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ABSTRACT (THAI) 
 ณัฐชัย ทองนิรันดร์ : การทำนายความเร็วกระแสน้ำในอ่าวไทยด้วยแบบจำลองการเรียนรูเ้ชิงพื้นที่

และเวลาบนข้อมลูเรดาร์ความถี่สงู. ( Ocean Current Prediction in the Gulf of Thailand 
Using Spatio-Temporal Deep Learning on High-Frequency Radar) อ.ที่ปรึกษาหลัก : ผศ. 
ดร.พีรพล เวทีกูล, อ.ทีป่รึกษาร่วม : ดร.สยาม ลววิโรจน์วงศ ์

  
การทำนายความเร็วกระแสน้ำเป็นงานที่สำคัญอย่างยิ่งในการปฏิบัติทางน้ำ  ยกตัวอย่างเช่น การ

ค้นหาและช่วยเหลือ การสังเกตการณ์ภัยพิบัติ การทำนายพลังงานไฟฟ้าท่ีถูกผลิตมาจากความเร็วกระแสน้ำ และ
อื่นๆ ในปัจจุบันมีทั้งหมด 3 เทคนิคหลักในการทำนาย (i) การทำนายเชิงตัวเลข (ii) การทำนายเชิงเวลา และ (iii) 
การทำนายด้วยศาสตร์การเรียนรู้ของเครื่อง (machine learning) อย่างไรก็ดีความแม่นยำของเทคนิคเหล่านั้นยัง
ถูกจำกัด เนื่องจากไม่ได้พิจารณาผลของเชิงพื้นที่และเวลาพร้อมกันและไม่ได้พิจารณาข้อมูลเชิงมหาสมุทร  
(oceanic input) งานวิจัยนี้นำเสนอแบบจำลองการทำนายความเร็วกระแสน้ำที่พิจารณาผลของเชิงพื้นที่และ
เวลาพร ้อมก ัน  โดยใช ้น ิวรอลเน ็ตเว ิร ์กแบบคอนโวล ูช ัน  (Convolutional Neural Network) ร ่วมกับ 
โครงข่ายประตูวกกลับ (Gated Recurrent Unit) และร่วมกับข้อมูลเชิงมหาสมุทร ข้อมูลเรดาร์ความถี่สูงที่ใชใ้น
การทดลองได้รับมาจากสถานีซึ ่งถูกติดตั ้งตามชายฝั ่งอ่าวไทย  (Gulf of Thailand) โดยสำนักงานพัฒนา
เทคโนโลยีอวกาศและภูมิสารสนเทศ (Geo-Informatics and Space Technology Development Agency) 
ตั้งแต่ปี 2014 ถึง 2016 การทดลองจะเป็นการเปรียบเทียบแบบจำลองที่นำเสนอกับวิธีการอื่นๆ  เช่น ARIMA 
เพอร์เซ็ปตรอน (Perceptron) และอื่นๆ โดยใช้ค่ารากที่สองของค่าความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE) 
เป็นตัวช้ีวัด บน ส่วนประกอบยูและวี (U and V components) ของกระแสน้ำ 
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ABSTRACT (ENGLISH) 
# # 6071009021 : MAJOR COMPUTER SCIENCE 
KEYWORD: Surface current forecasting, HF radar, deep learning, spatio-temporal, 

convolutional neural network (CNN), gated recurrent unit, attention 
mechanism, transfer learning 

 Nathachai Thongniran : Ocean Current Prediction in the Gulf of Thailand Using Spatio-
Temporal Deep Learning on High-Frequency Radar. Advisor: Asst. Prof. PEERAPON 
VATEEKUL, Ph.D. Co-advisor: Siam Lawawirojwong, Ph.D. 

  
Ocean surface current prediction is a crucial task for a variety of marine activities, such 

as disaster monitoring, search and rescue operations, power forecasting, and etc. There are three 
traditional forecasting approaches: (i) numerical based approach, (ii) time series based approach 
and (iii) machine learning based approach. However, their prediction accuracy was limited as 
they did not cooperate with spatial and temporal effects together, including oceanic knowledge 
is also not considered. 

This paper introduces the ocean surface prediction model that accounts for spatial 
and temporal characteristics by a combination between CNN and GRU and also the incorporation 
of oceanic inputs which are month number, lunar effect, and hour number. The experiment 
compared the proposed model with an existing method, e.g., ARIMA, Perceptron, Temporal kNN 
and etc. by using RMSE as a metrics on both U and V components of dataset that was collected 
by high frequency (HF) radar stations located along coastal Gulf of Thailand by GISTDA from 2014 
to 2016. 

 

Field of Study: Computer Science Student's Signature ............................... 
Academic Year: 2019 Advisor's Signature .............................. 
 Co-advisor's Signature ......................... 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
v 

ACKNOWLEDGE MENTS 
 

ACKNOWLEDGEMENTS 
  

This thesis is one of the most challenging works in my life. I am interested in a computer 
since I was young and always want to fall into it. It may because I did not graduate with a bachelor's 
degree in computer science, so I decided to do a master's degree in this field. Throughout 2 years of 
studying in master degree while proceeding in the research, I have faced the obstacle, problem, hope, 
and happiness like all we did, my classmates. Working and studying for a master's degree taught me 
many lessons particularly time management, task prioritization, and mind control. I am sure that after 
getting through this, I can do anything. Anyway, there was plenty of support from kind people that 
make the thesis completed. 

 
I have learned a lot from doing this research, especially working with my advisor. Asst. Prof. 

Peerapon Vateekul, Ph.D., helps me in a lot of things not just about studying. In terms of studying, he 
always has time for encouraging, supporting and suggestion. A variety of knowledge and techniques 
that he coaches me because of his solid background, make me understand it clearly which is 
invaluable. 

 
Valuable data on the thesis was provided by GISTDA (Geo-Informatics and Space 

Technology Development Agency). I got a warm welcome from all GISTDA members, especially, Siam 
Lawawirojwong, Ph.D. and Panu Srestasathiern, Ph.D. every time I got stuck and tented to have a 
suggestion and support. A lot of excellent suggestions came from those who have a high level of 
combination between computer science and ocean knowledge. 

 
Thank you all other committees which consist of Prof. Boonserm Kijsirikul, D.Eng., Assistant 

Professor Veera Muangsin, Ph.D. and Kulsawasd Jitkajornwanich, Ph.D. that supports me by being the 
committees and always giving a great suggestion that is honored and valuable for me. 

 
Many thanks for everyone in "Data Mining Group, MIND Lab" group. We have shared many 

things together. I would not complete the thesis if I did not have the group. In the last, I want to 
thank all the people around me for always supporting me for doing the project from the first day to 
graduation day. 

  
  

Nathachai  Thongniran 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE OF CONTENTS 

 Page 
ABSTRACT (THAI) ........................................................................................................................... iii 

ABSTRACT (ENGLISH) .................................................................................................................... iv 

ACKNOWLEDGEMENTS ..................................................................................................................v 

TABLE OF CONTENTS ................................................................................................................... vi 

LIST OF TABLES ............................................................................................................................. xi 

LIST OF FIGURES ......................................................................................................................... xiii 

Chapter 1 Introduction ................................................................................................................ 1 

1.1 Motivation ........................................................................................................................... 1 

1.2 Objective ............................................................................................................................. 2 

1.3 Scope ................................................................................................................................... 2 

1.4 Expected Result ................................................................................................................ 2 

1.5 Research Plan ..................................................................................................................... 3 

1.6 Publications ........................................................................................................................ 3 

Chapter 2 Background Knowledge ............................................................................................ 4 

2.1 Ocean Current Circulation in Thai Gulf ......................................................................... 4 

2.1.1 Monsoon ................................................................................................................... 4 

2.1.2 Lunar Illumination................................................................................................... 4 

2.1.3 Sea Breeze and Land Breeze ............................................................................... 5 

2.2 High Frequency Radar and Data Collection ................................................................. 6 

2.2.1 HF Radar Station in Thailand ................................................................................ 6 

2.2.2 Measurement ........................................................................................................... 7 

    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
vii 

2.2.3 Data Loss .................................................................................................................. 7 

2.2.4 Current Measurement ............................................................................................ 7 

2.3 Tide ...................................................................................................................................... 9 

2.3.1 Tidal Force ............................................................................................................... 9 

2.3.2 Spring Tide and Neap Tide.................................................................................. 10 

2.3.3 Tide with Different Viewpoint ............................................................................. 12 

2.4 Neural Network (NN) ....................................................................................................... 13 

2.4.1 Perceptron .............................................................................................................. 14 

2.4.2 Activation Function ............................................................................................... 14 

2.4.3 Loss Function ......................................................................................................... 16 

2.5 Convolutional Neural Network (CNN) ......................................................................... 16 

2.5.1 Convolution Layer ................................................................................................ 16 

2.5.2 Pooling Layer ......................................................................................................... 19 

2.6 Recurrent Neural Network (RNN) .................................................................................. 19 

2.7 Gated Recurrent Unit (GRU) .......................................................................................... 20 

2.8 Attention Mechanism ..................................................................................................... 21 

2.8.1 Additive Attention ................................................................................................. 22 

2.8.2 Multiplicative Attention ....................................................................................... 22 

2.8.3 Self-Attention ......................................................................................................... 22 

2.9 Transfer Learning ............................................................................................................. 23 

2.10 One-Hot Encoding ......................................................................................................... 23 

Chapter 3 Related Works .......................................................................................................... 24 

3.1 Model Approach .............................................................................................................. 24 

3.1.1 Numerical Based Approach................................................................................. 24 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
viii 

3.1.2 Time Series Based Approach .............................................................................. 24 

3.1.3 Machine Learning Based Approach ................................................................... 24 

3.2 Ocean Current Prediction in Gulf of Thailand ........................................................... 25 

3.3 Room for improvement ................................................................................................. 26 

3.3.1 Addressing Spatial and Temporal Effect Together ........................................ 26 

3.3.2 Domain Knowledge Input.................................................................................... 26 

3.3.3 Deep Learning Technique ................................................................................... 26 

Chapter 4 Proposed Method .................................................................................................... 27 

4.1 High Frequency Dataset ................................................................................................. 27 

4.1.1 Dataset .................................................................................................................... 27 

4.1.2 Data Removal ........................................................................................................ 29 

4.1.3 Missing Grid Imputation ....................................................................................... 30 

4.1.4 Data Normalization ............................................................................................... 30 

4.2 Oceanic Input Dataset .................................................................................................... 31 

4.2.1 Month Number ...................................................................................................... 31 

4.2.2 Lunar Effect ............................................................................................................ 31 

4.2.3 Hour Number ......................................................................................................... 32 

4.3 Proposed Model .............................................................................................................. 33 

4.3.2 Oceanic Input ........................................................................................................ 34 

4.3.3 Attention Mechanism ........................................................................................... 34 

4.3.4 Transfer Learning ................................................................................................... 35 

Chapter 5 Experimental Setup................................................................................................. 36 

5.1 Input Data ......................................................................................................................... 36 

5.1.1 Data .......................................................................................................................... 36 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ix 

5.1.2 Data Partitioning .................................................................................................... 36 

5.2 Performance Evaluation ................................................................................................. 36 

5.3 Forecasting Model ........................................................................................................... 37 

5.3.1 Lookback Timestep .............................................................................................. 37 

5.3.2 Moving Average (MA) ............................................................................................ 37 

5.3.3 Autoregressive Integrated Moving Average (ARIMA) ....................................... 38 

5.3.4 Temporal kNN ........................................................................................................ 38 

5.3.5 Perceptron .............................................................................................................. 38 

5.3.6 Multilayer Perceptron (MLP) ............................................................................... 38 

5.3.7 Convolutional Neural Network (CNN) ............................................................... 39 

5.3.8 Gated Recurrent Unit (GRU) ................................................................................ 39 

5.3.9 Spatio-Temporal (CNN-GRU) ............................................................................... 39 

5.3.10 CNN-GRU-Input .................................................................................................... 40 

