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การสกัดความสัมพันธ์แบบชีวเวชเป็นงานที่ต้องการจะศึกษาความสัมพันธ์ระหว่างคำเฉพาะที่ถูก

กำหนดไว้ออกจากเอกสารทางชีวเวชซ่ึงถูกมองว่าเป็นพื้นฐานสำคัญทางด้านเทคโนโลยีชีวภาพ  ตัวอย่างชุดข้อมูล
ของงานดังกล่าว ได้แก่ การศึกษาความสัมพันธ์ของแบคทีเรียกับแหล่งที่อยู่ และการศึกษาความสัมพันธ์ของชื่อยา 
วิธีที่ได้รับความนิยมเป็นอย่างมากในงานวิจัยที่ผ่านมา คือ การใช้โมเดลเรียนรู้จากลักษณะหรือโมเดลเรียนรู้เชิง
ลึก ประกอบกับการใช้โครงสร้างประโยคเชิงพึ่งพิงที่สั้นที่สุด ซ่ึงถูกนำเสนอมาและแสดงให้เห็นว่าให้ผลลัพธ์ที่ดี 
แต่การเรียนรู้จากโครงสร้างประโยคเชิงพึ่งพิงจะมีข้อจำกัดที่จำเป็นจะต้องตัดคำบางคำในประโยคออกไป  ซ่ึง
นำไปสู่การที่โมเดลเรียนรู้จากประโยคที่เหลือได้ไม่เพียงพอ และการแทนที่คำด้วยเวกเตอร์แบบไม่พึ่งบริบทซ่ึงถูก
ใช้ในงานวิจัยก่อน ๆ ที่ผ่านมา อาจจะนำไปสู่ปัญหาความกำกวมของคำได้ งานวิจัยชิ้นน้ีต้องการจะนำเสนอการ
สกัดความสัมพันธ์เชิงชีวเวชด้วยโมเดลเรียนรู้เชิงลึก ซ่ึงเป็นการใช้ลักษณะสำคัญทั้งโครงสร้างประโยคทั้งหมดและ
โครงสร้างประโยคเชิงพึ่งพิงแบบสั้นที่สุด ประกอบกับกลไกจุดสนใจ นอกจากน้ันยังมีการใช้การแทนที่คำและ
ประโยคด้วยตัวแทนข้อมูลแบบพึ่งบริบทเฉพาะด้าน และงานวิจัยชิ้นน้ีต้องการที่จะวัดประสิทธิภาพโดยรวมของ
โมเดลด้วย โดยจะแสดงถึงความทนทานของประสิทธิภาพของโมเดลต่อการสุ่มเวกเตอร์ตั้งต้นของโมเดลในหลาย 
ๆ ครั้ง เพื่อการันตีประสิทธิภาพของโมเดลในการนำไปใช้งานจริงบนโปรแกรมสำเร็จประยุกต์ โดยที่ เม่ือ
เปรียบเทียบกับงานวิจัยอ่ืน ๆ ที่ เป็นมาตรฐานอยู่ในปัจจุบัน ผลการทดลองบนชุดข้อมูลความสัมพันธ์ของ
แบคที เรียกับแหล่งที่อยู่แสดงให้ เห็นว่าโมเดลที่ ใช้ วิธีการที่นำเสนอทั้ งหมดให้ผลลัพธ์ที่ดีที่ สุดบนค่าวัด
ประสิทธิภาพ (F score) ทั้งค่าที่มากที่สุดและค่าเฉลี่ยอยู่ที่ 60.77%และ 57.63% ตามลำดับ นอกจากน้ีโมเดลที่
นำเสนอยังให้ผลลัพธ์ที่ดีที่สุดบนชุดข้อมูลความสัมพันธ์ของชื่อยา ด้วยค่าวัดประสิทธิภาพ (F score) มากที่สุด
และค่าเฉลี่ยอยู่ที่ 80.3% และ 77.7%ตามลำดับ งานวิจัยชิ้นน้ีได้แสดงให้เห็นว่าวิธีการที่ได้นำเสนอไปทั้งหมด
สามารถสกัดคุณลักษณะที่สำคัญของโครงสร้างประโยคและเป็นประโยชน์ต่อการเรียนรู้โมเดลเชิงลึกได้เป็นอย่าง
ดี นำไปสู่ประสิทธิภาพที่ดีที่สุดของโมเดลที่นำเสนอเม่ือเทียบกับโมเดลมาตรฐานต่าง  ๆ นอกจากน้ียังมีการ
วิเคราะห์ผลการทำนายที่ทั้งถูกและผิดของโมเดลที่นำ เสนอ เพื่อนำไปสู่การวิเคราะห์ตัวแปรที่ส่งผลต่อ
ประสิทธิภาพของโมเดล 
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The biomedical relation extraction (RE) tasks aim to study the interaction between 

pre-defined entities from biomedical literature: Bacteria Biotope (BB) and Drug-Drug interactions 
(DDI) tasks. Some previous investigations have used feature-based models; others have 
presented deep-learning-based models such as convolutional and recurrent neural networks 
used with the shortest dependency paths (SDPs). Although SDPs contain valuable and concise 
information, sections of significant information necessary to define bacterial location 
relationships are often neglected. In addition, the traditional word embedding used in previous 
studies may suffer from word ambiguation across linguistic contexts. Here, we present a deep 
learning model for biomedical RE. The model incorporates feature combinations of SDPs and 
full sentences with various attention mechanisms. We also used pre-trained contextual 
representations based on domain-specific vocabularies. In order to assess the model’s 
robustness, we introduced a mean F score on many models using different random seeds. The 
experiments were conducted on the BB corpus in BioNLP-ST’16 and the DDI corpus in BioNLP-
ST’13. For the BB task, our experimental results revealed that our proposed model performed 
better (in terms of both maximum and average F scores; 60.77% and 57.63%, respectively) 
compared with other existing models. For the DDI task, our proposed model also gets state-of-
the-art performance with a maximum F score of 80.3% and a mean F score of 77.7%. In 
conclusion, we demonstrated that our proposed contributions to this task can be used to 
extract rich lexical, syntactic, and semantic features that effectively boost the model’s 
performance. Moreover, we analyzed the correct and incorrect predictions of our model to 
determine the related factors that affected the model’s performance. 
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1. INTRODUCTION 
1.1. Motivation 

Automatic relation extraction is a task which defines the interactions between the biomedical 
entities from biomedical texts, which is important and getting more attention from biomedical 
researchers these days. Due to the rapid development of computational and biological 
technology [1], the biomedical literature is expanding at an exponential rate leading to the 
difficulty in manually extracting the required information. As the primary shared workshops of 
various biomolecular event extractions from literature, the BioNLP Shared Task (BioNLP-ST) series 
represent a community trend in text mining for biology toward fine-grained information 
extraction. For instance, Drug-Drug Interactions (DDI) [2] and Bacteria-Biotope relations (BB) [3]. In 
addition, the first BioNLP-ST was organized in 2009, and the time of writing the recent series of 
this community-wide event was in 2016. 

Over the past few years, great efforts have been made in challenging biomedical relation 
extraction. In general, automatic relation extraction from biomedical texts which can be 
considered as classification task is divided into two categories, binary and multi-class relation 
extractions. Firstly, BB task is an example task in binary relation extraction. As the fourth series of 
BioNLP Shared Task in 2016, this task [3] followed the general outline and goals of the previous 
tasks in 2011 [4] and 2013 [5]. It aims to investigate the interactions of bacteria: Bacteria entity, 
and its biotope: Habitats or Geographical entity, from genetic, phylogenetic, and ecology 
perspectives. It also involves Lives in relation, which is a mandatory relation between related 
arguments, the bacteria and the location where it lives. An example of the relation between 
bacteria and location in the biomedical text in BB task can be displayed in Figure 1. Furthermore, 
for multi-class relation extraction, DDI task [2] in BioNLP-ST’2013 concentrates effects on the 
novel aspects of the extraction of drug interactions. This task relies on the DDI corpus composed 
by texts from MedLine abstracts on drug-drug interactions as well as documents describing on 
drug-drug interactions from the DrugBank database. Figure 2 shows an example of drug mentions 
and their relation in this task. Several existing works [6-10] have been shown that feature-based 
methods can be successfully employed for both automatic relation extractions from biomedical 
texts. However, the feature-based methods are heavily dependent on feature engineering, and it 
is sometimes difficult to find a machine-learning researcher that has enough sufficient domain 
knowledge to extract features for the problem.  
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In recent advances, other than the features-based methods, deep learning (DL) methods have 
been found to be outstanding and receiving more attention due to its capability to achieve state-
of-the-art performance in several NLP tasks. Additionally, DL models demand less feature 
engineering since they can automatically learn useful features from training data. The examples 
of popular DL models that have successfully been applied for biomedical relation extraction are 
Convolutional Neural Networks (CNNs) [11-14] and Recurrent Neural Networks (RNNs) [15-18]. 
There are some significant differences between RNNs and CNNs in the relation extraction tasks. 
RNN models, such as Gated Recurrent Unit (GRU) [19] and Long Short-Term Memory (LSTM) [20], 
are capable of learning some long-term dependency sequential features which are more suitable 
for handling long sentences. In contrast, CNN models can capture the local features from 
contexts based on convolution operations which are more appropriate for addressing short 
sentences in NLP problems.  

Despite the success of DL models in previous studies, there are still several limitations to be 
considered. To begin with, although shortest dependency paths (SDPs) has been shown to 
contain valuable syntactic features that are important to the relation extraction models, it is also 
possible for these dependencies to miss some valuable information in the SDP. For example, for 
BB task, the word “detection”, which should play the key role to define the relationship 
between bacteria “E. coli” and biotope “CSF”, is not included in SDP as seen in Figure 1, 
because there is no dependency path between “detection” and the entity mentions. Similarly, 
for DDI task, Figure 2 shows that the word “cause” which should be important to extract drug 
“sumatriptan” and drug “mesylate” relation is excluded from SDP. On the other hand, there 
have been some researchers studying on using full sentences to extract biomedical relations 
from texts. However, by considering only full sentences which are usually long and complicated, 
it is very difficult for DL models to learn enough features from only full-sentence features. 
Additionally, attention networks have demonstrated success in a wide range of biomedical NLP 
tasks. For instance, Additive attention mechanism [21, 22] is used to focus on only parts of 
sentence inputs to achieve the state-of-the-art performance in BB task [23] and Entity-Oriented 
attention [15] is employed to determine which words of the sentences are the most influential 
for the relationship between a pair of entities. However, there are still some attention 
mechanisms that have not been explored and used together in biomedical relation extraction 
such as Multi-Head attention [24] which has been very successfully proposed in general-domain 
machine translation. Moreover, although traditional context-free word models, such as Skip-Gram 
[25] and GloVe [26], have been used for many biomedical relation extractions, they only allow a 
single context-independent representation for each word to learn the corresponding word vector. 
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This could lead to word sense ambiguation across various linguistic contexts. To alleviate this 
problem, contextual representation models [27, 28], which use language understanding models 
to generate word vectors based on their contexts, have been proposed and their pre-trained 
weights on general-purpose domain are freely available. However, based on the experimental 
evidence [29], some studies on the biomedical domain have been shown that the pre-trained 
word embedding model on a general-purpose corpus, such as Wikipedia, is not sufficient enough 
for biomedical tasks. Finally, estimating the accuracy of biomedical relation extraction model is 
significant not only to predict the new coming datasets but also to choose the successful 
method from a given set. For the reliable performance evaluation, we need an estimation 
method with low bias and low variance. To choose the proper method, the absolute maximum F 
score, which is usually used as the evaluation metric in the previous works, might be considered 
to be less important and the estimation methods such as cross-validation and bootstrap, which 
are more suitable for the biases and trends in real-world applications [30], should be used 
instead. 

 

Figure  1. An example of the relation between bacteria and location in BB task. 
Bacteria and location mentions are in red bold texts; “E. coli” represents the bacteria mention; 

“CSF” represents the habitat mention; The words in SDP are shown in black bold. 

 

Figure  2. An example of drug mentions and their relation in DDI task. 
Two drug mentions are in red bold texts. “sumatriptan” and “mesylate” represent the drug 

mentions; The words in SDP are shown in black bold. 
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This study proposes a DL relation extraction for biomedical texts. We explore the effectiveness of 
the hybrid model between RNN model to extract full-sentence features from long and 
complicated sentences, and CNN model to capture SDP features which are shorter, more 
valuable, and more concise. We also exploit the integration of three types of attention layers: 
Additive attention, Entity- Oriented attention, and Multi-Head attention, to enhance the relation 
extraction task by sentence-level concentration, word-level concentration, and extracting 
features in multiple subspaces, respectively. Then, we integrate the domain-specific contextual 
word representation to provide a word sense disambiguation for this task, and contextual 
sentence representation to improve full-sentence RNN model by embedding sequence sentence 
information from pre-trained language understanding model. Finally, we compare our proposed 
model with other existing DL models by the low-bias estimation methods. 

