

A GENERATIVE ADVERSARIAL NETWORK FOR GENERATING REALISTIC USERS
USING EMBEDDING FROM RECOMMENDATION SYSTEMS

Miss Parichat Chonwiharnphan

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University

เจเนอเรทีฟแอดเวอเซอเรียลเน็ตเวิร์คส ำหรับกำรสร้ำงผูใ้ชง้ำนเหมือนจริงโดยใชก้ำรฝังตวัจำก
ระบบแนะน ำ

น.ส.ปำริฉตัร ชลวิหำรพนัธ์

วิทยำนิพนธ์น้ีเป็นส่วนหน่ึงของกำรศึกษำตำมหลกัสูตรปริญญำวิทยำศำสตรมหำบณัฑิต
สำขำวิชำวิทยำศำสตร์คอมพิวเตอร์ ภำควิชำวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศำสตร์ จุฬำลงกรณ์มหำวิทยำลยั
ปีกำรศึกษำ 2562

ลิขสิทธ์ิของจุฬำลงกรณ์มหำวิทยำลยั

Thesis Title A GENERATIVE ADVERSARIAL NETWORK FOR

GENERATING REALISTIC USERS USING EMBEDDING
FROM RECOMMENDATION SYSTEMS

By Miss Parichat Chonwiharnphan
Field of Study Computer Science
Thesis Advisor Dr. Ekapol Chuangsuwanich

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirement for the Master of Science

Dean of the Faculty of Engineering
 (Professor Dr. SUPOT TEACHAVORASINSKUN)

THESIS COMMITTEE

Chairman
 (Assistant Professor Dr. Proadpran Punyabukkana)

Thesis Advisor
 (Dr. Ekapol Chuangsuwanich)

Examiner
 (Associate Professor Dr. ATIWONG SUCHATO)

External Examiner
 (Dr. Pipop Thienprapasith)

 iii

ABSTRACT (THAI) ปำริฉตัร ชลวิหำรพนัธ์ : เจเนอเรทีฟแอดเวอเซอเรียลเน็ตเวิร์คส ำหรับกำรสร้ำงผูใ้ชง้ำน

เหมือนจริงโดยใชก้ำรฝังตวัจำกระบบแนะน ำ. (A GENERATIVE ADVERSARIAL
NETWORK FOR GENERATING REALISTIC USERS USING EMBEDDING
FROM RECOMMENDATION SYSTEMS) อ.ท่ีปรึกษำหลกั : ดร.เอกพล ช่วงสุวนิช

ขอ้มูลลูกคำ้หรือผูใ้ช้งำนเว็บไซต์นั้นถูกใช้ในธุรกิจเพื่อท่ีจะเขำ้ใจถึงพฤติกรรมของ

ผูใ้ช้งำน และเพื่อหำกลยุทธ์ใหม่ท่ีเป็นประโยชน์ต่อธุรกิจ อย่ำงไรก็ตำมวิธีกำรทั่วไปนั้นไม่
สำมำรถใชไ้ดเ้ม่ือของส่ิงนั้นเป็นสินคำ้ใหม่ท่ียงัไม่มีกำรตอบรับจำกผูบ้ริโภค เพรำะว่ำในควำม
เป็นจริงเรำยงัไม่มีข้อมูลของสินค้ำใหม่เหล่ำนั้ น งำนวิจัยน้ีจัดท ำขึ้ นเพื่อเสนอวิธีกำรสร้ำง
ผูใ้ชง้ำนท่ีเหมือนของจริงโดยขึ้นอยูก่บัลกัษณะของสินคำ้ใหม่ท่ีจะวำงขำย แบบจ ำลองของเรำใช้
เจเนอเรทีฟแอดเวอเซอเรียลเน็ตเวิ ร์คแบบมีเง่ือนไข (Conditional Generative Adversarial
Network: CGAN) และ Straight-Through Gumbel estimator เพื่อให้แบบจ ำลองของเรำสำมำรถ
สร้ำงขอ้มูลค่ำไม่ต่อเน่ืองได้ แบบจ ำลองของเรำจะรับขอ้มูลลกัษณะของสินคำ้ใหม่ท่ีจะวำงขำย
ซ่ึงลกัษณะสินคำ้นั้นจะถูกแปลงให้เป็นเวกเตอร์สินคำ้ฝังตวั (Product Embedding vector) โดย
กำรใช้ระบบแนะน ำ (Recommendation System) ซ่ึงเวกเตอร์น้ีจะสำมำรถเก็บควำมสัมพันธ์
ระหว่ำงสินคำ้ไดดี้ทั้งในมุมของลกัษณะสินคำ้และมุมมองควำมชอบของผูใ้ชง้ำน กำรทดลองน้ี
ใชข้อ้มูลกำรเขำ้ใชง้ำนเวบ็ไซตอ์สังหำริมทรัพยข์องผูใ้ชง้ำน ผลลพัธ์แสดงให้เห็นว่ำ แบบจ ำลอง
ของเรำมีประสิทธิภำพสูงกว่ำอีก 2 วิธี โดยใช้กำรวดัประสิทธิภำพจำก 4 ตวัวดัและยงัสำมำรถ
สร้ำงขอ้มูลไดเ้หมือนของจริงแมจ้ ำนวนขอ้มูลในบำงลกัษณะจะต่ำงกนัมำกก็ตำม

สำขำวิชำ วิทยำศำสตร์คอมพิวเตอร์ ลำยมือช่ือนิสิต ..
ปีกำรศึกษำ 2562 ลำยมือช่ือ อ.ท่ีปรึกษำหลกั

 iv

ABSTRACT (ENGLISH) # # 6070939521 : MAJOR COMPUTER SCIENCE

KEYWORD: Generative Adversarial Network, Data Generation, Product Embedding,
Generative Model, Gumbel-Softmax Distribution

 Parichat Chonwiharnphan : A GENERATIVE ADVERSARIAL NETWORK FOR
GENERATING REALISTIC USERS USING EMBEDDING FROM
RECOMMENDATION SYSTEMS. Advisor: Dr. Ekapol Chuangsuwanich

User data has been used by many companies to understand user behaviors and

find new business strategies. However, common techniques could not be used when it comes to
new products that have not yet been released due to the fact that there are no prior data
available. In this work, we propose a framework for generating realistic user data on new
products which can then be analyzed for insights. Our model uses Conditional Generative
Adversarial Network (CGAN) with the Straight-Through Gumbel estimator which can also
handle discrete-valued outputs. The CGAN is conditioned on product features learned using a
recommendation system which can better capture the relationship between products.
Experiments using a dataset consisting of view logs from a real estate listing website shows
that our model outperforms other baselines on four performance metrics and can effectively
predict the finer characteristics of new products.

Field of Study: Computer Science Student's Signature
Academic Year: 2019 Advisor's Signature

 v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

กำรท่ีวิทยำนิพนธ์ฉบบัน้ีส ำเร็จลุล่วงไปด้วยดีนั้น นอกจำกกำรท ำงำนของผูว้ิจยัแลว้ ยงัมี
บุคคลท่ำนอ่ืนท่ีเป็นส่วนส ำคญัท่ีได้ให้ควำมช่วยเหลือในกำรจดัท ำวิทยำนิพนธ์ฉบบัน้ีขึ้นมำ ผูว้ิจยั
รู้สึกซำบซ้ึงในควำมกรุณำเหล่ำน้ีเป็นอย่ำงมำกจึงใคร่ขอใช้เน้ือหำในส่วนกิตติกรรมประกำศของ
วิทยำนิพนธ์ฉบบัน้ีแสดงควำมขอบพระคุณเป็นอยำ่งสูงมำ ณ ท่ีน้ี

ขอขอบคุณอำจำรยท่ี์ปรึกษำ ดร.เอกพล ช่วงสุวนิช ผูท่ี้คอยให้ควำมช่วยเหลือและค ำปรึกษำ
ใหง้ำนวิจยัและวิทยำนิพนธ์ฉบบัน้ีส ำเร็จลุล่วง

ขอขอบคุณ บริษทั homedottech ท่ีใหก้ำรสนบัสนุนขอ้มูลเพื่อท ำงำนวิจยัน้ี
สุดทำ้ยน้ี ผูว้ิจยัขอขอบพระคุณบิดำมำรดำ และครอบครัว ซ่ึงเปิดโอกำสให้ไดรั้บกำรศึกษำ

เล่ำเรียน ตลอดจนคอยช่วยเหลือและใหก้ ำลงัใจผูว้ิจยัเสมอมำจนส ำเร็จกำรศึกษำ

Parichat Chonwiharnphan

TABLE OF CONTENTS

 Page
 ... iii

ABSTRACT (THAI)... iii

 ... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER I INTRODUCTION .. 11

1.1 Background ... 11

1.2 Objective ... 13

1.3 Scope of Work ... 13

1.4 Outcomes ... 13

3.1 Research Methodology .. 14

3.2 Research Paper .. 14

CHAPTER II RELATED THEORIES .. 15

2.1 Embedding .. 15

2.2 Neural Network ... 16

2.3 Distance Metric ... 22

2.4 Deep Generative Model .. 24

2.5 Gumbel-Softmax Distribution ... 30

 vii

CHAPTER III LITERRATURE REVIEW.. 33

3.1 Product Embedding ... 33

3.2 Generating new realistic samples approaches ... 34

CHAPTER IV METHODOLOGY .. 38

4.1 Dataset ... 38

4.2 Product Embedding ... 42

4.3 Generative Model .. 43

CHAPTER V EXPERIMENTAL RESULT .. 46

5.1 Experiment Setup .. 46

5.2 Evaluation Metric .. 46

5.3 Baseline Product Embedding Model ... 51

5.4 Baseline Generation Approach ... 52

5.5 Results and discussion ... 54

CHAPTER VI CONCLUSION ... 59

6.1 Conclusion ... 59

6.2 Future work ... 60

REFERENCES ... 61

VITA ... 64

LIST OF TABLES

 Page
Table 1 An example of our web log data .. 39

Table 2 An example of user features that visited project in the website .. 39

Table 3 The overall performance for 1 feature based on 4 metrics .. 55

Table 4 The overall performance for 2 features based on 4 metrics ... 55

Table 5 The performance of our approach for each feature .. 56

LIST OF FIGURES

 Page
Figure 1 Example of word embedding vector in embedding space .. 15

Figure 2 Perceptron’s component ... 16

Figure 3 Feedforward neural network’s operation .. 18

Figure 4 LSTM’s operation... 19

Figure 5 An example of GRU’s operation .. 20

Figure 6 Example of Wasserstein distance calculation modified from figure 7 [17] 24

