
Chapter 2

Review of Radial Basis functions and 
Bootstrap Method

2.1 Neural Network

Any hum an response com es from  the nervous system . A  stim u lus en te rs  the 
system  by the receptors and is recognized by the system . Then, the recognition  is 

rep resented  by the hum an effectors. Figure 2.1 show s the hum an nervous ce lls  (neuron) 
w h ich are an e lem ent o f the nervous system . A  d endrite  zone is an entrance o f any 

input. Recognition or decis ion is decided by the cell body. The axon line spends the 

result o f the decision out to the o ther neuron next. The system  consists  o f a large 
num ber o f these  neurons.
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Each neuron in the system  m ay be view ed as an in form ation  p rocessor. The flow  
o f in form ation in each neuron begins at the receptive zone (d end rites). The cell body 

sum m arizes them  effective ly and thresho lds them  to create  the resu lt. Then, the  result is 
sp en t out pass through the transm ission line (axon). Betw een neurons, there  are 
synapses that w e ig h t the in form ation o f each transm itte r. The a rrang e m en ts  o f neurons 
c rea te  the coopera tive  neural netw ork system .

Norm ally, the learning process ad justs the synap tic  w e ig h ts  to store the 
acqu ired  know ledge [1], A  neural netw ork is a m achine tha t m ode ls  a task or a function 
by using e lectron ic  com ponents or s im ula ted  softw are . เท the  m odeling , the 
in terconnection  streng ths (synaptic w e ights) are used to s tore  the  know ledge. The 

w e ig h t ad justing  is called learning process. A  m odel o f in fo rm a tion -p rocess ing  node 
(neuron) in term  o f com putational is show  in Figure 2.2.
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Figure 2.2 A  m odel o f a neuron.

Figure 2.2 show s the m odel o f a neuron {k). W hen the neuron rece ives the input 
s ig na ls  o f m e lem ents, the neuron w e ig h ts  them  w ith  the synap tic  w e ig h ts  and, then, 

sum m arizes them  to an input น 1, o f the activation function  (p . Then , the activation 
func tion  activa tes the output of th is neuron as y k.
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The model can be described in a mathematical term with the following
equations.

w here  k  is the index o f the neuron, j  is the index o f the input vec to rs , X.  is the input 

vec to rs , พ kj is the w e ig h t vectors, and y k is the output. The ac tiva tion  func tion  defines 

the ou tp u t o f a neuron. So the m odeling  o f the neural ne tw orks have to choose  a kind of 
an activa tion  function [1]. W e are in terested in a kind o f neural ne tw ork  m odel that 
ac tiva tes correctly  w ith a radial basis function , w h ich  is used to perform  as the 
recog n izer of the neuron (node), tha t is described in the next section.

W e concentra te  on a tw o d im ensional space o f c lass ifica tion  prob lem , and 
define  the m eaning o f the fo llow ing  w ords used in th is thes is  as fo llow s:

(2 .1)

y„ = ( 2 .2)

•  Tra in ing  data is a set o f input data vec to rs  tha t w ill be tra ined

•  Tra ined data is a se t o f data vec to rs  tha t is tra ined.

•  Untra ined data is a set o f data vec to rs  tha t is not ye t a tra ined  data.

•  Unseen data is a set o f data vec to rs  tha t is used fo r tes ting  the tra ined
network.
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2.2 Radial Basis Function Neural Network (RBF NN)

Radial basis function is a specia l c lass o f functions. Its cha rac te ris tic  fea tures 
are the response decreases (or increases) ทาono ton ica lly  w ith  the d is tance  from  a 
centra l point. The center, the d istance scale w h ich is the >'■' ance from  the cen te r that 
contro l the w id th o f the function, and the steepness of the  rad ia l func tion  are the 
param eters o f the model. A  linear m odel for a function  takes the form

w here j is the index o f the radial function, (p is the radial function  w h ich  all p aram eters เท 
the function are fixed except the input vec to r X 1 พ  is the coe ffic ien t o f the linear 

com b ination  o f the fixed radial function {<p ) w h ich is a w e ig h t o f each func tion , and y  
is a response of th is linear com bination o f the set o f ท fixed func tions m odel. But if the 

param eters in the radial functions can be changed during the  learn ing  p rocess, o r the 

netw ork has more than one hidden layer then the m odel is nonlinear.
The m odel is trained by ad justing  the center, the s ize, and the steepness 

param eters o f the radial basis function. A  typ ical radial basis func tion  is the G aussian 

d is tribu tion  function, which, in the case o f a sca la r input, is de fined  as fo llow s

w here  X is the input, c is the cen te r point, and r  is the variance  o r w id th  o f the  function. 