1.2. Research Objectives 

This thesis studies the problem of automatically extracting relation from biomedical literature 
with deep learning-based methods. The main hypothesis of this thesis is following: “Deep neural 
networks in relation extraction that leverage existing relevant information from related tasks 
outperform models not using this information across biomedical relation extraction tasks”. In 
addition, we goal to evaluate our proposed model with the low-bias metrics to reliably measure 
the model performance. Overall, we lay out three objectives that will be addressed by the 
approaches proposed in this work: 

- To propose a deep learning architecture to extract relations between biomedical 
entities. 

- To compare the proposed model with the existing models using low-bias 
performance metrics.  

- To explore and analyze the effectiveness of each proposed technique to our 
model. 

1.3. Contributions 
Throughout this thesis, we will focus on the five main contributions: a combination of full-
sentence and SDP features, attention mechanisms, contextual representation, and low-bias 
model evaluation. Also, we will show how the contributions in this thesis related to the 
limitations from existing researches: 
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- We proposed to combine both full sentences and SDPs as input features of the 
model to overcome the lack of information in using only SDP of the previous state-
of-the-art studies. 

- We adapted the integration differential attention mechanisms into the proposed 
model. 

- We presented contextual word and sentence representations that pre-trained on 
domain-relevant biomedical corpus. 

- We evaluated the average model’s performance which is less bias than the existing 
maximum score used in BioNLP challenges. 

- We have provided the open-sourced our code. 

1.4. Thesis outline 
In Chapter 2, we provide an overview of background information that is relevant in order to 
understand the contents of this thesis. We review fundamentals of machine learning and deep 
learning approaches. We furthermore introduce the challenge BioNLP Shared Tasks (BioNLP-ST) 
and biomedical relation extraction tasks. 
In Chapter 3, we review the related literature for novel techniques in NLP that outperform the 
state-of-the-art on benchmark tasks. In addition, we review the related works in the area of 
biomedical relation extraction in BioNLP-ST to be compared with our works. 
Chapter 4 presents our preprocessing approaches and the proposed model architecture that can 
be separated into full-sentence model and SDP model. We also provide information about loss 
functions and optimization algorithms which will be explored in this work.  
In Chapter 5, we focus on the experimental setups and result analysis of both binary and multi-
class relation extraction. For experimental setups, data statistics and our model’s hyper 
parameters used in our experiments are provided in detail. Then, we compare our proposed 
model with other existing models in the leaderboard. Apart from the comparison with others, 
each contribution of our model is explored and analyzed its effectiveness to the model’s 
performance. Finally, error analysis is given to examine validation examples that our proposed 
model misclassified. 
Chapter 6 finally contains the conclusions where we summarize our findings and provide the 
future directions. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5. Research schedule 

This is section, we provide the following Gantt chart to list all of our project’s activities and the 
duration of each activity:  

Table  1. Gantt Chart of the project’s activities. 
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1.6. Publications 
The work in this thesis primarily relates to the following the peer-reviewed article: 
1. A. Jettakul, D. Wichadakul, and P. Vateekul, “Relation extraction between bacteria and 

biotopes from biomedical texts with attention mechanisms and contextual representations”, 
BMC Bioinformatics (2019). 
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2. BACKGROUND 

This chapter provides background knowledge related to the project is presented to set the stage 
for novel methods that have been proposed for various NLP tasks. It reviews fundamental 
knowledge of machine learning (§2.1), BioNLP shared tasks (§2.2), and biomedical relation 
extraction (§2.3). In addition, it provides fundamental approaches for biomedical relation 
extraction: SDPs (§2.4) and input representations for NLP models (§2.5). It then introduces the 
reader to other state-of-the-art techniques for most of NLP tasks: imbalance handling techniques 
(§2.6), attention mechanisms (§2.7), and contextual representations (§2.8), that would be 
adapted for biomedical relation extraction in this thesis.  

2.1. Machine learning 

In this section, we introduce the reader to fundamental knowledge of machine learning, which 
builds mathematical models from data. In machine learning, each input is typically represented 
as a vector 𝑥 ∈ ℝ𝑑 of 𝑑 features, where each feature contains the value for a particular attribute 
of the data and each example is assumed to be drawn independently from the data generating 
distribution �̂�𝑑𝑎𝑡𝑎. An entire dataset can be seen as a matrix 𝑋 ∈ ℝ𝑛 𝑥 𝑑 containing 𝑛 examples, 
one example in each row. 

In supervised learning, for every input 𝑥𝑖, the output is typically a separate label 𝑦𝑖 , which can 
be arranged as a vector of labels 𝑦 for the entire dataset. In unsupervised learning, no designated 
labels are available. Two common categories of machine learning tasks are classification and 
regression. In classification, the label 𝑦𝑖  belongs to one of a predefined number of classes or 
categories. In regression, 𝑦𝑖  is a continuous number. 

Classification further subsumes under binary classification, multi-class classification, and multi-
label classification. Binary classification only deals with two classes, while multi-class classification 
deals with more than two classes. Typically, every example 𝑥𝑖 only has one correct 𝑦𝑖 label. 

2.1.1. Maximum likelihood estimation 

The most common way to design a machine learning algorithm is to use the principle of 
maximum likelihood estimation (MLE). An MLE model is defined as a function 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃) that 
maps an input 𝑥 to a probability using a set of parameters 𝜃. As the true probability 𝑝(𝑥) of an 
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example 𝑥 is unknown, we approximate the true probability 𝑝(𝑥) with the probability �̂�𝑑𝑎𝑡𝑎(𝑥) 

under the empirical or data generating distribution. 

The objective of MLE then is to bring the probability of our model 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃) as close as 
possible to the empirical probability of the input �̂�𝑑𝑎𝑡𝑎(𝑥). In other words, MLE seeks to 
maximize the likelihood or probability of the data under the configuration of the model. The 
maximum likelihood estimator is defined as 

 
𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥θ  ∏ 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 (1) 

In practice, many of the probabilities in the product can be small, leading to underflow. Taking 
the logarithm does not change the arg max, but transforms the product into a sum, which results 
in a more convenient optimization problem: 

 
𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥θ ∑ 𝑙𝑜𝑔(𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑖; 𝜃))

𝑛

𝑖=1

 (2) 

 

2.1.2. Generalization 

The goal of machine learning is generalization, training a model that performs well on new and 
previously unseen inputs. To this end, the available data 𝑥 is typically split into a part that is 
used for training, the training set and a second part reserved for evaluating the model, the test 
set. Performance on the test set is then used as a proxy for the model’s ability to generalize to 
new inputs.  

This measure is responsible for the main tension in machine learning: During training, we 
compute the training error, the error of the model on the training set, which we try to minimize. 
The actual measure of interest, however, is the generalization error or test error, the model’s 
performance on the test set, which it has never seen before. This is also the main difference to 
optimization: While optimization seeks to find the minimum that minimizes the training error, 
machine learning aims to minimize generalization error.  

Train and test sets are typically assumed to be i.i.d.: Examples in each dataset are independent 
from each other and train and tests sets are identically distributed, i.e. drawn from the same 
probability distribution.  
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In bias-variance trade-off, the goal to minimize a model’s generalization error gives rise to two 
desiderata: to minimize the training error and to minimize the gap between training and test 
error. This dichotomy is also known as bias-variance trade-off. If the model is not able to obtain a 
low error on the training set, it is said to have high bias. This is typically the result of erroneous 
assumptions in the learning algorithm that cause it to miss relevant relations in the data. On the 
other hand, if the gap between the training error and test error is too large, the model has high 
variance. It is sensitive to small fluctuations and models random noise in the training data rather 
than the true underlying distribution.  

If a model has high bias it is also said to be underfitting. If a model has high variance, it is known 
to be overfitting. A key factor that determines whether a model underfits or overfits is its 
capacity, which is its ability to fit a variety of functions. One way to control a model’s capacity is 
to choose an appropriate hypothesis space, the set of functions it can choose from to find the 
solution. A machine learning model performs best when its capacity is appropriate for the task it 
is required to solve. A commonly used heuristic is expressed by Occam’s razor, wh ich states that 
among competing hypotheses that explain known observations equally well, one should choose 
the simplest, which in this context refers to the model with the lowest capacity. However, while 
simpler functions are more likely to generalize, we still require a hypothesis that is sufficiently 
complex to achieve low training error.  

In practice, a validation set is often used in addition to tune different settings of the model, its 
hyper-parameters, such as the degree of the polynomial in logistic regression. If the test set is too 
small, another technique called cross-validation is typically used. Cross-validation repeats the 
training and test computations on different randomly chosen splits of the data and averages the 
test error over these splits. The most common variation is k-fold cross-validation, which splits the 
data into k subsets of equal size and repeats training and evaluation k times, using k−1 splits for 
training and the remaining one for testing. But in some case that the test set is unseen, cross-
validation cannot be used. Then, other low-bias evaluation techniques, such as a bootstrapping 
method and a measure of average performance, are applied instead.  
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2.1.3. Regularization 

Another way to modify a model’s capacity is to encourage the model to prefer certain functions 
in its hypothesis space over others. The most common way to achieve this is by adding a 
regularization term ∑ 𝜃 to the cost function 𝐽(𝜃): 

 𝐽(𝜃)  =  𝑀𝑆𝐸 +  𝜆 ∑(𝜃) 

 

(3) 

where 𝜆 controls the strength of the regularization. If 𝜆 = 0, we impose no restriction. As  

𝜆 grows larger, the preference that we impose on the algorithm becomes more prominent.  

The most popular forms of regularization leverage common vector norms. ℓ1 regularization 
places a penalty on the ℓ1 norm, i.e. the sum of the absolute values of the weights and is 
defined as follows:  

 ∑(𝜃) = ||𝜃||1 = ∑ |𝜃𝑖|

𝑖

 

 

(4) 

where 𝜃𝑖 ∈ ℝ. ℓ1 regularization is also known as lasso (least absolute shrinkage and selection 
operator) and is the most common way to induce sparsity in a solution as the ℓ1 norm will 
encourage most weights to become 0.  

ℓ2 regularization is defined as:  

 ∑(𝜃)  = ||𝜃||2
2 

 

(5) 

where ||𝜃||2 = √∑ 𝜃𝑖
2

𝑖
 is the Euclidean norm or ℓ2 norm. Somewhat counter-intuitively, ℓ2 

regularization thus seeks to minimize the squared ℓ2 norm as in practice, the squared ℓ2 norm is 
often more computationally convenient to work with than the ℓ2 norm. For instance, derivatives 
of the squared ℓ2 norm with respect to each element of 𝜃 depend only on the corresponding 
element, while derivatives of the ℓ2 norm depend on the entire vector. ℓ2 regularization is also 
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known as Tikhonov regularization, ridge regression, and weight decay. ℓ2 regularization expresses 
a preference for smaller weights in a model.  

Different forms of regularization may also be combined. The combination of ℓ1 and ℓ2 
regularization is also known as elastic net regularization. It uses an 𝛼 parameter to balance the 
contributions of both regularizers:  

 ∑(𝜃)  = 𝛼||𝜃||1 +  (1 − 𝛼)||𝜃||2
2 

 

(6) 

2.1.4. Neural networks 

In recent years, neural networks have become the tool of choice in natural language processing 
(NLP). In this section, we will give an overview of the fundamental building blocks used in neural 
networks. Neural networks can be seen as compositions of functions. In fact, we can view the 
basic machine learning models, such as linear regression and logistic regression, as simple 
instances of a neural network.  

2.1.4.1. Multilayer perceptron (MLP) 

A neural network is a composition of multiple such affine functions interleaved with non-linear 
activation functions. The softmax and sigmoid functions are common functions used at the final 
or output layer of a neural network to obtain a categorical and Bernoulli distribution respectively. 
Non-output layers are referred to as hidden layers. Linear regression can be seen as a neural 
network without a hidden layer and a linear activation function—the identity function—while 
logistic regression employs a non-linear activation function. Neural networks are typically named 
according to the number of hidden layers. A model with one hidden layer is known as a one-
layer feed-forward neural network, which is also known as a multilayer perceptron:  

 ℎ = 𝜎1(𝑊1𝑥 + 𝑏1) 
 

(7) 

 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2ℎ + 𝑏2) (8) 

where 𝜎1 is the activation function of the first hidden layer. Note that each layer is parameterized 
with its own weight matrix 𝑊 and bias vector 𝑏.  

