpha^{k} \gamma_{0} . \tag{4.2}
\end{equation*}
$$

where γ_{0} is the variance of X_{t}.
Consequently, the autocorrelation function of order k, ρ_{k}, of the $N L I N A R B(1)$ model is

$$
\begin{equation*}
\rho_{k}=\alpha^{k} . \tag{4.3}
\end{equation*}
$$

Proof. From (4.1) and the property that ϵ_{t} and X_{t-k} are independent, for $k \geq 1$,

$$
\begin{align*}
\gamma_{k} & =\operatorname{Cov}\left(X_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha \circ X_{t-1}+\epsilon_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha \circ X_{t-1}, X_{t-k}\right)+\operatorname{Cov}\left(\epsilon_{t}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(X_{t-1}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(\alpha \circ X_{t-2}+\epsilon_{t-1}, X_{t-k}\right) \\
& =\alpha^{k-1} \operatorname{Cov}\left(\alpha \circ X_{t-k}, X_{t-k}\right) \tag{4.4}\\
& =\alpha^{k} \gamma_{0} .
\end{align*}
$$

By applying (4.1) recursively to obtain (4.4). Consequently, the correlation function ρ_{k} can be written as

$$
\rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\alpha^{k} .
$$

Remark 4.1.1. From (4.3), the autocorrelation function declines exponentially as k converges to infinity.

4.1.1 Probabilistic properties of the NLINARB(1) model

In this section, we investigate many conditional properties such as conditional expectation and conditional variance of the constructed model. Since $\left\{\epsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$. From Theorem 2.1.5, expectation and variance of ϵ_{t} for the $N L I N A R B(1)$ model are given respectively by

$$
\begin{align*}
E\left(\epsilon_{t}\right) & =\frac{2 \beta+\theta}{\theta(\beta+\theta)} \tag{4.5}\\
\operatorname{Var}\left(\epsilon_{t}\right) & =\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}} . \tag{4.6}
\end{align*}
$$

Theorem 4.1.2. The expectation of X_{t} defined in (4.1) is

$$
E\left(X_{t}\right)=\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)}
$$

Proof. From (4.1), since $\left\{\epsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $N G P L(\theta, \beta)$,

$$
\begin{aligned}
E\left(X_{t}\right) & =E\left(\alpha \circ X_{t-1}+\epsilon_{t}\right) \\
\text { ONGIK } & =\alpha E\left(X_{t}\right)+E\left(\epsilon_{t}\right) .
\end{aligned}
$$

Then, $\quad(1-\alpha) E\left(X_{t}\right)=E\left(\epsilon_{t}\right)$.
Therefore, $\quad E\left(X_{t}\right)=\frac{E\left(\epsilon_{t}\right)}{1-\alpha}=\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)}$.
Theorem 4.1.3. The variance of X_{t} defined in (4.1) is

$$
\operatorname{Var}\left(X_{t}\right)=\frac{\theta^{2}(1+\alpha+\alpha \theta)+2 \beta^{2}(1+\theta+\alpha \theta)+\beta \theta(4+3(1+\alpha) \theta)}{\left(1-\alpha^{2}\right) \theta^{2}(\beta+\theta)^{2}} .
$$

Proof. From (4.1), since $\left\{\epsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $N G P L(\theta, \beta)$,

$$
\begin{aligned}
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(\alpha \circ X_{t-1}+\epsilon_{t}\right) \\
& =\operatorname{Var}\left(\alpha \circ X_{t-1}\right)+\operatorname{Var}\left(\epsilon_{t}\right) \\
& =\alpha(1-\alpha) E\left(X_{t-1}\right)+\alpha^{2} \operatorname{Var}\left(X_{t-1}\right)+\operatorname{Var}\left(\epsilon_{t}\right) \\
& =\alpha(1-\alpha) E\left(X_{t}\right)+\alpha^{2} \operatorname{Var}\left(X_{t}\right)+\operatorname{Var}\left(\epsilon_{t}\right) .
\end{aligned}
$$

Then

$$
\left(1-\alpha^{2}\right) \operatorname{Var}\left(X_{t}\right)=\alpha(1-\alpha) E\left(X_{t}\right)+\operatorname{Var}\left(\epsilon_{t}\right) .
$$

Consequently,

$$
\begin{align*}
\operatorname{Var}\left(X_{t}\right) & =\frac{\alpha(1-\alpha) E\left(X_{t}\right)+\operatorname{Var}\left(\epsilon_{t}\right)}{\left(1-\alpha^{2}\right)} \\
& =\frac{\alpha E\left(\epsilon_{t}\right)+\operatorname{Var}\left(\epsilon_{t}\right)}{\left(1-\alpha^{2}\right)} . \tag{4.7}
\end{align*}
$$

By using (4.5)-(4.7), we have

$$
\operatorname{Var}\left(X_{t}\right)=\frac{\theta^{2}(1+\alpha+\alpha \theta)+2 \beta^{2}(1+\theta+\alpha \theta)+\beta \theta(4+3(1+\alpha) \theta)}{\left(1-\alpha^{2}\right) \theta^{2}(\beta+\theta)^{2}} .
$$

Theorem 4.1.4. The $(k+1)$-step ahead conditional expectation of the $N L I N A R B(1)$ model is

$$
E\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1} x+\frac{\left(1-\alpha^{k+1}\right)}{(1-\alpha)}\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right)
$$

for $x=0,1,2, \ldots$.

Proof.

$$
\begin{aligned}
E\left(X_{t+k} \mid X_{t-1}=x\right) & =E\left(\alpha \circ X_{t+k-1}+\epsilon_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha \circ\left(\alpha \circ X_{t+k-2}+\epsilon_{t+k-1}\right)+\epsilon_{t+k} \mid X_{t-1}=x\right),
\end{aligned}
$$

by using (4.1) to obtain the last equality. Applying (4.1) to $\left\{X_{t}\right\}_{t \geq 1}$ recursively,

$$
\begin{align*}
E\left(X_{t+k} \mid X_{t-1}=x\right) & =E\left(\alpha^{k+1} \circ X_{t-1}+\alpha^{k} \circ \epsilon_{t}+\alpha^{k-1} \circ \epsilon_{t+1}+\cdots+\epsilon_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha^{k+1} \circ X_{t-1} \mid X_{t-1}=x\right)+\sum_{h=0}^{k} E\left(\alpha^{h} \circ \epsilon_{t+k-h} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1} x+\sum_{h=0}^{k} \alpha^{h} E\left(\epsilon_{t+k-h}\right) \tag{4.8}\\
& =\alpha^{k+1} x+\left(\frac{1-\alpha^{k+1}}{1-\alpha}\right) E\left(\epsilon_{t}\right), \tag{4.9}
\end{align*}
$$

where we use Theorem 2.4.2(3) to obtain (4.8).
Substitute $E\left(\epsilon_{t}\right)$ in (4.9), then

$$
E\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1} x+\frac{\left(1-\alpha^{k+1}\right)}{(1-\alpha)}\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right) .
$$

Remark 4.1.2. The conditional expectation $E\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional expectation $\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} E\left(X_{t+k} \mid X_{t-1}=x\right) & =\lim _{k \rightarrow \infty}\left(\alpha^{k+1} x+\frac{\left(1-\alpha^{k+1}\right)}{(1-\alpha)}\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right)\right) \\
& =\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)} .
\end{aligned}
$$

Theorem 4.1.5. The $(k+1)$-step ahead conditional variance for the $\operatorname{NLINARB}(1)$ model is

$$
\begin{align*}
\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)= & \alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\epsilon_{t}\right) \\
& +\frac{\left(1-\alpha^{k}\right)\left(\alpha-\alpha^{k+2}\right)}{1-\alpha^{2}} E\left(\epsilon_{t}\right), \tag{4.10}
\end{align*}
$$

for $x=\{0,1,2, \ldots\}$.