5.3.11 CNN-GRU-Input (All)-Att ..................................................................................... 40 

5.3.12 CNN-GRU-Input (All)-Att-TL ............................................................................... 41 

Chapter 6 Experiment and Result ........................................................................................... 42 

6.1 Forecasting Next One Timestep ................................................................................... 42 

6.1.1 Dataset and Partitioning ...................................................................................... 42 

6.1.2 Evaluation ............................................................................................................... 43 

6.1.3 Result....................................................................................................................... 43 

6.1.3.1 Overview .................................................................................................... 44 

6.1.3.2 Effect of Combination Between Spatial and Temporal 
Characteristics .......................................................................................... 45 

6.1.3.3 Effect of Oceanic Input .......................................................................... 46 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
x 

6.1.3.4 Effect of Attention Mechanism ............................................................. 47 

6.1.4.5 Effect of Transfer Learning ..................................................................... 48 

6.2 Rolling Forecasting Up to Next 48 Timesteps ........................................................... 49 

6.2.1 Dataset and Partitioning ...................................................................................... 50 

6.2.2 Evaluation ............................................................................................................... 51 

6.2.3 Result....................................................................................................................... 51 

6.2.3.1 Overview .................................................................................................... 52 

6.2.3.2 Temporal Effect ....................................................................................... 52 

6.3 Forecasting Next One Timestep with Different Number of Input Timesteps ..... 53 

6.3.1 Dataset and Partitioning ...................................................................................... 54 

6.3.2 Evaluation ............................................................................................................... 54 

6.3.3 Result....................................................................................................................... 54 

6.3.3.1 Overview .................................................................................................... 55 

6.3.3.2 Tuning on Model with Number of Input Timesteps Equals 13 ...... 55 

Chapter 7 Summary and Future Work ................................................................................... 56 

7.1 Summary ........................................................................................................................... 56 

7.2 Future Work ...................................................................................................................... 57 

7.2.1 Revise Model Architecture .................................................................................. 57 

7.2.2 Address Temporal Effect ..................................................................................... 57 

7.2.3 Address Sun Position ............................................................................................ 57 

REFERENCES ................................................................................................................................. 59 

VITA ................................................................................................................................................ 63 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES 

 Page 
Table  1 Maximum tidal forces of the sun, moon, and planets on the earth .............. 10 

Table  2 Month number in one-hot encoding ..................................................................... 23 

Table  3 Example of records in dataset ................................................................................ 27 

Table  4 Statistical data of each year on U and V components from HF dataset ....... 28 

Table  5 Dataset size on each processing step .................................................................... 30 

Table  6 Example of month number input........................................................................... 31 

Table  7 Example of lunar effect input ................................................................................. 32 

Table  8 Example of hour number input .............................................................................. 33 

Table  9 Model explanation ..................................................................................................... 33 

Table  10 Year and dataset in the experiment .................................................................... 36 

Table  11 Example of predicted value of Lookback model when k = 1........................ 37 

Table  12 Example of ARIMA parameters that have been used while tuning ............... 38 

Table  13 Optimal hyperparameter of CNN-GRU ................................................................. 39 

Table  14 Example of oceanic inputs..................................................................................... 40 

Table  15 Dataset period of forecasting next one timestep experiment ....................... 42 

Table  16 Model’s RMSE of next one timestep forecasting on U and V component, 
compared to the proposed model......................................................................................... 44 

Table  17 Effect of combination between spatial and temporal characteristics in term 
of RMSE comparing to CNN-GRU ............................................................................................. 45 

Table  18 Effect of oceanic inputs in term of RMSE comparing to CNN-GRU ................ 47 

Table  19 Effect of attention mechanism in term of RMSE comparing to CNN-GRU-
Input (All) ...................................................................................................................................... 47 

    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
xii 

Table  20 Effect of transfer learning in term of RMSE comparing to CNN-GRU-Input 
(All)-Att .......................................................................................................................................... 48 

Table  21 Dataset period of rolling forecasting up to next 48 timesteps experiment 50 

Table  22 RMSE of proposed model with different number of input timesteps on U 
and V components ..................................................................................................................... 54 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES 

 Page 
Figure  1 Ocean circulation during the southwest and northeast monsoon ................... 4 

Figure  2 The circulations of land and sea breeze ................................................................ 5 

Figure  3 Two implementation phases of HF radar stations ............................................... 6 

Figure  4 Transmitting and receiving of HF radar ................................................................... 7 

Figure  5 Example of magnitude and direction of reported grid data ............................... 8 

Figure  6 U and V component of ocean current.................................................................... 8 

Figure  7 Tidal force between the earth and object in space ............................................ 9 

Figure  8 Tidal force of moon to the earth ........................................................................... 10 

Figure  9 Tidal effects from the sun and moon on the earth ........................................... 11 

Figure  10 Diagram of the moon’s phases ............................................................................ 11 

Figure  11 The types of tides ................................................................................................... 12 

Figure  12 Tide with different viewpoints .............................................................................. 12 

Figure  13 Tide types map ........................................................................................................ 13 

Figure  14 Perceptron architecture ......................................................................................... 14 

Figure  15 Convolutional neural network architecture ....................................................... 16 

Figure  16 Convolution operation ........................................................................................... 17 

Figure  17 Wide convolution with padding ........................................................................... 18 

Figure  18 Convolution layer with input size equals 5x5, filter size equals 3x3, and 
stride size equals 2 ..................................................................................................................... 18 

Figure  19 Convolution with number of filters equals 3 .................................................... 18 

Figure  20 Example of max pooling operation ..................................................................... 19 

    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
xiv 

Figure  21 A recurrent neural network ................................................................................... 20 

Figure  22 Gated recurrent unit ............................................................................................... 21 

Figure  23 The attention mechanism: The soft attention assign weights on different 
locations of features using softmax ........................................................................................ 21 

Figure  24 Example of data splitting that is used in Temporal kNN model research .. 25 

Figure  25 3097 sites of data was obtained from GISTDA .................................................. 28 

Figure  26 Histogram of grid data availability over three years ......................................... 29 

Figure  27 1,065 of 3,097 grid points are shown in red color ............................................ 29 

Figure  28 Two steps of data imputation .............................................................................. 30 

Figure  29 Example of lunar illumination on each timestep ............................................. 32 

Figure  30 Example of lunar effect on each timestep ........................................................ 32 

Figure  31 Example of CNN-GRU architecture ....................................................................... 34 

Figure  32 Implementation of oceanic inputs in the model ............................................. 34 

Figure  33 Attention mechanism part in the model ........................................................... 35 

Figure  34 Model architecture of CNN-GRU-Input (All)-Att-TL ........................................... 35 

Figure  35 Example of forecasting value on test dataset of U component ................... 43 

Figure  36 Example of forecasting value on test dataset of V component ................... 43 

Figure  37 Average RMSE (hour) of models on U component .......................................... 46 

Figure  38 Average RMSE (hour) of models on V component ........................................... 46 

Figure  39 Average RMSE (hour) of each module on U component ............................... 48 

Figure  40 Average RMSE (hour) of each module on V component ................................ 48 

Figure  41 Example of rolling forecasting step ..................................................................... 49 

Figure  42 Input and output grid of CNN model for rolling forecasting .......................... 50 

Figure  43 RMSE of rolling forecasting up to 48 hours on U component ....................... 51 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
xv 

Figure  44 RMSE of rolling forecasting up to 48 hours on V component ....................... 51 

Figure  45 RMSE of rolling forecasting up to 48 hours in box plot, on U and V 
components respectively ......................................................................................................... 52 

Figure  46 Example of adding more timesteps in a model input .................................... 53 

Figure  47 RMSE of proposed model with different number of input timesteps on U 
component .................................................................................................................................. 55 

Figure  48 RMSE of proposed model with different number of input timesteps on V 
component .................................................................................................................................. 55 

Figure  49 RMSE of models with different sun positions on U component ................... 57 

Figure  50 RMSE of models with different sun positions on V component ................... 58 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 
Introduction 

 Introduction section consists of 6 subtopics which are motivation, objective, scope, 
expected result, research plan and publications. 

1.1 Motivation 

Ocean current prediction is a crucial task for various marine activities, such as disaster 
monitoring, monitoring coastal water quality, search and rescue operations, pollution trajectories, 
sea navigation, and etc. For each grid area on the ocean, the surface ocean current is usually 
affected by its neighbors. Also, the nature of ocean current circulation is mainly affected by its 
seasonality such as monsoons, lunar illumination, sea breeze, and land breeze. 

Lately, an increasing of computing power and ability to handle big data of machine make 
a deep learning based model has successfully been implemented to a variety of fields for 
instance image classification, medical disease detection and self-driving car due to fast growing 
development and capacity to handle a number of data. Using recent promising deep learning 
techniques will improve the model accuracy by making it more accurate. The addition of oceanic 
input data also helps the model more understanding about its nature pattern. There is a great 
chance to improve prediction task which can support all marine activities by implementing these 
listed techniques above. 

There were three approaches of many attempts for surface ocean current prediction 
tasks. First, the numerical based approach which is based on a set of predefined rules [1]. 
However, this approach requires extremely high computing resources [2]. Second, it is a time 
series approach, e.g., Lookback, Moving Average (MA) and Autoregressive Integrated Moving 
Average (ARIMA). Unfortunately, this approach only relies on temporal effect. Lastly, machine 
learning techniques were deployed to predict surface current velocity, such as Temporal kNN [3] 
, Perceptron [4], Multilayer Perceptron (MLP), Self Organizing Map (SOM) [5], and etc. Some 
research shows interesting result in term of model accuracy, but still has opportunity to be 
improved such as consideration temporal and spatial together, establish recent deep learning 
techniques, and involved with oceanic domain inputs. 
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In this thesis, we shoot to improve the accuracy of forecasting system by using deep 

learning approach. We introduce various of modules which consist of, (i) Gated Recurrent Unit 
(GRU) to capture temporal characteristic, (ii) Convolutional Neural Network (CNN) that can extract 
spatial characteristic from the nearby location, and also has an ability for visualization [6] for 
more understanding its behavior, (ii) a combination of CNN and GRU, (iii) utilizing oceanic inputs as 
follows, month number, lunar effect, and hour number to help the model to understand oceanic 
seasonal effects, (iv) attention mechanism [7] was employed to focus on a significant grid, (v) and 
transfer learning was used to utilize pre-trained knowledge. 

The ocean surface current dataset, since 2014 to 2016, in this research was collected 
from 18 high frequency (HF) radar stations located along coastal Gulf of Thailand which are 
implemented by GISTDA (Geo-Informatics and Space Technology Development Agency). 

1.2 Objective 

Ocean current prediction model uses deep learning techniques to improve performance, 
which focuses on noticeable characteristics of its nature, by combining CNN and GRU in order to 
take advantage of spatio-temporal characteristics. 

1.3 Scope 

1. Data was obtained from Geo-Informatics and Space Technology Development Agency 
(GISTDA) 

2. Ocean current data from year 2014 to 2016 
3. Measurement by Root-mean-square error (RMSE) of predicted U and V components by 

using year 2014 for training, 2015 for validation, and year 2016 for test datasets 

1.4 Expected Result  

1. Better model performance, evaluated by RMSE of a predicted value 
2. Able to use deep learning technique to take advantage of spatio-temporal characteristics 

of HF radar data 
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1.5 Research Plan 

1. Study related theories and literature review 
2. Study neural network and deep learning 
3. Design experiment, develop and collect result 
4. Summarize result 
5. Thesis proposal topic examination 
6. More experiment according to the proposal 
7. Writing and publishing a research paper 
8. Collect result and conclude thesis 
9. Thesis examination 

1.6 Publications 

“Spatio-Temporal Deep Learning for Ocean Current Prediction Based on HF Radar Data” 
by Nathachai Thongniran, Peerapon Vateekul, Kulsawasd Jitkajornwanich, Siam Lawawirojwong, 
and Panu Srestasathiern in “2019 - 16th International Joint Conference on Computer Science and 
Software Engineering (JCSSE 2019)” conference which is established at Amari Pattaya hotels, 
Chonburi, Thailand on 10-12 July 2019. 