Computing the output of one layer, e.g. ℎ that is fed as input to subsequent layers, which 
eventually produce the output of the entire network y is known as forward propagation. As a 
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composition of linear functions can be expressed as another linear function, the expressiveness 
of deep neural networks mainly comes from its non-linear activation functions. Besides the 
sigmoid and softmax functions that are mainly used at output layers, a common activation 
function for hidden layers is the rectified linear unit (ReLU), which is defined as: 

 𝜎(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (9) 

2.1.4.2. Recurrent neural networks (RNNs) 

As text is sequential, we will be using models that can process a sequence of inputs. The most 
elementary neural network for sequential input is the recurrent neural networks (RNNs). Unlike 
feedforward networks, RNNs have cyclical connections and are more suitable for NLP tasks where 
the meaning of a text segment is naturally dependent on what occurred in the narrative before 
it. RNNs recurrently compose input vectors of a sentence from left to right, effectively letting 
information persist from the history of the previously seen words. There is usually an input layer, 
a hidden layer, and an output layer. The output of hidden layer is fed back to itself at 
consecutive time steps which are many times as there are words in the sentence and the output 
at any time step is generally the recurrent composition of information until that point. Apart from 
only the previously seen word information, to exploit signals come from the future part of a 
sentence in interpreting the current word, running the RNNs from right to left over the input texts 
can yield additional contextual information. This resulted in bi-directional RNNs (BRNNs) [31] 
which essentially have two separate RNNs, each with its own parameters, capturing the context 
at each position from both directions. Then, the output at each time step is a combination of 
output vectors from both RNNs by concatenation. To handle the problem of vanishing gradients 
in regular RNN, Long Short-Term Memory networks (LSTMs) has become popular. The state 
representation of LSTM unit includes an explicit memory cell which is controlled through the 
gates. These gates control the flow of information based on the previous output and cell state. 
Given a full sentence of M tokens, (𝑧1, 𝑧2, ..., 𝑧𝑀), at time step 𝑡-th, BLSTM takes the current 
input representation (𝑧𝑖 ), previous hidden state (ℎ𝑡−1), and previous memory cell (𝑐𝑡−1) as its 
inputs to generate the current hidden state (ℎ𝑖) and memory cell (𝑐𝑖 ). To solve the vanishing 
gradient problem, LSTM has been proposed based on the gate mechanisms, which we can 
compute the input gate (𝑖𝑡), forget gate (𝑓𝑡 ), output gate (𝑜𝑡), and new candidate vectors (�̃�𝑡) as 
follows: 

 𝑖𝑡  =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (10) 
 𝑓𝑡  =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓 ⋅  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (11) 
 𝑜𝑡  =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜 ⋅  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (12) 
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 𝐶�̃�  =  𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (13) 

where 𝑊∗ and 𝑏∗ are weight matrices and bias vectors, respectively. Then, at time step 𝑡-th, the 
memory cell (𝐶𝑡 ) and hidden state (ℎ𝑡) are calculated with equations (14) and (15) where ⊙ 
denotes element-wise multiplication.  

 𝐶𝑡  =  (𝑓𝑡 ⊙ 𝐶𝑡−1)  + (𝑖𝑡 ⊙ 𝐶�̃�) (14) 
 ℎ𝑡  =  𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (15) 

For BLSTM [32], the forward LSTM output (ℎ𝑘
𝑓) and the backward LSTM output (ℎ𝑘

𝑏) are 

concatenated into ℎ𝑘 = ℎ𝑘
𝑓

⊕ℎ𝑘
𝑏 . 

2.1.4.3. Convolutional neural networks (CNNs) 

Another commonly used neural network in NLP tasks is the convolutional neural network (CNN). 
CNNs utilize layers with convolving filters that are applied to local features. Originally invented 
for computer vision, CNNs have subsequently been shown to be effective and have achieved 
excellent results in many NLP tasks. For a given SDP sequence of N tokens, (𝑧1, 𝑧2, ..., 𝑧𝑁), let 
𝑧𝑖 ∈ ℝ𝑘 be the 𝑘-dimensional input embedding vector corresponding to the 𝑖-th word in the 
sequence. The input sequence of length N (padded where necessary) is represented as: 

 𝑧1 ∶ 𝑁  =  𝑧1 ⊕ 𝑧2 ⊕ . . .⊕  𝑧𝑁 (16) 

where ⊕ is the concatenation operator. Let 𝑧𝑖 ∶ 𝑖+𝑗 refers to the concatenation of words 
between 𝑧𝑖 and 𝑧𝑖+𝑗 . CNN model is constructed by feature maps which can contain multiple 
filters. Each convolutional filter is applied to a window of ℎ words to produce a new feature. For 
example, a feature 𝑐𝑖 from a window 𝑧𝑖 ∶ 𝑖+ℎ−1 is computed as follows:  

 𝑐𝑖  =  𝑓(𝑤 ⋅  𝑥𝑖 ∶ 𝑖+ℎ−1  +  𝑏) (17) 

where 𝑏 is a bias parameter, and 𝑓 is a non-linear function. The concatenation of each feature 
map (𝑐𝑖 ) of possible windows (𝑧1 ∶ ℎ , 𝑧2 ∶ ℎ+1, ..., 𝑧𝑁−ℎ+1∶ 𝑁) is used as the whole feature map (c) 
with the equation (18).  

 𝑐 =  [𝑐𝑖  ; 𝑐2 ;  . . . ; 𝑐𝑁−ℎ+1] (18) 

After that, a max pooling operation is applied over the feature map to choose the maximum 
value �̂� = 𝑚𝑎𝑥(𝑐). This maximum value represents the feature representation corresponding to 
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this particular filter, which can effectively constitute the most important feature. For multiple-
filter-widths CNN model [33], each filter width produces the maximum feature �̂�, then the 
multiple-filter-widths CNN output is a combination of the maximum features from every filter 
width. For given d filter widths (𝑓1, 𝑓2, . . ., 𝑓𝑑), the output (𝑐𝑜𝑢𝑡 ) is computed as follows: 

 𝑐𝑜𝑢𝑡  =  [�̂�1  ; �̂�2 ; . . . ;  �̂�𝑑] (19) 

2.2. BioNLP shared tasks (BioNLP-ST) 

The BioNLP Shared Task (BioNLP-ST, hereafter) series represents a community-wide move toward 
fine-grained information extraction (IE), in particular biomolecular event extraction. The series is 
complementary to BioCreative [34]; while BioCreative emphasizes the short-term applicability of 
introduced IE methods for tasks such as database curation, BioNLP-ST places more emphasis on 
the measurability of the state-of-the-art and traceability of challenges in extraction through an 
approach more closely tied to text. The recent workshop of these series is BioNLP open shared 
task (BioNLP-OST) 2019 which is a continuation of the previous efforts organized around the 
BioNLP-ST workshop series from 2009 to 2016.  

2.3. Biomedical relation extraction 

Determining the relationships among biomedical entities is the key point in relation extraction in 
biomedical domain [35]. The ultimate goal is to locate the occurrence of a specific relationship 
type between given two entities. There are lots of extraction format available in biomedical 
domain such as RDF and XML format which is widely used. Relation extraction is usually 
integrated with the similar challenges as NER, such as creation of high-quality annotated data for 
training and assessing the performance of relation extraction systems. 

There are lots of ongoing research in biomedical relation extraction due to critical roles of 
biomedical interactions in different biological processes. Many different approaches for 
biomedical relation extraction have been proposed which can be simple systems that only rely 
on co-occurrence statistics to complex ones which use syntactic analysis and neural networks. 
The co-occurrence technique is considered as the most straightforward techniques which is 
based on the fact that if they are mentioned together more frequently, there is a chance that 
they might be related together in some way. For example, [36] introduce a co-occurrence 
statistics method to calculate and evaluate the degree of association between disease and 
relevant drugs from clinical narratives and biomedical literature.  
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Another approach in this area is rule-based approach. In this technique, a set of predefined 
methods used for biomedical relation extraction. Usually, rules are defined manually by domain 
experts [37]. Having faced the increasing growth of biomedical data, many approaches utilized 
machine learning techniques to extract useful information from syntactic structures rather than 
applying manually derived rules. In machine learning, considered as classification-based 
methods, these rules are automatically generated by using machine learning methods from an 
annotated corpus. 

Relation extraction methods can be improved fundamentally by considering the syntactic and 
semantic structures. Specifically, syntactic parsing methods such as dependency trees are able to 
produce syntactic information about biomedical texts which reveal grammatical relations 
between words or phrases. Hence, most relation extraction systems [8-10, 23, 37-41] rely on a 
shortest dependency path between two entities which has been shown to be a key feature in 
their models. 

2.4. Shortest dependency paths (SDPs) 
The key challenge of biomedical relation extraction is the accurate classification of biomedical 
interactions in the complicated sentences. Some sentences in the biomedical literature may 
contain several clauses and words. Therefore, it is very difficult for the machine learning models 
to capture or learn enough lexical and syntactic features based on only raw full sentences. Many 
previous studies on biomedical relation extraction suggested that the shortest dependency paths 
(SDPs) contain the valuable syntactic features that are very important for extracting relations. 
Examples of SDPs in the sentences from BB and DDI tasks are given in Figure 1 and 2, 
respectively. In Figure 1, “E. coli” is bacteria mention and “CSF” is its location mention that 
appears in the same sentence. The dependency path is generated by syntactic tools and can 
effectively represent the syntactic dependency relations of the sentence. For example, “rate” 
and “H.” are two words in the sentence, and “prep_of” denotes that the dependency relation 
between “rate” and “H.” is the “prep_of” type which is a prepositional modifier of the word. 
Such syntactic information is helpful for identifying the relation between “E. coli” and “CSF” 
entities. As seen in Figure 1, all of the words associated with two entities, such as “rate”, “H.”, 
“high”, and “pneumoniae” are shown in bold texts which means these words are on the SDP. 

2.5. Input representations for NLP models 
Choosing a suitable representation of the input data is a vital part of deep learning tasks because 
neural networks tend to be relatively robust to the choice of input representation. The only 
requirements for neural network input representations are that they are complete (in sense of 
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containing all information required to effectively predict the outputs) and reasonably compact. 
Although irrelevant inputs are not as much of a problem as they are for algorithms suffering from 
the so-called curse of dimensionality [42], having a very high dimensional input space leads to an 
excessive number of input weights and poor generalization. Beyond that, the choice of input 
representation is something black art, whose aim is to make the reasonable relationship between 
the inputs and the targets as simple as possible. In biomedical relation extraction tasks, there are 
many interesting ideas of input representations in the following paragraphs. 
 

2.5.1 Word representation 

Since the beginnings of NLP, word representation learning has been one of the main research 
areas. Distributed semantic representation have been proved to be effective and flexible keepers 
of prior knowledge to be integrated into downstream applications. Recently, neural-network-
based approaches which process massive amounts of textual data to embed word semantics into 
low-dimensional vectors, the so-called word embeddings. Techniques such as Skip-Gram and 
Continuous Bag-of-Words have been shown to be effective in storing valuable syntactic and 
semantic information [25]. Another prominent word embedding architecture is GloVe [26] which 
combines global matrix factorization and local context window methods through a bi-linear 
regression model. More importantly, these word embeddings can also be used as pre-trained 
weights for downstream NLP applications. There are many pre-trained word weights that are 
freely available in multiple domains, such as general-purpose [26, 43, 44] and biomedical [45] 
domains. 

2.5.2. Part-of-speech representation 

The motivation of part-of-speech (POS) representation is like word representation. POS tags are 
categories of words which have grammatical properties. Words that are assigned to the same POS 
tag display similar behavior in terms of syntax. In general, POS representation is used to 
distinguish the semantic meaning in different sentences. 

2.5.3 Distance representation 

In the recent study for relation extraction, distance embedding [13] has been proposed by the 
assumption that each entity pair in the relation extraction task tends to constitute a relation if 
the distance between entities is short. The distance is derived from the relative distances of the 
current word to both biomedical entities in a sentence. For example, in Figure 1, the relative 
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distances of the word “high” to bacteria “E.” and location “CSF” are 22 and −2, respectively. To 
construct the distance embedding 𝐷(𝑙), each dimension 𝑑(𝑙)of the distance embedding is 
initialized with equation (20) where 𝑙 is the relative distance, 𝑠 refers to the maximum of the 
relative distances in the dataset. The distance vectors 𝑑𝑖𝑠𝑡1 and 𝑑𝑖𝑠𝑡2 represent the distance 
embeddings 𝐷(𝑙) of the current word to both biomedical entities, respectively, which are 
bacteria and location mentions in the previous example.  

 𝑑(𝑙) = tanh (
𝑙

𝑠
) (20) 

   
 

2.5.4 Positional encoding 

Since no-recurrence models such as CNNs cannot make use of the order of sequence like RNNs. 
Positional encoding has been successfully used in the machine translation task [24]. In addition, 
positional encoding can be used for CNN model to inject some information about the absolute 
position of the words in the sentence. The positional encodings usually have the same 
dimension as the word embeddings so that we can sum two of these dimensions. These 
positional encoding (PE) vectors are initialized by sine and cosine functions of different 
frequencies to easily learn to attend by relative position with equation 21 and 22, where 𝑝𝑜𝑠 is 
the position, 𝑖 is the dimension, and 𝑑𝑃𝐸  is the size of positional encoding.  

 𝑃𝐸(𝑝𝑜𝑠, 2𝑖)  =  sin(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑃𝐸

) 

 

(21) 

 𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1)  =  cos(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑃𝐸

) (22) 

   
 

2.6. Handling imbalanced data 

Learning from imbalanced data has emerged as a new challenge to the machine learning and 
text mining communities. The data imbalance problem often occurs in classification scenarios 
when a portion of the classes possesses many more examples than others. When standard 
classification algorithms are applied to such skewed data, they tend to be overwhelmed by the 
major categories and ignore the minor ones. There have been several endeavors in handling 
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imbalanced datasets for NLP tasks. Here, we only focus on sampling strategy [46] and focal loss 
[47]. 

