SOL-GEL PROCESSING OF SPIROSILICATES AND THEIR POLYMERS

Ms. Srisuda Thitinun

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2001

ISBN 974-13-0722-5

19.0.8 540

119766051

Thesis Title:Sol-Gel Processing of Spirosilicates and Their PolymersBy:Ms.Srisuda ThitinunProgram:Polymer ScienceThesis Advisor:Prof. Alexander M. Jamieson
Assoc. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunyacint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

SUL fer

(Prof. Alexander M. Jamieson)

turna

(Assoc. Prof. Sujitra Wongkasemjit)

Rathanawan Magazoph

(Dr. Rathanawan Magaraphan)

บทคัดย่อ

ศรีสุดา ฐิตินันท์: การเปลี่ยนแปลงจากโซลเป็นเจลของสไปโรซิลิเกต และพอลิเมอร์ สไปโรซิลิเกต (Sol-gel processing of spirosilicates and their polymers) อาจารย์ที่ ปรึกษา: ศ. คร. อเล็กซานเดอร์ เอ็ม เจมิสัน และ รศ. คร. สุจิตรา วงศ์เกษมจิตต์ 72 หน้า ISBN 974-13-0722-5

ทำการศึกษาผลของตัวเร่งปฏิกิริยา เวลาที่ใช้และคุณสมบัติของเจลที่ได้ต่อการเปลี่ยน แปลงจากโซลเป็นเจล ของสารเตตระโคออดิเนตสไปโรซิลิเกต ในปฏิกิริยาไฮโครไลซ์ซิส และ ปฏิกิริยาการควบแน่น ณ สภาวะกรดและต่าง ข้อดีของกระบวนการนี้คือสามารถทำให้เกิคโครง ร่างตาข่ายของแข็งที่มีพื้นที่ผิวจำเพาะ การเกิดพันธะไซล์อกเซนศึกษาโดยใช้ฟูเรียร์ทรานฟอร์ม-สเปกโตรสโคปี และการวิเคราะห์เทอร์โมกราวิเมตริก สไปโรซิลิเกตสามารถไฮโครไลซ์ได้ทั้งใน สภาวะกรดและค่าง โดยที่แสดงอัตราการควบแน่นต่ำสุดที่ 1% ของ กรดไฮโครคลอริกเข้มข้น 1 โมลาร์ ซึ่งมีค่าใกล้เกียงกับจุดไอโซอิเลกทริกของซิลิกา เจลที่เตรียมได้มีความหนาแน่นต่ำ และมี ความเป็นอสัณฐานที่มีพื้นที่ผิว 538 ตารางเมตรต่อกรัม นอกจากตัวเร่งปฏิกิริยาแล้ว ชนิดของ สารตั้งต้นยังมีผลด่อการเกิดเจล ในการทดลองนี้ใช้อะมิโนสไปโรซิลิเกต ซึ่งมีโครงสร้างเป็นวง แหวนหกเหลี่ยมที่มีหมู่เมธิลีน และอะมิโนเป็นหมู่แทนที่ พันธะไซล์อกเซนในโครงสร้างเจลจะ เกิดขึ้นในสภาวะที่มีอุณหภูมิ และความเข้มข้นของตัวทำละลายสูง เนื่องจากความยาว และกิ่งโซ่ ของหมู่อัลคิล

ABSTRACT

4272013063: POLYMER SCIENCE PROGRAM

Srisuda Thitinun: Sol-Gel Processing of Spirosilicates and Their Polymers. Thesis Advisors: Prof. Alexander M. Jameison, and Assoc. Prof. Sujitra Wongkasemjit, 72 pp. ISBN 974-13-0722-5

Keywords: Spirosilicates/ Sol-gel transition/ Siloxane/ Xerogel

The sol-gel transition of tetra-coordinated spirosilicate via hydrolysis and condensation under acidic and basic condition is examined to study the effect of catalyst, time dependence, temperature and the properties of obtained gel. The main advantage of this process is the low temperature employed, giving the formation of solid network with a high specific surface area. FTIR spectroscopy and TGA analysis were used to characterize the formation of siloxane bonds (Si-O-Si). It is found that spirosilicate can be hydrolyzed under both acid and base catalyzed conditions, and the condensation rate to silicates is shown to be at a minimum at 1% HCl of 1M, which is the iso-electric point of silica. The prepared xerogel has a low-density and is amorphous material with surface area of 538 m^2/g . Besides the catalyst media, the type of precursor also has a strong influence on the gel formation. The aminospirosilicate, six-membered ring, containing methylene and amino groups as substituents, was chosen for this study. The resulting xerogel determined by the fact that to obtain the Si-O-Si bonds, a higher concentration of solvent and higher temperature are more favorable, due to the length and branching of alkyl portion.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Alexander M. Jamieson and Assoc. Prof. Sujitra Wongkasemjit, for their guidance and encouragement during the course of this work.