“Combining Attentional CNN and GRU Networks for Ocean Current Prediction Based on 
HF Radar Observations” by Nathachai Thongniran, Kulsawasd Jitkajornwanich, Siam 
Lawawirojwong, Panu Srestasathiern, and Peerapon Vateekul in “2019 - 8th International 
Conference on Computing and Pattern Recognition (ICCPR 2019)” conference which is established 
at Grand Gongda Jianguo Hotel, Beijing, China on 23-25 October 2019. 
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Chapter 2 
Background Knowledge 

This section describes the background knowledge in thesis which mainly composed by 
two topics which are oceanic knowledge and deep learning techniques. 

2.1 Ocean Current Circulation in Thai Gulf 

 Normally, tides, surface wind, streamflow, density, monsoon, sea breeze, and land 
breeze are the main factors of ocean surface current circulation. 

2.1.1 Monsoon 

Gulf of Thailand current circulation is mainly affected by two monsoons: (i) Southwest 
monsoon usually starts from May to September and (ii) Northeast monsoon generally starts from 
October to February [8], as shown in Figure 1. There are two periods of transition between two 
monsoons, the first inter-monsoon starts from March to April and the second inter-monsoon 
occurs in October.  

 

Figure  1 Ocean circulation during the southwest and northeast monsoon 
(From: Figure 4 [8]) 

2.1.2 Lunar Illumination 
Tide is mainly affected by moon orbit around the earth. A highest and lowest lunar 

illumination which are full moon and new moon causes the spring tide to make increasing of sea 
level. In contrast to the neap tide causes decrement of sea level. 
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2.1.3 Sea Breeze and Land Breeze 

 Differentiation of temperature between ocean and coastal land area causes sea breeze 
and land breeze. In the day, the temperature of land area is higher than ocean area causes air 
over the land area to float up while the colder wind from ocean area flows to replace the 
floating one on land area which called “sea breeze” which drives the ocean current toward a 
coastal area.  In contrast to the “land breeze”, wind that drive from land area toward to ocean 
area, as shown in Figure 2. 

 

Figure  2 The circulations of land and sea breeze 
(From: Figure 14 [9]) 
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2.2 High Frequency Radar and Data Collection 

This section specifically describes to our main dataset in this research which is collected 
by High Frequency (HF) Radar stations. 

2.2.1 HF Radar Station in Thailand 

Thailand has faced many ocean disasters from an inefficient monitoring and 
management which is caused from a lack of data for monitoring and understanding of the 
ocean's behavior. In the first phase, GISTDA deployed 18 HF coastal radar stations located along 
the gulf of Thailand since 2012 and more 6 stations which are currently in phase two. Figure 3 
shows an area HF coastal radar which consists of two project phases, the first phase is appeared 
in purple color and second phase is displayed in yellow color.  

 

Figure  3 Two implementation phases of HF radar stations 
[From: 

https://www.gistda.or.th/main/sites/default/files/news/1458/file/session5_kaarekhaathuengrabba
ihbrikaarkhmuulerdaarchaayfang-1458-7574.pdf Accessed: December 1, 2019] 
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2.2.2 Measurement 

Ocean surface current velocity and direction in the coastal area are measured by HF 
radio waves. Coastal stations initiate a signal and monitor it returning to the station then using 
backscattered radio waves to calculate surface current as shown in Figure 4. There are 3,097 grid 
points from GISTDA from 2014 to 2016 that are being used as a dataset in this study. 

HF radar station which is operated by GISTDA collects varied of values, such as latitude 
longitude, magnitude, direction, U component and V component. 

 

Figure  4 Transmitting and receiving of HF radar 
[From: http://coastalradar.gistda.or.th/wp/ Accessed: December 1, 2019] 

2.2.3 Data Loss 

 The reported data from HF radar stations generally lost by many causes, for example (i) 
the station equipment and sensor does not work functionally, (ii) a high ocean wave which can 
block the signal that’s sent by the station, (iii) a long distance between target and HF station that 
signal cannot reach to, (iv) noise or obstacle in coastal area disturb the signal, and (v) the angle 
of signal base before firing if angle is too high so the station will not able to measure the short 
distance area near the station. 

2.2.4 Current Measurement 

Ocean surface current normally represents in two approaches, (i) magnitude and 
direction which describe the velocity and direction of the current toward to, as shown in Figure 5, 
(ii) U and V components, two separate flow speeds measured along two orthogonal axes which 
are u and v components. U component represents the horizontal flow in the east-west direction 
while v component represents the vertical flow in the north-south direction as shown in Figure 6. 

http://coastalradar.gistda.or.th/wp/
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Figure  5 Example of magnitude and direction of reported grid data 
which is shown on top of the Gulf of Thailand map 

[From: http://coastalradar.gistda.or.th Accessed: December 1, 2019] 

 

Figure  6 U and V component of ocean current 

Two current measurements are used differently depending on the purpose. Magnitude 
and direction will be more suitable for boat sailor for knowing how fast they go and direction 
they heading to. On the other hands, finding a new object position when a period passes would 
be easier if we calculate with U and V component which we can performs an averaging a pair of 
current measurements obtained at two different times. 

 

http://coastalradar.gistda.or.th/
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2.3 Tide 

Tide phenomenon can be considered as seasonal effect of ocean which effects to ocean 
current. The topic is explained the tide and how it effects to ocean current. 

2.3.1 Tidal Force 

 Tidal forces are based on the gravitational force which depends on distance between 
two objects than their mass, as shown in equation (1) and Figure 7. 

F =
2GMm

r2 (
R

r
) ∝

m

r3                                                 (1) 

Where G is universal gravitational constant, M is mass of the earth, m is mass of space 
object, r is distance between earth and object and R is a radius of the earth. 

 

Figure  7 Tidal force between the earth and object in space 
[From: http://www.narit.or.th/index.php/astronomy-article/96-oceantides 

Accessed: December 1, 2019] 

Regarding tidal forces to the earth between sun and moon, the sun only has 46% of 
moon tidal force to the earth due to its distances. Moon, which has a higher of tidal force will 
affect to tide more than the sun. In addition, effect of tidal force makes circular object shape-
changing to ellipse with a same volume. The tidal force of other planets has been shown in 
Table 1 below. 

  

http://www.narit.or.th/index.php/astronomy-article/96-oceantides
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Table  1 Maximum tidal forces of the sun, moon, and planets on the earth 

[From: https://science.nasa.gov/science-news/science-at-nasa/2000/ast04may_1m 
Accessed: December 1, 2019] 

Solar system object Tidal force 

Moon 2.1 

Sun 1 

Venus 0.000113 

Jupiter 0.0000131 

Mars 0.0000023 

Mercury 0.0000007 

Saturn 0.0000005 

Uranus 0.000000001 

Neptune 0.000000002 

Pluto 0.0000000000001 

 

2.3.2 Spring Tide and Neap Tide 

 The effect of tidal force from space object to the earth especially sun and moon cause 
tide phenomenon as shown in Figure 8. In the solar system, any time sun, earth, and moon are 
exactly or very closely aligned, it generates highest tidal force to the earth which causes spring 
tide and neap tide phenomenon as shown in Figure 9.  

 

Figure  8 Tidal force of moon to the earth 
[From: http://oceanservice.noaa.gov Accessed: December 1, 2019] 

http://oceanservice.noaa.gov/
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Figure  9 Tidal effects from the sun and moon on the earth 
[From: https://energyeducation.ca/encyclopedia/Tidal_force Accessed: December 1, 2019] 

Spring tide happens when New Moon and Full Moon occurred which have highest lunar 
illumination and lowest lunar illumination, respectively as shown in Figure 10 and relation 
between lunar illumination and tide is shown in Figure 11. 

 

 

Figure  10 Diagram of the moon’s phases 
[From: https://simple.wikipedia.org/wiki/Phases_of_the_Moon Accessed: December 1, 2019] 
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Figure  11 The types of tides 

[From: https://en.wikipedia.org/wiki/Tide Accessed: December 1, 2019] 

 

2.3.3 Tide with Different Viewpoint 

 Within one day, number of tide phenomenon depends on latitude and longitude of the 
locations, type of tide can be categorized in three groups. 

1) Semidiurnal Tide (Equatorial Tide) 

If we are at the equator line, our observation point is taken passed bulging point (A and 
A’ in Figure 12) two times in a day that the earth is rotating itself, so it lets we see rising tide two 
times and falling tide two times in a day with the same water level. 

 

Figure  12 Tide with different viewpoints 
[From: http://www.narit.or.th/index.php/astronomy-article/96-oceantides 

Accessed: December 1, 2019] 
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2) Mixed Tide 

If we are above or lower the equator line less than 28.5 degree, we will saw two times (B 
and B’ in Figure 12) of tide like Semidiurnal Tide but with difference water level. 

3) Diurnal Tide 

In the position and above or lower the equator line more than or equals 28.5 degree, we 
will see only one time (C and C’ in Figure 12) of tide (one tidal cycle per day). In left side Gulf of 
Thailand area (dataset we used for this research), we will see diurnal tide as shown in Figure 13. 

 

 

 

Figure  13 Tide types map 
[From: https://en.wikipedia.org/wiki/Tide Accessed: December 1, 2019] 

 

2.4 Neural Network (NN) 

The model is inspired by biological nervous systems as shown in Figure 14. It is trained 
by train data to predict unseen data which consists of many components, such as (i) activation 
function that being used to decide which neuron should be activated or not. Popular activation 
functions are sigmoid function, Rectified Linear Unit (ReLU) [10], (ii) loss function which is a 
method of evaluating how well your model performs on the dataset. If the model performs well 
on the dataset, the output from the loss function of the model should be low. It is a very 
important part while tuning hyperparameter. 
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Figure  14 Perceptron architecture 
[From: https://appliedgo.net/perceptron/ Accessed: December 1, 2019] 

2.4.1 Perceptron 

Perceptron, a single hidden layer neural network which contains only one hidden layer 
between the input and output layer. A perceptron receives n number of inputs since x1, . . . , xn 

then multiply with its weight which are w1, . . . , wn after that the result will be added by w0 

and will be passed through step function as shown in (2). 

f(x) = 1 if (w0 + ∑ wixi
n
i=1 ) > 0, −1 otherwise                          (2) 

 Where w is weights, w0 is bias and x is an input and n is number of inputs. In the 
learning process, can be described by two equations below. 

wi ← wi +△ w                                                          (3) 

△ w = α (ŷ − y) xi                                                       (4) 

Where α is learning rate, which is used to define how much weight will be updated on 
each training round.  

2.4.2 Activation Function 

The function is used to decide whether a neuron should be activated or not by 
nonlinear transformation an output before sending to a next layer. Popular activation functions 
are as follows. 
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1) Sigmoid Function 

The function refers to the special case of the logistic function. Output of all real 
numbers that is passed sigmoid function will be bounded from 0 to 1, as shown in (5). 

𝜎(𝑥)  =  
1

1 + 𝑒−𝑥 
                                                    (5) 

 

2) Rectified Linear Unit (ReLU) 

In the last few years, ReLU has become very popular. It simply thresholded at zero, as 
shown in (6) that make it less computational cost [10]. 

f(x)  =  max(0, x)                                                 (6) 

3) Softmax Function 

The function returns value between 0 to 1 and sum of all nodes will be equals 1 which 
can be compared to possibility of each nodes. Defines x as number of nodes in dense layer, 
node result in layer is replaced with z, so the result of softmax function of j or fj can be shown 
in the equation (7). 

f(z)j =
e

zj

∑ e
zjk

i=1

                                               (7) 

4) Hyperbolic Tangent Function 

The function returns a value in range -1 to 1. The function can be called in tanh which 
is can be calculated from the equations (8). 

tanh(z) =
ez−e−z

ez+e−z                                               (8) 

5) Threshold Function 

The function determines whether a value equality of its inputs exceeded a t threshold. 
The function can be written with the equation below (9). 

f(z, t) = {
0  ifz < t
z  ifz ≥ t

                         (9) 
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2.4.3 Loss Function 

The loss function is a method of evaluating how well your model performs on the 
dataset. If the model performs well on the dataset, the output from the loss function of the 
model should be low. It is a very important part while tuning hyperparameter. 