2.6.1. Under-sampling strategy 

Under-sampling seeks to reduce the number of majority class members in the training set [46]. As 
a result, the overall number of labels in the training set is greatly reduced. This means that 
during classification, training time is also greatly reduced. Since we are dealing with very high 
dimensional datasets, there is a significant savings in memory as well. However, because we are 
eliminating members from the majority class, it is possible that we will lose a lot of valuable 
information if we eliminate documents that could be useful to our classifier in building an 
accurate model. Random under-sampling is a simple approach to resampling. Majority class 
documents in the training set are randomly eliminated until the ratio between the minority and 
majority class is at the desired level. Theoretically, one of the problems with random under-
sampling is that one cannot control what information about the majority class is thrown away. In 
particular, very important information about the decision boundary between the minority and 
majority class may be eliminated. Despite its simplicity, random under-sampling has empirically 
been shown to be one of the most effective resampling methods. 

2.6.2. Focal loss 

Initial goal of focal loss function proposed by [47] is to address the problem of extreme balance 
between foreground and background classes during training in object detection scenarios. Focal 
loss is mainly used for object detection, some studies [48] also show that its sparse-specific 
characteristics are also applicable for NLP classification problem with imbalanced dataset.  

The starting point of focal loss is the cross-entropy loss function [49] for binary classification, 
defined as:  

 𝐶𝐸(𝑝, 𝑦) =  {
− 𝑙𝑜𝑔( 𝑝 ),              𝑖𝑓  𝑦 = 1,

    − 𝑙𝑜𝑔( 1 −  𝑝 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (23) 

in which 𝑦 ∈ (−1,1) denotes the ground truth for negative and positive classes, respectively, and 
𝑝 ∈ (0,1) indicates the model’s estimated probability for the class with label 𝑦 = 1. Cross-
entropy loss exhibits a loss with nontrivial magnitude even with easily classified samples. 
Therefore, these small loss values, accumulated with a large number of easy samples, can easily 
surpass the rare class.  
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For simplicity, let  

 𝑝𝑡 =  {  
𝑝,                   𝑖𝑓  𝑦 = 1,

   1 −  𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (24) 

In order to balance the importance of positive and negative samples, a weighting factor 𝛼 ∈

[0,1] is introduced in a similar notation:  

 𝛼𝑡 =  {  
𝛼,                 𝑖𝑓  𝑦 = 1,

   1 − 𝛼, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (25) 

For reducing the loss contribution from easily classified samples, a modulating factor 𝑚 with a 
tunable focusing parameter 𝛾 ≥ 0 is introduced to the cross-entropy loss: 

 𝑚 = (1 −  𝑝𝑡) 𝛾. (26) 

Taking these two new factors into equation (23), the focal loss function becomes: 

 𝐹𝐿(𝑝𝑡) = −𝛼𝑡  (1 −  𝑝𝑡)𝛾 𝑙𝑜𝑔( 𝑝 ). (27) 

Note that 𝛼 and 𝛾 are two parameters indicating how sensitive it is to the easily classified 
samples. In this work, we propose to apply this focal loss function to the end of our proposed 
model architecture for multi-class relation extraction task. 

2.7. Attention mechanisms 

In recent advances, attention mechanisms have been successfully applied to biomedical relation 
extraction task since they are able to learn a vector of important weights for each word in a 
sentence to reflect its level of effect on the final result. These mechanisms encourage the model 
to use only parts of the input where the most relevant information is concentrated instead of 
the entire sentence. In the biomedical relation extraction, many previous studies [15, 23] have 
found that different words in each sentence should have different influences on the biomedical 
relations. For instance, in Figure 1, the word “detection” is more important to define the 
interaction between “E.” and “CSF” than the word “high” in bacteria-biotope relation extraction. 
Thus, attention mechanisms can improve the performance of relation extraction model. 
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2.8. Contextual representations 

The choice of how to represent words or sentences poses a fundamental challenge for NLP 
communities. Most importantly, words have different meanings in different contexts. At a coarse-
grained level, this was captured by experts in crafting WordNet, in which, for example, get is 
mapped to over thirty different meanings (or sense). It is difficult to obtain widespread agreement 
on how many senses should be allocated to different words, or on the boundaries between one 
sense and another; word senses may be fluid. For example, the word bank can refer to the side 
of a river or to a financial institution. When used to refer to a blood bank, we can debate 
whether the second sense is evoked or a third. Indeed, in many NLP models based on neural 
networks, the very first thing that happens is that each word vector is passed into a function that 
transforms it based on the word in its nearby context, giving a new version of the word vector, 
now specific to the token in its particular context. 

With hindsight, we can now see that be representing word independent of context, we were 
solving a problem that was harder than it needed to be. Because words mean different things in 
different contexts, we were requiring that type representations capture all of the possibilities 
(e.g., the thirty meanings of get). To simplifies things, asking the word representation to capture 
only what a word means in this context. For the same reasons that the collection of contexts 
provides clues about its meanings, a particular token’s context can provide clues about its 
specific meaning. For instance, you may not know what the word blicket means, but if you are 
told that “I ate a strawberry blicket for dessert”, you likely to have a good guess. 

Based on recent researches, adding contextual vectors into various NLP tasks such as named 
entity extraction, sentiment analysis, and question answering, has shown to massively improve 
the state-of-the-art results. These contextual vectors are the output of pre-trained language 
models. Details on these pre-trained language models will be discuss in the following paragraphs. 

ELMo [28], which stands for embeddings from language models, brought a powerful advance in 
the form of word vectors—i.e., vectors for words in context, or contextual word vectors— that 
are pretrained on large corpus. The  important insight behind ELMo is that if every word token is 
going to have its own vector, then the vector should depend on an arbitrarily long context of 
nearby words. To obtain a context vector, we start with word vectors, and pass them through a 
neural network that can transform arbitrary-length sequences of left- and/or right- context word 
vectors into a single fixed-length vector. Unlike context-free word vectors, which are essentially 
lookup tables, contextual word vectors include both type-level vectors and neural network 
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parameters that contextualize each word. ELMo trains one RNN model for left contexts (going 
back to the beginning of the sentence a token appears in) and another RNN model for right 
contexts (up to the end of the sentence). Longer contexts, beyond sentence boundaries, are in 
principle possible as well. In Figure 3, for example, the word “play” in the sentence using 
context-free word embeddings encodes multiple meanings such as the verb “to play” or in the 
case of the sentence a theatre production. In context-free word embeddings such as Glove or 
Word2Vec each instance of the word play would have the same representation which cause 
word-sense ambiguation problem. Thus, ELMo enables NLP models to better disambiguate 
between the correct sense of a given word. Whether this development completely solves the 
challenge of words with different meanings remains to be seen, but ELMo was shown to be 
extremely beneficial in various NLP tasks.  

 

Figure  3. An example of how ELMo generates a contextual word representation. 

BERT [27] (bidirectional encoder representations from transformers), unlike ELMo that uses 
language modeling (LM) as its pre-training task, instead replaces language modeling with a 
modified objective, so-called masked language modeling. In this model, words in a sentence are 
randomly erased and replaced with a special token “masked” with some small probability, 15%. 
Then a Transformer, instead of RNNs, is used to generate a prediction for the masked word based 
on the unmasked words surrounding it, both to the left and right. Apart from masked language 
modeling to learn relationships between words in different contexts, BERT is also pre-trained on 
next-sentence-prediction task to learn relationships between sentences. Using these objectives, 
BERT is able to achieve state-of-the-art performance on a variety of NLP tasks.  
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3. RELATED WORKS 

In recent years, there are many efforts to study biomedical relation extraction according to 
BioNLP-ST. This work will focus on binary relation extraction (e.g. bacteria-biotope task) and multi-
class relation extraction (e.g. drug-drug interaction task). In biomedical relation extraction, the F 
score, precision and recall are widely used as major evaluation metrics. Compared to precision 
and recall, the F score provides a more reasonable combination of both precision and recall and 
can be used to evaluate the overall performance. Previous works on our biomedical relation 
extraction tasks will be discussed in the following paragraphs. 

Table 2 lists all existing works for the BB task. TEES [8] was the best-performed system in BioNLP-
ST’13 which adopted the support vector machine (SVM) with a variety of features based on SDPs 
to get F score of 42%. VERSE team [10] proposed a utilized SVM with complex-designed features 
and minimum spanning dependency tree (MST) achieving 55.8% F score, which was the first place 
in BioNLP-ST’16. Other than the features-based methods for the BB task, several previous studies 
using deep learning approaches have significantly outperformed the traditional SVM approach. 
For example, in BioNLP-ST’16, DUTIR [41] utilized CNN models to achieve 47.8% F score and 
TurkuNLP [40] proposed multiple-LSTM with SPDs to achieve F score of 52.1% ranked second 
place in the competition. Afterward, DET-BLSTM [39] applied LSTM with a dynamic extended tree 
(DET) adapted from SDPs achieving the F score of 57.14%. Recently, BGRU-Attn [23] have 
proposed bidirectional-GRU (BGRU) with additive attention and domain-oriented distributed word 
representation to become the state-of-the-art deep learning system without hand-designed 
features for the BB task with 57.42% F score.  

Similar to the BB task, existing works of the DDI task have been employed by either feature-based 
or deep-learning-based methods as shown in Table 3. Uturku [9] proposed SVM with information 
from domain resources such as DrugBank and dependency features. FBK-irst [7] combined 
different characteristics of three kernels to rank first in BioNLP-ST’13 with 65.1% F score. RAIHANI 
[6] utilized SVM with many rules and features such as chunk, trigger words, and filtering negative 
sentence to achieve F score of 71.1%. For CNN-based systems, Liu-CNN [11], MCCNN [12], and 
TEES-CNN [38] used CNN model with syntactic features, CNN model with multichannel word 
embeddings, and multiple-filter-widths CNN model with different vector embeddings to achieve F 
score of 69.8%, 70.2%, and 73.5%, respectively. Some examples of RNN-based systems are Joint 
AB-LSTM [16] which employed two LSTM networks, one of which exploited the pooling attention, 
to get 71.5% F score and Char-RNNs [18] which proposed the combination of character-level and 
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word-level representations to achieve F score of 72.1%. In addition, the best system for DDI task 
is Attn-BLSTM [15] that introduced the integration of BLSTM and Entity-Oriented attention and 
achieved the highest F score of 77.3%. 

Table  2. Performance comparison of existing models on BB corpus. 

Model Precision Recall F score 

Feature-based 
TEES [8] 61.6 38.4 42.3 

VERSE [10] 51.0 61.5 55.8 

CNN-based DUTIR [41] 60.0 39.7 47.8 

RNN-based 
TurkuNLP [40] 62.3 44.8 52.1 

DET-BLSTM [39] 56.3 58.0 57.1 

BGRU-Attn [23] 48.8 69.8 57.4 

 
 

Table  3. Performance comparison of existing models on DDI corpus. 

Model Precision Recall F score 

Feature-based 

Uturku [9] 73.2 49.9 59.4 

FBK-irst [7] 64.6 65.6 65.1 

RAIHANI [6] 73.7 68.7 71.1 

CNN-based 
Liu-CNN [11] 75.7 64.7 69.8 
MCCNN [12] 76.0 65.3 70.2 

TEES-CNN [38] 80.5 67.6 73.5 

RNN-based 

Joint AB-LSTM [16] 74.5 65.0 71.5 

Char-RNNs [18] 80.0 65.9 72.1 
Hierarchy RNN [17] 74.1 71.8 72.9 

Recursive NN [50] 77.8 69.6 73.5 

Attn-BLSTM [15] 78.4 76.8 77.3 

 

As mentioned in the motivation section ($1.1), although these models have been shown to well 
perform in both tasks, there are some limitations that can be tackled to improve the model’s 
performance in this work. The first constraint is the fact that SDP can miss some important 
information for biomedical relation extraction as shown in Figure 1 and 2, whereas learning 
feature from the only full sentence is not sufficient. In addition, there are some attention 
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networks which have never been explored in biomedical tasks. Finally, traditional word 
embedding models, which are used in all existing methods, suffer from word sense ambiguation 
across various linguistic contexts. 
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4. METHODOLOGY 

In this section, we describe the proposed methods to extract relation relations from the 
biomedical literature. 

4.1. Text preprocessing 

We used the TEES system [8, 38, 40] to run the pipeline of the text preprocessing steps. 
Tokenization and part-of-speech (POS) tagging for each word in a sentence were generated using 
the BLLIP parser [51] with the biomedical-domain model. The dependency grammar resulted 
from the BLLIP was further processed using the Stanford conversion tool [52] to obtain the 
Stanford Dependencies (SD) graph. 

We then used Dijkstra’s algorithm to determine the SDPs between each pair of entities . The SDPs 
represented the most relevant information and diminished noises by undirected graph (Figures 1 
and 2). An entity pair was neglected if there was no SDP between the entities. While the 
dependency paths only connect a single word to others within the same sentence (intra-
sentence), there are some cross-sentence (inter-sentence) associations that can be very 
challenging in terms of the extraction task. In order to compare with other existing works, only 
intra-sentence relations were considered. 