Figure 7 Deep generative model (Reference from figure 9 [18]) ... 24

Figure 8 Autoencoder’s architecture ... 25

Figure 9 Variational Autoencoder’s architecture .. 26

Figure 10 Generative Adversarial Network’s architecture ... 28

Figure 11 The standard Gumbel distribution .. 30

Figure 12 The Gumbel-Softmax distribution when use the high temperature (𝜏) and low
temperature (𝜏) (Reference from figure 1 [14]) ... 31

Figure 13 The Straight-Through Gumbel Estimator’s operation .. 32

Figure 14 The Continuous Bag of Words (CBOW) and the Skip-gram model 33

Figure 15 Architecture of CGAN and InfoGAN .. 36

Figure 16 The architecture of ec2GAN ... 37

Figure 17 The overview of our system ... 38

Figure 18 The distribution of number of projects per user which visited more than 1 project. 40

Figure 19 The distribution of number of users per project ... 41

Figure 20 The distribution of number of projects per user ... 41

 x

Figure 21 The recommendation system used to produce product embeddings 42

Figure 22 The encoder of each sequence .. 43

Figure 23 The GAN model for web log generation .. 44

Figure 24 Example of our metrics .. 50

Figure 25 ULMFiT Model (Reference from figure 1 [38]) .. 51

Figure 26 The product embedding from Autoencoder.. 52

Figure 27 A nearest neighbor approach .. 53

Figure 28 Conditional Variational Autoencoder approach ... 54

Figure 29 An example of the distribution comparison of each user features between the ground-
truth users and generated users ... 58

 11

CHAPTER I

INTRODUCTION
1.1 Background

 With the rapid growth of online service, website becomes one of the main channels
where people access their favorite content. The data from these websites, often collected in web
logs, becomes a source for mining insights about the users, which can be very valuable for
business. Techniques such as association mining [1], sequential pattern mining [2], or clustering
[3] can be used on web log data to improve profitability. For e-commerce websites,
recommendation engines [4] can be trained on the logs to improve conversion rate and thus
increase the revenue.

Another business use case for the study of web log is for product development. Based on
the web log data, if business can identify the characteristics of target users who are likely to be
interested in the new product before its release, they will have more useful insights for product
development, user targeting, marketing channel strategy and the best time to launch new
campaigns without conducting market survey. The goal of this work is to forecast users' responses
to novel products by learning from web log data.

Generative Adversarial Network (GAN) [5] is a generative model for learning from such
distribution and generating new realistic samples. It has been successfully applied to computer [6-
10] and natural language processing domains [11, 12]. The model consists of two neural
networks: a generator and a discriminator. The generator learns to generate new (fake) samples
which look similar to the real sample. The discriminator learns to discriminate between real data
and fake generated sample and send the feedback to the generator so that it can generate better
fake samples.

Moreover, GAN can be trained to control the mode of generated output by adding some
kinds of conditional signal, such as class label, to both the generator and the discriminator. This
model is called a Conditional Generative Adversarial Network [6]. A relevant work [13] was
proposed to apply CGAN for generating novel plausible orders on the e-commerce website in

 12

order to forecast the demand, the seasonality, the characteristic of the customer, etc. The input to
the model used for conditioning the order is the product name so that the model can be used to
estimate orders of new products on the platform. However, the orders that they generated are
embeddings that are used as inputs to a separate set of models which will convert the embedding
into meaningful information. This is due to the limitation of GAN that it cannot handle discrete
value generation well, thus they need to train classifiers to extract the characteristics from
generated order representation which makes the training process sophisticated and hard to
maintain.

Similarly, our work also tries to generate realistic logs of user for new products, but on
the real estate domain. Our data comes from Home.co.th, a real estate listing website in Thailand,
which has more than one million views per month. Given a characteristic of a novel real estate,
such as the location, the price, the size, the facilities, etc. we generate web logs which can be then
aggregated to predict the characteristics of target users for the real estate. Our key technical
contributions are enumerated below:

• Recommendation based product embedding: prior works used product descriptions for
the conditioning signal. The product description was converted into word embeddings
which mean that it can only capture the characteristics of the products as it is explicitly
written. It cannot capture other associations such as a person that likes condominiums
that are closer to the public transportation system might prefer a condominium with a
gym. In order to capture these kinds of relationship, we propose the use of recommender-
based embedding which is learned via a deep recommender system.

• A generation approach for web log data with discrete outputs: prior works used a two-
step process in order to summarize user characteristics. On the other hand, we handle the
limitation of discrete outputs for GAN by using Straight-Through Gumbel Estimator [14,
15] which help simplify the pipeline and reduce error propagation of the models.

For evaluation, it is difficult to measure the quality of generated outputs generated by
GAN, especially in non-visual domains. We use four metrics to evaluate the results: Relative
Similarity Measure (RSM) [13], Correlation Coefficient (CORR), Earth-Mover Distance (EMD)
and Root Mean Squared Error (RMSE). We compare our model with two baseline generation

 13

approaches: the nearest neighborhood and a Conditional Variational Autoencoder (CVAE) [16].
The results show that our generator generates the realistic users that are indistinguishable and
outperforms the baseline approaches in these metrics.

1.2 Objective

This work aims to build a conditional generative adversarial network for generating
realistic users who are likely to visit each project in a website in order to know the characteristic
of target users before launch new projects. The performance of this model is better than baseline
models.

1.3 Scope of Work

1. This work is trained on web log data from a real estate search engine website to
generate users who are likely to visit each project in website.

2. This work generates new users and summarize to the proportion of each
characteristic. We did not cover number of visited user estimation or demand
forecasting for each project.

1.4 Outcomes

1 An efficiency generation model that takes the characteristic of novel product and
outputs the realistic users who are likely to be interested in that product. The
generated characteristics of user can be both continuous and discrete value. This
result can be summarized to the characteristics of targeted users.

2. To improve the performance of generating realistic users based on particular product,
we build the product embedding model by using recommendation system. This
embedding model used the sequence of products which are generated by user when
visit website so, the product embedding can capture the relation between products in
term of similar characteristic and user preference.

3. This framework can be applied with other industries such as retail industry.

 14

3.1 Research Methodology

1. Study the related works and related theories
2. Data exploration
3. Data Preprocessing
4. Implement baseline models
5. Design model
6. Implement the proposed model
7. Result analysis and tuning

3.2 Research Paper

“Generating Realistic Users Using Generative Adversarial Network with
Recommendation-based Embedding” (Awaiting for reply from IEEE Access)

 For the remaining parts, in chapter II, we detail the related theories which consists of
five topics: embedding, neural network, distance metric, deep generative model, and Gumbel-
Softmax distribution. Chapter III covers literature review. We discuss related works contributed
to product embedding and new approaches for generating realistic samples. The next chapter is
methodology which is described the dataset and our approach. This approach is divided to two
parts: product embedding model and generation model. The product embedding model is used to
embed the product features into the embedding vector which capture the relationship between
products. The generation model is used to generate realistic users given on product. Chapter V is
experimental result. This part covers baseline approaches for both product embedding model and
generation model, evaluation metrics, and model performance. The last chapter is conclusion and
future work.

 15

CHAPTER II

RELATED THEORIES
 In this section, we will explain the related theories divided into 5 topics as follows:
embedding, neural network, distance metric, deep generative model and Gumbel-Softmax
distribution.

2.1 Embedding

To transform the categorical variable into continuous vector, there are 2 main methods: one-
hot encoding and embedding. The one-hot encoding is a simple mapping the categorical variable
to a binary vector with length equal to the number of categories. This vector is assigned value of 0
except the one index which is assigned with 1 to identify the value of that categorical variable.
The limitation of one-hot encoding is that if we have 10,000 categories, the vector to represent
this will be a 10,000-dimensional vector for each category. This vector is sparse and
computationally expensive.

An embedding is a mapping of a categorical variable into low-dimensional and continuous
vector. An ideal embedding can capture the semantics of the input by mapping the similar inputs
close together in the embedding space. As the Figure 1, if the words are similar, their embedding
vectors are closer. Thus, adding and subtracting embeddings can be interpreted. An embedding is
considered as a dense and compact representation of feature vector.

Figure 1 Example of word embedding vector in embedding space

 16

2.2 Neural Network

A neural network is a model that imitates the human brain operation to recognize patterns
based on training data to predict the unseen data.

2.2.1 Perceptron

Perceptron is a simplest type of neural network. This is a model of single neuron for
binary classification.

Figure 2 Perceptron’s component

As Figure 2, the components of a perceptron are enumerated as:

• Input layer: the input of a perceptron is numerical vector of all features which are
denoted as [x1, x2, … , xn] where n is the number of input features.

• Weight: each input has an associated weight which is learned and adjusted when
training model. The weight of each input is relative to the important to other inputs. w0 is
a bias that is a constant. The bias value allows to shift the decision boundary for better
quality of model and does not depend on any input value.

• Weighted summation: This node applies a function to weighted sum of input value
(𝑥𝑖) with associated weight (𝑤𝑖) of each input. The formula is denoted as:

 𝑦 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (1)

 17

This output is transferred to the next layer.
• Step function or Activation function: this function is mathematical gate between the

input and output to the next layer. This function uses to determines whether each neuron
should be activated or not based on the relevant for prediction and also uses to normalize
the scale of output. The non-linear activation function can help the network learn
complex data. The example of activation function is shown below:

• Sigmoid function: this function normalizes the output value between 0 and 1 and
is calculated as the below formula:

 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (2)

• Softmax function: the output values bound is between 0 and 1. This is used as
the probability of each class. Thus, the summation of this value is equal to 1 as
the below formula:

 𝑓(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 (3)

• Tanh function: the output values bound is between -1 and 1.

 𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (4)

• ReLU (Rectified Linear Unit): this function is computationally efficient but
when inputs approach zero or negative, the gradient becomes zero. That makes
the network cannot perform backpropagation.