2.5 Convolutional Neural Network (CNN) 

CNN originally created for digits recognition research by using filter to create a feature 
map as an input for the next layer, mainly consists of two main layers. Example of architecture is 
shown in Figure 15. 

 

Figure  15 Convolutional neural network architecture 
(From: Fig. 2. [11]) 

2.5.1 Convolution Layer 

The layer is used to find a feature from a group of nearby input by using a dot product 
of matrix with the filter as shown in Figure 16. In this layer, there are many components that 
need to be considered, such that filter size, stride size, number of filters and number of 
channels. Where I is input matrix, K is filter matrix with h × w size, result of convolution is 
shown in equation (10). There are components that must be considered as list below. 

(I ∗ K)xy = ∑ ∑ Kij ⋅ Ix+i−1,y+j−1
w
j=1

h
i=1                               (10) 
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Figure  16 Convolution operation 
[From: http://www.deeplearningessentials.science/convolutionalNetwork/ 

Accessed: December 1, 2019] 

1) Filter Size 

 Filter size is weight and height of filter that used in the convolution layer (h and w of 
equation (10) are equal 3 and 3 is used in Figure 16). 

2) Convolution Type 

Narrow convolution, convolution type is being used in general. It does not operate out 
of input matrix size. Result of convolution of input matrix N × N with filter size M × M will 
result matrix size (N − M + 1) × (N − M + 1), an example of it is shown in Figure 16. 

Wide convolution, this convolution type operates out of input matrix size (out of input 
matrix size was considered as 0), which is called padding for preventing information losing at the 
matrix border. Result of convolution of input matrix N × N with filter size M × M will result 
matrix size (N + M + 1) × (N + M + 1), an example of it is shown in Figure 17. 
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Figure  17 Wide convolution with padding 

(From: Fig. 2.6 [12]) 

3) Stride Size 

 It is a number of input slots that will be used for calculating for each result slot, which 
have default value equals 1. An example of convolution layer which has stride size equals 2 is 
shown in Figure 18. 

 
Figure  18 Convolution layer with input size equals 5x5, 

filter size equals 3x3, and stride size equals 2 
(From: Fig. 2.7 [12]) 

4) Number of Filters 

 It is able to have many filters, each filter can have different weight. The number of filters 
will result to number of inputs in the next layer, as shown in Figure 19. 

 
Figure  19 Convolution with number of filters equals 3 

(From: Fig. 2.8 [12]) 
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4) Number of Channels 

 Number of channels (input’s depth) is normally equals 3 in image research / task, which 
represent primary colors or number of input’s depth in previous layers. The result of convolution 
layer with number of channels is shown in equation (11), where k is number of channels. 

Zij
l = ∑ ∑ ∑ wa,b

lm−1
b=0

m−1
a=0

k−1
c=0 ac,i+a,j+b

l−1 + bl                         (11) 

2.5.2 Pooling Layer 

The layer’s objective is to reduce computational cost by only keeping important 
information. Popular pooling layers are max and average pooling layer. An example of max 
pooling is shown in Figure 20. 

 

Figure  20 Example of max pooling operation 
[From: http://cs231n.github.io/convolutional-networks Accessed: December 1, 2019] 

2.6 Recurrent Neural Network (RNN) 

Neural Network that is designed for sequential data by using internal memory. Internal 
memory makes RNN able to remember things which have been passed as shown in Figure 21 and 
equation (12), where each variable is listed below. 

- xt is input at timestep t 
- st is hidden state at timestep t, also called network memory 
- U is weight of input at timestep t 
- W is shared weight 
- b is a bias 
- σ is activation function 

st  =  σ(Wst−1 + Uxt  +  b)                                    (12) 
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Figure  21 A recurrent neural network 
 [From: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-

introduction-to-rnns/ Accessed: December 1, 2019] 

 In the training phase of model training, we will use “Back Propagation Through Time” 
(BPTT) for update neural weight. This weight-updating approach (BPTT) can cause issues called 
gradient explosion and vanishing when input length is too long. In BPTT, we use chain rule for 
weight updating, weight which is calculated from gradient can be exploded (when weight value 
more than 1) or vanishing (when weight value range between 0 and 1) when we have to multiply 
it many times according to the input length. 

2.7 Gated Recurrent Unit (GRU) 

GRU is created for solving the vanishing gradient problem of RNN by implementing a 
gating mechanism which consists of an update gate and a reset gate [13]. The update gate is used 
to decide if information to be considered or not. The reset gate is used to decide how much 
information to forget. The GRU is shown in Figure 22 and the calculation of each component is 
shown in equation (13-16) where each variable is listed below while tanh and sigmoid are 
used for bound the result for preventing exploding and vanishing gradient. 

- i is neuron index 
- j is time index  

- ĥ is result of previous input  
- h is result of current input  
- xt is input value at timestep t 
- zt is value of update gate at timestep t 
- rt is value of reset gate at timestep t 
- Uz is weight of update gate 
- Ur is weight of update gate  
- W is shared weight 
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hj

i = (1 − zt
j
)ht−1

j
+ zt

j
ĥt

j                                       (13)  

ĥt
j

= tanhj(Wxt + U(rt⨀ht−1))                                 (14) 

zt
j

= sigmoidj(Wzxt + Uzht−1)                               (15) 

rt
j

= sigmoidj(Wrxt + Urht−1)                                     (16) 

 

Figure  22 Gated recurrent unit 
[From: https://github.com/ekapolc/nlp_course Accessed: December 1, 2019] 

2.8 Attention Mechanism 

A mechanism that used for focusing on a subset of its inputs, it tells which input to 
looking at (or pay attention to) [14] . The system that applies the attention mechanism will need 
to determine where to focus on. There are several ways of this mechanism implementation for 
example the implementation with CNN as shown in Figure 23. 

 
Figure  23 The attention mechanism: The soft attention assign weights 

on different locations of features using softmax 
(From: Figure 2 [15]) 
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The mechanism generally used in sequential inputs. An example of attention mechanism 

in machine translation is shown in equation (17-18) and the variable are list below.  

ci = ∑ aijhjj                                                        (17) 

ai = softmax(fatt(si−1, hj))                                         (18) 

- ci is context vector 
- aij is attention score 
- hj is encoder state at index j 

- ai is an attention scores (weight vector) of all decoder index 𝑗 
- si−1 is previous hidden state / decoder state 
- hj is encoder state at index j 
- fatt is function for calculating attention score which have many types 

 

2.8.1 Additive Attention 

 The attention function which calculate the score with concattion of 2 sequences 
together as shown in equation (19). 

fatt(si−1, hj) = tanh (W1si−1 + W2hj)                          (19) 

2.8.2 Multiplicative Attention 

 This attention calculates attention score by multiplication with weight, which is faster 
and more efficient than additive attention. The equation of this attention’s type is shown in (20).  

fatt(si−1, hj) = Si−1
T Wahj                                       (20) 

2.8.3 Self-Attention 

 Aforementioned attention types are computed by using 2 sequential input, but this type 
only require itself (only one input required), as shown in equation (21-22) where Ws1 is a weight 
matrix, Ws2 is a vector of parameters. 

H = (h1, h2, h3, … , hn)                                          (21) 

ai = softmax(Ws2tanh(Ws1, HT))                              (22) 
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2.9 Transfer Learning 

Transfer learning concept has been widely used in the machine learning field. This 
concept can be implemented in several ways for example, using existing model and weight as an 
initial model's state then continuously fining tune for the new task, and using existing model as a 
front layer of our model. The idea utilize knowledge from other pre-trained models or tasks to 
another task which mostly related to each other (leverage knowledge from what we have 
learned in the past).  

 For example, in a cat classification task instead of training from scratch, we using trained 
model that was trained on ImageNet dataset (which already have good understanding in general 
shape or pattern of things in many categories), as a feature extraction layer of the new model 
(such as car classification) will usually help the our task to have a better initial state and reduce 
training time. 

2.10 One-Hot Encoding 

One-hot encoding [16] is a technique that used for representing a value. Length of result 
vector will be equals number of items, value inside the vector will have only one position that 
have 1 as a value, otherwise 0. Example of month number encoding which have range from 0 
(January) to 11 (December), is shown in Table 2. 

Table  2 Month number in one-hot encoding 
Month number Month number (one-hot encoding) 

0 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

1 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

4 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

5 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 

6 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 

7 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 

8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] 

9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 

10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 

11 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 
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Chapter 3 
Related Works 

This section describes existing researches in this field which is composed by three topics: 
(i) model approach, (ii) research in the same dataset, and (iii) room for improvement. 

3.1 Model Approach 

Existing model approaches will be summarized into three groups which are numerical 
based approach, time series based approach and machine learning based approaches. 

3.1.1 Numerical Based Approach 

 Frolov et al. [17] developed short-term prediction model by using linear autoregressive 
technique on past 48 hours of HF-radar data as an input to predict 48 future hours based on 
Monterey coast since 1st Jan 2006 to 30th Oct 2010. Barrick et al. [18] presented a short-term 
predictive system (STPS) which only required a few hours of previous data and open-modal 
analysis (OMA) as a preprocessing method. However, this approach requires high computational 
costs and predefined parameters manually assigned by experts. This approach is not included in 
the experiment. 

3.1.2 Time Series Based Approach 

Ocean current predictions can be considered as a time series prediction. Some 
researchers employed ARIMA to benchmark their proposed models [3]. However, it considers 
only temporal effects regardless of spatial effect. The approach will be considered as one of the 
baseline models. 

3.1.3 Machine Learning Based Approach 

Kalinić et al. [5] proposed ocean current prediction by using Self-Organizing Map (SOM) 
that uses wind data generated from numerical weather prediction (NWP) and HP radar. Saha et al.  
[19] attempted to make daily predictions of ocean currents by combining an artificial neural 
network (ANN) with a numerical method. The system was implemented at two locations in the 
Indian ocean. Jirakittayakorn et al. [3] proposed Temporal kNN to predict short-term ocean 
current prediction based on HF radar of Thailand's gulf 3 years long from 2014 to 2016. The 
model is designed to capture seasonal and temporal characteristics. However, only traditional 
machine learning techniques have been employed and they did not corporate both spatial and 
temporal effects. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25 

 
3.2 Ocean Current Prediction in Gulf of Thailand 

Latest research on the same dataset [3], adapt machine learning technique k-nearest 
neighbors (kNN) with seasonal attributes. Dataset which was provided by GISTDA was filtered out 
by selecting only grid areas that have missing data less than 5% over three years of data since 
2014 to 2016 and normalizing with min-max normalization before using it as model inputs. 

The research proposed 2 feature extractions as shown below. 

1) Point-Hour (PH) look back sequence: Each grid point data was transformed to equation (23), 
where yhr,d is target value at hour hr of day d 

(𝑚𝑜𝑛𝑡ℎ, 𝑥ℎ𝑟,𝑑−1, 𝑥ℎ𝑟,𝑑−2, … , 𝑥ℎ𝑟,𝑑−𝑛, 𝑦ℎ𝑟,𝑑)                             (23) 

2)  Time Series (TS) look back sequence: Each grid-point data was transformed to equation (24) 

𝑚𝑜𝑛𝑡ℎ [𝑥ℎ𝑟−𝑚,𝑑−𝑛, 𝑥ℎ𝑟−2,𝑑−𝑛, … , 𝑥ℎ𝑟−1,𝑑−𝑛, 𝑥ℎ𝑟,𝑑−𝑛] 

                                                         … 

              [𝑥ℎ𝑟−𝑚,𝑑−2, 𝑥ℎ𝑟−2,𝑑−2, … , 𝑥ℎ𝑟−1,𝑑−2, 𝑥ℎ𝑟,𝑑−2] 

              [xhr−m,d−1, xhr−2,d−1, … , xhr−1,d−1, xhr,d−1]  yhr,d                             (24) 

They separate each model for each month due to seasonality effect concerned and the 
dataset was spitted into two parts. Example of data splitting is shown in Figure 24. 