To ensure the generalization of machine learning-based models, we followed the protocol of 
previous studies [15, 23] that blinded the entities in a sentence. Two entities were replaced by 
“entity_1” and “entity_2,” respectively. For example, as shown in Table 3, we can generate two 
BB relation candidates (termed “instances”) from a sentence “Long-term Helicobacter pylori 
infection and the development of atrophic gastritis and gastric cancer in Japan.”, where the 
bacteria and location mentions are highlighted in bold italics and italics, respectively. After entity 
blinding, we converted all words to lowercase. 

Table  4. Relation candidates (instances) in a sentence after entity blinding. 
Entity pair Relation candidates after entity binding 

(Helicobacter pylori, gastric) 
Long-term entity_1 infection and the development of atrophic 

gastritis and entity_2 cancer in Japan. 

(Helicobacter pylori, Japan) 
Long-term entity_1 infection and the development of atrophic 

gastritis and gastric cancer in entity_2. 
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4.2. Input embeddings 

The input representations used in our model were divided into full-sentence and SDP features. 
Let (𝑤1, 𝑤2, …, 𝑤𝑚) and (𝑠1, 𝑠2, …, 𝑠𝑛) denote the full sentence and SDPs of a sentence that are 
represented by different embeddings. Each word 𝑤𝑖  in a full sentence was represented by word 
vector, POS, and distance embeddings. Each word 𝑠𝑗  in the SDP was represented by word vector, 
POS, and distance embeddings together with positional encoding (PE). The detailed embeddings 
used in our model are explained below. 

4.2.1. Word embedding 

we use either context-free word embedding ($2.5.1) which was a 200-dimensional word vector 
that built from a combination of PubMed and PMC texts [45] or contextual word embedding 
from ELMo ($2.8) that pre-trained on PubMed.  

The contextual word vector used in our proposed model was generated by ELMo [28]. ELMo 
learned word representations from the internal states of a bi-directional language model (biLM). It 
was shown to improve the state-of-the-art models for several challenging NLP tasks. Context-free 
models such as Skip-gram [25] and GloVe [26] generate a single word representation for each 
word in their vocabulary. For instance, the word “cold” would have the same representation in 
“common cold” and “cold sensation” [53]. On the other hand, contextual models will generate 
a representation of the word “cold” differently based on context. This representation can be 
easily added to our proposed model by reconstituting the 200-dimensional word vectors with 
the new pre-trained contextual word vectors. Currently, the ELMo model, pre-trained on a large 
general-purpose corpus (5.5 billion tokens), is freely available to use [28]. However, [29, 54] 
showed that domain-irrelevant, pre-trained word embedding models on large, general-purpose 
collections of texts are not sufficient for biomedical-domain tasks. Therefore, we present a pre-
trained, domain-specific, contextual, word-embedding model based on a bacterial-relevant 
corpus. Inspired by the relevance-based word embedding [55], the corpus to pre-train our 
proposed contextual word embedding model included relevance-based abstracts downloaded 
from PubMed. For example, for BB task, the pre-trained corpus contains only sentences with 
bacterial scientific names from the task (118 million tokens). To evaluate the effectiveness of the 
domain-specific, contextual, word-embedding model, we compared it with the contextual model 
pre-trained from randomly selected abstracts from PubMed with the same number of tokens. All 
of the pre-trained models were fine-tuned with the particular dataset in order to transfer learned 
features from the pre-trained models to our task. 
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4.2.2. Part-of-speech embedding 

Part-of-speech embedding ($2.5.2) was initialized randomly at the beginning of the training phase.  

4.2.3. Distance embedding 

Distance embedding ($2.5.3) is derived from the relative distances of the current word to the 
particular entity. 

4.2.4. Positional encoding (PE) 

For SDP in the CNN model, we further used PE ($2.5.4) to inject some information about the 
absolute position of the words in the sentence. The PE vectors were initialized by sine and 
cosine functions of different frequencies; these functions embed information based on their 
relative position. Because PE has the same dimension as the word embedding, we can sum these 
two vectors. 

In summary, the overall input embedding representation for a word 𝑤𝑖  in full sentences is 𝑧𝑖 = 

[𝑤𝑖
𝑤𝑜𝑟𝑑  ; 𝑤𝑖

𝑝𝑜𝑠 ; 𝑤𝑖
𝑑𝑖𝑠𝑡1 ; 𝑤𝑖

𝑑𝑖𝑠𝑡2 ]. Similarly, for a given word 𝑠𝑗  on the SDP the overall input 

embedding representation is 𝑧𝑖  = [𝑤𝑖
𝑤𝑜𝑟𝑑 + 𝑤𝑖

𝑃𝐸  ; 𝑤𝑖
𝑝𝑜𝑠

 ; 𝑤𝑖
𝑑𝑖𝑠𝑡1 ; 𝑤𝑖

𝑑𝑖𝑠𝑡2 ]. 
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4.3. Model architecture 

 

Figure  4. The overall architecture of our proposed model. 
with the combined full-sentence and SDP models, together with several attention mechanisms. 

In order to employ the advantages of full-sentence and SDP features, we proposed a deep 
learning model for the biomedical relation extraction based on full sentences and SDPs. 
Generally, RNNs have sequence architectures which are more powerful at capturing dependency 
features over long and complex sentences, while CNNs have hierarchical architectures which are 
good at learning the local semantic and syntactic features and more suitable for capturing the 
features of short and simple sentences. Figure 3 shows an overview of our proposed model 
which consists of full-sentence model and SDP model.  
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4.3.1. Full-sentence model 

For the full-sentence model, we employ BLSTM to capture the global syntactic and semantic 
features from full sentences. Because full sentences are long and complex, we then integrate 
Additive [22] and Entity-Oriented [15] attention mechanisms to encourage our full-sentence 
model to use only parts of the input where the most relevant information is concentrated 
instead of the entire sentence. Furthermore, we introduce a contextual sentence embedding 
generated from BERT ($2.8) which can encourage our full-sentence model to understand the full 
sentences better. 

4.3.1.1. Additive attention 

The Additive attention focuses on sentence-level information. The idea of Additive attention is to 
consider all hidden states with different attention weights when deriving the context vector. The 
context vector depends on the sequence of LSTM hidden states (ℎ1, ℎ2, …, ℎ𝑘). Each hidden state 
contains information about the whole input sequence with a strong focus on the parts 
surrounding the 𝑖-th word. The context vector (𝑐𝑖 ) was computed as a weighted sum of these 
hidden states (ℎ𝑖) using equation (28). The attention weight (𝑎𝑖) of each hidden state (ℎ𝑗) was 
then computed using equation (29). The additive attention assigned a score (𝑎𝑖) to the pair of 
input at position 𝑖, which was parameterized using a feed-forward network with a single hidden 
layer. The model was then jointly trained with other parts of the model. The attention score 
function is shown in equation (30), where 𝑣𝑎 is the weight matrix to be learned. 

 
𝑐 =  ∑ 𝑎𝑖ℎ𝑖

𝑘

𝑖=1

 (28) 

 𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖)) (29) 

 𝑠𝑐𝑜𝑟𝑒(ℎ𝑖) =  𝑣𝑎
⊺ tanh (ℎ𝑖) (30) 

 

4.3.1.2. Entity-Oriented attention 

Entity-Oriented attention focuses on word-level information. This attention was used to 
determine which words in a sentence most influence the relationship between a pair of entities. 
This attention mechanism was applied after our word-embedding layer to quantify the 
concentration of word-level information. We exploited two attention weights (𝑎𝑗), 𝑗 ∈ [1,2], 
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which denoted the relevance degree of each word (𝑤𝑖 ) of a sentence with respect to the 𝑗-th 

entity mention (𝑒𝑗). The attention score (𝑎𝑖
𝑗) was calculated using the dot product operation (⋅) of 

the current word embedding vector (𝑢𝑤𝑖
) and the 𝑗-th entity word-embedding vector (𝑢𝑒𝑗

). The 
score was then normalized by the dimensionality of word embedding vector (𝑚) using equation 
(31). The attention weight (𝑎𝑖) of word (𝑤𝑖 ) to both entities was computed using equation (32). 

 𝑎𝑖
𝑗

=  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑢𝑤𝑖

⋅  𝑢𝑒𝑗

𝑚
) (31) 

 
𝑎𝑖  =  

𝑎𝑖
1 + 𝑎𝑖

2

2
 

(32) 

 

4.3.1.3. Contextual sentence representation 

Our contextual sentence embedding was constructed by BERT model [27] which represents 
words based on a bi-directional approach and learns relationships between sentences. Hence, 
BERT representation unambiguously represents both words and sentences. However, due to the 
limited computational resource to pre-train BERT using our biomedical corpus the available pre-
trained, general-purpose BERT was adopted and fine-tuned with the particular task (either BB or 
DDI task).  

4.3.2. SDP model 

Compared with the full sentences, SDPs are very shorter and more concise. We utilize a stack of 
Multi-Head attention networks [24] as our SDP model to learn valuable and concise local 
features. The SDP model is expected to be better at extracting high-quality features from SDPs 
compared with BLSTM. Since Multi-Head attention can be considered as CNNs with multiple 
attention linear transformations. In the experiments throughout this thesis ($5.1.3 and $5.2.3), we 
have shown that using Multi-Head attention can achieve the better performance than using CNNs 
so that Multi-Head attention is used as our SDP model in the final model architecture. Figure 3 
shows the SDP model architecture of either CNN or Multi-Head attention. 
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Figure  5. Illustration of the SDP model architecture. 
to extract local features based on a CNN model or N stacks of Multi-Head attentions. 

 

4.3.2.1. Multi-Head attention 

The Multi-Head attention focuses on extracting local features in multiple subspaces. These 
authors showed that the model jointly attended to information from different representation 
subspaces at different positions. Instead of performing a single scale dot-product attention, [24] 
found to be beneficial if the queries (𝑞), keys (𝑘), and values (𝑣) of the same dimension (𝑑𝑘) 
were linearly projected ℎ times with different learned projections. For each head, we computed 

the dot products (⋅) of the queries of length (𝑛) with all keys. We then divided each by √𝑑𝑘 and 
applied the softmax function to obtain the attention score using equation (33). The context 
weight (𝑐𝑖 ) on the values was computed using equation (34). To obtain Multi-Head feature 
representations, the context weights from ℎ heads were concatenated using equation (35). 
Compared with CNNs, Multi-Head feature representation (ℎ𝑜𝑢𝑡 ) uses ℎ parallel attention 
mechanisms with different low-dimensional projection instead of a fixed-width convolutional 
filter. Inspired by the transformer network [24], stacks of Multi-Head attentions were employed in 
our model with residual connections and PE. Figure 5 shows the overview architecture of the 
CNN model and Multi-Head attentions as the SPD model. 
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𝑠𝑐𝑜𝑟𝑒(ℎ_𝑖)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑞𝑖 ⋅  𝑘𝑖
⊺

√𝑑𝑘

) 
(33) 

 
𝑐_𝑖 =  ∑ 𝑣𝑖𝑠𝑐𝑜𝑟𝑒(ℎ𝑖)

𝑛

𝑖=1

 
(34) 

 ℎ𝑜𝑢𝑡  =  [𝑐1 ;  𝑐2 ;  . . . ;  𝑐ℎ] (35) 
 

4.3.3. Output layer 

The output layer used the softmax function [56] to classify the relationship between pairs of 
bacteria and biotope mentions. The softmax layer takes the output of Bi-LSTM for full-sentences, 
the output of Multi-Head attention networks for SDPs, and the sentence embedding from BERT 
as its inputs (Figure 4). These inputs are fed into a fully connected neural network. The softmax 
layer’s output was the categorical probability distribution over each class type (𝑐) (equation 36).  

 𝑝(𝑐|𝑠) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊0 ⋅ 𝑠 + 𝑏0) (36) 

where 𝑊0 and 𝑏0 are weight parameters and 𝑠 is the feature representation of sentences.  

For binary classification, we used the cross-entropy cost function 𝐽(𝜃) as the training objective 
(equation 37) where 𝑦 is the binary indicator (0 or 1) if the class label is correct for each 
predicted sentence and 𝑝 is the predicted probability.  

 𝐽(𝜃) = −(𝑦log(𝑝) + (1 − 𝑦)log(1 − 𝑝)) (37) 

For multi-class classification, we used focal loss ($2.6.2) as the training objective. 
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5. EXPERIMENTS AND RESULTS 

This section will discuss the experimental setups, comparison with state-of-the-art models, our 
contribution analysis, and error analysis of both binary and multi-class relation extraction. 