 𝑅(𝑧) = max (0, 𝑧) (5)

• Leaky ReLU: This function fixes the problem of ReLU when the inputs are zero
or negative. This has a small positive slope in the negative area for
backpropagation even negative input value.

 18

 𝑅(𝑧) = max (0.1 × 𝑧, 𝑧) (6)

To find the optimal weight of each node, the model learns from the training data to adjust the
weight as the following equation:

 𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 (7)

 ∆𝑤𝑖 = ∝ (𝑦̂ − 𝑦)𝑥𝑖 (8)

where 𝑦 is actual value, 𝑦̂ is the output value of model, and ∝ is learning rate that is a
hyperparameter to control the step size for updating the weight.

2.2.2 Feedforward Neural Network

Feedforward neural network is the multi-layer perceptron or fully connected network that
the connections between node do not form a loop. In Figure 3, the flow of information is forward
from the input nodes and then feed to the next layer, and finally to the output layer. Thus, each
node in each layer connects with every node in the following layer by weight (𝑤𝑖𝑗).

Figure 3 Feedforward neural network’s operation

2.2.3 Recurrent Neural Network (RNN)

Recurrent neural network is a network for sequential data. Instead of considering only
current input like feedforward neural network, this model takes both current input and output
from previous state as inputs for current state. The main problem is vanishing and exploding

 19

gradient during training model which always happen when the network must learn the long data
sequences. The value of gradient is smaller and may become to zero which means that model
does not learn anything. To handle this problem, Long Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU) were proposed.

2.2.1.1 Long Short Term Memory (LSTM)

The core concepts are the cell state that transfers the relevant information to the sequence
and gates that decided which information is important to keep or forget. This model consists of
three gates: forget gate, input gate and output gate.

Figure 4 LSTM’s operation

• Forget gate uses a sigmoid function to determine what information is relevant to keep
from the previous state. If the value is close to 1, the information is relevant to keep.

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (9)

• Input gate is a sigmoid function to determine what information is relevant to add from the
current state. A tanh layer creates a vector of new candidate values (𝐶̃𝑡).

 𝑖𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (10)

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (11)

 𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡 (12)

 20

• Output gate is a sigmoid function to determine what information is relevant to send to the
next hidden state.

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (13)

 ℎ𝑡 = 𝑜𝑡 ∙ tanh (𝐶𝑡) (14)

2.2.1.2 Gated Recurrent Unit (GRU)

This network is similar to LSTM, but it is faster than LSTM. Instead of using the cell
state to transfer information, GRU uses the hidden state with two gates: reset gate and update
gate.

Figure 5 An example of GRU’s operation

• Reset gate is used to decide how much the previous information to forget.

 𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡]) (15)

• Update gate is used to determine what previous information is relevant to keep and what
new information is relevant to add to the current state.

 𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡]) (16)

 ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ∙ [𝑟𝑡 × ℎ𝑡−1, 𝑥𝑡]) (17)

 21

 ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ℎ̃𝑡 (18)

Both LSTM and GRU have gates to regulate the flow of information, keep the relevant
information and pass along with sequences to make predictions.

2.2.4 Optimization Algorithm

Optimization algorithm is to minimize or maximize an objective function such as error
function, distance function, etc.

2.2.4.1 Stochastic Gradient Descent (SGD)

Gradient Descent is a convex function. This algorithm is an iterative method to find the
optimal values of parameters for finding the minimum value of cost function. At each iteration,
the algorithm calculates the gradient and update to the new weight as the following formula:

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝜕𝐽

𝜕𝑤
 (19)

where 𝑤 is weight of each node, 𝛼 is learning rate, 𝐽 is cost function and 𝜕𝐽

𝜕𝑤
 is gradient of cost

function. Instead of using all data for calculating the gradient for each iteration, stochastic
gradient descent randomly selects a sample to find out the gradient of the cost function at each
iteration. SGD is usually noisier than Gradient Descent algorithm, but the computation of SGD is
lower than Gradient Descent to reach the optimal.

2.2.4.2 Root Mean Square Propagation (RMSProp)

This algorithm is similar to the gradient descent algorithm with momentum that uses the
exponentially weighted average of the gradient for fixing the local optima problem. RMSProp
divides the learning rate by an exponentially decaying average of squared gradients as the
following equations:

 𝑔𝑡 =
𝜕𝐽𝑡

𝜕𝑤
 (20)

 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡 = 𝛾𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (21)

 22

 𝑤𝑡 = 𝑤𝑡−1 −
𝛼

√𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡

𝑔𝑡 (22)

where 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡 is exponential average of squared gradients and 𝛾 is hyperparameters.

2.2.4.3 Adaptive Moment Estimation Algorithm (Adam)

 This algorithm is an adaptive learning rate method to find the individual learning rate for
each parameter. It combines both gradient descent with momentum and RMSProp as the
following equations:

 𝑔𝑡 =
𝜕𝐽𝑡

𝜕𝑤
 (23)

 𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)𝑔𝑡 (24)

 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡 = 𝛾𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (25)

 𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝑣𝑡

√𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡

𝑔𝑡 (26)

2.3 Distance Metric

To measure the difference between two probability distributions, there are three common
measurements used in generative model.

2.3.1 Kullback-Leibler (KL) Divergence

KL divergence measures how much information we lose when we choose an
approximated distribution. The formula is defined as:

𝐷𝐾𝐿(𝑃|| 𝑄) = ∑ 𝑃(𝑥)𝑙𝑜𝑔

𝑃(𝑥)

𝑄(𝑥)

𝑛

𝑥=1

 (27)

Where 𝑃 is the real data distribution and 𝑄 is the one estimated from the model. KL
Divergence is not symmetric (𝐷𝐾𝐿(𝑃|| 𝑄) ≠ 𝐷𝐾𝐿(𝑄|| 𝑃)).

2.3.2 Jensen-Shannon (JS) Divergence

 23

Because KL Divergence is asymmetric, JS Divergence is a symmetric version and
smooth as the following formula:

 𝐷𝐽𝑆(𝑃|| 𝑄) =
1

2
𝐷𝐾𝐿(𝑃||

𝑃 + 𝑄

2
) +

1

2
𝐷𝐾𝐿(𝑄||

𝑃 + 𝑄

2
) (28)

Instead of distance between probability distributions of each other, this is an average of distance
between their probability distributions and average of them.

2.3.3 Earth-Mover Distance (EMD) or Wasserstein Distance

There is gradient vanishing problem for KL Divergence and JS Divergence when the
distribution 𝑄 far away from the distribution 𝑃. The Wasserstein distance has a smoother
gradient. It is the minimum cost of transporting in converting the data distribution 𝑄 to the data
distribution 𝑃 as the following formula:

 𝑊(𝑃, 𝑄) = inf
γ∈Π(𝑃,𝑄)

𝐸(𝑥,𝑦)∼γ [∥ 𝑥 − 𝑦 ∥] (29)

Where 𝛾 is a joint probability distribution. The Figure 6 shows examples of EMD calculation.
The yellow graph is the distribution of 𝑃 and the green graph is the distribution of 𝑄. The
minimum cost to transform distribution 𝑃 to distribution 𝑄 is 5. At step [1], the cost of
transforming 𝑃1 to 𝑄1 is moving 2 boxes from 𝑃1 to 𝑃2. The cost of transforming 𝑃2 to 𝑄2 is 2.
The last one is moving 1 box from 𝑃4 to 𝑃3. Thus, the total cost is summation of all moving.

 24

Figure 6 Example of Wasserstein distance calculation modified from figure 7 [17]

2.4 Deep Generative Model

For deep generative model as the Figure 1, this model learns via maximum likelihood
estimation. Models of the left branch construct an explicit density and maximize their likelihood.
Variational Autoencoder (VAE) is one of explicit approaches by making variational
approximations. While Generative Adversarial Networks (GAN) is an implicit approach which
directly sample from the distribution.

Figure 7 Deep generative model (Reference from figure 9 [18])

 25

2.4.1 Variational Autoencoder (VAE)

Standard Autoencoder [19] is a feed forward neural network for unsupervised learning.
The common usage is dimensionality reduction, feature selection and feature extraction. The
concept of model is learning to compress input (𝑥) into a latent vector that preserve the relevant
information and distribution of input. The output of model is the reconstructed input that is
similar to the original input. As Figure 8, the autoencoder consists of 2 neural networks: encoder
and decoder.

• The encoder is a neural network that takes input (𝑥) and compress it to latent vector or dense
representation (𝑧) of data (𝑥). This is called inference network which parameterizes the
approximate posterior of the latent variables 𝑧. The output is the distribution 𝑝∅(𝑧|𝑥).

• The decoder is a neural network that takes the latent representation (𝑧) and learn to
reconstruct original input. This is called generative network that outputs the likelihood
distribution 𝑝𝜃(𝑥|𝑧).

Figure 8 Autoencoder’s architecture

The loss function is to minimize the mean square error (MSE) or cross-entropy between
original inputs (𝑥) and outputs (𝑥̂) of the model. Thus, the representation contains the relevant
information for decoder. The limitation of autoencoder is new data generation. After we train
model, we get the encoder and decoder, but cannot generate any new data from this model.

 Variational Autoencoder (VAE) [20] resembles autoencoder, but VAE is a deep
generative model to generate new sample data. In order to use the decoder for new data

 26

generation, VAE generate the variations on input before passes to the decoder for new data
generation.

Figure 9 Variational Autoencoder’s architecture

 As Figure 9, VAE consists of 2 neural networks: an encoder and a decoder which are like
the autoencoder. To generate the variation for new data generation, VAE randomly sample latent
representations following a Gaussian distribution with mean (𝜇) and standard deviation (𝜎) that
are outputs from the encoder. The encoder outputs the latent distribution instead of latent
representation. The mean vector controls where the representation of an input should be centered,
and the standard deviation controls the variation from the mean of the representation. Thus, the
decoder can learn not only single point in latent space which refers to an input but also all nearby
points in latent space are referred to the same input. Moreover, the latent space is stochastic node
because of sampling. In model training, we cannot calculate the gradient via stochastic node.
Thus, the authors in [20] proposed “Reparameterization trick”. Instead of sampling 𝑧 from
Gaussian distribution with 𝜇 and 𝜎, this trick converts the sampling to calculate 𝑧 from 𝜇 +

 (𝜎2 × 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)). This trick allows gradient to flow via 𝜇 and 𝜎 nodes to update for
optimal weight.