- Year 2014: training dataset 
- Year 2015 and 2016: in each month, first 10 days will be training dataset, then randomly 

selected 10 days for testing dataset and the rest will be additional training dataset (additional 
8 to 11 days for training dataset) 

At the end, the research result shows performance of their proposed model better than all 
baseline models. 

 

Figure  24 Example of data splitting that is used in Temporal kNN model research 
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3.3 Room for improvement 

 From the aforementioned researches in ocean surface current forecasting, there are still 
many of rooms for the model to be improved. In this research, we will address three 
components below. 

3.3.1 Addressing Spatial and Temporal Effect Together 

 Previous research either address spatial or temporal effect, they did not cooperate with 
spatial and temporal effects together. 

3.3.2 Domain Knowledge Input 

 Many researchers already applied some domain knowledge such as, seasonality effect by 
separately creating model for each month but there are still a lot of domain knowledge that not 
applied yet such as, land breeze and sea breeze.  

3.3.3 Deep Learning Technique 

 Recently deep learning techniques have been showed successfully applied in many 
fields. So, it is a great chance to bring the techniques into the field. 
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Chapter 4 
Proposed Method 

In this chapter, we will propose model that is used to forecast ocean surfer current. The 
proposed model can be separated into 5 modules which consist of CNN, GRU, oceanic inputs, 
attention mechanism, and transfer learning. The proposed model takes advantage of noticeable 
domain properties by using CNN to capture spatial effect and combining GRU to extract temporal 
effect of its nature. It has two CNN blocks as feature extraction layers in front of the model, then 
the passed through GRU layer which is connected to it. There are three oceanic input that we 
add as additional inputs into the model which are month number, lunar effect, and hour 
number. At last, we extended the model with two modern deep learning techniques, attention 
mechanism to tell us which part that the model should focus and transfer learning to give the 
model more knowledge from another task. The chapter will be spitted into two parts: data 
preprocessing and the proposed model. 

4.1 High Frequency Dataset 

 The high frequency dataset is used for our main dataset. The section covered the 
dataset and data pre-processing process as follows, data removal, missing grid imputation, and 
data normalization. 

4.1.1 Dataset 

U and V components of ocean surface currents in this research are measured from high-
frequency (HF) radar stations which are located alongside Thai gulf. Total of 3,097 grid points are 
reported since 1 Jan 2014 to 23 Dec 2016, as shown in Figure 25 with UTC±00 offset. The dataset 
resolution is 2x2 kilometer in spatial and one hour in temporal resolutions. An example of 
records in the dataset is shown in Table 3. 

Table  3 Example of records in dataset 
Timestamp Latitude Longitude U comp V comp 

2015/6/22 6:00 12.7418 99.9725 0.1560 -14.0680 

2015/6/22 6:00 12.7238 99.9725 -7.8070 -16.3430 

2015/6/22 6:00 12.7057 99.9725 -13.7860 -17.8560 

2015/6/22 6:00 12.6876 99.9726 -9.9550 -17.7540 

2015/6/22 6:00 12.6695 99.9726 -5.8360 -18.2980 

2015/6/22 6:00 12.6514 99.9727 6.2560 -18.2790 
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Figure  25 3097 sites of data was obtained from GISTDA 

  Statistical data of U and V component data was used for data normalization process. 
Max and min value of each year has almost the same value which is about 100 for max and -100 
for min values, as shown in Table 4. 

Table  4 Statistical data of each year on U and V components from HF dataset 
Year Statistical Data U component V component 

2014 

Max 99.8110 99.9460 

Mean 1.6161 -2.1626 

Min -99.9920 -99.8980 

Standard Deviation 9.8523 20.1035 

2015 

Max 99.9750 99.7160 

Mean 0.9495 -1.8671 

Min -99.9560 -99.9110 

Standard Deviation 11.7686 21.4724 

2016 

Max 99.7820 99.9710 

Mean 1.1678 -1.7078 

Min -99.9650 -99.9210 

Standard Deviation 11.8899 22.8146 
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4.1.2 Data Removal 

We only keep grid points that have data appeared more than or equal ninety-five (same 
as previous research in the same dataset [3]) percent over three year reported due to the 
significant issue of data availability from HF radar stations that would affect model prediction 
result [20]. After the process, 1,065 of 3,097 grid points will be used in the experiment. The 
histogram of data availability of all grid points over three year is shown in Figure 26 and the total 
3,097 grid points are shown in black dot and remaining 1,065 grid points are shown red dot in 
Figure 27. 

 

Figure  26 Histogram of grid data availability over three years 

 

Figure  27 1,065 of 3,097 grid points are shown in red color 
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4.1.3 Missing Grid Imputation 

After the data removal step, we still have a few missing data on each grid point which 
need to be filled. We proceed two basic steps of imputation to achieve it, as shown in Figure 28 
below. 

 

Figure  28 Two steps of data imputation 

1) Imputation at Boundary Grids 

We filled missing left and right boundaries with the value of the nearest data point, as 
shown in Step 1 of Figure 28. 

2) Imputation at Non-boundary Grids 

We filled the rest with an average of closest available data points, as shown in Step 2 of 
Figure 28. 

4.1.4 Data Normalization 

Min-max normalization as shown in (25) is used to normalize the data. The minimum 
value was mapped to 0 and the maximum value was mapped to 1 and dataset size for each step 
is shown Table 5. 

yi =
xi−min(x)

max(x) − min(x)
                                                 (25) 

Where xi is an input value, yi is a normalized value, min(x) is the minimum and 
max(x) is the maximum value of the entire dataset. 

Table  5 Dataset size on each processing step 
Step Processing Size (GB) 

1 Raw (unzip) 11.69 

2 Step 1 + Removing metadata 7.76 

3 Step 2 + Keep only considered data 4.54 

4 Step 3 + Min-max normalization 2 
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4.2 Oceanic Input Dataset 

We use additional oceanic input to help a model to learn more about ocean current 
background. New inputs that have been added consist of month number, lunar effect, and hour 
number. 

4.2.1 Month Number 

 The month number is used to represent seasonal effect of two monsoons (southwest 
monsoon and northeast monsoon) which generally start on certain months consistently. The 
data is picked directly from the month of each reported timestep then using one hot encoding to 
encode the data before being used by the model as additional input, as shown in Table 6. 

Table  6 Example of month number input 
Timestamp Month number Month number (one-hot encoding) 

2015/12/31 11:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

2015/12/31 12:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

2015/12/31 13:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

2015/12/31 14:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

2015/12/31 15:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

2015/12/31 16:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

2015/12/31 17:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

 

4.2.2 Lunar Effect 

The lunar effect is used to represent tide effect which helps the model about how much 
to the current will be changed in the day according to the spring tide and neap tide 
phenomenon. The lunar illumination is calculated from equation in chapter 48 [21] then passed 
to equation (26) to reflect the effect of sprint tide and neap tide. Example of lunar illumination 
and effect are shown in Table 7 Figure 29 and 30. 

yi = |xi − 0.5| × 2                                                (26) 

Where xi is a lunar illumination which ranges from zero to one, yi is lunar effect value 
with the range of value. 
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Table  7 Example of lunar effect input 

Timestamp Lunar effect 

2015/12/31 11:00 0.32591 

2015/12/31 12:00 0.31843 

2015/12/31 13:00 0.31094 

2015/12/31 14:00 0.30344 

2015/12/31 15:00 0.29591 

2015/12/31 16:00 0.28837 

2015/12/31 17:00 0.28082 

 

 

Figure  29 Example of lunar illumination on each timestep 

 

Figure  30 Example of lunar effect on each timestep 

 

4.2.3 Hour Number 

 The hour number is a representative of land breeze and sea breeze effects which is 
directly affected by the time in the day. The data is picked directly from the hour of each 
reported timestep then using one hot encoding to encode the data before being used by the 
model as additional input, as shown in Table 8. 
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Table  8 Example of hour number input 

Timestamp Hour number Hour number (one-hot encoding) 

2015/12/31 11:00 11 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 12:00 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 13:00 13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 14:00 14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 15:00 15 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 16:00 16 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 17:00 17 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 

 

4.3 Proposed Model 

 The model is combined with a variety of sub modules that will be explained in this 
topic. Each step of adding the module will be created as a new model to shows the effect of 
added module, as shown in Table 9. 

Table  9 Model explanation 

Model Description 

CNN-GRU Spatio-Temporal model that aims to capture two main characteristics 
which are spatial and temporal characteristics by using CNN and GRU respectively. 

CNN-GRU-Input (Month Number) Enhanced CNN-GRU model with month number as a new input. 

CNN-GRU-Input (Lunar Effect) Enhanced CNN-GRU model with the lunar effect as a new input. 

CNN-GRU-Input (Hour Number) Enhanced CNN-GRU model with an hour number as a new input. 

CNN-GRU-Input (All) Enhanced CNN-GRU model with month number, the lunar effect 
and an hour number as new inputs. 

CNN-GRU-Input (All)-Att CNN-GRU-Input (All) with the utilization of soft attention mechanism. 

CNN-GRU-Input (All)-Att-TL The proposed model combines all techniques which are adding all oceanic inputs, soft 
attention mechanism, and transfer learning. 

4.3.1 Combination of CNN and GRU 

A Spatio-Temporal model takes advantage of obvious domain characteristics by using 
Convolutional Neural Network (CNN) to capture spatial characteristic and Gated Recurrent Unit 
(GRU) to capture temporal characteristic. The mode architecture is shown in Figure 31. 
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Figure  31 Example of CNN-GRU architecture 

4.3.2 Oceanic Input 

Oceanic inputs are added and connected to two fully connected layers except lunar 
effect input, the implementation as shown in Figure 32. 

 

Figure  32 Implementation of oceanic inputs in the model 

4.3.3 Attention Mechanism 

The implementation idea is even we have two convolutional blocks in the front of the 
model for feature extraction layer, but there are still many parts that the model must take care 
of, so we use attention mechanism for telling which part that a model should pay attention to. 
The attention mechanism was added after the first convolution block. 
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The feature map values from the first CNN block was sent to tanh for normalization, 

dense was used a weight function, and softmax was used as an output layer to give the 
possibility of each feature map then element wise multiplication it together, as shown in Figure 
33.  

 

Figure  33 Attention mechanism part in the model 

4.3.4 Transfer Learning 

 We have deployed concept into the model by using another model’s component as an 
initial weight of the model. For instance, pre-trained weight of U component model is used as an 
initial weight of V component model, in the same way pre-trained weight of V component model 
is used as an initial weight of V component model in training process. 

The proposed model combines all described topics above which are combination of 
CNN-GRU, oceanic inputs, attention mechanism, and transfer learning, as shown in Figure 34. 

 

Figure  34 Model architecture of CNN-GRU-Input (All)-Att-TL 
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Chapter 5 
Experimental Setup 

In the section, we discuss how to prepare the experiment, and details of all experiment 
models which can be categorized in three parts such that data preparation, performance 
evaluation, and forecasting model. 

5.1 Input Data 

 Input data is used in our experiment, which consists of (i) U and V components dataset 
and (ii) data partitioning for training, validating, and testing phases. 

5.1.1 Data 

U and V components were received from GISTDA since 2014 to 2016 and were pre-
processed, as described in chapter 4. 

5.1.2 Data Partitioning 

Since the ocean surface currents in Gulp of Thailand has its seasonality effect and the 
dataset contains three years of data, we split the year 2014, year 2015 and year 2016 as training, 
validation and test datasets, respectively as shown in Table 10. Training dataset is used in model 
training process, validation dataset is used to pick the optimal model, and test dataset is used for 
performance evaluation. 