As discussed above ($1.1), a large number of local minima in DL models can lead to larger 
parameter spaces. Evaluating a single model several times tends to result in performance 
convergence under different parameter initializations (or random seeds). To alleviate this 
problem, we reported the mean F1 score instead of only the maximum F score which used as 
main performance measurement in the BioNLP-ST challenge. To calculate the mean F score, we 
built 30 models as suggested by [57]. These models were trained using the same architecture but 
with different random seeds. Then, we evaluated the F score of each model on the same test 
set using an online evaluation service. With these F scores, we then calculated the minimum, 
maximum, mean, and standard deviation to assess the robustness of the model. In this study, we 
used the mean F score as the main evaluation metric; the maximum F score was still used to 
compare with other previously used models. 

5.1. Binary relation extraction 

For binary relation extraction, we used bacteria-biotope (BB) task [3] in BioNLP-ST’16 which aims 
to extract a critical information for studying the interaction mechanisms of the bacteria with their 
environment from genetic, phylogenetic and ecology perspectives. 

5.1.1. Experimental setups 
5.1.1.1. Training and test datasets 

The dataset provided by the BB task consists of titles and abstracts from PubMed with respect to 
reference knowledge sources (NCBI taxonomy and OntoBiotope ontology). All entity mentions—
Bacteria, Habitat, and Geographical—and their interactions were manually annotated from 
diverse-backgrounds annotators. Each bacteria-biotope pair was annotated as either a negative or 
positive Lives_in relation. The relations can be defined as inter-sentence and intra-sentence. In 
our study, we also followed previous studies [8, 23, 39-41] in simply excluding inter-sentence 
instances from the dataset. This procedure resulted in the removal of 107 and 64 annotated 
instances from the training data and development data, respectively. Table 4 lists the statistics of 
the preprocessed BB dataset used in our experiments.  
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Table  5. The statistics of BB dataset. 

Instance Training Validation Test 

Positive relations 248 173 - 
Negative relations 275 332 - 

Total relations 523 505 532 
 

5.1.1.2. The pre-training corpus for contextual word representations 

In order to get the proposed domain-specific word embeddings (specific-PubMed ELMo), we pre-
trained ELMo on the bacterial-specific abstracts downloaded from the PubMed database before 
November 2018. These specific abstracts contain roughly 118 million words that use all of the 
bacteria names that are noted in the BB dataset as keywords. An example keyword is the 
bacteria mention “E. coli” (Figure 1). Furthermore, we pre-trained another domain-general, 
biomedical, contextual, word-embedding model (random-PubMed ELMo) on randomly selected 
PubMed abstracts with a similar corpus size to evaluate the performance of the domain-specific 
model. To reduce the memory requirement of the pre-training models, we only used the words 
in the training, validation, and test sets to construct the vocabularies. 

5.1.1.3. Hyper parameters 

We used the Pytorch library [58] to implement the model and empirically tuned the hyper-
parameters using 3-fold cross-validation on the training and validation data. After tuning, the 
dimensions of the contextual, word-embedding (ELMo), context-free word embedding, POS 
embedding, distance embedding, and sentence embedding (BERT) were 400, 200, 100, 300, and 
768, respectively. The dimension of PE was set to either 200 or 400 for the context-free or 
contextual word embeddings, respectively. The hidden unit numbers of Bi-LSTM and the filter 
numbers of CNN were 64. The convolutional window sizes were 3, 5, and 7. For the Multi-Head 
attention mechanism, we used three stacks of Multi-Head attentions with respect to the residual 
connections; the number of heads for each stack was 2. Before the output layer, we applied a 
dropout rate of 0.5 to the concatenation of full-sentence, SDP, and sentence-embedding 
features. The mini-batch was set to 4, and a rectified linear unit (ReLU) was used as our activation 
functions. We set the learning rate to 0.001 for Adam optimization. Despite the underfitting 
problem, we used different hyper-parameters of the only full-sentences model, denoted as “full-
sentence” in the section of influence of full-sentence and SDP features ($5.1.3.1). The dropout 
rate was set to 0.1, and the hidden unit number of LSTM was 32. 
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5.1.2. Binary Relation Extraction Results 

Here, we discuss the overall experimental results of this proposed model on binary relation 
extraction. We assessed the performance of our model as follows. First, we compared our model 
with existing models in terms of maximum and mean F scores. Then, we evaluated the 
effectiveness of each contribution used by the model: feature combination between full 
sentences and SDP, attention mechanisms, contextual word representation, and contextual 
sentence representation. 

5.1.2.1. Maximum F score comparison (Leaderboard) 

Table 6 lists the maximum F score of our model compared with those of prior studies. In the BB 
task [3], each team evaluated the model on the test set using an online evaluation service. Most 
of the existing systems were based either on SVM or DL models. The SVM-based baseline [8] was 
a pipeline framework using SVMs on SDPs with an F score of 42.27%. Similarly, [10] proposed a 
utilized SVM with rich feature selection that yielded an F score of 55.80%. Compared with SVM-
based models, DL-based models automatically learn feature representations from sentences and 
achieve state-of-the-art performance. For example, DUTIR [41] utilized a multiple-filter-widths 
CNN to achieve an F score of 45.60%. TurkuNLP [40] employed a combination of several LSTMs 
on the shortest dependency graphs to obtain the highest precision of 62.60% and an F score of 
52.20%. BGRU-Attn [23] proposed a bidirectional GRU with the attention mechanism and 
biomedical-domain-oriented word embedding to achieve the highest recall of 69.82% and an F 
score of 57.42%. These results reveal that our proposed model achieved the best performance in 
the official evaluation (i.e., the highest F score: 60.77%). In contrast with the previous state-of-
the-art model (BGRU-Attn), our model achieved more balanced precision (56.85%) and recall 
(65.38%). The results revealed that our model could leverage both full-sentence and SDP 
models along with contextual representations to capture the vital lexical and syntactic features 
of given sentences. Therefore, our model can combine the advantages of all contributions to 
achieve a good trade-off between moderate precision and high recall, which resulted in its 
superior performance in the BB corpus.  
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Table  6. Performance comparison (maximum F score) with existing models for the BB task. 
The highest scores are highlighted in bold. 

Model Precision Recall F score 

SVM-based TEES[8] 61.61 38.35 42.27 
VERSE [10] 51.00 61.50 55.80 

DL-based DUTIR [41] 56.60 38.20 45.60 

TurkuNLP [40] 62.30 44.80 52.10 

DET-BLSTM [39] 56.32 57.99 57.14 
BGRU-Attn [23] 48.76 69.82 57.42 

Our model 47.93 71.89 57.51 

 

5.1.2.2. Mean F score comparison 

Table 7 lists the results of our model compared with other models: TurkuNLP [40] and BGRU-Attn 
[23] based on mean F scores. Our model achieved the highest mean F score and the lowest 
standard deviation. This finding indicates that our model is more robust to randomness and 
highly consistent in its performance. Since the proposed domain-specific contextual word 
representation and contextual sentence representation are vector representations which can be 
integrated into every neural network model, we add these representations into the two 
reimplemented models to fairly compare them with our original model architecture, as shown in 
Table 7. To provide a statistically significant comparison of our model’s performance, we also 
performed a two-sample t-test with the hypothesis that two populations (our model and a 
compared model) were equal in terms of their mean F scores (null hypothesis 𝐻0). The results 
revealed that we rejected the null hypothesis with a p-value less than 0.001 (or more than 99.9% 
confidence). This fact implied that our model’s mean F score was significantly better than that of 
other models. 
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Table  7. Performance comparison (mean F score) with existing models for the BB task. 
These results, from existing models, derive from the model reimplementation. The highest scores 
are highlighted in bold except for the standard deviation (SD). The p-value was calculated using 

the two-sample t-test for the difference of mean F score. 

Model 
F score 

p-value 
Min Max Mean Sd 

TurkuNLP 35.07 51.99 46.18 4.56 < 0.001 
TurkuNLP + domain-specific ELMo 45.11 56.30 51.48 3.27 < 0.001 
TurkuNLP + domain-specific ELMo + BERT 38.82 54.60 47.74 4.62 < 0.001 

BGRU-Attn 43.05 55.54 50.24 2.70 < 0.001 
BGRU-Attn + domain-specific ELMo 45.38 56.67 53.35 2.90 < 0.001 
BGRU-Attn + domain-specific ELMo + BERT 46.37 52.58 49.84 1.73 < 0.001 

Our model 54.52 57.51 56.55 0.62 - 
 

5.1.3. Contribution analysis 

In the following sections, we evaluate the effectiveness of each model contribution: combined 
full-sentence and SDP models, attention mechanisms, contextual word representation, and 

contextual sentence representation (Tables 8–11). Because test set is unknown in BB task, we 
cannot use highly reliable evaluation metrics such as cross-validation and bootstrapping method. 
To overcome the variant problem in model evaluation, each experiment used the mean F score 
for model selection and evaluation.  

5.1.3.1. Influence of combined full-sentence and SDP features 

Table 8 lists the mean F score of 30 DL models with different random seeds. The mean F score 
obtained from the experiment indicated that the use of full-sentence and SDP models together 
outperformed the separated models. The data in Table 8 also demonstrate that CNN achieved 
better performances than BLSTM when BLSTM and CNN were separately applied to the full 
sentences and SDPs. This result suggests that our model effectively combines the SDP and full-
sentence models to extract more valuable lexical and syntactic features. These features were 
generated not only from two different sequences (full sentences and SDPs) but also two different 
neural network structures (BLSTM and CNN). 
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Table  8. The effectiveness of the application of full-sentence and SDP features for the BB task 
according to the mean F score of 30 different random seeds. All of the highest scores are 

highlighted in bold except for the standard deviation (SD). 

Our model F score 
Full sentence SDP Min Max Mean Sd 

BLSTM - 12.82 49.93 41.22 14.49 
- CNN 37.02 51.82 43.79 3.39 

BLSTM CNN 42.09 52.19 45.96 2.87 

 

 
5.1.3.2. Influence of attention mechanisms 

After we measured the effectiveness of the full-sentence and SDP features, we additionally 
explored the effects of the Additive, Entity-Oriented, and Multi-Head attention mechanisms. The 
attention mechanisms were applied to concentrate the most relevant input representation 
instead of focusing on entire sentences. Table 9 lists the productiveness of each attention 
mechanism integrated into our full-sentence and SDP models. According to [24], Multi-Head 
attention networks were first proposed with the use of PE to insert valuable locality information. 
Because Multi-Head attention networks were employed with PE, we applied PE to CNN in order 
to fairly compare the effectiveness of Multi-Head attention. The use of the Additive attention 
mechanism improved the mean F score by 0.53%. Entity-Oriented attention improved the 
average F score from 49.02 to 50.24%. These results show that attention mechanisms might 
highlight influential words for the annotated relations and help reveal semantic relationships 
between each entity. This approach improved the overall performance of our model. Finally, the 
stacks of Multi-Head attention networks were the primary contributor to our model. The 
experimental results revealed that the proposed model using Multi-Head attention together with 
SDPs increased the mean F score by 3.18% compared with the proposed model using CNN. Our 
proposed model used stacks of Multi-Head attentions with residual connections instead of CNN, 
as shown in the overall architecture of Figure 4. 
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Table  9. The effectiveness of the integrated attention mechanisms for the BB task  
according to mean F score for 30 different random seeds. All of the highest scores are 

highlighted in bold except for the standard deviation (SD). The first-row results derive from the 
best results of previous experiments (i.e., the last row in Table 8). Note: “PE” denotes positional 

encoding, “Attn” denotes Additive attention, “EAttn” denotes Entity-Oriented attention, and 
“MAttn” denotes Multi-Head attention. 

Our model 
PE 

F score 

Full sentence SDPs Min Max Mean Sd 

BLSTM CNN ✖ 42.09 52.19 45.96 2.87 
BLSTM CNN ✔ 38.75 55.40 48.49 4.76 

BLSTM + Attn CNN ✔ 42.03 56.51 49.02 3.62 
BLSTM + Attn + EAttn CNN ✔ 43.14 55.72 50.24 3.72 
BLSTM + Attn + EAttn MAttn ✔ 46.67 56.7 53.42 2.51 

 

 
5.1.3.3. Influence of domain-specific contextual word representation 

Table 10 lists the effectiveness of our domain-specific, contextual word representation to our 
model after previous contributions (combined features and attention mechanisms). The 
contextual word representation (ELMo) was proposed to provide word sense disambiguation 
across various linguistic contexts and handle out-of-vocabulary (OOV) words using a character-
based approach. The results in Table 10 reveal that every ELMo model outperformed the 
traditional word2vec model. One possible explanation for this finding is that the ELMo model 
uses a character-based method to handle OOV words while word2vec initializes these OOV word 
representations randomly. The ELMo model can also efficiently encode different types of 
syntactic and semantic information about words in context and therefore improve over- all 
performance. The use of our proposed contextual word model with a domain-specific corpus 
(specific-PubMed ELMo) achieved the highest average F score of 55.91%. This score represented 
an improvement by 2.49%, 1.61%, and 2.10% compared with the score deriving from the use of 
PubMed word2vec, general- purpose ELMo, and random-PubMed ELMo, respectively. These 
improvements reveal the importance of taking relevant information into account when training 
contextual embedding vectors. We also noted that the general-purpose ELMo achieved slightly 
better performance compared with the random-PubMed ELMo. However, the latter was pre-
trained on a biomedical-domain corpus; the size of the pre-trained corpus of the former (5.5 
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billion tokens) is significantly larger than that of the latter (118 million tokens), which resulted in 
the higher-quality word embeddings and better semantic representations.  