Proof.

$$
\begin{align*}
& \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha \circ X_{t+k-1}+\epsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha \circ\left(\alpha \circ X_{t+k-2}+\epsilon_{t+k-1}\right)+\epsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha^{k+1} \circ X_{t-1}+\alpha^{k} \circ \epsilon_{t}+\alpha^{k-1} \circ \epsilon_{t+1}+\cdots+\epsilon_{t+k} \mid X_{t-1}=x\right) \tag{4.11}\\
& =\operatorname{Var}\left(\alpha^{k+1} \circ X_{t-1}\right)+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} \circ \epsilon_{t+h} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} \circ \epsilon_{t+h}\right) \\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\sum_{h=0}^{k}\left(\alpha^{h}\left(1-\alpha^{h}\right) \epsilon_{t+h}+\alpha^{2 h}\right) \operatorname{Var}\left(\epsilon_{t+h}\right) \tag{4.12}\\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\operatorname{Var}\left(\epsilon_{t}\right) \sum_{h=0}^{k} \alpha^{2 h}+E\left(\epsilon_{t}\right) \sum_{h=0}^{k} \alpha^{h}\left(1-\alpha^{h}\right) \\
& =\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\epsilon_{t}\right)+\frac{\left(1-\alpha^{k}\right)\left(\alpha-\alpha^{k+2}\right)}{1-\alpha^{2}} E\left(\epsilon_{t}\right),
\end{align*}
$$

where we use (4.1) to obtain (4.11) and Theorem 2.4.1(4) to obtain (4.12).
Remark 4.1.3. The conditional variance $\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional variance $\frac{\theta^{2}(1+\alpha+\alpha \theta)+2 \beta^{2}(1+\theta+\alpha \theta)+\beta \theta(4+3(1+\alpha) \theta)}{\left(1-\alpha^{2}\right) \theta^{2}(\beta+\theta)^{2}}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\lim _{k \rightarrow \infty}\left[\alpha^{k+1}\left(1-\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\epsilon_{t}\right)+\frac{\left(1-\alpha^{k}\right)\left(\alpha-\alpha^{k+2}\right)}{1-\alpha^{2}} E\left(\epsilon_{t}\right)\right] \\
& =\frac{\operatorname{Var}\left(\epsilon_{t}\right)}{1-\alpha^{2}}+\frac{\alpha E\left(\epsilon_{t}\right)}{1-\alpha^{2}} \\
& =\frac{\theta^{2}(1+\alpha+\alpha \theta)+2 \beta^{2}(1+\theta+\alpha \theta)+\beta \theta(4+3(1+\alpha) \theta)}{\left(1-\alpha^{2}\right) \theta^{2}(\beta+\theta)^{2}}
\end{aligned}
$$

Theorem 4.1.6. The Markov process with transition probabilities of the NLINARB(1)
model is

$$
p_{l k}=\sum_{m=0}^{\min (l, k)}\binom{l}{m} \alpha^{m}(1-\alpha)^{l-m} P\left(\epsilon_{t}=k-m\right),
$$

where the process ϵ_{t} is defined in (4.1).

Proof.

$$
\begin{aligned}
p_{l k} & =P\left(X_{t}=k \mid X_{t-1}=l\right) \\
& =P\left(\alpha \circ X_{t-1}+\epsilon_{t}=k \mid X_{t-1}=l\right) \\
& =\sum_{m=0}^{\min (l, k)} P\left(\alpha \circ X_{t-1}=m \mid X_{t-1}=l\right) P\left(\epsilon_{t}=k-m \mid X_{t-1}=l\right) \\
& =\sum_{m=0}^{\min (l, k)} P\left(\alpha \circ X_{t-1}=m \mid X_{t-1}=l\right) P\left(\epsilon_{t}=k-m\right) \\
& =\sum_{m=0}^{\min (l, k)}\binom{l}{m} \alpha^{m}(1-\alpha)^{l-m} P\left(\epsilon_{t}=k-m\right),
\end{aligned}
$$

by using Definition 2.4.1 and the process ϵ_{t} is defined in (4.1).

4.1.2 Estimation and inference of the NLINARB(1) model

In this section, we consider parameter estimation methods of the unknown parameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker estimator (YW). These estimators are compared via Monte Carlo simulations in terms of their means and variances by using the statistical software R [11].

4.1.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and μ of the $\operatorname{NLINARB(1)}$ model are obtained by minimizing the function defined in Definition 2.5.1. Let $k=0$ in the expression in Theorem 4.1.4, the conditional expectation is

$$
E\left(X_{t} \mid X_{t-1}\right)=\alpha X_{t-1}+\mu(1-\alpha),
$$

where $\mu=E\left(X_{t}\right)$. Then

$$
Q_{n}=\sum_{t=2}^{n}\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}=\sum_{t=2}^{n}\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2} .
$$

Equating the first order partial derivatives of Q_{n} with respect to μ and α to zero, then

$$
\begin{align*}
& \left.\frac{\partial Q_{n}}{\partial \mu}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=-\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)(1-\hat{\alpha})=0, \tag{4.13}\\
& \left.\frac{\partial Q_{n}}{\partial \hat{\alpha}}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)\left(\hat{\mu}-X_{t-1}\right)=0 . \tag{4.14}
\end{align*}
$$

From (4.13),

$$
\begin{equation*}
\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}(n-1)(1-\hat{\alpha})=0 . \tag{4.15}
\end{equation*}
$$

By solving equation (4.15), the estimation of μ can be computed as

$$
\begin{equation*}
\hat{\mu}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}}{(n-1)(1-\hat{\alpha})} . \tag{4.16}
\end{equation*}
$$

From (4.14),

$$
\begin{align*}
0= & \hat{\mu} \sum_{t=2}^{n} X_{t}-\hat{\alpha} \hat{\mu} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}^{2}(1-\hat{\alpha})(n-1)-\sum_{t=2}^{n} X_{t-1} X_{t}+\hat{\alpha} \sum_{t=2}^{n} X_{t-1}^{2} \\
& +(1-\hat{\alpha}) \hat{\mu} \sum_{t=2}^{n} X_{t-1} . \tag{4.17}
\end{align*}
$$

By solving equation (4.17) and substitute $\hat{\mu}$ in equation (4.16), the estimation of α can be computed as

$$
\hat{\alpha}=\frac{(n-1) \sum_{t=2}^{n} X_{t-1} X_{t}-\sum_{t=2}^{n} X_{t} \sum_{t=2}^{n} X_{t-1}}{(n-1) \sum_{t=2}^{n} X_{t-1}^{2}-\left(\sum_{t=2}^{n} X_{t-1}\right)^{2}} .
$$

From (3.21) and Theorem 4.1.2, we have

$$
\frac{2 \hat{\beta}_{C L S}+\hat{\theta}_{C L S}}{\hat{\theta}_{C L S}\left(\hat{\theta}_{C L S}+\hat{\beta}_{C L S}\right)\left(1-\hat{\alpha}_{C L S}\right)}=\hat{\mu}_{C L S}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha}_{C L S} \sum_{t=2}^{n} X_{t-1}}{(n-1)\left(1-\hat{\alpha}_{C L S}\right)} \text {. }
$$

The conditional least squares estimator of the parameter σ^{2} is obtained by minimizing the function defined in Abdulhamid et al. [2]. First, substitute $k=0$ into (4.10).