Table  10 Year and dataset in the experiment 
Year Dataset 

2014 training 

2015 validation 

2016 test 

5.2 Performance Evaluation 

Root-mean-square error (RMSE) used as a metric for evaluating the model on both U and 
V components on next one timestep which equals to the next one hour in this research. The 
RMSE equation is shown in (27). 

RMSE = √
1

mn
∑ ∑ (ypredict − yactual)2n

j=1
m
i=1                               (27) 

Where 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is predicted value, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 is observed value, 𝑛 is the number of grid 
points and 𝑚 is the number of timesteps. 
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5.3 Forecasting Model 

In this intensive experiment, there are thirteen models including our proposed method. 
Each model has been optimized its performance using various hyperparameters on the validation 
dataset. The proposed model has been tested sequentially to shows the effect of each module 
applied. 

5.3.1 Lookback Timestep 

A naive model’s forecasting value equals to last 𝑘 timesteps of observed value as 
shown in (28), for example if 𝑘 = 1 then a predicted value will be equals 1 previous timestep 
(hour) in the same grid, as shown Table 11. We performed varied of 𝑘 parameters, as follow, 1, 2, 
3, 4, 5, 24, 168, 720, 2,160 and 8,640. The result indicates that 1 is an optimal parameter for 𝑘 on 
both U and V components. 

yt = xt−k                                                      (28) 

  Where 𝑥𝑡−𝑘 is 𝑘 previous timesteps of observed value, 𝑦𝑡 is a predicted value. 

Table  11 Example of predicted value of Lookback model when k = 1 
Timestamp Grid no Label value Predicted value 

2015/12/31 11:00 1643 10 5 

2015/12/31 12:00 1643 11 10 

2015/12/31 13:00 1643 15 11 

2015/12/31 14:00 1643 17 15 

2015/12/31 15:00 1643 20 17 

2015/12/31 16:00 1643 24 20 

2015/12/31 17:00 1643 32 24 

 

5.3.2 Moving Average (MA) 

Moving Average is an unweighted mean of the previous k timesteps as shown in (29). 𝑘 
parameter from 2 to 4 has been deployed for tuning. The result showed that 2 was an optimal 𝑘 
on both U and V components. 

yt =
1

k
∑ xt−i

k
i=1                                                   (29) 

Where xt−i is i previous timesteps of observed value, yt is a predicted value. 
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5.3.3 Autoregressive Integrated Moving Average (ARIMA) 

A suit of standard structures in time series data provides a simple and powerful method 
of time series forecasting. The acronym stands for each aspect of the model itself. 

Number of parameters have been deployed in the tuning process while p is the order of 
the autoregressive model, d is the degree of difference, and q is the order of the moving-average 
model also including seasonal order parameters which contain (P, D, Q, S) order of the seasonal 
component for AR parameters, differences, MA parameters, and periodicity, respectively. Optimal 
parameters are No. 1 and No. 3 in Table 12 for U and V components, respectively. 

Table  12 Example of ARIMA parameters that have been used while tuning 

No. p d q P D Q s 

1 0 1 1 - - - - 

2 1 0 1 - - - - 

3 2 0 0 - - - - 

4 2 1 0 - - - - 

5 0 0 1 0 0 1 1 

5.3.4 Temporal kNN 

There are three parameters which are k (number of neighbors), weight and n (number of 
lookback days) of Temporal kNN model. We used k from 1 to 12, distance and uniform for 
weight and n from 1 to 40 for search space of the model. The result showed 12 and 40, 12 and 
28 are optimal parameters for k and n with uniform weight of U and V components, respectively. 

5.3.5 Perceptron 

We tuned only the number of hidden units on a hidden layer, fixed ReLU for an 
activation function of the hidden layer and fixed sigmoid function for an activation function of 
output layer. In tuning process, 1,024, 2,048 and 4,096 were used as number of hidden units of 
hidden layer. The result shows 2,048 is an optimal value for both U and V components. 

5.3.6 Multilayer Perceptron (MLP) 

By stacking hidden layers, this allowed the model to be able to extract more hierarchical 
structure information. In this paper, there are two hidden layers in MLP, where the number of 
hidden units of both layers are the same. To obtain the most suitable number of hidden units, 
we varied and compared different the number of hidden units: 512, 1,024, 2,048, 4,096 and 
8,192. From our experiment, the best number of hidden units is 4,096. 
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5.3.7 Convolutional Neural Network (CNN) 

Since CNN architecture is varied, the combination of architectures and hyperparameters 
is infinite. We used a mature architecture such as VGG [22] as a starting point then fine tune from 
it. The optimal architecture is closed to CNN-GRU without GRU layer that will be illustrated in 
CNN-GRU section. 

5.3.8 Gated Recurrent Unit (GRU) 

We fixed the number of GRU layers to be one and number of input timesteps to be 
three. Only number of units was varied. As a result, an optimal number of units’ value on both U 
and V components was 2,048. 

5.3.9 Spatio-Temporal (CNN-GRU) 

This is a forecasting model that is used in our framework. We started with our optimal 
CNN and GRU then fine tune from that, new activation function, such as ELU [23] and PELU [24] 
were also being used in a hyperparameter tuning process. The optimal hyperparameters were 
summarized in Table 13 for both U and V components. In this model we fixed 3 as a number of 
input timesteps. 

Table  13 Optimal hyperparameter of CNN-GRU 

Convolutional 
layer 1 and 2 

#filters 32 

Kernel size 3x3 

Activation function PELU 

Pooling layer 
Type Max 

Pool size 2x2 

Dropout layer Rate 0.2 

Convolutional 
layer 3 and 4 

#filters 64 

Kernel size 3x3 

Activation function PELU 

Pooling layer 
Type Max 

Pool size 2x2 

Dropout layer Rate 0.2 

GRU layer #units 256 
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5.3.10 CNN-GRU-Input 

 The model extended setup from the previous model and combined with new oceanic 
inputs such consists of month number, lunar effect, and hour number, as shown in Table 14. 
Four experimental models have been tested, one for each additional oceanic input and all 
inputs combined for the fourth model. 

Optimized hyperparameters are the same for CNN-GRU model except for the number of 
hidden units on dense layers of the additional input layer. The result showed that 4 and 8 are an 
optimal number of hidden units for month number and hour number input for two dense layers 
of both U and V components. We further test the fourth model (CNN-GRU-Input (All)) which uses 
all new oceanic inputs to see the effect of its combination by using optimal hyperparameter for 
each additional oceanic input. 

Table  14 Example of oceanic inputs 

Timestamp 
Month number 

(one-hot encoding) 
Lunar effect 

Hour number 
(one-hot encoding) 

2015/12/31 11:00 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 0.32591 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 12:00 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 0.31843 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 13:00 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 0.31094 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 14:00 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 0.30344 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 15:00 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 0.29591 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 16:00 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 0.28837 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

2015/12/31 17:00 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 0.28082 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 

 

5.3.11 CNN-GRU-Input (All)-Att 

Number of hidden units 16x16, 32x32 and 62x62 have been used for tuning phase inside 
two additional dense layers of implemented self-attention mechanism on a spatial property 
(feature map which is the result of CNN) to gain more accurate. The result shows that 32x32 is an 
optimal value for both U and V components. 
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5.3.12 CNN-GRU-Input (All)-Att-TL 

The proposed model, after tuning previous model (CNN-GRU-Input (All)-Att), we did 
apply transfer learning concept by using trained model and weight as an initial state of the 
model. For example, in modeling process of V component, we used CNN-GRU-Input (All)-Att of U 
component as an initial weight and we normally tuning it again on U component dataset. The 
proposed model is shown in Figure 34. 
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Chapter 6 
Experiment and Result 

 This section describes how all experiments we did perform and the result of it, which 
consists of (i) forecasting next one timestep, to demonstrate effect of each module we proposed 
(ii) rolling forecasting up to next 48 timesteps, to show model performance when it have to 
predict up to 2 days, and (iii) forecasting next one timestep with different number of input 
timesteps, to present the number of input timesteps’ effect in the proposed model. 

6.1 Forecasting Next One Timestep 

This experiment compares all model forecasting values on the next one timestep (next 
one hour), on both U and V components by using RMSE as a performance evaluation. Models 
used in the experiment are Lookback, MA, ARIMA, Temporal kNN, Perceptron, MLP, CNN, GRU, 
CNN-GRU, CNN-GRU-Input (Hour Number), CNN-GRU-Input (Lunar Effect), CNN-GRU-Input (Month 
Number), CNN-GRU-Input (All), CNN-GRU-Input (All)-Att, and CNN-GRU-Input (All)-Att-TL, as 
described in Table 9. 

6.1.1 Dataset and Partitioning 

U and V components from GISTDA from 2014 to 2016 and generated oceanic inputs are 
used for particular models such as CNN-GRU-Input (All), CNN-GRU-Input (All)-Att, and CNN-GRU-
Input (All)-Att-TL. 

The U and V components dataset will be spitted into 3 parts which are list below, and 
the period of each dataset is shown in Table 15. 

1) Training dataset will be used for training a model. 
2) Validation will be used for selecting an optimal model which has highest accuracy. 
3) Test dataset will be used for performance evaluation. 

Table  15 Dataset period of forecasting next one timestep experiment 
Dataset Period 

Training 1 Jan 2014 00:00 to 31 Dec 2015 23:00 

Validation 1 Jan 2015 00:00 to 31 Dec 2015 23:00 

Test 2 Jan 2016 00:00 to 31 Dec 2016 23:00 
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6.1.2 Evaluation 

This experiment will evaluate all models on test dataset that described above by using 
RMSE on both U and V component for calculate error between label and prediction value. 

6.1.3 Result 

Result of the experiment will be shown and discussed into the section below. The 
example of forecasting value on test dataset is shown in Figure 35 and 36 and average of RMSE 
(group by hour) on each component is also shown in Figure 37 and 38 to demonstrate the 
difference between baseline models and CNN-GRU model. 

 

 

Figure  35 Example of forecasting value on test dataset of U component 

 

Figure  36 Example of forecasting value on test dataset of V component 
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6.1.3.1 Overview 

This experiment evaluated all models on test dataset and compare all models 
with the proposed model (CNN-GRU-Input (All)-Att-TL). Table 16, RMSE on V component, 
shows that temporal property might be the dominant property over a spatial property 
from the result. 

 From the experiment result, RMSE is shown Table 16, deep learning based 
model is shown interesting performance such as CNN, GRU, and CNN-GRU etc. Each 
additional module which are oceanic inputs and modern deep learning techniques show 
its contribution. The proposed model which combines all modules has the highest 
accuracy (lowest RMSE) on both U and V components. 

 

Table  16 Model’s RMSE of next one timestep forecasting on U and V component, 
compared to the proposed model 

Model 
U component V component 

RMSE (cm/s) Differences (%) RMSE (cm/s) Differences (%) 

Lookback 5.0678 -15.28 11.1669 -56.00 

MA 5.4222 -23.34 14.3236 -100.09 

ARIMA 5.2516 -19.46 11.1284 -55.46 

Temporal kNN 7.3207 -66.52 10.9683 -53.22 

Perceptron 4.6360 -5.45 9.5185 -32.97 

MLP 4.6951 -6.80 9.3969 -31.27 

CNN 4.5354 -3.17 9.2040 -28.58 

GRU 4.6246 -5.19 8.0180 -12.01 

CNN-GRU 4.5090 -2.57 7.4050 -3.44 

CNN-GRU-Input (Hour Number) 4.4856 -2.03 7.3618 -2.84 

CNN-GRU-Input (Lunar Effect) 4.4969 -2.29 7.3793 -3.09 

CNN-GRU-Input (Month Number) 4.4944 -2.23 7.3803 -3.10 

CNN-GRU-Input (All) 4.4798 -1.90 7.3407 -2.55 

CNN-GRU-Input (All)-Att 4.4213 -0.57 7.1988 -0.56 

CNN-GRU-Input (All)-Att-TL 4.3962 - 7.1584 - 
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6.1.3.2 Effect of Combination Between Spatial and Temporal Characteristics 

 CNN-GRU has better RMSE than CNN and GRU individually on both U and V 
components. The combination of spatial and temporal effects (CNN-GRU) model shows 
an improvement of model performance as we expected, by considering both noticeable 
characteristics together which is compared between CNN-GRU and CNN (representative 
of spatial effect) or GRU (representative of temporal effect), as shown in Table 17. This 
supports that a combination of spatial and temporal effects is important. 