F igure 2 .3  snows a G aussian RBF shape w ith cen te r c -  0 and rad ius r  = า .

(2 .3 )

h o  ) = exp( -  ^  — ) (2 .3 )
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X
Figure 2.3 G aussian shape.

เท case o f input vector, the function is defined as fo llow s

llx — ell2 (2.4)
h ( x )  =  exp(--— ™ ) 

r :

w here X is the input vector, c is the cen te r vector, and r is the va riance  or w id th  vector 
o f the function. F igure 2.4 shows the shape o f the func tion  in a 2 -d im ens iona l space with 
radius r = (2,2), cen te r c = (0,0), and X  is a vec to r located the  coord ina tes  (1,2) in ท- 

d im ension space. The two param eters, r  and c, are used to d e fine  the  radial func tion ’s 
size and location, respective ly.
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Figure 2.4 G aussian shape in a 2-d im ension space o f the input data vectors.

เท princip le, they could be em ployed in any sort o f m odel ( linea r or nonlinear). It 

is up to the fixing o f the param eters in the  function. A nd  they could  be em ployed in any 
sort o f netw ork (s ing le-layer or m ulti-layer) too. However, a radial basis function network 

has been trad itiona lly  associated w ith radial functions in a s in g le -laye r ne tw ork as shown 
in F igure 2.5.
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F igure  2.5 The trad itiona l radial basis function neural netw ork. Each o f ท com ponents of 
an input vector is fed forw ard to m basis func tions w hose  outputs  are linearly 
com b ined  w ith พ1 w e ights  to the netw ork output.

Each param eter in Figure 2.5 is defined as fo llows: / (x ) is the func tion  o f the output of 

the network, Wj is the w e ight for the hidden node j ,  and hj(x) is the h idden node 

func tion  j .  Here, w e focus on a sing le-layer netw ork (because  the 2-d im entional 
c lassifica tion  prob lem  can be solved by a s ing le -layer ne tw ork correc tly ) w ith  functions 

th a t are varied on cen te r vectors and w idth vectors. The learn ing  a lgorithm  starts w ith  a 
fixed  num ber o f h idden nodes, say m nodes. A fte r tha t each h idden node is re located to 

an appropria te  location to cover all m em bers o f the sam e c lass in tra in ing  data set.

2.3 Resource Allocating Neural Network (RAN)

This is one kind o f G aussian RBF neural netw orks tha t a lloca tes  a new  hidden 
node when the netw ork is tra ined with untrained data vectors. The ne tw ork can be used 
w ith o u t repeated tra in ing , w h ich im plies tha t each data ve c to r needs only one tim e 
tra in ing . RAN is a 2-layer neural netw ork (which th is num b er o f layer is counted by



11

num ber o f h idden and output layer [2]). The h idden nodes are realized by the fo llow ing 
G aussian function:

zi  = x * (cy* - I * ) 2 (2.5)

J l )X J = eK (2.6)

- y ^ j h j X j + f .  (2 .7)

w here  c j k is a cen te r vec to r o f the G aussian function  (xj), W j is a w id th  vec to r o f the 

G aussian function (xj), \ k is a input vector k, Z j is an Euclidean d is tance from  I^ to  c j k , 

X j is the G aussian function j ,  h j is the w e ight o f link j  connecting  the h idden neuron j  
and the output neuron (G aussian), Ÿ is the bias [1], and ÿ  is ou tp u t o f the netw ork [2], 
The structura l o f a RAN is shown in Figure 2.5. This ne tw ork does not need any initial 
num b er o f h idden nodes as the trad itional RBF network, it learns by in troduc ing  a node 

in the h idden layer at firs t and, then, gradual add ing  a new  RBF node w heneve r the 
c lassifica tion  is not successfu l.