 The loss function of VAE is to minimize the Evidence Lower Bound (ELBO) as the
following formula:

 27

 𝐸𝐿𝐵𝑂(𝜃, ∅) = 𝐸[𝑙𝑜𝑔 𝑝∅(𝑥|𝑧)] − 𝐷𝐾𝐿[𝑝𝜃(𝑧|𝑥)||𝑝(𝑧)] (30)

Where 𝑝∅(𝑥|𝑧) is the probability distribution of decoder’s output, 𝑝𝜃(𝑧|𝑥) is the probability
distribution of decoder’s output and 𝑝(𝑧) is the probability distribution of latent representation
which is a standard normal distribution. The first term 𝐸[𝑙𝑜𝑔 𝑝∅(𝑥|𝑧)] is the reconstruction
loss to encourage the decoder learns to reconstruct the new data over the representation. The
second term 𝐷𝐾𝐿[𝑝𝜃(𝑧|𝑥)||𝑝(𝑧)] is the regularization to make the distribution returned from
the encoder closes to the standard normal distribution. Thus, this term is measured by KL
divergence metric to calculate the distance between the encoder’s distribution and the prior
distribution.

2.4.2 Generative Adversarial Network (GAN)

Generative Adversarial Network [5] is a deep generative model which can generate
realistic samples that are similar to the training data. The model is composed of a generator (𝐺)
and a discriminator (𝐷) as Figure 10.

• The generator takes a random noise input that is sampled from standard normal
distribution or standard uniform distribution and learns to generate new realistic
samples.

• The discriminator decides whether a sample is from real or generated distribution.

The training of GAN is done as a minimax game where the discriminator tries to maximize
the likelihood to recognize real samples as real and generated samples as fake while the generator
would like to minimize it.

 28

Figure 10 Generative Adversarial Network’s architecture

 GAN aims to achieve an equilibrium between the generator and the discriminator. The
loss function of the discriminator is defined as:

 𝐽𝐷 = −
1

2
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎

[𝑙𝑜𝑔𝐷(𝑥)] −
1

2
𝐸𝑥~𝑝𝑧

[𝑙𝑜𝑔(1 − 𝐺(𝑥))] (31)

Where 𝑝𝑑𝑎𝑡𝑎 is real data distribution, 𝑝𝑧 is normal distribution (0, 1) or uniform distribution (0,
1). This is an entropy between real and generated distribution. For the generator, the loss function
is defined as:

 𝐽𝐺 = −𝐽𝐷 (32)

There are many problems in training GAN such as non-convergence, diminished
gradient, mode collapse when the generator produces limited varieties of samples, etc. One of
them is vanishing gradients. The loss function of GAN is the average of distance between the real
or generated distribution and the average of them. This is equivalent to the JS divergence. When
the generated distribution is far away from the real distribution, the gradient for the generator will
vanish. Moreover, there is no guarantee that JS divergence will be continuous and differentiable
everywhere [21].

 29

 Wasserstein Generative Adversarial Networks (WGAN) [21] was proposed to improve
GAN by using new loss function. They use Wasserstein distance that has a smoother gradient
than JS divergence as the loss function and rename the discriminator to the critic. The output of
critic is a scalar score without sigmoid function to measure how real the input sample are.
Computing the Wasserstein distance is hard to control. Thus, the approximation using
Kantorovich-Rubinstein duality is defined as below:

 𝑊(𝑃𝑟 , 𝑃𝑔) = 𝑠𝑢𝑝
‖𝑓‖𝐿≤1

𝐸𝑥∼𝑃𝑟
[𝑓(𝑥)] − 𝐸𝑥∼𝑃𝑔

[𝑓(𝑥)] (33)

Where 𝑃𝑟 is the real data distribution, 𝑃𝑔 is the generator distribution that tries to approximate 𝑃𝑟
and 𝑓 is a 1- Lipschitz function following the constraint: |𝑓(𝑥1) − 𝑓(𝑥2)| ≤ |𝑥1 − 𝑥2|.
Because of the constraint of Lipschitz continuity, we need to use weight clamping. The weights (
𝑤) of the critic must be constrained within a certain range [-c, c] by clipping 𝑤 after every
update to 𝑤. Thus, c is a hyperparameter that we need to tune. If the 𝑊(𝑃𝑟 , 𝑃𝑔) is small, the
output of the generator is close to the real sample.

 The difficulty in WGAN is tuning the bounds in weight clipping. If the bound is large, it
can take a long time for the weights to converge. If the bound is small, it can lead to vanishing
gradients when the network has many layers. To alleviate this issue, WGAN-GP [22] was
proposed. Instead of the weight clipping, the authors added a gradient penalty term into the loss
function to enforce the Lipschitz constraint during the training phase. The loss function of the
both discriminator (𝐽𝑊

𝐷) and generator (𝐽𝑊
𝐺) are defined as:

 𝐽𝑤
𝐷 = −𝐸𝑥~𝑝𝑔

[𝐷(𝑥)] + 𝐸𝑥~𝑝𝑟
[𝐷(𝑥)] − 𝜆𝐸𝑥~𝑝𝑥′

[‖𝛻𝑥𝐷(𝑥)‖2 − 1]2 (34)

 𝐽𝑤
𝐺 = −𝐽𝑤

𝐷 (35)

Where the last term is gradient penalty. 𝑝𝑥′ is a uniform distribution along the straight lines
between pairs of points which are sampled from the data distribution 𝑝𝑟 and the generated data
distribution 𝑝𝑔.

 30

2.5 Gumbel-Softmax Distribution

Because of the difficulty of training stochastic networks with discrete variables, the
authors in [14, 15] proposed Gumbel-softmax trick which can be used to backpropagate through
the softmax. We should begin with the Gumbel distribution, the Gumbel-Max trick and the
Gumbel-Softmax trick.

2.5.1 Gumbel Distribution

The Gumbel distribution is proposed in [23] by Gumbel to model the extreme value
distribution which has two parameters: 𝜇 and 𝛽. The standard Gumbel distribution is the case
where 𝜇 = 0 and 𝛽 = 1 as the Figure 11. This distribution can be drawn by inverse transform
sampling as the following formula:

 𝑔 = −𝑙𝑜𝑔(−𝑙𝑜𝑔(𝑢)) (36)

where 𝑢 is a uniform distribution on the interval (0, 1).

Figure 11 The standard Gumbel distribution

2.5.2 Gumbel-Max trick

The Gumbel-Max trick was proposed in [24] to draw a sample from a discrete
distribution as the below formula:

 31

 𝑧 = 𝑜𝑛𝑒ℎ𝑜𝑡(𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑔𝑖 + 𝑙𝑜𝑔𝜋𝑖]) (37)

Where 𝑜𝑛𝑒ℎ𝑜𝑡 is a function to encode categorical variable into binary vector which is sparse
matrix, 𝑎𝑟𝑔𝑚𝑎𝑥 is a function to return the maximized value, 𝑔𝑖 is a noise which is drawn from
the standard Gumbel distribution or 𝐺𝑢𝑚𝑏𝑒𝑙(0,1), and 𝜋𝑖 is class probabilities.

2.5.3 Gumbel-Softmax trick

Because of the Gumbel-Max trick is not differentiable because of argmax layer, the
Gumbel-Softmax trick was proposed in [14, 15] by using the softmax function to approximate the
argmax as the following equation:

 𝑦𝑖 =
𝑒𝑥𝑝(𝑙𝑜𝑔(𝜋𝑖) + 𝑔𝑖)/𝜏

∑ 𝑒𝑥𝑝(𝑙𝑜𝑔(𝜋𝑖) + 𝑔𝑖)/𝜏𝑘
𝑗=1

 (38)

Where 𝜏 is the softmax temperature parameter. When 𝜏 approaches zero, the expected value of
the Gumbel-Softmax distribution is identical to a discrete distribution. At higher 𝜏, the expected
value converses to a uniform distribution. The Gumbel-Softmax function yields a smooth gradient
at high 𝜏, but can become unstable at low 𝜏. At high 𝜏 can be used at the start of the training and
anneal to a small but non-zero value.

Figure 12 The Gumbel-Softmax distribution when use the high temperature (𝜏) and low
temperature (𝜏) (Reference from figure 1 [14])

2.5.4 Straight-Through Gumbel Estimator

For scenarios that requires sampling of discrete values such as ones in GAN, the authors
in [14] proposed the Straight-Through (ST) Gumbel Estimator. The forward pass is done by

 32

normal sampling, but the backward pass is done by backpropagating the Gumbel-Softmax to
approximate the gradient which is shown in Figure 13.

Figure 13 The Straight-Through Gumbel Estimator’s operation

 33

CHAPTER III

LITERRATURE REVIEW
In this work, we bring together elements from related works contributed to product

embedding and generating new realistic samples approaches. We briefly review them below.

3.1 Product Embedding

An embedding can be considered as a dense and compact representation of feature
vectors. Good embedding should have the property that if the features are similar in some sense,
their embedding vectors are closer. Word2Vec, which was proposed in [25], is a popular
embedding technique for textual data. Two words are considered similar semantically by their
surrounding words and co-occurrence. The authors proposed two methods to learn Word2Vec
embedding: Continuous Bag of Words (CBOW), which predict the current word based on
surrounding words, and Skip-gram, which predict context words given the current word.

Figure 14 The Continuous Bag of Words (CBOW) and the Skip-gram model
(Reference from figure 3 [26])

For recommendation system, item embedding is a continuous vector which represents
item and tries to capture the relationship of items. In [27], the authors proposed Item2Vec by
using the Word2Vec framework. They assumed that the items which share the same basket are

 34

similar in some sense regardless of the order that user generates. They predicted a item based on
other items in the same basket. The authors in [4] applied item embedding to improve the session-
based recommendation task. They embedded an item description to its embedding by using the
Word2Vec and the GloVe method as input to predict next clicked item in an e-commerce website.
In [28], the authors want to represent the relation between users and content for news
recommendation. They generated user representation by using a recurrent neural network (RNN)
while the content embedding was learned via denoising autoencoder. They shown that the click-
through rate improved by 23% and the total duration improved by 10% over not using
embeddings.