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1-\alpha) X_{t-1}+\operatorname{Var}\left(\epsilon_{t}\right) \tag{4.18}
\end{equation*}
$$

Substitute $\operatorname{Var}\left(\epsilon_{t}\right)$ from (4.6) into (4.18), the conditional variance is

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1-\alpha) X_{t-1}+\left(1-\alpha^{2}\right) \sigma^{2}-\alpha(1-\alpha) \mu . \tag{4.19}
\end{equation*}
$$

To obtain $\hat{\sigma}^{2}$, we follow Abdulhamid et al. [2] by minimizing the function S_{n} defined as

$$
\begin{aligned}
S_{n} & =\sum_{t=2}^{n}\left[\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}-\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)\right]^{2} \\
& =\sum_{t=2}^{n}\left[\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2}-\alpha(1-\alpha) X_{t-1}-\left(1-\alpha^{2}\right) \sigma^{2}+\alpha(1-\alpha) \mu\right]^{2} .
\end{aligned}
$$

Taking the first order partial derivative of S_{n} with respect to σ^{2} and equating it to zero, we get

$$
\begin{aligned}
0 & =\left.\frac{\partial S_{n}}{\partial \sigma^{2}}\right|_{\sigma^{2}=\hat{\sigma}^{2}, \mu=\hat{\mu}, \alpha=\hat{\alpha}} \\
& =\sum_{t=2}^{n} 2\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]\left(\hat{\alpha}^{2}-1\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]=0 . \tag{4.20}
\end{equation*}
$$

By solving the equation (4.20), the estimation of σ^{2} can be obtained as

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} . \tag{4.21}
\end{equation*}
$$

From Theorem 4.1.3, and (4.21),

$$
\begin{aligned}
& \frac{\hat{\theta}^{2}(1+\hat{\alpha}+\hat{\alpha} \hat{\theta})+2 \hat{\beta}^{2}(1+\hat{\theta}+\hat{\alpha} \hat{\theta})+\hat{\beta} \hat{\theta}(4+3(1+\hat{\alpha}) \hat{\theta})}{\left(1-\hat{\alpha}^{2}\right) \hat{\theta}^{2}(\hat{\beta}+\hat{\theta})^{2}} \\
& =\hat{\sigma}_{C L S}^{2}=\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1-\hat{\alpha}) X_{t-1}+\hat{\alpha}(1-\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} .
\end{aligned}
$$

4.1.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, μ and σ^{2} are obtained. By using Definition 2.3.3 then the sample autocovariance function of X_{t}

$$
\begin{equation*}
\hat{\gamma}(k)=\frac{1}{n} \sum_{t=1}^{n-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right), \tag{4.22}
\end{equation*}
$$

where $0 \leq k<n$ and $\bar{X}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$ is the sample mean.
From the Yule-Walker equation defined in Definition 2.5.2 and equation (4.22), the Yule-Walker estimator of α is

$$
\hat{\alpha}_{Y W}=\frac{\hat{\gamma}(1)}{\hat{\gamma}(0)}=\frac{\sum_{t=2}^{n}\left(X_{t}-\bar{X}\right)\left(X_{t-1}-\bar{X}\right)}{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2}} .
$$

Consider $\mu=E\left(X_{t}\right)$ defined in Theorem 4.1.2 and $\sigma^{2}=\operatorname{Var}\left(X_{t}\right)$ defined in (4.6) and note that $S^{2}=\frac{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)}{n-1}$. The Yule-Walker estimators of μ and σ^{2} are

$$
\begin{align*}
\hat{\mu}_{Y W} & =\bar{X}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})(1-\hat{\alpha})}, \tag{4.23}\\
\hat{\sigma}^{2}{ }_{Y W} & =S^{2} \tag{4.24}
\end{align*}=\frac{\hat{\theta}^{2}(1+\hat{\alpha}+\hat{\alpha} \hat{\theta})+2 \hat{\beta}^{2}(1+\hat{\theta}+\hat{\alpha} \hat{\theta})+\hat{\beta} \hat{\theta}(4+3(1+\hat{\alpha}) \hat{\theta})}{\left(1-\hat{\alpha}^{2}\right) \hat{\theta}^{2}(\hat{\beta}+\hat{\theta})^{2}}, ~ l
$$

respectively.

4.1.3 Simulation Results

In this section, we produce 1,000 samples from the $N \operatorname{LINARB(1)~model~for~true~}$ parameter values in different settings (1) $\alpha=0.1, \beta=0.1, \theta=0.5$; (2) $\alpha=0.4, \beta=$ $0.3, \theta=0.8 ;(3) \alpha=0.7, \beta=0.5, \theta=1.5$ of different sample sizes $n=50,500,1000$ by using the statistical software R and obtain estimators of parameters from two methods described in Section 4.1.2. Then we compare the obtained estimators in terms of their

$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.1,0.5,0.1,2.593,7.8938)$						
n	$\hat{\alpha}_{C L S}$	$\hat{\mu}_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{Y W}$	$\hat{\sigma}_{Y W}^{2}$
50	$\begin{gathered} 0.1020 \\ (0.0181) \end{gathered}$	$\begin{gathered} 3.6138 \\ (0.2874) \end{gathered}$	$\begin{gathered} 10.8499 \\ (14.2988) \end{gathered}$	$\begin{gathered} 0.0766 \\ (0.0184) \end{gathered}$	$\begin{gathered} 3.6150 \\ (0.2812) \end{gathered}$	$\begin{gathered} 11.0341 \\ (14.5398) \end{gathered}$
500	$\begin{gathered} 0.0936 \\ (0.0095) \end{gathered}$	$\begin{aligned} & \hline 2.5714 \\ & (0.0866) \end{aligned}$	$\begin{gathered} 7.7373 \\ (4.0705) \end{gathered}$	$\begin{gathered} 0.0970 \\ (0.0021) \\ \hline \end{gathered}$	$\begin{gathered} 2.5917 \\ (0.0191) \end{gathered}$	$\begin{gathered} 7.8660 \\ (0.9042) \end{gathered}$
1000	$\begin{gathered} 0.0996 \\ (0.0010) \end{gathered}$	$\begin{gathered} 2.5879 \\ (0.0092) \end{gathered}$	$\begin{gathered} 7.8122 \\ (0.4615) \end{gathered}$	$\begin{gathered} 0.0987 \\ (0.0010) \end{gathered}$	$\begin{gathered} 2.5880 \\ (0.0092) \end{gathered}$	$\begin{gathered} 7.8200 \\ (0.4609) \end{gathered}$
$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.4,0.8,0.3,2.6515,5.3879)$						
n	$\hat{\alpha}_{C L S}$	$\hat{\mu}_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{Y W}$	$\hat{\sigma}_{Y W}$
50	$\begin{gathered} \hline 0.3736 \\ (0.0177) \\ \hline \end{gathered}$	$\begin{gathered} 2.5851 \\ (0.2519) \end{gathered}$	$\begin{gathered} 5.0868 \\ (4.4710) \\ \hline \end{gathered}$	$\begin{gathered} 0.3473 \\ (0.0186) \\ \hline \end{gathered}$	$\begin{gathered} 2.5694 \\ (0.2433) \\ \hline \end{gathered}$	$\begin{gathered} 5.1007 \\ (4.3824) \end{gathered}$
500	$\begin{gathered} 0.3837 \\ (0.0098) \end{gathered}$	$\begin{gathered} 2.6319 \\ (0.1300) \end{gathered}$	$\begin{gathered} 5.2851 \\ (2.2662) \end{gathered}$	$\begin{gathered} 0.3945 \\ (0.0021) \end{gathered}$	$\begin{gathered} 2.6467 \\ (0.0244) \end{gathered}$	$\begin{gathered} \hline 5.3759 \\ (0.4151) \end{gathered}$
1000	$\begin{gathered} 0.4005 \\ (0.0010) \end{gathered}$	$\begin{gathered} 2.6563 \\ (0.0127) \end{gathered}$	$\begin{gathered} 5.3936 \\ (0.2171) \end{gathered}$	$\begin{gathered} 0.3993 \\ (0.0010) \end{gathered}$	$\begin{gathered} 2.6554 \\ (0.0126) \end{gathered}$	$\begin{gathered} 5.3944 \\ (0.2166) \end{gathered}$
$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.7,1.5,0.5,2.7778,4.0305)$						
n	$\hat{\alpha}_{C L S}$	$\hat{\mu}_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{Y W}$	$\hat{\sigma}_{Y W}^{2}$
50	$\begin{gathered} 0.6542 \\ (0.0109) \end{gathered}$	$\begin{gathered} 2.7112 \\ (0.4355) \end{gathered}$	$\begin{gathered} 3.6773 \\ (2.9730) \end{gathered}$	$\begin{gathered} 0.6219 \\ (0.01225) \end{gathered}$	$\begin{gathered} 2.6145 \\ (0.3861) \end{gathered}$	$\begin{gathered} 3.5899 \\ (2.7554) \end{gathered}$
500	$\begin{gathered} 0.6781 \\ (0.0063) \end{gathered}$	$\begin{gathered} 2.7625 \\ (0.2360) \end{gathered}$	$\begin{gathered} 3.9581 \\ (1.9262) \end{gathered}$	$\begin{gathered} 0.6932 \\ (0.0012) \\ \hline \end{gathered}$	$\begin{gathered} 2.7633 \\ (0.0458) \end{gathered}$	$\begin{gathered} 4.0039 \\ (0.3713) \end{gathered}$
1000	$\begin{gathered} \hline 0.6979 \\ (0.0006) \end{gathered}$	$\begin{gathered} \hline 2.7783 \\ (0.0245) \end{gathered}$	$\begin{gathered} 4.0228 \\ (0.1877) \end{gathered}$	$\begin{aligned} & \hline 0.6966 \\ & (0.0006) \end{aligned}$	$\begin{gathered} \hline 2.7779 \\ (0.0243) \end{gathered}$	$\begin{gathered} \hline 4.0291 \\ (0.1872) \end{gathered}$