I would like to thank Dr. Somchai Pengpreecha and his staff for their help in running NMR.

I would like to sincerely thank Thai PPG, for supporting fused silica.

Special thanks are due also to Research Grant, Ratchadapisek Somphot Endowment for research financial support, and all Petroleum and Petrochemical College's staff.

Finally, I would like to thank my friends for their friendship, helpfulness, cheerfulness, suggestions, and encouragement. I am also greatly indebted to my parents for their support, understanding and patience during this pursuit.

TABLE OF CONTENTS

vi

PAC	GΕ
-----	----

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	х
List of Figures	xi

CHAPTER

I	IN	TROD	UCTION	1
II	LI	TERA	TURE SURVEY	8
II	EX	KPERI	MENTAL	16
	3.1	Mater	rial	16
	3.2	2 Equip	oment	17
		3.2.1	Fourier Transform Infrared Spectroscopy	17
		3.2.2	Nuclear Magnetic Resonance Spectroscopy	17
		3.2.3	Thermogravimetric Analysis	17
		3.2.4	Scanning Electron Microscope	18
		3.2.5	BET Surface Area Measurement	18
		3.2.6	Wide Angle X-Ray Diffractometer	18
	3.3	8 Meth	odology	
		3.3.1	Synthesis Method	19
			3.3.1.1 Synthesis of Tetra-Coordinated	
			Spirosilicate, C2 from Silica	
			and Ethylene Glycol	19

	3.3.1.2 Synthesis of Aminospirosilicate,	
	C4 from Silica and 2-Amino-2-	
	methyl-1,3-propanediol	20
3.3.2	Determination of Curing Conditions	
	3.3.2.1 Synthesis of Polymer C2	20
	3.3.2.2 Synthesis of Polymer C4	21
3.3.3	Sol-gel Transition Study	22
3.3.4	Pyrolysis of Hydrolyzed Product	22
3.3.5	Density Measurement	22

IV RESULTS AND DISCUSSION

4.1	Chara	acterizat	ion of Synthesized Products	
	4.1.1	Fourier	Transform Infrared Spectroscopy	23
	4.1.2	Proton	and Carbon Nuclear Magnetic	
		Reson	ance Spectroscopy	25
	4.1.3	Thermo	gravimetric Analysis	25
4.2	Study	of Curi	ng Conditions	
	4.2.1	Polyme	er C2	29
		4.2.1.1	Fourier Transform Infrared	
			Spectroscopy	30
		4.2.1.2	Proton and Carbon Nuclear Magnetic	
			Resonance Spectroscopy	31
~		4.2.1.3	Thermogravimetric Analysis	31
	4.2.2	Polyme	er C4	34
		4.2.2.2	Fourier Transform Infrared	
			Spectroscopy	34

PAGE

	4.2.2.2 Proton and Carbon Nuclear Magnetic	
	Resonance Spectroscopy	35
	4.2.2.3 Thermogravimetric Analysis	37
4.3	Sol-gel transition study	
	4.3.1 Fourier Transform Infrared Spectroscopy	
	4.3.1.1 Using 1M hydrochloric acid solution	40
	4.3.1.2 Using 1M ammonium hydroxide solution	44
	4.3.2 Thermogravimetric Analysis	48
4.4	Characterization of pyrolyzed C2 monomer	
	4.4.1 BET Surface Area Measurement	50
	4.4.2 Scanning Electron Microscope	50
4.5	Density measurement	52
4.6	Sol-gel Transition Study of Poly(Glycolato-Silicate)	
	4.6.1 Fourier Transform Infrared Spectroscopy	53
	4.6.2 Thermogravimetric Analysis	54
4.7	Characterization of Pyrolysis Poly(Glycolato Siloxane)	
	4.7.1 BET Surface Area Measurement	54
	4.7.2 Wide angle X-Ray Diffractometer	55
4.8	-Sol-Gel Transition Study of Aminospirosilicate C4	
	4.8.1 Fourier Transform Infrared Spectroscopy	56
	4.8.2 Wide angle X-Ray Diffractometer	57
	4.8.3 BET Surface Area Measurement	
4.9	Sol-Gel Transition Study of C4 Polymer	58
V	CONCLUSIONS AND RECOMMENDATIONS	59
	REFERENCES	60