3.2 Generating new realistic samples approaches

Most works for generating new realistic samples are contributed by Variational
Autoencoder (VAE) and Generative Adversarial Network (GAN). In 2013, VAE was proposed in
[20]. This model is a kind of Autoencoder that can learn the distribution of the data. VAE can be
used to generate novel data samples by sampling from the learned distribution. To control the data
generation on VAE when we need to generate some specific data, Conditional Variational
Autoencoder (C-VAE) [16] was proposed in the following year by adding conditional input to the
both encoder and decoder networks. The decoder can generate new sample from based on the
additional information.

In application domains, VAE was used in natural language processing. [29, 30] applied
VAE with sequential model to the task of dialogue response generation by learn the distribution
of conversation. In [31], the authors used VAE to the latent image features and then generate
related captions of that image. JointVAE was proposed in [32] to learn both continuous and
discrete representations because the original VAE can learn the features with Gaussian
distribution. So, this work proposed to apply Gumbel-Softmax trick for discrete features.

 For recommender system, the authors in [33] applied VAE to generate new items which
maximally satisfy the preference of a group of users. They learned the share latent representation
between user and item features from user-item ratings. Embedding for product recommendations

 35

can be generated through weighted maximum coverage in a greedy manner. The item decoder
maps these latent representations to item features of novel items.

However, the author in [18] said that VAE usually fails to capture multimodal
distributions and usually generate lower quality outputs due to the gap between the lower bound
of approximate posterior distribution and the true data distribution. On the other hand, no
variational bound is needed in GAN. That makes GAN can generate better results.

In 2014, GAN was proposed in [5] by Ian J. Goodfellow . This model is a deep
generative model to generate new realistic samples. The generator learns how to generate realistic
outputs which can fool the discriminator. The discriminator learns to discriminate which input
come from real data or generated data. In [34], the authors proposed a conditional generative
adversarial network (CGAN) to control the specific output of generator. They add some
information (𝑦) such as class label and other modalities into both the generator and the
discriminator as the Figure 15. The loss function is same as the original GAN. InfoGAN [35] is
another work which conditioned the generation by adding the latent code to the generator. The
discriminator predicts which input come from real or generated data and outputs the latent code.
The loss function is added the mutual information between the latent code and the generator
output as a regularization term.

 GAN has been successfully applied in many application domains such as computer
vision and natural language processing. In [10], the authors proposed CycleGAN to transform
images from one domain to another domain. The authors in [7, 9] applied VAE and GAN to
repair and fill the missing parts of images, a tasked is called image inpainting. To improve the
quality of generated samples, there are many works that combine VAE and GAN, especially for
computer vision [6, 8, 36, 37]. VAE is an excellent generative model for learning representations
but generates blurry outputs, while GAN generates sharp outputs but cannot explicitly learn the
embeddings like VAEs. In [6], the authors used two generative models to capture the latent
spaces of hand poses and depth images for 3D hand pose estimation. VAE embedded features to
the share latent representation and GAN’s generator generated the 3D hand pose by latent
representation.

 36

Figure 15 Architecture of CGAN and InfoGAN

 For NLP, the limitation of GAN is in generating discrete outputs such as text because the
gradient cannot be back propagated through the argmax function used to generate a discrete
output. REINFORCE, a technique used in the reinforcement learning literature, can be used to
circumvent this issue [12]. However, it can lead to slow convergence and training instability. In
[11], the authors applied Gumbel-Softmax trick which was proposed in [14] for text generation to
handle discrete outputs. In business applications, [13] was recently proposed to apply GAN with
e-commerce data to generate the plausible orders related to a particular product in order to
understand the characteristics of future orders. This model is called ec2GAN. However, the output
of the generator is order embedding. Thus, the authors need to train classifiers to extract the
characteristics from generated order representation which makes the training process
sophisticated and hard to maintain.

 37

Figure 16 The architecture of ec2GAN

The key contributions of this work are enumerated below:
• We applied the conditional generative adversarial network with real-estate domain to

generate realistic logs of user for new products before its release.
• We handled the limitation of discrete outputs generation by using the Straight-

Through Gumbel Estimator instead of a two-step process as the prior work.
• We extracted the product embedding via the recommendation-based model. We

trained a Gated Recurrent Unit (GRU) to predict the next product that user will click.
Thus, the embedding can capture the similar product characteristics and also the
similar preference of users.

 38

CHAPTER IV

METHODOLOGY
 In this section, we describe the details of the dataset and our system for generating user
logs. Figure 17 shows an overview of our system. First, we embed the product features with some
embedding model. Then, we feed the product embedding to the generation model which will
output user logs. The logs can be analyzed to extract insight about the product used as the input.

Figure 17 The overview of our system

 For embedding model, we compare the performance of three approaches: using ULMFiT
with product description, using Autoencoder with product features and using recommendation
model with product features. For generation model, we also compare three approaches: nearest
neighbor approach (NN), conditional variational autoencoder (CVAE) and conditional generative
adversarial network (CGAN). Our proposed approach is using recommendation-based embedding
with CGAN.

4.1 Dataset

 Our web log data are from a real-estate search engine website (https://www.home.co.th)
from January 2018 to February 2018. There are around 1.5 million records and 5,400 property
projects. An example of the web log data is given in Table I. It consists of the user ID, the project
that the user visited, the device that the user used to access the website, the agent or operation
system, the referring page that the user was referred from, and the time of visit.

 39

Table 1 An example of our web log data

User id Project Device Agent Referring page Year Month Day Hour
8bx-xx-xxx 5174 Mobile iPhone Google 2018 1 15 8
8bx-xx-xxx 5476 Mobile iPhone Google 2018 1 15 8
1ax-xx-xxx 7956 Desktop Windows Direct 2018 1 15 12
F7x-xx-xxx 3924 Mobile Android Others 2018 1 16 21

4.1.1 User features

The user features (Ui) are created from the web log which contain the follow features:

• Customer characteristics:
• Device (Mobile, Desktop)
• Agent or operation system (Android, iPhone, iPad, Macintosh, Windows,

Others)
• Customer segmentation (based on K-mean clustering)

• Channel:
• Referring page (Google, Facebook, Direct, Others)

• Visit period:
• Day of week (Mon, Tue, Wed, Thu, Fri, Sat, Sun)
• Period (Morning, Afternoon, Evening, Night)

An example of features constructed from each log entry is shown in Table II.

Table 2 An example of user features that visited project in the website

Device Agent Referring page Cluster Weekday Period
Mobile iPhone Google 2 Mon Morning
Mobile iPhone Google 2 Mon Night
Desktop Windows Direct 1 Thu Afternoon
Mobile Android Others 35 Sat Evening

 40

To give a sense of our data, we show the histogram of each features in Figure 18. The
users mostly use mobile to access website 60.6%. Most sessions were referred from Google.
While the peak time period is during afternoon (13:00 – 18:58). The distribution of customer
segmentation is highly imbalance. 28% of users is in customer group 13.

Figure 18 The distribution of number of projects per user which visited more than 1 project.

4.1.2 Product features

We also use product features (Cj) which capture the characteristics of each property
projects. The product features include: the starting price, the location, the nearest train station, the
latitude, the longitude, the area, the district, the project type, and the facilities. The product
feature is used to condition the generation algorithm. We grouped features to their category as
follow:

• Start period of project
• Location such as latitude, longitude, and district

 41

• Transportation and landmark such as train station, express way, and supermarket
• Facility such as swimming pool, parking lots and gym
• Project type and style such as condominium, detached house, and home office

To reduce spurious information, the Figure 19 shows the distribution of number of users
per project. Around 20% of projects were visited less than 50 users. Thus, we filtered out these
projects that were visited less than 50 users which result in 4,876 projects remaining.

Figure 19 The distribution of number of users per project

To remove the users which can be bot, the Figure 20 shows the distribution of number of
projects per user. At the 99.5 percentile of users, they visited over 30 projects within an hour.
Thus, we filtered these users from our data before training model.

Figure 20 The distribution of number of projects per user

 42

4.2 Product Embedding

One of the key components of our model is the product embedding. It aims to
encapsulate each product's peculiarity so that the generator can have an easier time generating
new visit logs.

We extract the embedding via a trained recommendation system. The goal is to capture
additional properties of the product that are not captured in the pattern of how users explore the
products. Our system is similar to the recurrent neural network-based recommender. Our model
consists of two parts: the encoder and the predictor as shown in Figure 22. The recommendation
model takes the sequence of products visited by each user as input and tries to predict the next
product that the same user would visit. The sequences of product are represented by their product
features. The product features are embedded into an embedding via a three fully connected layers.
The embedding is fed to a Gated Recurrent Unit (GRU) which is used to predict the next product.

Figure 21 The recommendation system used to produce product embeddings

4.2.1 Encoder

The encoder is a concatenation of the fully connected networks of each product category
feature. We group product features to category as we explained in the previous section and embed
each category to its embedding before concatenating to final embedding of each product as you
can see in the Figure 23.

 43

Figure 22 The encoder of each sequence

4.2.2 Prediction task

The prediction task is a Gated Recurrent Unit (GRU). The input is the sequence of product
embedding which is generated by user when visited website. We pass this embedding to 3 dense
layers with (128, 96, 64) neurons at each layer. The last layer is a dense with sigmoid function to
predict the next product that users will visit.

After training model, the embedding vector from the encoder is the embedding for each
product. This product embedding vector captures the relationship between projects which is not
only the similar characteristics but also the similar user preference.

4.3 Generative Model

The key of our system is the generative model which takes in a product embedding and
outputs user logs. Our GAN-based generator is shown in Figure 24. The model is similar to [13]
which generated the orders of novel product in e-commerce website. However, their generated
orders are embedding due to the limitation of GAN to handle discrete output generation, they
need to train classifiers to extract the characteristics from generated representation. Our work uses
the Straight-Through Gumbel Estimator [14] in order to deal with discrete generation.

 44

Figure 23 The GAN model for web log generation

4.3.1 Generator (𝐺)

The generator generates fake user features conditioned on the product embedding. In
other words, the generator will try to generate users that are likely to interact with the particular
product. The generator is a fully connected network with three hidden layers and uses LeakyRelu
as activation function at each layer. The last layer, we use the Straight-Through Gumbel estimator
to generate the discrete outputs and the tanh function to generate the continuous outputs which
were normalized to the range of [-1, 1].