Table 4.1: Mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2} for the NLINARB(1) model
means and variances. Table 4.1 shows mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2}.

From Table 4.1, we observe that the estimators obtained from the two estimation methods converge to the true parameters. In addition, increasing the sample size yields smaller variance. The conditional least squares estimate (CLS) and the YuleWalker estimate (YW) are approximately the same. Considering the variance, we can see that the CLS estimators have smaller variance than YW estimators for the parameter α. However, the YW has smaller variance than CLS for the parameters μ and σ^{2}. Then, considering the mean, we can see that the YW estimators converge to the true parameters faster than the CLS estimators for the parameters σ^{2} and μ.

4.1.4 Real data

In this section, we apply the two models with two real data sets : (1) the incidents of acute febrile mucocutaneous lymph node syndrome and (2) the numbers of earthquakes per year magnitude 7.0 or greater (1900-1998).

4.1.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome (MCLS)

The first example considers the data give weekly counts of the incidents of acute febrile mucocutaneous lymph node syndrome (MCLS) in Totori-prefecture, Japan, during 1982. Sample mean and variance are 1.711 and 3.111 , respectively. The fitted NLINARB(1) model is

$$
X_{t}=0.5241 \circ X_{t-1}+\epsilon_{t},
$$

The predicted values of the numbers of MCLS series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})(1-\hat{\alpha})}=1.6843, \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})} .
\end{aligned}
$$

Substituting parameter estimates $\hat{\alpha}=0.5241$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=0.8016$.

$$
\hat{X}_{t}=0.5241 \hat{X}_{t-1}+0.8016, \quad t=2,3, \ldots, 52 .
$$

The expectation and variance computed from the $\operatorname{NLINARB(1)~model~are~} 1.684$ and 3.111, respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

4.1.4.2 The number of earthquakes per year magnitude 7.0 or greater (19001998).

The second example considers the numbers of earthquakes per year magnitude 7.0 or greater (1900-1998). Sample mean and variance are 20.02 and 52.75 , respectively. The fitted $N L I N A R B(1)$ model is

$$
X_{t}=0.5434 \circ X_{t-1}+\epsilon_{t},
$$

The predicted values of the number of earthquakes per year magnitude 7.0 or greater series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})(1-\hat{\alpha})}=20.1283, \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}
\end{aligned}
$$

Substituting parameter estimates $\hat{\alpha}=0.5434$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=9.1906$.

$$
\hat{X}_{t}=0.5434 \hat{X}_{t-1}+9.1906, \quad t=2,3, \ldots, 99 .
$$

The expectation and variance computed from the NLINARB(1) model are 20.128 and 52.755 , respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

4.2 Construction of the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the negative binomial thinning operator (NLINARN(1))

In this section, we construct the first order integer-valued autoregressive model with two-parameter generalized Poisson-Lindley innovation based on the negative binomial thinning operator model (NLINARN(1)). Moreover, we investigate many properties of the constructed model such as means, parameter estimations and perform some numerical studies.

Definition 4.2.1. The first order integer-valued autoregressive model with two-parameter generalized Poisson-Lindley innovation based on the negative binomial thinning operator $(\operatorname{NLINARN}(1))\left\{X_{t}\right\}_{t \geq 1}$ is defined as

$$
\begin{equation*}
X_{t}=\alpha * X_{t-1}+\varepsilon_{t}, \tag{4.25}
\end{equation*}
$$

where the negative binomial thinning $\alpha *$ defined in Definition 2.4.2 and $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$ defined in Definition 2.1.9 such that $\alpha * X_{t-1}$ and ε_{t} are independent.

Theorem 4.2.1. The autocovariance function, $\gamma_{k}(k \geq 1)$, of the $N L I N A R N(1)$ model $\left\{X_{t}\right\}_{t \geq 1}$ defined in Definition 4.2.1 is given by

$$
\begin{equation*}
\gamma_{k}=\operatorname{Cov}\left(X_{t}, X_{t-k}\right)=\alpha^{k} \gamma_{0}, \tag{4.26}
\end{equation*}
$$

where γ_{0} is the variance of X_{t}.
Consequently, the autocorrelation function of order k, ρ_{k}, of the $\operatorname{NLINARN(1)~model~}$ is

$$
\begin{equation*}
\rho_{k}=\alpha^{k} . \tag{4.27}
\end{equation*}
$$

Proof. From (4.25) and the property that ε_{t} and X_{t-k} are independent, for $k \geq 1$,

$$
\begin{align*}
\gamma_{k} & =\operatorname{Cov}\left(X_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha * X_{t-1}+\varepsilon_{t}, X_{t-k}\right) \\
& =\operatorname{Cov}\left(\alpha * X_{t-1}, X_{t-k}\right)+\operatorname{Cov}\left(\varepsilon_{t}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(X_{t-1}, X_{t-k}\right) \\
& =\alpha \operatorname{Cov}\left(\alpha * X_{t-2}+\varepsilon_{t-1}, X_{t-k}\right) \\
& =\alpha^{k-1} \operatorname{Cov}\left(\alpha * X_{t-k}, X_{t-k}\right) \tag{4.28}\\
& =\alpha^{k} \gamma_{0}
\end{align*}
$$

By applying (4.25) recursively to obtain (4.28). Consequently, the correlation function ρ_{k} can be written as

$$
\rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\alpha^{k}
$$

Remark 4.2.1. From (4.27), the autocorrelation function declines exponentially as k converges to infinity.

4.2.1 Probabilistic properties of the NLINARN(1) model

In this section, we investigate many conditional properties such as conditional expectation and conditional variance of the constructed model. Since $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $N G P L(\theta, \beta)$. From Theorem 2.1.5, expectation and variance of ε_{t} for the $N L I N A R N(1)$ model are given respectively by

$$
\begin{align*}
E\left(\varepsilon_{t}\right) & =\frac{2 \beta+\theta}{\theta(\beta+\theta)} \tag{4.29}\\
\operatorname{Var}\left(\varepsilon_{t}\right) & =\frac{2 \beta^{2}(1+\theta)+\theta^{2}(1+\theta)+\beta \theta(4+3 \theta)}{\theta^{2}(\beta+\theta)^{2}} \tag{4.30}
\end{align*}
$$

Theorem 4.2.2. The expectation of X_{t} defined in (4.25) is

$$
E\left(X_{t}\right)=\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)}
$$

Proof. From (4.25), since $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $N G P L(\theta, \beta)$,

$$
\begin{aligned}
E\left(X_{t}\right) & =E\left(\alpha * X_{t-1}+\varepsilon_{t}\right) \\
& =\alpha E\left(X_{t}\right)+E\left(\varepsilon_{t}\right)
\end{aligned}
$$