 
Table  10. The effectiveness of domain-specific contextual word representation for the BB task  

according to mean F score of 30 different random seeds. All of the highest scores are highlighted 
in bold except for the standard deviation (SD). The first-row results derive from the best results 
of previous experiments (i.e., the last row in Table 9). Note: “PubMed word2vec” denotes the 
context-free word model, “general-purpose ELMo” denotes the general-purpose contextual 
word model, “random-PubMed ELMo” denotes the domain-general contextual word model 
based on 118 million randomly selected tokens from PubMed, and “specific-PubMed ELMo” 
denotes the domain-specific contextual word model based on 118 million bacterial-relevant 

tokens from PubMed. 

Pre-trained word model 
F score 

Min Max Mean Sd 

PubMed word2vec 46.67 56.70 53.42 2.51 

general-purpose ELMo 42.76 56.51 54.30 3.61 
random-PubMed ELMo 38.89 57.01 53.81 3.65 
specific-PubMed ELMo 51.24 57.48 55.91 1.49 

 

 
5.1.3.4. Influence of contextual sentence representation 

In order to use sentence embeddings as fixed features from the pre-trained BERT, [27] suggested 
that the best-performing method involved concatenating the feature representations from the 
top four 768- dimensional BLSTM hidden layers of the pre-trained model. However, we found 
that it was better to sum up the last four 768-dimensional hidden layers into the 768-dimension 
sentence embedding. This situation may have been due to the small training dataset. The 
addition of contextual sentence representation from the fine-tuned BERT model improved the 
mean F1 score by 1.68% (Table 11). The results suggest that the fine-tuned BERT model could 
enhance the full- sentence model to encode crucial contextual representations of long and 
complicated sentences.  
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Table  11. The effectiveness of the contextual sentence representation for the BB task 
according to mean F scores of 30 different random seeds. All of the highest scores are 

highlighted in bold except for the standard deviation (SD). The first-row results derive from the 
best results of previous experiments (i.e., the last row in Table 10). 

Sentence representation 
F score 

Min Max Mean Sd 

without 51.24 57.48 55.91 1.49 
with 54.41 60.77 57.63 1.15 

 

 
5.1.4. Error analysis 

To determine the factors that adversely affected the performance of our proposed model for 
binary relation extraction task, we manually analyzed the correct and incorrect predictions from a 
development set compared with other existing models. We found that the proposed model 
could detect true negatives (TNs) better than other reimplemented models. This finding arose 
mainly because full-sentence features boosted the model’s ability to predict an entity pair as a 
false relation. For example, the sentence: 

- “Rickettsia felis was the only entity_1 found infecting fleas, whereas Rickettsia bellii 
was the only agent infecting ticks, but no animal or human entity_2 was shown to 
contain rickettsial DNA.” 

where SDP are shown in bold, was predicted to be a false relation by our model. Other models 
predicted this sentence to be a true relation because of the word “shown” in the SDP.  

In addition, we found that false positives (FPs) were generally caused by the complex and 
coordinate structures of full sentences. A complicated sentence and a long distance between 
two entities can lead to relation classification failures. Examples of these adverse effects can be 
seen in the following sentences which the SDPs are highlighted in bold:  

- “The 210 isolates with typical LPS patterns (119 Ara- clinical, 13 Ara- soil, 70 
entity_1 entity_2, and 8 reference National Type Culture Collection strains) also 
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exhibited similar immunoblot profiles against pooled sera from patients with 
melioidosis and hyperimmune mouse sera.” 

- “Testing animal and human sera by indirect immunofluorescence assay against four 
rickettsia antigens (R. rickettsii, R. parkeri, R. felis, and R. bellii), some opossum, 
entity_2, horse, and human sera reacted to entity_1 with titers at least four-fold 
higher than to the other three rickettsial antigens.”  

 
5.1.5. Discussion 

Our proposed model can take advantage of the proposed contributions in order to construct rich 
syntactic and semantic feature representations. Our model significantly outperforms other existing 
models in terms of both mean F score (57.63%; SD = 1.15%) and maximum F score (60.77%). The 
mechanisms that largely support stable performance include the Multi-Head attentions and 
domain-specific contextual word representation, which are responsible for mean F score 
increases of 3.18% and 2.49%, respectively. A possible advantage of Multi-Head attention 
compared with CNN is the ability to determine the most relevant local feature representations 
from multiple subspaces to the BB task based on attention weights. In addition, domain-specific 
contextual word representation is beneficial to the proposed model for capturing contextual 
embeddings from a bacterial-relevant corpus. The box-and-whisker plot in Figure 6 shows the 
mean F score distribution of the existing DL models and our final proposed model (blue boxes). 
The boxplot illustrates the performance of our model after incrementally adding each of the 
main contributions (grey boxes). The mean F score of each model is shown as a line. The blue 
boxes indicate the comparison of our final model and two reimplemented TurkuNLP and BGRU-
Attn. The mean F score of our model was 57.63%, which exceeds that of the TurkuNLP and 
BGRU-Attn models by 11.45% and 7.41%, respectively. In other words, our proposed model 
generally achieves better performance in terms of both mean and maximum F scores. 
Furthermore, the inter-quartile range of our proposed model is much smaller than that of other 
DL models. This finding demonstrates that the performance of our model is more robust and 
suitable for real-world applications.   
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Figure  6. Box-and-whisker plot of mean F score distributions for the BB task. 
The comparison between our model and existing DL models is known in blue; the improvement 

of our model after adding each of the proposed contributions is shown in grey. Note: “Attns” 
denotes the use of all proposed attention mechanisms. 

For binary classification problems, F score is a common metric for evaluating an overall model’s 
performance because it conveys both precision and recall into one coherent metric. In some 
applications, however, it is more important to correctly classify instances than to obtain highly 
convergent results (i.e., high precision). On the other hand, some other applications place more 
emphasis on convergence rather than correctness (high recall). We experimented with using a 
frequency cut-off to explore how the probabilities output by the model function as a trade-off 
between precision and recall. Figure 7 shows the precision-recall curve (PRC) of our proposed 
model. When applied to real-world scenarios, users of the model are responsible for choosing 
the right cut-off value for their applications. For example, in semi-automated text-mining 
applications for knowledge management researchers never want to miss any bacteria-biotope 
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relations. As a result, models with a high recall will be chosen to prescreen these relations. On 
the other hand, automated text-mining applications for decision support systems will require 
more precise relations. In Figure 7, our model with the default (0.5) cut-off value achieved an F 
score of 60.77% with balanced 56.85% recall and 65.28% precision. With a cut-off of 0.025, our 
model achieved the highest recall at 70.54% with 50.11% precision and an F score of 58.59%. 
With this cut-off value, our model outperformed the existing highest-recall model (BGRU-Attn) by 
both 0.72% recall and 1.35% precision. Similarly, the line plot shown in Figure 7 shows that our 
model with a 0.975 cut-off achieved the highest precision (72.60%), recall (46.90%) and F score 
(56.99%). This model also outperformed the existing highest-precision model (TurkuNLP) by 
10.30% in precision and 2.10% in recall.  

 

Figure  7. The precision-recall curve for our proposed model 
showing the trade-off between the true positive rate and the positive value for our model using 

different probability thresholds (cut-off values). 
 

 
 

 

 

 

 

 

 

Our highest precision (0.975 cut-off)

Recall: 46.90

Precision: 72.60

F1 score: 56.99

Our default (0.5 cut-off)

Recall: 65.28

Precision: 56.85

F1 score: 60.77

Our highest recall (0.025 cut-off)

Recall: 70.54

Precision: 50.11

F1 score: 58.59

BGRU-Attn

Recall: 69.82

Precision: 48.76

F1 score: 57.42

TurkuNLP

Recall: 44.80

Precision: 62.30

F1 score: 52.10



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

5.2. Multi-class relation extraction 

We used drug-drug interaction (DDI) task [2] in BioNLP-ST’13 as our multi-class relation 
extraction benchmark, which concerns the extraction of drug-drug interactions that appear in 
biomedical literature. The automatic extraction of relevant information on DDI provides an 
interesting way of reducing the time spent by health care professionals on reviewing the 
literature. 

5.2.1. Experimental setups 
5.2.1.1. Training and testing datasets 

For DDI task, because only training and testing sets are provided, we split 20% of training set to 
be validation set used for hyper-parameter selection and model evaluation. After that, we 
excluded inter-sentence and no-SDP samples from the data resulting in the total removal of 112 
(18 inter-sentences and 94 no-SDP), 28 (5 inter-sentences and 23 no-SDP), and 30 no-SDP 
annotated samples from training, validation, and test data, respectively. The statistic of DDI 
dataset in BioNLP-ST’13 are listed in Tables 12. 

 
Table  12. The statistics of DDI dataset. 

Instance DDI type Training Validation Test 

Positive relations 

Mechanism 1,054 263 301 
Effect 1,349 336 359 

Advice 660 164 220 

Int 139 37 95 

Negative relations False 19,015 4,753 4,363 
Total relations 22,227 5,553 5,338 

 

Here, as shown in Table 12, “False” classes contain 19,015 and 4,753 instances, while “Effect” 
classes contain only 1,349 and 336 instances in training and validation sets, respectively. Thus, 
because DDI data is extremely imbalanced, we handled the imbalanced problem by randomly 
under-sampling ($2.6.1) the majority classes (False) of training and validation sets by the factor of 
10. Table 13 lists the statistic of DDI dataset after random under-sampling strategy. 
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Table  13. The statistics of DDI dataset after random under-sampling strategy. 
Instance DDI type Training Validation Test 

Positive relations 

Mechanism 1,054 263 301 

Effect 1,349 336 359 

Advice 660 164 220 
Int 139 37 95 

Negative relations False 1,900 475 4,363 

Total relations 5,112 1,275 5,338 

 

5.2.1.2. The pre-training corpus for contextual word representation 

Because we have shown in the earlier experiments ($5.1.3.3) that the proposed domain-specific 
word embeddings (specific-PubMed ELMo) can perform better than other ELMo models. In the 
following experiments, we only focus on a comparison between specific-PubMed ELMo and 
PubMed word2vec. For specific-PubMed ELMo, we pre-trained ELMo on the drug-specific 
abstracts downloaded from the PubMed database before November 2018. These specific 
abstracts contain roughly 236 million words that use the word “drug” as keyword. Similar to 
($5.1.1.2.), we only used the words in the training, validation, and test sets to construct the 
vocabularies to reduce the memory requirement of the pre-training models. 

5.2.1.3. Hyper parameters 

In these experiments, we empirically tuned the hyper-parameters using 5-fold cross-validation on 
the training and validation data. After tuning, the dimensions of the contextual, word-embedding 
(ELMo), context-free word embedding, POS embedding, distance embedding, and sentence 
embedding (BERT) were 400, 200, 100, 300, and 768, respectively. The dimension of PE was set to 
either 200 or 400 for the context-free or contextual word embeddings, respectively. The hidden 
unit numbers of Bi-LSTM and the filter numbers of CNN were 300. The convolutional window 
sizes were 3 and 5. For the Multi-Head attention mechanism, we used four stacks of Multi-Head 
attentions with respect to the residual connections; the number of heads for each stack was 1. 
The dropout rate of 0.4 was applied to the concatenation of full-sentence, SDP, and sentence-
embedding features before the output layer. The mini-batch was set to 128, and a rectified linear 
unit (ReLU) was used as our activation functions. We set the learning rate to 0.001 and the weight 
decay parameter to 10-7 for RMSprop optimization.  
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5.2.2. Multi-class Relation Extraction Results 

In this section, we explore the overall performance of our proposed model on multi-class 
relation extraction. We compared our model with other existing models in terms of maximum 
and mean F scores (micro). After that, we also analyzed the effectiveness of each main 
contribution, including handling imbalanced data techniques, and error generated by our model. 

5.2.2.1. Maximum F score comparison (Leaderboard) 

Table 14 lists the maximum F score (micro) of our proposed model compared with other 
previous models for the DDI task. Similar to other biomedical relation tasks, most of the existing 
systems were based either on SVM or DL models. The SVM-based baseline for the DDI task was 
Uturku [9] which used SVM with information from domain resources and dependency features to 
achieve F score of 42.3%. FBK-irst [7] combined different three kernels of SVMs to rank first in 
BioNLP-ST’13 with F score of 65.1% and RAIHANI [6] utilized SVM with multiple rules and features 
to get 71.1% F score and be the best-performing model among the SVM-based models for the 
DDI task. As shown in Table 14, DL-based models can automatically learn high-quality features 
and slightly outperform SVM-based models. For example, Liu-CNN [11] used CNN model with 
syntactic features to get 69.8 F score. TEES-CNN [38] utilized multiple-filter-widths CNN model 
with different embeddings to achieve F score of 73.5% and the highest precision of 80.5%. 
Recursive NN [50] used recursive neural network models with position features, subtree 
containment features, and ensemble methods to improve the models’ performance and 
achieved 73.5% F score. Attn-BLSTM [15] utilized BLSTM with Entity-Oriented attention to achieve 
the overall F score of 77.3% with the highest F score of 85.1% and 57.7% on Advice and Int 
types, respectively. In Table 14, the results reveal that our proposed model can achieve the 
highest overall F score of 80.3% and the highest recall of 83.0%. Our proposed model can also 
achieve the highest F score on both Effect and Mechanism types which are 84.4% and 81.0%, 
respectively. These results show that our model can combine the advantages of every 
contribution to achieve the highest recall and F score resulting in its superior performance for the 
DDI task. 
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Table  14. Performance comparison (maximum F score) with existing models for DDI task. 
The highest scores are highlighted in bold. 