4.3.2 Discriminator (𝐷)

The discriminator takes the concatenation of real or generated user features and the real
product embedding and decides whether the user feature is real or fake. This model is a fully
connected network with two hidden layers and uses LeakyRelu as the activation function. The last
layer uses a linear activation function to output the score indicating how real the users are based
on the real product embedding. This information can be used to guide the generator to generate
better fake users via backpropagation. If this value is small, the generated users are close to the
real data.

 45

To ensure that the model learns to generate users based on the product used for
conditioning, we also forced the model to learn about the product by adding a reconstruction loss
(𝐿𝑝). The generator not only generates the users, but also the embedding used for conditioning.
The reconstruction loss is the cosine distance between the input product embedding and the
product embedding at the output. For the generated users, the loss function is the WGAN-GP loss.
Thus, the overall loss function for the generator is the weighted sum of reconstruction loss and
user generator loss that is defined as:

 ∝ 𝐿𝑢 + (1−∝)𝐿𝑝 (39)

Where ∝ is a hyperparameter that we need to tune. 𝐿𝑢 is a generation loss or loss function of
generated users. 𝐿𝑝 is a reconstruction loss or loss of generated products.

For hyperparameter tuning, we used grid-search to obtain the optimal configurations or
hyperparameters of the models which provide the highest performance score for this dataset.

• For the generator noise, we tried different vector sizes (36, 64, 96, 128) and found that 64-
dimension noise gives the highest performance for this model.

• The generator configuration uses a structure 64 → 128 → 256 as the hidden units. The last
layer outputs a vector of length 52+70 = 122 which is the number of user and product
features.

• The discriminator has two hidden layers 128 → 64 and the last layer is linear with size 1 to
measure how real the input users are.

• 𝜏 in ST Gumbel Estimator, we used 0.9 to be the initial value with annealing rate of 0.005.
The final value is 0.35.

• The optimizers, we tried (Adam, SGD, RMSprop) and found that Adam with beta = 0.7 gave
the best result.

• In this work, the best ratio of number of times the generator is trained to the discriminator is
1:5.

 46

CHAPTER V

EXPERIMENTAL RESULT
We performed experiments to verify the effectiveness of our generation system. In this

section we will talk about the experimental setups and the results of each experiment.

5.1 Experiment Setup

We construct the training and test set by randomly select 50 products from the total
products to be treated as novel products. The training set contains all products that are not
selected for testing, meaning the test are completely unseen by the model. We repeat the selection
10 times to construct model 10 independent training and test sets.

5.2 Evaluation Metric

Our goal is to have the model predict the distribution of web logs given unseen products.
Thus, we cannot measure the performance of the web log individually. We have the model
generate 10,000 web log per test products and then measure the statistically properties of the log
generated with respect to the ground truth. Prior work used Relative Similarity Measure (RSM)
which captures the characteristic of each attribute of the generated product relative to other
products [13]. However, this measure does not capture higher order statistics. Moreover, some
use cases might require precise knowledge of the distribution rather than relative difference.
Thus, we also propose three other metrics that can be used to measure the quality of the generated
logs. The four metrics can be summarized as follow:

5.2.1 Relative Similarity Measure (RSM)
This measure is used to measure the relative similarity between real and generated

samples by comparing between two products. The concept of computing this measure is shown in
Algorithm I.

 47

Algorithm I RSM metric calculation

Require: the list of testing products (p), the number of testing products (𝑛𝑝), the real users
statistics (𝑈𝑟), the generated users statistics (𝑈𝑔)
 1: 𝑛 = 0
 2: 𝑛𝑐𝑜𝑢𝑛𝑡 = 0
 3: for f in referring feature do
 4: select 𝑢𝑟 == 𝑓 and 𝑢𝑔 == 𝑓 from 𝑈𝑟 and 𝑈𝑔 respectively
 5: for each product pair in (i, j) do
 6: select the 𝑠𝑖

𝑟 and 𝑠𝑗
𝑟 from 𝑢𝑟

 7: select the 𝑠𝑖
𝑔 and 𝑠𝑗

𝑔 from 𝑢𝑔
 8: if (𝑠𝑖

𝑟 > 𝑠𝑖
𝑟 𝑎𝑛𝑑 𝑠𝑖

𝑔
 > 𝑠𝑖

𝑔
) or (𝑠𝑖

𝑟 < 𝑠𝑖
𝑟 𝑎𝑛𝑑 𝑠𝑖

𝑔
 < 𝑠𝑖

𝑔
) or (𝑠𝑖

𝑟 = 𝑠𝑖
𝑟 𝑎𝑛𝑑 𝑠𝑖

𝑔
 = 𝑠𝑖

𝑔
)

 9: 𝑛𝑐𝑜𝑢𝑛𝑡 = 𝑛𝑐𝑜𝑢𝑛𝑡 + 1
10: end if
11: 𝑛 = 𝑛 + 1
12: end for
13: 𝑟𝑠𝑚 = 𝑛𝑐𝑜𝑢𝑛𝑡 ÷ 𝑛
14: return 𝑟𝑠𝑚
15: end for

An example in Figure 25, the first low level feature of referring is Facebook. The portion
of real users that were referred from Facebook is 30% (𝑠𝐴(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)

𝑟) and 20% (𝑠𝐵(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑟

) for product A and product B respectively. The 𝑠𝐴(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑟 is 10% higher than

𝑠𝐵(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑟 . In the same way, the product A's generated users were referred from Facebook

50% (𝑠𝐴(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑔) and is also higher than 𝑠𝐵(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)

𝑔 . Thus, we count this as a relative
similarity between real users and generated users. Similarly, the portion of real users that were
referred from Google is 20% for product A (𝑠𝐴(𝑔𝑜𝑜𝑔𝑙𝑒)

𝑟) and 50% for product B (𝑠𝐵(𝑔𝑜𝑜𝑔𝑙𝑒)
𝑟).

The 𝑠𝐴(𝑔𝑜𝑜𝑔𝑙𝑒)
𝑟 is lower than the 𝑠𝐵(𝑔𝑜𝑜𝑔𝑙𝑒)

𝑟 . In comparison with generated users, the
𝑠𝐴(𝑔𝑜𝑜𝑔𝑙𝑒)

𝑔 is also lower than the 𝑠𝐵(𝑔𝑜𝑜𝑔𝑙𝑒)
𝑔 . The last one is directing visitors. The real direct

user is 50% (𝑠𝐴(𝑑𝑖𝑟𝑒𝑐𝑡)
𝑟) and 30% (𝑠𝐵(𝑑𝑖𝑟𝑒𝑐𝑡)

𝑟) for product A and product B respectively. The
𝑠𝐴 (𝑑𝑖𝑟𝑒𝑐𝑡)

𝑟 is higher than 𝑠𝐵 (𝑑𝑖𝑟𝑒𝑐𝑡)
𝑟 . This is the same direction as the comparison between

𝑠𝐴 (𝑑𝑖𝑟𝑒𝑐𝑡)
𝑔 and 𝑠𝐵 (𝑑𝑖𝑟𝑒𝑐𝑡)

𝑔 . Thus, we count the generated users as high relative similarity with
the real users on all three low-level referring page features.

 48

5.2.2 Correlation Coefficient (CORR)
This metric measures the strength of the relationship between real and generated samples

as the formula:

 𝜌𝑝𝑟𝑝𝑔
 =

𝑐𝑜𝑣(𝑝𝑟 , 𝑝𝑔)

𝜎𝑝𝑟
𝜎𝑝𝑔

 (40)

where 𝑐𝑜𝑣(𝑝𝑟 , 𝑝𝑔) is the covariance of 𝑝𝑟 and 𝑝𝑔 . 𝜎𝑝𝑟
 is the standard deviation of 𝑝𝑟 . 𝜎𝑝𝑔

is the standard deviation of 𝑝𝑔 . The value of CORR is between -1 and 1 where -1 means negative
correlation and 1 means positive correlation. An example in Figure 25, the real users were
referred from Google 20%, Facebook 30% and direct 50%. While the generated users were from
Google 10%, Facebook 50% and direct 40%. The correlation between [0.2, 0.3, 0.5] and [0.1, 0.5,
0.4] is 0.58. If the correlation coefficient >= 0.85 which is defined as a high correlation in
statistics, we count that as a high correlation between real and generated users.

Algorithm II Correlation coefficient metric calculation

Require: the list of testing products (𝑝), the number of testing products (𝑛𝑝), the real users

statistics (𝑈𝑟), the generated users statistics (𝑈𝑔)

 1: 𝑛 = 0

 2: 𝑛𝑐𝑜𝑢𝑛𝑡 = 0

 3: for f in referring feature do

 4: select 𝑠𝑖
𝑟 from 𝑈𝑖

𝑟

 5: select 𝑠𝑖
𝑔

 from 𝑈𝑖
𝑔

 6: if 𝐶𝑂𝑅𝑅(𝑠𝑖
𝑟 , 𝑠𝑖

𝑔
) ≥ 0.85 then

 7: 𝑛𝑐𝑜𝑢𝑛𝑡 = 𝑛𝑐𝑜𝑢𝑛𝑡 + 1

 8: end if

 9: end for

10: 𝑐𝑜𝑟𝑟 = 𝑛𝑐𝑜𝑢𝑛𝑡 ÷ 𝑛

11: return 𝑐𝑜𝑟𝑟

 49

5.2.3 Wasserstein distance or Earth mover's distance (EMD)

This metric measures the distance between two probability distributions as the formula:

 𝑊(𝑃𝑟 , 𝑃𝑔) = 𝑖𝑛𝑓
𝛾∈𝛱(𝑃𝑟,𝑃𝑔)

𝐸(𝑥,𝑦)∼𝛾 [∥ 𝑥 − 𝑦 ∥] (41)

Where 𝑃𝑟 is the probability distribution of real users, 𝑃𝑔 is the probability distribution of
generated users. 𝛱(𝑃𝑟 , 𝑃𝑔) is the set of all distributions. We use this metric to calculate the
minimum cost of transforming the generated user distribution into the real user distribution. As
Figure 25, the distance between real user distribution and generated user distribution is 0.2. The
advantage of EMD is that even when two distributions are not overlaps, this measure can provide
the distance value between two distributions. While Kullback-Leibler divergence
(𝐷𝐾𝐿) provides the infinity when two distributions are disjoint.