Then $(1-\alpha) E\left(X_{t}\right)=E\left(\varepsilon_{t}\right)$,
Therefore, $\quad E\left(X_{t}\right)=\frac{E\left(\varepsilon_{t}\right)}{1-\alpha}=\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)}$.
Theorem 4.2.3. The variance of X_{t} defined in (4.25) is

$$
\operatorname{Var}\left(X_{t}\right)=\frac{\left(2 \beta^{2}+\theta^{2}\right)\left(1-\alpha+\theta+\alpha^{2} \theta\right)+\beta \theta\left(4-4 \alpha+3 \theta+3 \alpha^{2} \theta\right)}{(\alpha-1)^{2}(1+\alpha) \theta^{2}(\beta+\theta)^{2}}
$$

Proof. From (4.25), since $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ is a stationary process with the $\operatorname{NGPL}(\theta, \beta)$,

$$
\begin{aligned}
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(\alpha * X_{t-1}+\varepsilon_{t}\right) \\
& =\operatorname{Var}\left(\alpha * X_{t-1}\right)+\operatorname{Var}\left(\varepsilon_{t}\right) \\
& =\alpha(1+\alpha) E\left(X_{t-1}\right)+\alpha^{2} \operatorname{Var}\left(X_{t-1}\right)+\operatorname{Var}\left(\varepsilon_{t}\right) \\
& =\alpha(1+\alpha) E\left(X_{t}\right)+\alpha^{2} \operatorname{Var}\left(X_{t}\right)+\operatorname{Var}\left(\varepsilon_{t}\right) .
\end{aligned}
$$

Then,

$$
\left(1-\alpha^{2}\right) \operatorname{Var}\left(X_{t}\right)=\alpha(1+\alpha) E\left(X_{t}\right)+\operatorname{Var}\left(\varepsilon_{t}\right)
$$

Consequently,

$$
\begin{equation*}
\operatorname{Var}\left(X_{t}\right)=\frac{\alpha(1+\alpha) E\left(X_{t}\right)+\operatorname{Var}\left(\varepsilon_{t}\right)}{\left(1-\alpha^{2}\right)} \tag{4.31}
\end{equation*}
$$

By using Theorem 4.2.2, (4.30) and (4.31), we have

$$
\operatorname{Var}\left(X_{t}\right)=\frac{\left(2 \beta^{2}+\theta^{2}\right)\left(1-\alpha+\theta+\alpha^{2} \theta\right)+\beta \theta\left(4-4 \alpha+3 \theta+3 \alpha^{2} \theta\right)}{(\alpha-1)^{2}(1+\alpha) \theta^{2}(\beta+\theta)^{2}}
$$

Theorem 4.2.4. The $(k+1)$-step ahead conditional expectation of the $N L I N A R N(1)$ model is

$$
E\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1} x+\frac{\left(1-\alpha^{k+1}\right)}{(1-\alpha)}\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right),
$$

for $x=0,1,2, \ldots$.

Proof.

$$
\begin{aligned}
E\left(X_{t+k} \mid X_{t-1}=x\right) & =E\left(\alpha * X_{t+k-1}+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha *\left(\alpha * X_{t+k-2}+\varepsilon_{t+k-1}\right)+\varepsilon_{t+k} \mid X_{t-1}=x\right),
\end{aligned}
$$

by using (4.25) to obtain the last equality. Applying (4.25) to $\left\{X_{t}\right\}_{t \geq 1}$ recursively,

$$
\begin{align*}
E\left(X_{t+k} \mid X_{t-1}=x\right) & =E\left(\alpha^{k+1} * X_{t-1}+\alpha^{k} * \varepsilon_{t}+\alpha^{k-1} * \varepsilon_{t+1}+\cdots+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =E\left(\alpha^{k+1} * X_{t-1} \mid X_{t-1}=x\right)+\sum_{h=0}^{k} E\left(\alpha^{h} * \varepsilon_{t+k-h} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1} x+\sum_{h=0}^{k} \alpha^{h} E\left(\varepsilon_{t+k-h}\right) \tag{4.32}\\
& =\alpha^{k+1} x+\left(\frac{1-\alpha^{k+1}}{1-\alpha}\right) E\left(\varepsilon_{t}\right), \tag{4.33}
\end{align*}
$$

where we use Theorem 2.4.2(3) to obtain (4.32).
Substitute $E\left(\varepsilon_{t}\right)$ in (4.33), then

$$
E\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1} x+\frac{\left(1-\alpha^{k+1}\right)}{(1-\alpha)}\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right) .
$$

Remark 4.2.2. The conditional expectation $E\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional expectation $\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} E\left(X_{t+k} \mid X_{t-1}=x\right) & =\lim _{k \rightarrow \infty}\left(\alpha^{k+1} x+\frac{\left(1-\alpha^{k+1}\right)}{(1-\alpha)}\left(\frac{2 \beta+\theta}{\theta(\beta+\theta)}\right)\right) \\
& =\frac{2 \beta+\theta}{\theta(\beta+\theta)(1-\alpha)}
\end{aligned}
$$

Theorem 4.2.5. The $(k+1)$-step ahead conditional variance for the $N L I N A R N(1)$ model is

$$
\begin{gather*}
\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)=\alpha^{k+1}\left(1 \pm \alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\varepsilon_{t}\right) \\
+\frac{\alpha\left(1-\alpha^{k}\right)\left(1-\alpha^{k+1}\right)}{1-\alpha^{2}} E\left(\varepsilon_{t}\right), \tag{4.34}
\end{gather*}
$$

for $x=0,1,2, \ldots$.

Proof.

$$
\begin{align*}
& \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha * X_{t+k-1}+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha *\left(\alpha * X_{t+k-2}+\varepsilon_{t+k-1}\right)+\varepsilon_{t+k} \mid X_{t-1}=x\right) \tag{4.35}\\
& =\operatorname{Var}\left(\alpha^{k+1} * X_{t-1}+\alpha^{k} * \varepsilon_{t}+\alpha^{k-1} * \varepsilon_{t+1}+\cdots+\varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\operatorname{Var}\left(\alpha^{k+1} * X_{t-1}\right)+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} * \varepsilon_{t+k} \mid X_{t-1}=x\right) \\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\sum_{h=0}^{k} \operatorname{Var}\left(\alpha^{h} * \varepsilon_{t+k-h}\right) \tag{4.36}\\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\sum_{h=0}^{k}\left(\alpha^{h}\left(1+\alpha^{h}\right) E\left(\varepsilon_{t+k-h}\right)+\alpha^{2 h} \operatorname{Var}\left(\varepsilon_{t+k-h}\right)\right) \\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\operatorname{Var}\left(\varepsilon_{t}\right) \sum_{h=0}^{k} \alpha^{2 h}+E\left(\varepsilon_{t}\right) \sum_{h=0}^{k} \alpha^{h}\left(1-\alpha^{h}\right) \\
& =\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}_{2}\left(\varepsilon_{t}\right)+\frac{\alpha\left(1-\alpha^{k}\right)\left(1-\alpha^{k+1}\right)}{1-\alpha^{2}} E\left(\varepsilon_{t}\right),
\end{align*}
$$

where we use (4.25) to obtain (4.35) and Theorem 2.4.2(4) to obtain (4.36).
Remark 4.2.3. The conditional variance $\operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right)$ converges to the unconditional variance $\frac{\theta^{2}(1+\alpha+\alpha \theta)+2 \beta^{2}(1+\theta+\alpha \theta)+\beta \theta(4+3(1+\alpha) \theta)}{\left(1-\alpha^{2}\right) \theta^{2}(\beta+\theta)^{2}}$ as k converges to infinity.