Model 
F score (micro) on each DDI type Overall performance 

Effect Mechanism Advice Int Precision Recall 
F score 
(micro) 

SVM-based Uturku [9] 60.0 58.2 63.0 50.7 73.2 49.9 59.4 

FBK-irst [7] 62.8 67.9 69.2 54.7 64.6 65.6 65.1 

RAIHANI [6] 69.6 73.6 77.4 52.4 73.7 68.7 71.1 
DL-based Liu-CNN [11] 69.3 70.2 77.8 48.4 75.7 64.7 69.8 

MCCNN [12] 68.2 72.2 78.2 51.0 76.0 65.3 70.2 

TEES-CNN [38] - - - - 80.5 67.6 73.5 

Joint AB-LSTM [16] 65.5 76.3 80.3 44.1 74.5 65.0 71.5 

Char-RNNs [18] - - - - 80.0 65.9 72.1 

Hierarchy RNN [17] 71.8 74.0 80.3 54.3 74.1 71.8 72.9 

Recursive NN [50] - - - - 77.8 69.6 73.5 

Attn-BLSTM [15] 76.6 77.5 85.1 57.7 78.4 76.8 77.3 

Our model 84.4 81.0 82.5 57.1 77.6 83.0 80.3 

 

5.2.2.2. Mean F score comparison 

Due to that face that we have failed to reimplement the state-of-the-art model for DDI task 
which is Attn-BLSTM [15], we cannot report its performance in terms of mean and standard 
deviation F scores, only maximum F score provided. It also is impossible for us to study the 
robustness to randomness in its performance. We instead compared our model’s average 
performance with the state-of-the-art model’s maximum performance. In Table 15, the results 
show that our proposed model can achieve mean F score of 77.7%, which is still more than the 
Attn-BLSTM’s maximum performance of 77.3%. 
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Table  15. Performance comparison (mean F score) with existing models for DDI task. 

Model 
F score 

p-value 
Min Max Mean Sd 

Attn-BLSTM [15] - 77.3 - - - 

Our model 73.4 80.2 77.7 1.5 - 

 

5.2.3. Contribution analysis 

Here, we evaluate the effectiveness of each model contribution: combined full-sentence and 
SDP models, attention mechanisms, contextual word representation, and contextual sentence 

representation (Tables 16–20) for DDI task. Unlike BB task, the test set is now provided in the DDI 
task. Thus, we can combine training, validation, and test sets to compute 5-fold cross-validation 
as our model selection and evaluation. 

5.2.3.1. Influence of combined full-sentence and SDP features 

Table 16 lists the 5-fold cross-validation of F score obtained from the experiment to analyze the 
effectiveness of the use of full-sentence and SDP models. The results show that the use of 
combined both features can get 67.7% average F score of the five folds which outperform both 
the use of only full-sentence and the use of only SDP feature. The results also suggest that our 
combined full-sentence and SDP models can effectively extract high-quality syntactic features 
from two different sequences with two different neural networks. 

Table  16. The effectiveness of the application of full-sentence and SDP features for the DDI task  
according to 5-fold cross-validation. All of the highest scores are highlighted in bold. 

Our model F score 

Full sentence SDP #1 #2 #3 #4 #5 Avg. 

BLSTM - 28.7 27.0 23.1 23.4 24.0 25.2 
- CNN 62.1 60.4 66.6 67.4 69.5 65.2 

BLSTM CNN 64.5 64.5 67.0 70.1 72.2 67.7 
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5.2.3.2. Influence of attention mechanisms 

In this experiment analysis, we explored the effects of each proposed attention mechanisms: 
Additive, Entity-Oriented, and Multi-Head attention networks. These attention mechanisms were 
used to focus on the most relevant input features to the task’s outputs. Table 17 lists the 
effectiveness of each attention network adapted into our full-sentence and SDP models using 5-
fold cross-validation. The experimental results show that the full-sentence model with Additive 
attention can improve average cross-validation results from 67.7% F score to 68.5% F score, 
which is considered to outperform the full-sentence model with Entity-Oriented attention by 
0.5% F score. Because Additive and Entity-Oriented attention networks are supposed to extract 
different input features, the results show that the use of both these attention mechanisms 
together can get 70.2% F score, which can perform better than the use of only one of them. In 
addition, the results from Table 17 also show that the SDP model using Multi-Head attention can 
increase the model’s performance to 74.5% F score, which is more than using CNN by 4.3% F 
score. 

Table  17. The effectiveness of the integrated attention mechanisms for the DDI task  
according to 5-fold cross-validation. All of the highest scores are highlighted in bold. The first-row 
results derive from the best results of previous experiments (i.e., the last row in Table 16). Note: 
“PE” denotes positional encoding, “Attn” denotes Additive attention, “EAttn” denotes Entity -

Oriented attention, and “MAttn” denotes Multi-Head attention. 

Our model 
PE 

F score 
Fulls SDPs #1 #2 #3 #4 #5 Avg. 

BLSTM CNN ✖ 64.5 64.5 67.0 70.1 72.2 67.7 

BLSTM + Attn CNN ✔ 59.8 63.8 70.8 73.0 75.1 68.5 
BLSTM + EAttn CNN ✔ 63.8 63.8 69.8 70.2 72.5 68.0 

BLSTM + Attn + EAttn CNN ✔ 67.7 65.8 72.0 71.9 73.7 70.2 
BLSTM + Attn + EAttn MAttn ✔ 68.6 74.1 76.2 76.1 77.5 74.5 
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5.2.3.3. Influence of domain-specific contextual word representation 

Although the context-free word model was pre-trained on entire PubMed corpus, the results in 
Table 18 show that our proposed domain-specific contextual word model can outperform the 
context-free word model with the cross-validation result of 80.0% F score. The contextual 
model, which was proposed to solve word sense ambiguation problem, can encode the higher-
quality word embeddings and better semantic representations than the context-free model. 

Table  18. The effectiveness of domain-specific contextual word representation for the DDI task  
according to 5-fold cross-validation. All of the highest scores are highlighted in bold. The first-row 
results derive from the best results of previous experiments (i.e., the last row in Table 17). Note: 

“PubMed word2vec” denotes the context-free word model and “specific-PubMed ELMo” 
denotes the domain-specific contextual word model based on 236 million drug-relevant tokens 

from PubMed. 

Pre-trained word model 
F score 

#1 #2 #3 #4 #5 Avg. 

PubMed word2vec 68.6 74.1 76.2 76.1 77.5 74.5 
Specific-PubMed ELMo 72.9 78.8 81.0 82.4 85.1 80.0 

 

 

5.2.3.4. Influence of contextual sentence representation 

Similar to the earlier experiments on binary relation extraction task ($5.1.3.4), we sum up the last 
four 768-dimensional hidden layers from BERT into a 768-dimension sentence embedding. This 
sentence embedding can be considered as fixed features. In Table 19, the results suggest that 
our proposed model with the sentence representation from the fine-tuned BERT can achieve 
average F score of 90.9%, which outperforms our model without sentence representation by 
10.9% F score. The results also suggest that our sentence representation can effectively support 
our full-sentence model to better encode long and complicated sentences into very high-quality 
features. 
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Table  19. The effectiveness of the contextual sentence representation for the DDI task  
according to 5-fold cross-validation. All of the highest scores are highlighted in bold. The first-row 

results derive from the best results of previous experiments (i.e., the last row in Table 18). 

Sentence representation 
F score 

#1 #2 #3 #4 #5 Avg. 

without 72.9 78.8 81.0 82.4 85.1 80.0 

with 86.9 93.3 92.8 92.0 89.3 90.9 
 

 
5.2.3.5. Influence of focal loss 

Table 20 lists the effectiveness of focal loss to our model with all proposed contributions in this 
study. The results reveal that, due to our highly imbalanced data, the focal loss can improve the 
model’s performance by 0.5% F score compared with the cross-entropy loss. A possible reason 
for this improvement is that the focal loss can solve the problem of class imbalance by making 
the loss implicitly focus in those problematic classes. 

Table  20. The effectiveness of the focal loss for the DDI task  
according to 5-fold cross-validation. All of the highest scores are highlighted in bold. The first-row 

results derive from the best results of previous experiments (i.e., the last row in Table 19). 

Focal loss 
F score 

#1 #2 #3 #4 #5 Avg. 

without 86.9 93.3 92.8 92.0 89.3 90.9 

with 87.2 94.4 94.2 91.7 89.4 91.4 
 

 
5.2.4. Error analysis 

In this section, we manually analyzed the correct and incorrect predictions from a development 
set to determine the factors that adversely affected the performance of our proposed model to 
multi-class relation extraction task. From the experiment analysis, we have found that our 
proposed model tends to predict negative relations correctly, true negatives (TNs), because their 
SDP lengths are shorter than the average. In addition, similar to the previous section ($5.1.4), we 
have found that false positives (FPs) are mainly caused by the complex and coordinate structures 
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of full sentences. Examples of these effects can be seen in the following sentence which the 
SDPs are highlighted in bold: 

- “a multiple dose drug-drug interaction study demonstrated that prot0 approximately 
doubled prot1 auc0 - . since prot2 is partially metabolized by cyp3a and prot3 le is 
known to be a strong inhibitor of cytochrome p450 zqwnum an enzyme , care 
should be taken while dosing prot4 with prot5 and other strong p450 zqwnum 
inhibitors including prot6 , entity_1 , prot8 , prot9 , prot10 , prot11 , entity_2 , 
prot13 , prot14 or prot15 .” 

 
5.2.5. Discussion 

The model architecture with all of our proposed contributions can extract very high-quality 
syntactic and semantic features to define biomedical relationships. Our proposed model 
outperforms other existing models with the highest F score (80.3%) and the highest recall 
(83.0%). Unfortunately, we cannot reimplement the state-of-the-art model (Attn-BLSTM) for the 
DDI task to get the same results as provided in its paper. To provide the comparison with low-
bias evaluation metric, we instead compared mean F score of our model with maximum F score 
of the state-of-the-art model. As a result, our proposed model with mean F score of 77.5% 
outperforms the state-of-the-art model with maximum F score of 77.3%. From the contribution 
analysis, we found that the main mechanisms that largely support our reliable performance (5-
fold cross-validation) are contextual sentence representation and domain-specific contextual 
word representation. These mechanisms are responsible for F score increases of 10.9% and 5.5%, 
respectively. Similar to the previous experimental results, domain-specific contextual word 
representation might good at capturing the contextual and relevant embeddings from drug-
oriented corpus. In addition, the contextual sentence representation might extract the high-
quality sentence features from long and complex full sentences from the fine-tuned language 
model. 
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6. CONCLUSIONS 

We have presented a DL extraction model for the biomedical relation extraction tasks based on a 
combination of full-sentence and SDP models that integrate various attention mechanisms. 
Furthermore, we introduced a domain-specific contextual word-embedding model based on the 
large bacteria-relevant corpus and fine-tuned contextual sentence representation. These 
embeddings encouraged the model to effectively learn high-quality feature representations from 
the pre-trained language modeling. We compared our proposed model with the existing models 
based on maximum and mean F scores for both BB and DDI tasks. We also explored and 
analyzed the effectiveness of each proposed contribution to our proposed model. The 
experimental results demonstrated that our model effectively integrated all proposed 
contributions. The results showed that we could improve the performance of relation extraction 
to achieve the highest maximum F scores and significantly outperform other existing models for 
both BB and DDI tasks (60.77% and 80.3%, respectively). Additionally, compared with low-bias 
performance, our model is more robust to real-world applications than the previous models.  

Despite our model exhibiting the best performance on both relation extraction tasks, some 
challenges remain. One of the most important limitations of our model is that it cannot extract 
inter-sentence relations between the entities. Hence, all true inter-sentence relations become 
false negatives. Inter-sentence relation extraction is much more challenging because it requires a 
more nuanced understanding of language to classify relations between entities in different 
sentences and clauses characterized by complex syntax. Because the size of common 
biomedical dataset in the challenge is quite small, it is very difficult for DL models to learn 
sufficient high-quality features for the target tasks. However, this challenging task is left for future 
work. Furthermore, there is a large repertoire of biomedical literature and domain resources that 
are freely accessible and can be used as unlabeled data for semi-supervised learning and transfer 
learning methods [59-62]. 
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