5.2.4 Root Mean Square Error (RMSE)

This metric is the average of difference between proportion of real and generated users of
each feature as the formula:

𝑅𝑀𝑆𝐸 = √

∑ (𝑝𝑟 − 𝑝𝑔)2𝑛
𝑖=1

𝑛

(42)

where 𝑝
𝑟
 is the proportion of real users, 𝑝𝑔 is the proportion of generated users and n is the

number of testing projects. RMSE measures how accurately the generated users are in the same
unit as the data. Thus, this measure is easy for interpretation. The lower score is better. As Figure
25, the RMSE between [0.5, 0.3, 0.2] and [0.4, 0.5, 0.1] is 0.141 or 14.1%. It means that the
difference between real and generated users is 14.1%.

To summarize the evaluation metrics as Figure 25, this is an example based on referring
page feature. RSM score measures the relative similarity of real and generated users by
comparing between two products. This example shows that the generated users are counted as
high relative similarity with the real data. While the correlation coefficient (CORR) is used to
measure the correlation of real and generated users within the same product. The correlation of
this example is 0.58, we do not count as high correlation with the real data. The next one is Earth-

 50

Mover distance (EMD) that measure the minimum cost to transform one distribution into the
other. This shows that the cost of converting the generated distribution to the real distribution is
0.2. The last one is RMSE that shows the precision of the generator. These metric measures how
close the proportion of generated users on each characteristic is to the real users.

Figure 24 Example of our metrics

 51

The metrics are measured on each feature and average. However, we can also measure
the metrics in a multivariate manner (2 features). For example, RSM will be measure the relative
similarity between a tuple of two features instead such as (referring page, weekday), (device,
operation system), etc.

5.3 Baseline Product Embedding Model

We compare two kinds of model for learning our embeddings: ULMFiT with product

description and Autoencoder with product features.

5.3.1 ULMFiT with product description

We used Universal Language Model Fine-tuning (ULMFiT) which was proposed in [38]
to embed the product description. ULMFiT is a transfer learning for natural language processing
(NLP) task such as text feature extraction and text classification. In Thai language, this model
was pretrained with 60,005 embeddings by [39] which is part of pyThaiNLP. This model consists
of 3 stages as the Figure 22.

Figure 25 ULMFiT Model (Reference from figure 1 [38])

• Language Model pre-training: this stage is training the language model on a general-
domain corpus that captures high-level natural language features.

• Language Model fine-tuning: this stage is fine-tuning the pre-trained language model to
learn task-specific features.

 52

• Classifier fine-tuning: this stage is fine-tuning the classifier on the target task.

Instead of starting from random weights, we use the pre-trained language model which was
provided in [40] and then fine-tune the language model on our product description. The last stage
is a classifier. We use label from topic modeling which was trained by using Latent Dirichlet
Allocation (LDA).

5.3.2 Autoencoder (AE)

The objective of the AE is to compress the original input and learn the best embedding
that can be used to reconstruct the original input. The embedding is usually of lower dimension
than the original input features so that the mapping is not trivial. We use a six-layer autoencoder
with (256, 128, 96, 96, 128, 256) neurons at each layer, resulting in an embedding of size 64.

Figure 26 The product embedding from Autoencoder

5.4 Baseline Generation Approach

We compare our approach with two baseline approaches: nearest neighborhood approach
and Conditional Variational Autoencoder (CVAE).

5.4.1 Nearest Neighbor (NN) approach

 53

We apply the nearest neighbor concept to summarize the characteristics of users who are
likely to be interested in new product. We select the user log of top 5 existing products that their
characteristics are similar to the characteristics of new product. Thus, we know the list of possible
values of each user feature for new product and sample based on that distribution.

Figure 27 A nearest neighbor approach

5.4.2 Conditional Variational Autoencoder (CVAE)

CVAE is a deep generative model which is an extension of Variational Autoencoder [7].
This model was proposed in [8] and can control on the data generation process to generate some
specific output by adding the additional information to both encoder and decoder. We use this
model and add the product embedding to generate the user logs of new product.

 54

Figure 28 Conditional Variational Autoencoder approach

5.5 Results and discussion

The overall performance of our methodology (C-WGAN-GP) that is compared against
several baseline approaches as shown in Table III and IV for 1 feature and 2 features respectively.
Our proposed approach which used conditional GAN with embedding learned from
recommendation system performed the best on every metrics. This shows the effectiveness of our
approach in learning the distribution of novel products. The effectiveness of the learned
embedding is shown when we compare different embeddings. For embedding from autoencoder,
the original product features only improve the performance slightly on several metrics, but using
recommendation embedding shows significant gain on all metric. While using the product
description embedding from ULMFit is the worst performance because the product description is
less information for capturing the relationship between products.

 55

Table 3 The overall performance for 1 feature based on 4 metrics

Model
1 Feature

RSM CORR EMD RMSE

C-WGAN-GP with REC Embedding 72.5% 88.9% 0.59 16.2%
C-WGAN-GP with AE Embedding 69.7% 87.8% 0.77 18.1%
C-WGAN-GP with ULMFiT Embedding 32.5% 78.7% 1.76 28.2%
C-WGAN-GP with Product Features 67.9% 86.6% 0.83 18.2%
C-VAE with REC Embedding 65.3% 85.6% 1.23 20.3%
NN with REC Embedding 54.7% 71.6% 1.69 28.0%

Table 4 The overall performance for 2 features based on 4 metrics

Model
2 Feature

RSM CORR EMD RMSE

C-WGAN-GP with REC Embedding 81.9% 82.5% 1.17 19.4%
C-WGAN-GP with AE Embedding 78.8% 80.1% 1.98 21.4%
C-WGAN-GP with ULMFiT Embedding 64.5% 31.6% 6.95 15.8%
C-WGAN-GP with Product Features 78.4% 78.4% 2.56 21.6%
C-VAE with REC Embedding 72.2% 76.5% 3.27 23.8%
NN with REC Embedding 62.9% 39.8% 5.81 34.3%

Our simplest baseline is a nearest neighbor model (NN). The nearest products in the
training set are used as the statistics of the novel product. This model uses cosine distance on the
recommendation embedding to select the top 5 nearest products. Unsurprisingly, this method
performs the worst, since for real estate there are rarely two products that are similar to each
other.

 56

We also trained another baseline based on CVAE with recommendation embedding. The
CVAE baseline performed worse that all other GAN models, showing the effectiveness of GANs
in learning the distribution of the customers.

 As you can see in the Table IV, the performance of crossing two features is less than one
feature because the model needs to capture the dependency between features.

We also show the performance of models for each feature as shown in Table V. The most
interest is in the customer segmentation which has 36 possibilities and are high imbalance. The
proposed model can get 75% CORR meaning that it can be used to give some guidance on what
kind of customer would prefer the product. On the other hands, a NN approach which is
something a human might have done based on his limited experience, would yield abysmal
results.

Table 5 The performance of our approach for each feature

Feature Model RSM CORR EMD RMSE
Device C-WGAN-GP with REC Embedding 69.3% 84.4% 0.059 10.0%

C-WGAN-GP with AE Embedding 54.5% 84.3% 0.081 10.5%
C-WGAN-GP with ULMFiT Embedding 51.6% 84.3% 0.081 28.2%
C-WGAN-GP with Product Features 55.1% 83.8% 0.085 10.5%
C-VAE with REC Embedding 52.4% 83.4% 0.087 10.7%
NN with REC Embedding 51.6% 83.2% 0.102 20.0%

Operation
System

C-WGAN-GP with REC Embedding 68.9% 99.5% 0.261 12.6%
C-WGAN-GP with AE Embedding 58.8% 97.9% 0.321 14.1%
C-WGAN-GP with ULMFiT Embedding 51.9% 96.3% 0/362 22.4%
C-WGAN-GP with Product Features 58.5% 97.9% 0.338 14.2%
C-VAE with REC Embedding 57.7% 97.8% 0.357 14.3%
NN with REC Embedding 49.5% 92.7% 0.431 15.9%

Customer
Segmentation

C-WGAN-GP with REC Embedding 80.4% 75.1% 2.091 24.4%
C-WGAN-GP with AE Embedding 75.6% 66.2% 3.945 51.5%
C-WGAN-GP with ULMFiT Embedding 23.6% 22.4% 9.739 36.1%
C-WGAN-GP with Product Features 73.1% 63.4% 4.175 52.8%
C-VAE with REC Embedding 71.4% 60.4% 4.492 53.1%

 57

Feature Model RSM CORR EMD RMSE
NN with REC Embedding 57.2% 1.5% 8.195 85.8%

Referring C-WGAN-GP with REC Embedding 68.8% 80.2% 0.148 19.4%
C-WGAN-GP with AE Embedding 62.4% 76.4% 0.238 24.5%
C-WGAN-GP with ULMFiT Embedding 45.7% 75% 0.249 37.4%
C-WGAN-GP with Product Features 61.8% 73.9% 0.259 26.4%
C-VAE with REC Embedding 59.6% 78.6% 0.271 26.6%
NN with REC Embedding 50.1% 54.7% 0.341 36.1%

Weekday C-WGAN-GP with REC Embedding 69.6% 100% 0.038 6.5%
C-WGAN-GP with AE Embedding 53.6% 100% 0.047 7.0%
C-WGAN-GP with ULMFiT Embedding 52.5% 100% 0.046 21.5%
C-WGAN-GP with Product Features 51.9% 99.1% 0.049 7.0%
C-VAE with REC Embedding 50.7% 98.5% 0.052 7.1%
NN with REC Embedding 46.2% 99.8% 0.068 7.1%

Time Period C-WGAN-GP with REC Embedding 73.9% 97.4% 0.094 8.7%
C-WGAN-GP with AE Embedding 62.7% 93.1% 0.113 9.7%
C-WGAN-GP with ULMFiT Embedding 50.2% 94.3% 0.119 21.7%
C-WGAN-GP with Product Features 57.8% 92.6% 0.119 10.1%
C-VAE with REC Embedding 51.8% 90.6% 0.125 10.4%
NN with REC Embedding 50.1% 96.3% 0.185 9.0%

We show one example of the generated distribution in Figure 28. Note how our model
yields an estimate for customer segment number 15 as 1.2%, which is very close to the actual
distribution of 1.7%. In a highly imbalance case such as this one, it is very hard for models
besides GANs to uncover the long tail of the distribution. This shows the effectiveness of our
model.