Proof. Since $0<\alpha<1$,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \operatorname{Var}\left(X_{t+k} \mid X_{t-1}=x\right) \\
& =\lim _{k \rightarrow \infty}\left[\alpha^{k+1}\left(1+\alpha^{k+1}\right) x+\frac{1-\alpha^{2(k+1)}}{1-\alpha^{2}} \operatorname{Var}\left(\varepsilon_{t}\right)+\frac{\alpha\left(1-\alpha^{k}\right)\left(1-\alpha^{k+1}\right)}{1-\alpha^{2}} E\left(\varepsilon_{t}\right)\right] \\
& =\frac{\operatorname{Var}\left(\varepsilon_{t}\right)}{1-\alpha^{2}}+\frac{\alpha E\left(\varepsilon_{t}\right)}{1-\alpha^{2}} \\
& =\frac{\theta^{2}(1+\alpha+\alpha \theta)+2 \beta^{2}(1+\theta+\alpha \theta)+\beta \theta(4+3(1+\alpha) \theta)}{\left(1-\alpha^{2}\right) \theta^{2}(\beta+\theta)^{2}}
\end{aligned}
$$

Theorem 4.2.6. The Markov process with transition probabilities of the NLINARN(1) model is

$$
p_{l k}=\sum_{m=0}^{k}\binom{l+m-1}{m}\left(\frac{1}{1+\alpha}\right)^{l}\left(\frac{\alpha}{1+\alpha}\right)^{m} p\left(\varepsilon_{t}=k-m\right) \mathbf{I}(l \neq 0)+p\left(\varepsilon_{t}=k\right) \mathbf{I}(l=0),
$$

where the process ε_{t} is defined in (4.25).

Proof.

$$
\begin{aligned}
p_{l k} & =P\left(X_{t}=k \mid X_{t-1}=l\right) \\
& =P\left(\alpha * X_{t-1}+\varepsilon_{t}=k \mid X_{t-1}=l\right) \\
& =\sum_{m=o}^{k} P\left(\alpha * X_{t-1}=m \mid X_{t-1}=l\right) P\left(\varepsilon_{t}=k-m\right) \mathbf{I}(l \neq 0)+P\left(\varepsilon_{t}=k\right) \mathbf{I}(l=0) \\
& =\sum_{m=0}^{k}\binom{l+m-1}{m}\left(\frac{1}{1+\alpha}\right)^{l}\left(\frac{\alpha}{1+\alpha}\right)^{m} P\left(\varepsilon_{t}=k-m\right) \mathbf{I}(l \neq 0)+P\left(\varepsilon_{t}=k\right) \mathbf{I}(l=0) .
\end{aligned}
$$

4.2.2 Estimation and inference of the NLINARN(1) model

In this section, we consider parameter estimation methods of the unknown parameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker estimator (YW). These estimators are compared via Monte Carlo simulations in terms of their means and variances by using the statistical software $\mathrm{R}[11]$.

4.2.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and μ of the $N \operatorname{LINARN}(1)$ model are obtained by minimizing the function defined in Definition 2.5.1. Let $k=0$ in the expression in Theorem 4.2.4, the conditional expectation is

$$
E\left(X_{t} \mid X_{t-1}\right)=\alpha X_{t-1}+\mu(1-\alpha),
$$

where $\mu=E\left(X_{t}\right)$. Then

$$
Q_{n}=\sum_{t=2}^{n}\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}=\sum_{t=2}^{n}\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2} .
$$

Equating the first order partial derivatives of Q_{n} with respect to μ and α to zero, we then

$$
\begin{align*}
& \left.\frac{\partial Q_{n}}{\partial \mu}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=-\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)(1-\hat{\alpha})=0, \tag{4.37}\\
& \left.\frac{\partial Q_{n}}{\partial \hat{\alpha}}\right|_{\mu=\hat{\mu}, \alpha=\hat{\alpha}}=\sum_{t=2}^{n} 2\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)\left(\hat{\mu}-X_{t-1}\right)=0 . \tag{4.38}
\end{align*}
$$

From (4.37),

$$
\begin{equation*}
\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}(n-1)(1-\hat{\alpha})=0 . \tag{4.39}
\end{equation*}
$$

By solving the equation (4.39), the estimation of μ can be computed as

$$
\begin{equation*}
\hat{\mu}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha} \sum_{t=2}^{n} X_{t-1}}{(n-1)(1-\hat{\alpha})} \tag{4.40}
\end{equation*}
$$

From (4.38),

$$
\begin{align*}
0= & \hat{\mu} \sum_{t=2}^{n} X_{t}-\hat{\alpha} \hat{\mu} \sum_{t=2}^{n} X_{t-1}-\hat{\mu}^{2}(1-\hat{\alpha})(n-1)-\sum_{t=2}^{n} X_{t-1} X_{t}+\hat{\alpha} \sum_{t=2}^{n} X_{t-1}^{2} \\
& +(1-\hat{\alpha}) \hat{\mu} \sum_{t=2}^{n} X_{t-1} . \tag{4.41}
\end{align*}
$$

By solving equation (4.41) and substitute $\hat{\mu}$ in equation (4.40), the estimation of α can be computed as

$$
\hat{\alpha}=\frac{(n-1) \sum_{t=2}^{n} X_{t-1} X_{t}-\sum_{t=2}^{n} X_{t} \sum_{t=2}^{n} X_{t-1}}{(n-1) \sum_{t=2}^{n} X_{t-1}^{2}-\left(\sum_{t=2}^{n} X_{t-1}\right)^{2}} .
$$

From (4.40) and Theorem 4.2.2, we have

$$
\frac{2 \hat{\beta}_{C L S}+\hat{\theta}_{C L S}}{\hat{\theta}_{C L S}\left(\hat{\theta}_{C L S}+\hat{\beta}_{C L S}\right)\left(1-\hat{\alpha}_{C L S}\right)}=\hat{\mu}_{C L S}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha}_{C L S} \sum_{t=2}^{n} X_{t-1}}{(n-1)\left(1-\hat{\alpha}_{C L S}\right)} .
$$

The conditional least squares estimator of the parameters σ^{2} is obtained by minimizing the function defined in Abdulhamid et al. [2]. Frist, substitute $k=0$ into (4.34),

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1-\alpha) X_{t-1}+\operatorname{Var}\left(\varepsilon_{t}\right) \tag{4.42}
\end{equation*}
$$

Substitute $\operatorname{Var}\left(\varepsilon_{t}\right)$ from (4.30) in (4.42), the conditional variance is

$$
\begin{equation*}
\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\alpha(1+\alpha) X_{t-1}+\left(1-\alpha^{2}\right) \sigma^{2}-\alpha(1+\alpha) \mu \tag{4.43}
\end{equation*}
$$

To obtain $\hat{\sigma}^{2}$, we follow Abdulhamid et al. [2] by minimizing the function S_{n} defined as

$$
\begin{aligned}
S_{n} & =\sum_{t=2}^{n}\left[\left(X_{t}-E\left(X_{t} \mid X_{t-1}\right)\right)^{2}-\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)\right]^{2} \\
& =\sum_{t=2}^{n}\left[\left(X_{t}-\alpha X_{t-1}-\mu(1-\alpha)\right)^{2}-\alpha(1+\alpha) X_{t-1}-\left(1-\alpha^{2}\right) \sigma^{2}+\alpha(1+\alpha) \mu\right]^{2} .
\end{aligned}
$$

Taking the first order partial derivative of S_{n} with respect to σ^{2} and equating it to zero, we get

$$
\begin{aligned}
0 & =\left.\frac{\partial S_{n}}{\partial \sigma^{2}}\right|_{\sigma^{2}=\hat{\sigma}^{2}, \mu=\hat{\mu}, \alpha=\hat{\alpha}} \\
& =\sum_{t=2}^{n} 2\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]\left(\hat{\alpha}^{2}-1\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}-\left(1-\hat{\alpha}^{2}\right) \hat{\sigma}^{2}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]=0 . \tag{4.44}
\end{equation*}
$$

By solving the equation (4.44), the estimation of σ^{2} can be obtained as

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} . \tag{4.45}
\end{equation*}
$$