CHAPTER	PAGE
APPENDIX	63
CURRUCULUM VITEA	72

LIST OF TABLES

		PAGE
4.1	FTIR bands of C2 and C4.	23
4.2	¹ H- and ¹³ C-NMR spectra of spirosilicate species.	25
4.3	Effect of temperature and time on the synthesis of	
	C2 polymer.	29
4.4	The assignments of FTIR bands of polymer C2.	30
4.5	The spectrum assignments of ¹ H- and ¹³ C-NMR of	
	spirosilicates C2.	31
4.6	Effect of temperature and time on the synthesis of	
	C4 polymer	34
4.7	The assignments of FTIR bands of C4 polymer.	35
4.8	The spectrum assignments of ¹ H- and ¹³ C-NMR	
	of aminospirosilicate C4.	37
4.9	The pH results of different catalyst concentration	46
4.10	The ceramic yields of the hydrolyzed monomer after	
	using 1M HCl at various gelation time.	
4.11	The BET surface area measurement of monomer after	
	hydrolysis with 1% of 1M HCl and NH_4OH at various	
	time, followed by pyrolysis at 750°C for 7 h, as compared	
	to fused-silica (starting material).	49
4.12	The density measurement of pyrolyzed product: C2	
	and fused silica (starting material).	52
4.13	The BET surface area measurement of pyrolyzed C2	
	polymer and fused-silica.	55

LIST OF FIGURES

FIGURE		PAGE
1.1	A monolithic glass shapes made using the sol-gel process.	4
1.2	Sketch of poly(dimethylsiloxane)PDMS chain, showing	
	some structural information relevant to its high flexibility.	5
2.1	Raman spectra obtained at various times during	
	the sol-gel reaction in a solution containing 1:1:0.24(vol)	
	TMOS, MeOH, and 3×10^{-3} M aqueous HCl.	10
2.2	Schematics of silica gel network from the hydrolysis and	
	condensation of TEOS; (A) acid and (B) base-catalyzed gel	. 13
2.3	Linear shrinkage versus temperature at 1°C/min heating rate	
	for silica gels prepared by three different methods.	
	a) acid hydrolysis, b) base hydrolysis, c) colloidal process.	14
2.4	Schematic of the synthesis of the tetra-coordinated	
	spirosilicate and its derivatives.	15
3.1	Schematic of the C2 monomer synthesis.	19
3.2	Schematic of the C4 monomer synthesis.	20
3.3	Schematic of the C2 polymer synthesis.	21
3.4	Schematic of the C4 polymer synthesis.	21
4.1	FTIR spectra of tetra-coordinated spirosilicates, a) C2 and	
	b) amino, C4.	24
4.2	¹ H-and ¹³ C-NMR spectra of tetra-coordinated spirosilicate.	26
4.3	¹ H-and ¹³ C-NMR spectra of aminospirosilicate.	27
4.4	TGA thermograms showing (%) weight loss due to thermal	
	changes of tetra-coordinated a) spirosilicate, C2	
	and b) aminospirosilicate, C4.	28
4.5	FTIR spectrum of C2 polymer. (a)	30

4.6	¹ H-and ¹³ C-NMR spectra of C2 polymer.	32
4.7	(a) TGA thermograms showing (%) weight loss due to	
	thermal changes.	33
4.7	(b) TGA thermograms showing decomposition temperatures	
	of C2 monomer and polymers.	33
4.8	FTIR spectrum of polymer C4.	35
4.9	¹ H-and ¹³ C-NMR spectra of C4 polymer.	36
4.10	TGA thermogram showing (%) weight loss due to	
	thermal changes.	37
4.11	Schematic of hydrolysis and condensation under	
	hydrochloric acid solution.	38
4.12	The schematic of hydrolysis and condensation under	
	ammonium hydroxide solution.	39
4.13	FTIR spectra of hydrolyzed C2 monomer product with	
	(a) 1% and (b) 2% of 1M HCl at room temperature.	40
4.14	FTIR spectrum of fused silica.	42
4.15	The time-dependence of hydrolyzed products of C2	
	monomer with 1%-5% of 1M HCl at room temperature.	43
4.16	FTIR spectra showing the effect of temperature to the	
	hydrolyzed product.	44
4.17	The time-dependence of hydrolyzed products of monomer	
	C2 with 1%-4% of 1M NH_4OH at room temperature.	45
4.18	TGA thermograms showing percent ceramic yield at various	
	times after hydrolysis with 1M HCl at (a) 1% and (b) 2%.	48
4.19	SEM of hydrolyzed (a and b) spirosilicate C2 and	
	pyrolyzed (c and d).	50

FIGURE

PAGE

4.20	FTIR spectra showing the effect of temperature on	
	the hydrolyzed polymer product.	53
4.21	TGA thermograms showing percent ceramic yields of	
	hydrolyzed polymer at 40° and 60°C.	54
4.22	XRD patterns of pyrolyzed monomer, pyrolyzed polymer	
	and fused- silica.	55
4.23	FTIR spectra showing the effect time on the hydrolyzed C4	
	product at 60°C.	56
4.24	TGA thermogram showing percent ceramic yield of	
	hydrolyzed aminospirosilicate, C4 at 60°C for 1, 3 and 4 h.	57
4.25	The proposed mechanism occurring during hydrolysis of	
	amino spirosilicate C4 with HCl solution.	58