58

Fi

gu
re

29
 An

 ex
am

ple
 of

 th
e d

ist
rib

uti
on

 co
mp

ar
iso

n o
f e

ac
h u

ser
 fe

atu
res

 be
tw

ee
n t

he
 gr

ou
nd

-tr
uth

 us
ers

 an
d g

en
era

ted
 us

ers

 59

CHAPTER VI

CONCLUSION
6.1 Conclusion

This work proposes a conditional generative adversarial network for generating realistic
logs of user for novel product on the real estate domain. To improve the performance of model,
one of key components is product embedding which we used to be an additional information to
control the output of user generation. We propose to extract the product embedding via a trained
recommendation system which is learned by using a Gated Recurrent Unit (GRU). The goal of
embedding is to capture the relationship of similar product characteristic and user preference.
Moreover, we handle the limitation of discrete outputs for GAN by using Straight-Through
Gumbel Estimator which help simplify the pipeline and reduce error propagation of the models.

To evaluate the performance of our model, we compare our approach with two baseline
approaches: nearest neighborhood approach and Conditional Variational Autoencoder (CVAE) by
using four metrics to measure the quality of the generated logs: Relative Similarity Measure
(RSM), Correlation Coefficient (CORR), Wasserstein distance or Earth mover's distance (EMD)
and Root Mean Squared Error (RMSE). The results show that Our approach which used
conditional GAN with embedding learned from recommendation system (C-WGAN-GP with
REC Embedding) performed the best on every metrics. For the effectiveness of embedding, the
result shows that the performance of embedding from autoencoder slightly improve when
compare with the original product features, but using recommendation embedding shows
significant gain on all metrics. For the effectiveness of generation approach, the results show that
GANs is the best model to learn and capture the distribution of users although data is highly
imbalance. Nearest neighbor model performed the worst because there are rarely two products
that are similar to each other in real-estate domain. While CVAE performed worse than all other
GAN models.

Our approach can generate users which are similar with the real users even highly
imbalance case and performs better than the baselines.

 60

6.2 Future work

• Demand Forecasting
In this work, we did not cover the demand forecasting of new product before generating
realistic users for knowing user characteristics. If we can forecast the demand, our
approach will be completely useful for business planning when business launches new
product.

• Product embedding
In this work, the characteristics of product are separated into product features and
product description. However, the embedding for product features and product
descriptions are created from separated models. In future work it would be interesting to
integrate these two embeddings into one for improving the performance.

REFERENCES

REFERENCES

1. Suchacka, G. and G. Chodak, Using Association Rules to Assess Purchase Probability in
Online Stores, in Information Systems and e-Business Management. 2017, Springer.

2. Iváncsy, R.a.V., Istvan, Frequent Pattern Mining in Web Log Data. Acta Polytechnica
Hungarica, 2006. 3.

3. Hao, S., S. Zhaoxiang, and Z. Bingbing, A User Clustering Algorithm on Web Usage
Mining, in Electronics Instrumentation and Information Systems (EIIS). 2017.

4. Greenstein-Messica, A., L. Rokach, and M. Friedman, Session-Based Recommendations
Using Item Embedding, in Proceedings of the 22nd International Conference on Intelligent
User Interfaces. 2017, ACM: Limassol, Cyprus. p. 629-633.

5. Goodfellow, I.J., et al., Generative Adversarial Nets, in Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2. 2014,
MIT Press: Montreal, Canada. p. 2672-2680.

6. Salman H. Khan, M.H.a.N.B., Adversarial Trainingof Variational Auto-encoders for High
Fidelity Image Generation. CoRR, 2018. abs/1804.10323.

7. Deepak Pathak, P.K., Jeff Donahue, Trevor Darrell and Alexei A. Efros, Context Encoders:
Feature Learning by Inpainting. CoRR, 2016. abs/1604.07379.

8. Wan, C., et al., Crossing Nets: Dual Generative Models with a Shared Latent Space for
Hand Pose Estimation. ArXiv, 2017. abs/1702.03431.

9. Yu, J., et al., Generative Image Inpainting with Contextual Attention. 2018.
10. Zhu, J.Y., et al., Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial

Networks, in IEEE International Conference on Computer Vision. 2017. p. 2242-2251.
11. Kusner, M.J. and J.M. Hernández-Lobato, GANS for Sequences of Discrete Elements with

the Gumbel-softmax Distribution. ArXiv, 2016. abs/1611.04051.
12. Yu, L., et al., SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient.

ArXiv, 2016. abs/1609.05473.
13. Kumar, A., A. Biswas, and S. Sanyal eCommerceGAN : A Generative Adversarial Network

for E-commerce. ArXiv, 2018. arXiv:1801.03244.
14. Jang, E., S. Gu, and B. Poole, Categorical Reparameterization with Gumbel-Softmax. 2016.

 62

15. Chris J. Maddison, A.M.a.Y.W.T., The Concrete Distribution: A Continuous Relaxation of
Discrete Random Variables. CoRR, 2016. abs/1611.00712.

16. Sohn, K., X. Yan, and H. Lee, Learning Structured Output Representation Using Deep
Conditional Generative Models, in Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2. 2015, MIT Press: Montreal, Canada. p.
3483-3491.

17. Weng, L., From GAN to WGAN. ArXiv, 2019. abs/1904.08994.
18. Goodfellow, I., NIPS 2016 Tutorial: Generative Adversarial Networks. 2016.
19. Baldi, P., Autoencoders, Unsupervised Learning and Deep Architectures, in Proceedings of

the 2011 International Conference on Unsupervised and Transfer Learning workshop -
Volume 27. 2011, JMLR.org: Washington, USA. p. 37-50.

20. Kingma, D.P. and M. Welling, Auto-Encoding Variational Bayes. 2013.
21. Arjovsky, M., S. Chintala, and L. Bottou, Wasserstein GAN. 2017.
22. Gulrajani, I., et al., Improved Training of Wasserstein GANs, in Proceedings of the 31st

International Conference on Neural Information Processing Systems. 2017.
23. Gumbel, E.J., Statistical Theory of Extreme Values and Some Practical Applications. 1954.
24. Maddison, C.J., D. Tarlow, and T. Minka, A * Sampling, in Advances in Neural Information

Processing Systems 27. 2014.
25. Mikolov, T., et al., Efficient Estimation of Word Representations in Vector Space. 2013.

abs/1301.3781.
26. Landthaler, J., et al. Extending Thesauri Using Word Embeddings and the Intersection

Method. in ASAIL@ICAIL. 2017.
27. Barkan, O. and N. Koenigstein, ITEM2VEC: Neural Item Embedding for Collaborative

Filtering. IEEE 26th International Workshop on Machine Learning for Signal Processing,
2016: p. 1-6.

28. Okura, S., et al., Embedding-based News Recommendation for Millions of Users, in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 2017, ACM: Halifax, NS, Canada. p. 1933-1942.

29. Serban, I.V., et al., A Hierarchical Latent Variable Encoder-Decoder Model for Generating
Dialogues, in Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017,

 63

AAAI Press: San Francisco, California, USA. p. 3295-3301.
30. Zhao, T., R. Zhao, and M. Eskenazi. Learning Discourse-level Diversity for Neural Dialog

Models using Conditional Variational Autoencoders. in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2017.
Vancouver, Canada: Association for Computational Linguistics.

31. Semeniuta, S., A. Severyn, and E. Barth. A Hybrid Convolutional Variational Autoencoder
for Text Generation. in Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. 2017. Copenhagen, Denmark: Association for
Computational Linguistics.

32. Dupont, E. Learning Disentangled Joint Continuous and Discrete Representations. ArXiv,
2018. arXiv:1804.00104.

33. Vo, T.V. and H. Soh, Generation Meets Recommendation: Proposing Novel Items for
Groups of Users, in Proceedings of the 12th ACM Conference on Recommender Systems.
2018, ACM: Vancouver, British Columbia, Canada. p. 145-153.

34. Mirza, M. and S. Osindero, Conditional Generative Adversarial Nets. 2014.
35. Chen, X., et al., InfoGAN: Interpretable Representation Learning by Information

Maximizing Generative Adversarial Nets, in Proceedings of the 30th International
Conference on Neural Information Processing Systems. 2016.

36. Larsen, A.B.L., et al. Autoencoding Beyond Pixels Using a Learned Similarity Metric. in
ICML. 2015.

37. Bao, J.-m., et al., CVAE-GAN: Fine-Grained Image Generation through Asymmetric
Training, in IEEE International Conference on Computer Vision (ICCV). 2017.

38. Howard, J. and S. Ruder. Universal Language Model Fine-tuning for Text Classification. in
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 2018.

39. Polpanumas, C. thai2fit (formerly thai2vec). 2017; Available from:
https://github.com/cstorm125/thai2fit.

https://github.com/cstorm125/thai2fit

64

VITA

VITA

NAME ปำริฉตัร ชลวิหำรพนัธ์

DATE OF BIRTH 30 April 1992

PLACE OF BIRTH Bangkok

INSTITUTIONS ATTENDED Faculty of commerce and accountancy, Chulalongkorn University

HOME ADDRESS 40/173 Pruksa Town Village Soi. Phetkasem 81, Nhong Kheam
District, Bangkok 10160

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	1.1 Background
	1.2 Objective
	1.3 Scope of Work
	1.4 Outcomes
	3.1 Research Methodology
	3.2 Research Paper

	CHAPTER II RELATED THEORIES
	2.1 Embedding
	2.2 Neural Network
	2.3 Distance Metric
	2.4 Deep Generative Model
	2.5 Gumbel-Softmax Distribution

	CHAPTER III LITERRATURE REVIEW
	3.1 Product Embedding
	3.2 Generating new realistic samples approaches

	CHAPTER IV METHODOLOGY
	4.1 Dataset
	4.2 Product Embedding
	4.3 Generative Model

	CHAPTER V EXPERIMENTAL RESULT
	5.1 Experiment Setup
	5.2 Evaluation Metric
	5.3 Baseline Product Embedding Model
	5.4 Baseline Generation Approach
	5.5 Results and discussion

	CHAPTER VI CONCLUSION
	6.1 Conclusion
	6.2 Future work

	REFERENCES
	VITA