From Theorem 4.2.3, and (4.45)

$$
\begin{aligned}
& \frac{\left(2 \hat{\beta}^{2}+\hat{\theta}^{2}\right)\left(1-\hat{\alpha}+\hat{\theta}+\hat{\alpha}^{2} \hat{\theta}\right)+\hat{\beta} \hat{\theta}\left(4-4 \hat{\alpha}+3 \hat{\theta}+3 \hat{\alpha}^{2} \hat{\theta}\right)}{(\hat{\alpha}-1)^{2}(1+\hat{\alpha}) \hat{\theta}^{2}(\hat{\beta}+\hat{\theta})^{2}} \\
& =\hat{\sigma}_{C L S}^{2}=\frac{\sum_{t=2}^{n}\left[\left(X_{t}-\hat{\alpha} X_{t-1}-\hat{\mu}(1-\hat{\alpha})\right)^{2}-\hat{\alpha}(1+\hat{\alpha}) X_{t-1}+\hat{\alpha}(1+\hat{\alpha}) \hat{\mu}\right]}{\left(1-\hat{\alpha}^{2}\right)(n-1)} .
\end{aligned}
$$

4.2.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, μ and σ^{2} are obtained. By using Definition 2.3.3 then the sample autocovariance function of X_{t}

$$
\begin{equation*}
\hat{\gamma}(k)=\frac{1}{n} \sum_{t=1}^{n-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right) \tag{4.46}
\end{equation*}
$$

where $0 \leq k<n$ and $\bar{X}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$ is the sample mean.
From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.28), the Yule-Walker estimator of α is

$$
\hat{\alpha}_{Y W}=\frac{\hat{\gamma}(1)}{\hat{\gamma}(0)}=\frac{\sum_{t=2}^{n}\left(X_{t}-\bar{X}\right)\left(X_{t-1}-\bar{X}\right)}{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2}} .
$$

Consider $\mu=E\left(X_{t}\right)$ defined in Theorem 4.2 .2 and $\sigma^{2}=\operatorname{Var}\left(X_{t}\right)$ defined in (4.30) and note that $S^{2}=\frac{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2}}{n-1}$. The Yule-Walker estimators of μ and σ^{2} are

$$
\begin{aligned}
\hat{\mu}_{Y W} & =\bar{X}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})(1-\hat{\alpha})} \\
\hat{\sigma}^{2}{ }_{Y W} & =S^{2}=\frac{\left(2 \hat{\beta}^{2}+\hat{\theta}^{2}\right)\left(1-\hat{\alpha}+\hat{\theta}+\hat{\alpha}^{2} \hat{\theta}\right)+\hat{\beta} \hat{\theta}\left(4-4 \hat{\alpha}+3 \hat{\theta}+3 \hat{\alpha}^{2} \hat{\theta}\right)}{(\hat{\alpha}-1)^{2}(1+\hat{\alpha}) \hat{\theta^{2}}(\hat{\beta}+\hat{\theta})^{2}}
\end{aligned}
$$

respectively.

4.2.3 Simulation Results

In this section, we produce 1,000 samples from the $N L I N A R N(1)$ model for true parameter values in different settings (1) $\alpha=0.1, \beta=0.1, \theta=0.5$; (2) $\alpha=0.4, \beta=$ $0.3, \theta=0.8 ;(3) \alpha=0.7, \beta=0.5, \theta=1.5$ of different sample sizes $n=50,500,1000$ by using the statistical software R and obtain estimators of parameters from two methods described in Section 4.2.2. Then we compare the obtained estimators in terms of their

$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.1,0.5,0.1,2.5926,7.9199)$						
n	$\hat{\alpha}_{C L S}$	$\hat{\mu}_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{Y W}$	$\hat{\sigma}_{Y W}^{2}$
50	$\begin{gathered} 0.0957 \\ (0.0191) \\ \hline \end{gathered}$	$\begin{gathered} 3.6178 \\ (0.2886) \\ \hline \end{gathered}$	$\begin{gathered} 10.7572 \\ (12.4924) \\ \hline \end{gathered}$	$\begin{gathered} 0.0706 \\ (0.0193) \\ \hline \end{gathered}$	$\begin{gathered} 3.6174 \\ (0.2801) \\ \hline \end{gathered}$	$\begin{gathered} 10.9366 \\ (12.7226) \\ \hline \end{gathered}$
500	$\begin{gathered} 0.0951 \\ (0.0091) \end{gathered}$	$\begin{gathered} 2.5492 \\ (0.0934) \end{gathered}$	$\begin{gathered} \hline 7.6828 \\ (4.4768) \end{gathered}$	$\begin{gathered} 0.0966 \\ (0.0021) \end{gathered}$	$\begin{gathered} \hline 2.5825 \\ (0.0172) \end{gathered}$	$\begin{gathered} 7.8631 \\ (0.9130) \end{gathered}$
1000	$\begin{gathered} 0.0994 \\ (0.0011) \end{gathered}$	$\begin{gathered} 2.5891 \\ (0.0096) \end{gathered}$	$\begin{gathered} 7.8796 \\ (0.4493) \end{gathered}$	$\begin{gathered} 0.0986 \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} 2.5900 \\ (0.0095) \end{gathered}$	$\begin{gathered} 7.8860 \\ (0.4493) \end{gathered}$
$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.4,0.8,0.3,2.6515,6.3980)$						
n	$\hat{\alpha}_{C L S}$	$\hat{\mu}_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{Y W}$	$\hat{\sigma}_{Y W}^{2}$
50	$\begin{gathered} 0.3677 \\ (0.0181) \\ \hline \end{gathered}$	$\begin{gathered} 2.6110 \\ (0.2911) \\ \hline \end{gathered}$	$\begin{gathered} 6.0872 \\ (6.0744) \\ \hline \end{gathered}$	$\begin{gathered} 0.3442 \\ (0.0186) \\ \hline \end{gathered}$	$\begin{gathered} 2.6207 \\ (0.2770) \\ \hline \end{gathered}$	$\begin{gathered} 6.1152 \\ (5.7594) \\ \hline \end{gathered}$
500	$\begin{gathered} \hline 0.3805 \\ (0.0120) \\ \hline \end{gathered}$	$\begin{gathered} 2.6275 \\ (0.1519) \end{gathered}$	$\begin{gathered} \hline 6.2051 \\ (3.0989) \end{gathered}$	$\begin{gathered} 0.3956 \\ (0.0025) \\ \hline \end{gathered}$	$\begin{gathered} 2.6407 \\ (0.0301) \end{gathered}$	$\begin{gathered} 6.3318 \\ (0.6778) \\ \hline \end{gathered}$
1000	$\begin{gathered} 0.3980 \\ (0.0011) \end{gathered}$	$\begin{gathered} 2.6495 \\ (0.0157) \end{gathered}$	$\begin{aligned} & 6.3937 \\ & (0.3335) \end{aligned}$	$\begin{gathered} 0.3970 \\ (0.0011) \end{gathered}$	$\begin{gathered} 2.6499 \\ (0.0157) \end{gathered}$	$\begin{gathered} 6.3952 \\ (0.3324) \end{gathered}$
$\left(\alpha, \theta, \beta, \mu, \sigma^{2}\right)=(0.7,1.5,0.5,2.7778,9.3682)$						
n	$\hat{\alpha}_{C L S}$	$\mu_{C L S}$	$\hat{\sigma}_{C L S}^{2}$	$\hat{\alpha}_{Y W}$	$\hat{\mu}_{Y W}$	${ }_{\text {YW }}$
50	$\begin{gathered} 0.6050 \\ (0.0201) \end{gathered}$	$\begin{gathered} 2.6025 \\ (1.1181) \end{gathered}$	$\begin{gathered} 8.8744 \\ (181.3861) \end{gathered}$	$\begin{gathered} 0.5815 \\ (0.0204) \end{gathered}$	$\begin{gathered} 2.6038 \\ (0.8418) \end{gathered}$	$\begin{gathered} 8.8838 \\ (28.7368) \\ \hline \end{gathered}$
500	$\begin{gathered} 0.6485 \\ (0.0102) \\ \hline \end{gathered}$	$\begin{gathered} 2.7759 \\ (0.5445) \\ \hline \end{gathered}$	$\begin{gathered} 8.9004 \\ (23.3691) \\ \hline \end{gathered}$	$\begin{gathered} 0.6854 \\ (0.00219) \\ \hline \end{gathered}$	$\begin{gathered} 2.7777 \\ (0.1003) \\ \hline \end{gathered}$	$\begin{gathered} 9.1168 \\ (4.3118) \\ \hline \end{gathered}$
1000	$\begin{gathered} \hline 0.6922 \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} 2.7698 \\ (0.0444) \\ \hline \end{gathered}$	$\begin{gathered} 9.2245 \\ (2.1964) \\ \hline \end{gathered}$	$\begin{gathered} 0.6912 \\ (0.0011) \end{gathered}$	$\begin{gathered} \hline 2.7699 \\ (0.0439) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.2890 \\ (2.1828) \\ \hline \end{gathered}$

Table 4.2: Mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2} for the NLINARN(1) model
means and variances. Table 4.2 shows mean and variance (in brackets) of the estimators for different values of the parameters α, μ and σ^{2}.