Table  17 Effect of combination between spatial and temporal characteristics 
in term of RMSE comparing to CNN-GRU  

Model 
U component V component 

RMSE (cm/s) Differences (%) RMSE (cm/s) Differences (%) 

Lookback 5.0678 -12.39 11.1669 -50.80 

MA 5.4222 -20.25 14.3236 -93.43 

ARIMA 5.2516 -16.47 11.1284 -50.28 

Temporal kNN 7.3207 -62.36 10.9683 -48.12 

Perceptron 4.6360 -2.82 9.5185 -28.54 

MLP 4.6951 -4.13 9.3969 -26.90 

CNN 4.5354 -0.59 9.2040 -24.29 

GRU 4.6246 -2.56 8.0180 -8.28 

CNN-GRU 4.5090 - 7.4050 - 

Regarding to the result Table 17, CNN-GRU showed a huge improvement by 
combination of CNN and GRU, especially in V component by 13.51% and 36.74% in 
average on U and V components, respectively. 

The model (CNN-GRU) performance is improved on both U and V component 
which is shown in Figure 37 and 38, especially on V component in Figure 38 that 
temporal based model such as GRU and CNN-GRU perform very well. 
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Figure  37 Average RMSE (hour) of models on U component 

 

Figure  38 Average RMSE (hour) of models on V component 

 

6.1.3.3 Effect of Oceanic Input 

 Adding ocean inputs as additional model inputs improve the performance, 
which is calculated between CNN-GRU-Input (All) and CNN-GRU. Each ocean input 
showed its contribution about the seasonal effect by improving the model accuracy (as 
shown in list below), and its combination as well. Oceanic input models are listed below. 

1) CNN-GRU-Input (Month Number): add month number as additional input 
2) CNN-GRU-Input (Lunar Effect): add lunar effect as additional input 
3) CNN-GRU-Input (Hour Number): add hour number as additional input 
4) CNN-GRU-Input (All): add all oceanic inputs as additional inputs 
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Table  18 Effect of oceanic inputs in term of RMSE comparing to CNN-GRU 

Model 
U component V component 

RMSE (cm/s) Improvement (%) RMSE (cm/s) Improvement (%) 

CNN-GRU 4.5090 - 7.4050 - 

CNN-GRU-Input (Hour Number) 4.4856 0.52 7.3618 0.58 

CNN-GRU-Input (Lunar Effect) 4.4969 0.27 7.3793 0.35 

CNN-GRU-Input (Month Number) 4.4944 0.32 7.3803 0.33 

CNN-GRU-Input (All) 4.4798 0.65 7.3407 0.87 

Table 18 showed the contribution of each oceanic inputs. One oceanic input 
models which consist of CNN-GRU-Input (Hour Number), CNN-GRU-Input (Lunar Effect), 
and CNN-GRU-Input (Month Number) show an improvement comparing to CNN-GRU. The 
combination of all oceanic inputs, CNN-GRU-Input (All) also show the effect of all inputs 
combined by 0.65% and 0.87% comparing to CNN-GRU. 

6.1.3.4 Effect of Attention Mechanism 

Attention mechanism contributed by 1.31% and 1.93% on U and V components 
comparing to CNN-GRU-Input (All) model, as shown in Table 18. 

Table  19 Effect of attention mechanism in term of RMSE comparing to CNN-GRU-Input (All) 

Model 
U component V component 

RMSE (cm/s) Improvement (%) RMSE (cm/s) Improvement (%) 

CNN-GRU-Input (All) 4.4798 - 7.3407 - 

CNN-GRU-Input (All)-Att 4.4213 1.31 7.1988 1.93 

According to the result table, the attention mechanism makes the model 
perform better with big contribution, as shown in Table 19 and visibly seen large gap in 
Figure 39 and 40 between CNN-GRU-Input (All) and  CNN-GRU-Input (All)-Att model. 
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Figure  39 Average RMSE (hour) of each module on U component 

 

Figure  40 Average RMSE (hour) of each module on V component 

 

6.1.4.5 Effect of Transfer Learning 

Transfer learning concept was implemented into the model, can be implied that 
model has been trained with more data which we already described in chapter 4. The 
result showed that transfer learning technique improved the model accuracy by 0.57% 
and 0.56% on U and V components, as shown in Table 20. 

Table  20 Effect of transfer learning in term of RMSE comparing to CNN-GRU-Input (All)-Att 

Model 
U component V component 

RMSE (cm/s) Improvement (%) RMSE (cm/s) Improvement (%) 

CNN-GRU-Input (All)-Att 4.4213 - 7.1988 - 

CNN-GRU-Input (All)-Att-TL 4.3962 0.57 7.1584 0.56 
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6.2 Rolling Forecasting Up to Next 48 Timesteps 

 This experiment evaluated the model on further next timesteps up to next 48 timesteps 
(hours). In some use cases, we need to forecast more than one timestep, for example in search 
and secure operation. We extend a number of forecasting timesteps from one to 48 for seeing 
the model performance in real cases. 

 In the testing period, we first forecast next 1 timestep and use forecasting value as an 
input for forecasting next 2 timesteps and we continually do it until reaches next 48 hours, as 
shown in Figure 41.  

 

Figure  41 Example of rolling forecasting step 

 

 In model training phase, three models (CNN, CNN-GRU and proposed model) must be re-
trained due to the input and output size. For example, to forecast next 1 timestep with CNN 
model, we use grid no in red square in Figure 42 (1728 grids) for an input because CNN required 
squared input and output was in red dot in Figure 42 (1065 grids) but in rolling forecasting we 
need output to be squared as well. In training process of 3 models, we have to using 1728 grids 
as a input and output and only validate on 1065 grids as well as MLP model, as shown in Figure 
42. 
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Figure  42 Input and output grid of CNN model for rolling forecasting 

 

6.2.1 Dataset and Partitioning 

The dataset is the same as the previous experiment, but the period is different due to 
number of next forecasting timesteps. The experiment model was tested on the next 48 hours of 
forecasting values. So, the dataset period is spitted into 3 parts as shown in Table 21. 

Table  21 Dataset period of rolling forecasting up to next 48 timesteps experiment 
Dataset Period 

Training 1 Jan 2014 00:00 to 31 Dec 2015 23:00 

Validation 1 Jan 2015 00:00 to 31 Dec 2015 23:00 

Test 3 Jan 2016 00:00 to 31 Dec 2016 23:00 
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6.2.2 Evaluation 

This experiment will evaluate models on test dataset by using RMSE on both U and V 
components on each next forecasting timesteps until 48 timesteps (48 hours). 

6.2.3 Result 

 The result of each forecasting timestep with 4 models on U and V components is 
plotted with line and box, as shown in Figure 43, 44 and 45. The proposed model (CNN-GRU-
Input (All)-Att-TL) still shows its performance. 

 

Figure  43 RMSE of rolling forecasting up to 48 hours on U component 

 

Figure  44 RMSE of rolling forecasting up to 48 hours on V component 
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Figure  45 RMSE of rolling forecasting up to 48 hours in box plot, 
on U and V components respectively 

 

6.2.3.1 Overview 

 In the results of Figure 43, 44 and 45, show the error continually increasing when 
a number of next forecasting timesteps is increased, as we expected. The proposed 
model (CNN-GRU-Input (All)-Att-TL) showed that model has the highest accuracy in 
average and better in almost all forecasting timesteps. 

6.2.3.2 Temporal Effect 

The result on U component is almost stable, unlike in V component. Figure 44, 
forecasting’s RMSE on V component has the interesting point which is a large gap of an 
accuracy differentiation between non-temporal model and temporal model (CNN-GRU 
and proposed model) that address on temporal effect, especially on Hour Number 0 – 
23 (forecasting up to 1 day). We obviously see better performance with a big gap on the 
graph in CNN-GRU and proposed model. There are 2 waves on result of CNN and 
proposed model that happened due to the nature of the data (daily seasonal effect). 
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6.3 Forecasting Next One Timestep with Different Number of Input Timesteps 

 The experiment is intended to reflect a number of input timesteps which we thought if 
we increase the number of input timesteps, the model should be able to remember the pattern. 
For example, if we use 13 as a number of input timesteps, the model should able to see the 
effect of land breeze or sea breeze (which have about 12 timesteps as time period). In the 
section, we denote number of an input timesteps as #timesteps. 

 The winner model of first experiment (forecasting only 1 next timestep) was taken for 
this experiment. The winner model (CNN-GRU-Input (All)-Att-TL) only use 3 timesteps as a 
#timesteps. In this experiment, we will try with different #timesteps from 1 to 14, as shown in 
Figure 46. 

 

 

Figure  46 Example of adding more timesteps in a model input 
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In training or tuning process of the model, we used existing optimal hyperparameter for 

#timesteps equals 3. Number of units in GRU layer is only one hyperparameter that will be tuned 
in the experiment which are 64, 128, 256, 512, 1,024, 2,048 and 4096. The result shows 1,024 is 
an optimal value for both U and V components. 

6.3.1 Dataset and Partitioning 

Dataset in the experiment is the same as first experiment which are U and V 
components from GISTDA since 2014 to 2016 and generated oceanic inputs. Data partitioning also 
the same as first experiment. 

6.3.2 Evaluation 

This experiment was evaluated as same as the first experiment which is RMSE on both U 
and V components by calculating the difference between label and forecasting value. 

6.3.3 Result 

 The experiment result showed the bigger number of input timesteps did not make 
model performance better but worse instead, as shown Table 24 and Figure 47 - 48. 

Table  22 RMSE of proposed model with different 
number of input timesteps on U and V components 

#timesteps 
U component V component 

RMSE (cm/s) RMSE (cm/s) 

1 4.54467 8.78182 

2 4.45720 7.33044 

3 4.42225 7.17287 

4 4.44608 7.16332 

5 4.45484 7.25531 

6 4.45063 7.36691 

7 4.47095 7.39322 

8 4.49096 7.48469 

9 4.48413 7.52422 

10 4.51280 7.47238 

11 4.50787 7.42888 

12 4.51145 7.44740 

13 4.54283 7.47230 

14 4.55442 7.47417 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 55 

 

 

Figure  47 RMSE of proposed model with different number of input timesteps on U component 

 

Figure  48 RMSE of proposed model with different number of input timesteps on V component 

6.3.3.1 Overview 

The RMSE result of the experiment is not as we expected as shown in Table 24. 
Figure 47 and 48 clearly showed the effect of different #timesteps. The model RMSE 
started decreasing when we added more #timesteps until 3 and 4 on U and V 
components then it began to increase. 

6.3.3.2 Tuning on Model with Number of Input Timesteps Equals 13 

The unexpected result form #timesteps 5 to 14 in blue line in Figure 47 and 48 
occurred because we used optimal hyperparameter from the mode that using 3 as 
#timesteps, so it might not work with other models that use different #timesteps. We 
further tuned model on #timesteps equals 13 and plot it with the red dot in the same 
Figure (47 and 48). The result of tuned model that using 13 #timesteps which is shown in 
red dot still not perform better. This may because of the oceanic inputs we added that 
might cover the effect of big #timesteps, so that is why the result of big #timesteps is 
not as good as we expected. 
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Chapter 7 
Summary and Future Work 

 This conclusion will summarize our work in this thesis and possibility of an improvement 
in ocean current prediction task. 