2.4 Bootstrap Method

The S tandard  Q uenou ill-Tukey jackkn ife  is the idea o f the  estim ation  o f the mean 
and variance o f the population [7], A fte r tha t it had been deve loped  to be a Bootstrap 

and the  o ther com puter-in tens ive  statistica l m ethods by E fron [7], [8], The bootstrap 

ca lcu la tes  the population param eters by the resam pling  techn iques. So the confidence 

in terva ls o f th is m ethod have been w ide ly  d iscussed fo r using in the genera l situation 
[9], The bootstrap  is a resam pling procedure tha t resam ples from  the orig ina l data set. It 

is used fo r estim ation  o f the population param eter, / /  B (boo ts trap  m ed ian) or c r e 
(boo ts trap  variance), based on the fo llow ing  procedure.

1. G enera te  a sam p le  o f size ท w ith  rep lacem ent from  the em p irica l d istribution.
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2. C om pute the statistic  param eter fa  (in case o f find ing  m ed ian o f the 

population), w hich its va lue is obta ined by using the b oo ts trap  sam p le  (the 
sam ple set tha t resam pling from  the orig ina l data) in p lace o f the  orig inal 
sam ple.

3. R epeat steps 1 and 2 A: times.

W e are able to com pute the estim ator o f the m ed ian o f each sam p le  set, and 
find m ean o f them  again. The confidence interval es tim ation  d ep end s on k. If k  is large 
enough, the area o f the confidence interval is large too.

เท the second step we com pute the sta tistic  p a ram ete r in case  o f m ed ian o f the 

population fa  by

w here X . is the data vectors, / is the index o f the data vectors , ท is the  num b er o f data 

vectors, and ]uj  is the m edian of the sam ple set j .  เท case o f va riance  es tim a tion  {(J ), 
we fo llow  the above three steps. But in the com puta tion  o f the s ta tis tic  param eter, we 
use fo llow ing  equation instead.

where X is the m edian o f an input data tha t can be changed to the  b oo ts trap  m edian 

f l  when its confidence interval is accepted [9]. W hen w e fin ish  all o f ab ove  procedure, 
we average all s ta tistica l param eters for estim ating  the grand sta tis tica l p a ram ete r of the 
data set by the fo llow ing  equations

(2 .8)
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i > ,
f d B = ^ ---------  (2 . 10)

crs = ^ -----  (2.11)
k

W e can fo llow  the bootstrapp ing  by fo llow  the  fo llow ing  d iagram .

Step 3

Figure 2.6 The Bootstrap  princ ip le .
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Figure 2.5 show s the bootstrapp ing  d iagram  (com parison betw een normal 
estim ation  and bootstrapp ing  estim ation) when we w ant to estim ate  the population 
param eter ( /UN O r a N ) from  an orig ina l data. A ccord ing  to the norm al estim ation, if 
we w a n t to find the population param eters o f the data set, w e w ill com pute it by 
considering  all data in the set fo llow ing  the three top  steps o f the  d iagram . But if we use 

the bootstrapp ing  estim ation, we w ill fo llow  the o ther step instead. The d iagram  starts 
w ith a conduction  o f an experim ent or a m easurem ent fo r c reating  the  orig inal data or 
the population in step 1. Then, the  data flow  to e ither C om p ute  Estim ate step (for 

generating  o f the norm al estim ation) or Resam ple step (for boo ts trapp ing  estim ation). เท 
the norm al estim ation , the d iagram  fin ishes here, but in the boo tstrapp ing  estim ation the 
d iagram  flow  through the Resam ple step. A fte r Resam pling , the k sam ple sets are 
genera ted  and fed to step 2. เท step 2, all data in each sam p le  set are considered for 

creating each sam ple set population param eter by eq uations 2.8 or 2.9. Finally, we 

create the grand population param eter ( / /  O r  a B) by averag ing  all o f the sam ple 
param eters by equations 2.10 or 2.11. So this d iagram  presents how  bootstrapp ing  

does not need the considering  o f ail orig ina l data.
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