From Table 4.2, we observe that the estimators obtained from the two estimation methods converge to the true parameters. In addition, increasing the sample size yields smaller variance. The conditional least squares estimate (CLS) and the Yule-Walker estimate (YW) are approximately the same. Considering the variance, we can see that the CLS estimators have smaller variance than the YW estimators for the parameter α. However, the YW has smaller variance than the CLS for the parameters σ^{2} and μ. Then, considering the mean, we can see that the YW estimators converge to the true parameters faster than the CLS estimators for the parameters σ^{2} and μ.

4.2.4 Real data

In this section, we apply the two models with two real data sets : (1) the incidents of acute febrile mucocutaneous lymph node syndrome and (2) the numbers of earthquakes per year magnitude 7.0 or greater (1900-1998).

4.2.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome (MCLS)

The first example considers the data give weekly counts of the incidents of acute febrile mucocutaneous lymph node syndrome (MCLS) in Totori-prefecture, Japan, during 1982. Sample mean and variance are 1.711 and 3.111 , respectively. The fitted $N L I N A R N(1)$ model is

$$
X_{t}=0.5241 * X_{t-1}+\varepsilon_{t}
$$

The predicted values of the numbers of MCLS series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})(1-\hat{\alpha})}=1.6843, \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})} .
\end{aligned}
$$

Substituting parameter estimates $\hat{\alpha}=0.5241$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=0.8016$.

$$
\hat{X}_{t}=0.5241 \hat{X}_{t-1}+0.8016, \quad t=2,3, \ldots, 52 .
$$

The expectation and variance computed from the $N L I N A R N(1)$ model are 1.684 and 3.111, respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

4.2.4.2 The number of earthquakes per year magnitude 7.0 or greater (19001998).

The second example considers the numbers of earthquakes per year magnitude 7.0 or greater (1900-1998). Sample mean and variance are 20.02 and 52.75 , respectively. The fitted $N L I N A R N(1)$ model is

$$
X_{t}=0.5434 * X_{t-1}+\varepsilon_{t}
$$

The predicted values of the numbers of earthquakes per year magnitude 7.0 or greater series are given by

$$
\begin{aligned}
& \hat{X}_{1}=\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})(1-\hat{\alpha})}=20.1283, \\
& \hat{X}_{t}=\hat{\alpha} \hat{X}_{t-1}+\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}
\end{aligned}
$$

Substituting parameter estimates $\hat{\alpha}=0.5434$ and $\frac{2 \hat{\beta}+\hat{\theta}}{\hat{\theta}(\hat{\beta}+\hat{\theta})}=9.1906$.

$$
\hat{X}_{t}=0.5434 \hat{X}_{t-1}+9.1906, \quad t=2,3, \ldots, 99
$$

The expectation and variance computed from the $N L I N A R N(1)$ model are 20.128 and 52.755 , respectively. We can see that the model can capture the sample mean and variance of the data set. Therefore, the model is reasonable to this data set.

CHAPTER V

CONCLUSIONS

In this work, we apply the new generalized Poisson-Lindley distribution to construct four new autoregressive model. The first model is the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley distribution based on the binomial thinning operator. The second model is the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley distribution based on the negative binomial thinning operator. The third model is the first order integervalued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the binomial thinning operator. The fourth model is the first order integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley innovation based on the negative binomial thinning operator. A summary of models discussed in this thesis is given below.

For each of these models from diagram, we have derived the probability mass function of the innovation and also some many properties of these models such as autocorrelation functions, multi-step ahead conditional expectation, variance and partial autocorrelation function. Moreover, we discussed estimations of the unknown parameters of the models by using the conditional least squares estimator (CLS) and the Yule-Walker estimator (YW). The estimators are compared via Monte Carlo simulations in terms of their means and variances. Applications of the models for real count time series were also discussed.

REFERENCES

[1] Aghababaei, J., Jones, M. and Lai, C.D. First-order integer valued AR processes with zero inflated Poisson innovations. Journal of Time Series Analysis, 33(6): 954-963, 2012.
[2] Alzaid, A.A., Abdulhamid, A. and Omair, A. Poisson difference integer valued autoregressive model of order one. Bulletin of the Malaysian Mathematical Sciences Society, 37(2):465-485, 2014.
[3] Alzaid, A.A. and Al-Osh, M.A. First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties. Statistica Neerlandica, 42:53-61, 1988.
[4] Alzaid, A.A. and Al-Osh, M.A. Some autoregressive moving average processes with generalized Poisson marginal distributions. Annals of the Institute of Statistical Mathematics, 45:223-232, 1993.
[5] Bakouch, H.S., Mohammadpour, M. and Shirozhan, M. Poisson-Lindley INAR(1) model with applications. Brazilian Journal of Probability and Statistics, 32(2): 262-280, 2018.
[6] Bakouch, H.S. Ristic, M.M. and Nastic, A.S. A new geometric first order integervalued autoregressive (NGINAR(1)) process. Statistical Planning and Inference, 139:2218-2226, 2009.
[7] Bhati, D., Sastry, D. and Qadri, P. A new generalized Poisson-Lindley distribution: Applications and properties. Austrian Journal of Statistics, 44(4):35-51, 2015.
[8] Kurt, B. The number of traded shares: A time series modelling approach. Umea Economic Studies, 860, 2013.
[9] Mahmoudi, E., Rostami, A. and Roozegar, R. A new integer-valued AR(1) process with Poisson-Lindley innovation. Statistics Applications, Accepted:https:// arxiv.org/abs/1802.00994v1, 2018.
[10] McKenzie, E. Some simple models for discrete variate time series. JWater Resources Bulletin, 21:645-650, 1985.
[11] R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, :ISBN 3-900051-07-0, URL http://www.R-project.org.
[12] Sankaran, M. The discrete Poisson-Lindley distribution. Biometrics, 26:145-149, 1970.
[13] Shanbhag, D., McKenzie, E. and N.(ed) et al. Discrete variate time series stochastic processes: Modeling and simulation. North Holland, Handbook of Statistics, 21: 573-606, 2003.
[14] Shanker, R. and Sharma, S. A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics, 4:363-368, 2013.
[15] Steutel, F.W. and Van Harn, K. Discrete analogues of self-decomposability and stability. Annals of Probability, 7:893-899, 1979.
[16] Xiang, H., Nannan, Y. and Mi, C. Risk aggregation based on the Poisson $\operatorname{INAR}(1)$ process with periodic structure. Lithuanian Mathematical Journal, 58:505-515, 2017.

จุฬาลงกรณ์มหาวิทยาลัย
Chulalongkorn University

VITA

[^0]: Department \qquad Student's Signature \qquad
 Computer Science
 Advisor's Signature \qquad
 Field of Study : .. Applied Mathematics and Computational Science

 Academic Year : . . 2019