7.1 Summary 

This thesis proposed short-term ocean current prediction model which can be used to 
support all marine activities by deploying recent deep learning technique and implemented 
domain knowledge as a model input. HF radar dataset from 2014 to 2016 was provided by 
GISTDA. The model was expected to have highest accuracy among the other models which is 
evaluated on U and V components by using RMSE on the test dataset. 

We applied three deep learning techniques as follow, (i) combination of CNN and GRU to 
consider noticeable spatial and temporal characteristics together, (ii) attention mechanism to 
express the grid area that model should focus on, and (iii) transfer learning to take advantage of 
knowledge from other components by using it as initial model weight. 

Hour number, lunar effect, and month number are used as ocean inputs to represent 
the effect of ocean current seasonality. Hour number represented land breeze and sea breeze 
phenomenon. Lunar effect represented tide phenomenon and month number represented 
monsoon effect. 

Three experiments performed to reflect aspect of its nature. First experiment, forecasting 
next one timestep was performed to address the effect of each added modules and the result 
showed that our proposed model is the winner among other models. Second experiment, rolling 
forecasting up to next 48 timesteps tested the model with longer timesteps of prediction values 
to see how the model perform when it has to forecast longer. Our proposed model still shows 
its impressive performance in the 2nd experiment. The last experiment was tested only on the 
proposed model to see the effect of different number of input timesteps. The result shows that 
the increasing of the number of input timesteps makes the model more accurate. 

In term of applying to the application, the accuracy improvement of proposed model 
can help the real use case especially when the big period of time passes by. When the accuracy 
is in error at 1 cm/s, it is 0.86 km/day which is important for many cases such as oil spill 
trajectory, and search and rescue operation. 
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7.2 Future Work 

 Future works in ocean current forecasting model can be described in 3 topics. 

7.2.1 Revise Model Architecture 

 Our proposed model architecture is one way of combining all modules into one model. 
There are many possible architectures that can be deployed and may have better performance 
without adding new contribution. 

7.2.2 Address Temporal Effect 

The model used only GRU to address temporal effect. GRU did excellent on 
performance improvement, but the model still cannot address longer information (big number of 
input timesteps) which already shown in 3rd experiment result (forecasting next one timestep 
with different number of input timesteps). 

7.2.3 Address Sun Position 

 In our result of first experiment (forecasting next one timestep), it shows the RMSE 
grouped by hour number. In Figure 49 and 50, the RMSE started increasing from hour number 5 
which is noon in local time and start decreasing when sunset. This behavior happened in both U 
and V components, so if we can address this topic, the model might have a big improvement in 
term of RMSE. Provided dataset timestamp offset is UTC±00, but in the local time is UTC+07. 

 

Figure  49 RMSE of models with different sun positions on U component 
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Figure  50 RMSE of models with different sun positions on V component



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

REFERENCES 
 

 

1. Allard, R., et al., The US Navy coupled ocean-wave prediction system. 
Oceanography, 2014. 27(3): p. 92-103. 

2. Rozier, D., et al., A reduced-order Kalman filter for data assimilation in physical 
oceanography. SIAM review, 2007. 49(3): p. 449-465. 

3. Jirakittayakorn, A., et al. Temporal kNN for short-term ocean current prediction 
based on HF radar observations. in Computer Science and Software Engineering 
(JCSSE), 2017 14th International Joint Conference on. 2017. IEEE. 

4. Ren, L., Z. Hu, and M. Hartnett, Short-Term forecasting of coastal surface 
currents using high frequency radar data and artificial neural networks. Remote 
Sensing, 2018. 10(6): p. 850. 

5. Kalinić, H., et al., Predicting ocean surface currents using numerical weather 
prediction model and Kohonen neural network: a northern Adriatic study. 
Neural Computing and Applications, 2017. 28(1): p. 611-620. 

6. Qin, Z., et al., How convolutional neural network see the world-A survey of 
convolutional neural network visualization methods. arXiv preprint 
arXiv:1804.11191, 2018. 

7. Xu, K., et al. Show, attend and tell: Neural image caption generation with 
visual attention. in International conference on machine learning. 2015. 

8. Buranapratheprat, A., Circulation in the upper gulf of Thailand: A review. Vol. 
13. 2008. 75-83. 

9. Ahmad, F., et al., An Analysis of Anomalous Propagation in Peninsular Malaysia. 

10. Nair, V. and G.E. Hinton. Rectified linear units improve restricted boltzmann 
machines. in Proceedings of the 27th international conference on machine 
learning (ICML-10). 2010. 

11. Lecun, Y., et al., Gradient-based learning applied to document recognition. 
Proceedings of the IEEE, 1998. 86(11): p. 2278-2324. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
60 

 

12. Koomsubha, T., Text Categorization for Thai Corpus Using Character-Level 
Convolutional Neural Netwok. 2016. 

13. Cho, K., et al., Learning phrase representations using RNN encoder-decoder for 
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014. 

14. Bahdanau, D., K. Cho, and Y.J.a.p.a. Bengio, Neural machine translation by 
jointly learning to align and translate. 2014. 

15. Yan, S., et al., Hierarchical Multi-scale Attention Networks for action recognition. 
2018. 61: p. 73-84. 

16. Potdar, K., T.S. Pardawala, and C.D.J.I.J.o.C.A. Pai, A comparative study of 
categorical variable encoding techniques for neural network classifiers. 2017. 
175(4): p. 7-9. 

17. Frolov, S., et al., Improved statistical prediction of surface currents based on 
historic HF-radar observations. Ocean Dynamics, 2012. 62(7): p. 1111-1122. 

18. Barrick, D., et al., A short-term predictive system for surface currents from a 
rapidly deployed coastal HF radar network. Ocean Dynamics, 2012. 62(5): p. 
725-740. 

19. Saha, D., et al., A combined numerical and neural technique for short term 
prediction of ocean currents in the Indian Ocean. Environmental Systems 
Research, 2016. 5(1): p. 4. 

20. Richard E. Thomson, W.E., Data Analysis Methods in Physical Oceanography. 
2014. 3. 

21. Meeus, J., Astronomical Algorithms. 1998: p. 477. 

22. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 

23. Clevert, D.-A., T. Unterthiner, and S. Hochreiter, Fast and accurate deep 
network learning by exponential linear units (elus). arXiv preprint 
arXiv:1511.07289, 2015. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
61 

 

24. Trottier, L., P. Gigu, and B. Chaib-draa. Parametric exponential linear unit for 
deep convolutional neural networks. in 2017 16th IEEE International 
Conference on Machine Learning and Applications (ICMLA). 2017. IEEE. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VITA 
 

VITA 
 

NAME Nathachai Thongniran 

DATE OF BIRTH 25 March 1991 

PLACE OF BIRTH Bangkok 

INSTITUTIONS ATTENDED B.Eng. (First Class Honours), Electronic and Telecommunication 
Engineering, King Mongkut's University of Technology Thonburi 
(2009-2013) 

HOME ADDRESS 133, Charansanitwong 3 Road, Wat Tha Phra, Bangkok Yai, Bangkok 
10600 

PUBLICATION N. Thongniran, P. Vateekul, K. Jitkajornwanich, S. Lawawirojwong, 
and P. Srestasathiern, "Spatio-temporal deep learning for ocean 
current prediction based on HF radar data", 2019 - 16th 
International Joint Conference on Computer Science and Software 
Engineering (JCSSE 2019)  
 
N. Thongniran, K. Jitkajornwanich, S. Lawawirojwong, P. 
Srestasathiern, and P. Vateekul, "Combining Attentional CNN and 
GRU Networks for Ocean Current Prediction Based on HF Radar 
Observations", 2019 - 8th International Conference on Computing 
and Pattern Recognition (ICCPR 2019) 

  

 

 


	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1  Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Scope
	1.4 Expected Result
	1.5 Research Plan
	1.6 Publications

	Chapter 2  Background Knowledge
	2.1 Ocean Current Circulation in Thai Gulf
	2.1.1 Monsoon
	2.1.2 Lunar Illumination
	2.1.3 Sea Breeze and Land Breeze

	2.2 High Frequency Radar and Data Collection
	2.2.1 HF Radar Station in Thailand
	2.2.2 Measurement
	2.2.3 Data Loss
	2.2.4 Current Measurement

	2.3 Tide
	2.3.1 Tidal Force
	2.3.2 Spring Tide and Neap Tide
	2.3.3 Tide with Different Viewpoint

	2.4 Neural Network (NN)
	2.4.1 Perceptron
	2.4.2 Activation Function
	2.4.3 Loss Function

	2.5 Convolutional Neural Network (CNN)
	2.5.1 Convolution Layer
	2.5.2 Pooling Layer

	2.6 Recurrent Neural Network (RNN)
	2.7 Gated Recurrent Unit (GRU)
	2.8 Attention Mechanism
	2.8.1 Additive Attention
	2.8.2 Multiplicative Attention
	2.8.3 Self-Attention

	2.9 Transfer Learning
	2.10 One-Hot Encoding

	Chapter 3  Related Works
	3.1 Model Approach
	3.1.1 Numerical Based Approach
	3.1.2 Time Series Based Approach
	3.1.3 Machine Learning Based Approach

	3.2 Ocean Current Prediction in Gulf of Thailand
	3.3 Room for improvement
	3.3.1 Addressing Spatial and Temporal Effect Together
	3.3.2 Domain Knowledge Input
	3.3.3 Deep Learning Technique


	Chapter 4  Proposed Method
	4.1 High Frequency Dataset
	4.1.1 Dataset
	4.1.2 Data Removal
	4.1.3 Missing Grid Imputation
	4.1.4 Data Normalization

	4.2 Oceanic Input Dataset
	4.2.1 Month Number
	4.2.2 Lunar Effect
	4.2.3 Hour Number

	4.3 Proposed Model
	4.3.2 Oceanic Input
	4.3.3 Attention Mechanism
	4.3.4 Transfer Learning


	Chapter 5  Experimental Setup
	5.1 Input Data
	5.1.1 Data
	5.1.2 Data Partitioning

	5.2 Performance Evaluation
	5.3 Forecasting Model
	5.3.1 Lookback Timestep
	5.3.2 Moving Average (MA)
	5.3.3 Autoregressive Integrated Moving Average (ARIMA)
	5.3.4 Temporal kNN
	5.3.5 Perceptron
	5.3.6 Multilayer Perceptron (MLP)
	5.3.7 Convolutional Neural Network (CNN)
	5.3.8 Gated Recurrent Unit (GRU)
	5.3.9 Spatio-Temporal (CNN-GRU)
	5.3.10 CNN-GRU-Input
	5.3.11 CNN-GRU-Input (All)-Att
	5.3.12 CNN-GRU-Input (All)-Att-TL


	Chapter 6  Experiment and Result
	6.1 Forecasting Next One Timestep
	6.1.1 Dataset and Partitioning
	6.1.2 Evaluation
	6.1.3 Result
	6.1.3.1 Overview
	6.1.3.2 Effect of Combination Between Spatial and Temporal Characteristics
	6.1.3.3 Effect of Oceanic Input
	6.1.3.4 Effect of Attention Mechanism
	6.1.4.5 Effect of Transfer Learning


	6.2 Rolling Forecasting Up to Next 48 Timesteps
	6.2.1 Dataset and Partitioning
	6.2.2 Evaluation
	6.2.3 Result
	6.2.3.1 Overview
	6.2.3.2 Temporal Effect


	6.3 Forecasting Next One Timestep with Different Number of Input Timesteps
	6.3.1 Dataset and Partitioning
	6.3.2 Evaluation
	6.3.3 Result
	6.3.3.1 Overview
	6.3.3.2 Tuning on Model with Number of Input Timesteps Equals 13



	Chapter 7  Summary and Future Work
	7.1 Summary
	7.2 Future Work
	7.2.1 Revise Model Architecture
	7.2.2 Address Temporal Effect
	7.2.3 Address Sun Position


	REFERENCES
	VITA

