
Chapter 3

Learning Algorithms

3.1 Generic Elliptic Radial Basis Function

There  are m any param eters fo r ad justing  in a radial basis function  learning 
a lgorithm s w h ile  using a non-linear RBF m odel. The con tro llab le  param eters o f this 
function are a center vec to r (which contro l a position o f h idden node), a w id th  vector 
(which contro l a size o f the hidden node) and a ro ta tional ve c to r (w hich contro l a 

d irection o f the hidden node). To w ork w ith the c lassifica tion  p rob lem , the  netw ork 
should be contro lled by a special cost function. A cco rd ing  to using o f the m ultivaria te  
G aussian function, the contro llab le  param eters are a cen te r ve c to r and a covariance 
m atrix [5] tha t m ake the trad itional a lgorithm  has a high cost. B u t ou r ne tw ork proposes 

the using o f a generic ellip tic radial basis func tions, w h ich reduce tha t cost by 

e lim inating  the covariance m atrix operation and inc lud ing  all o f these  fea tu res (the 
contro llab le  param eters). The fo llow ing  notations are used in ou r p roposed  radial basis 

function.
Let X input vectors (i.e. { x h X 2 ,  . . .  , x „ } )

c : center vectors (i.e. {c,, c2, ... , cn})
พ  : w id th vectors (i.e. {พ,, พ2, ... , พ,,})

ท :

i j  :

rotation m atrix (i.e.

d im ensions
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The proposed ellip tic function is g iven in equation  3.1. The ou tp u t o f the function 
is com posed ly  fed to a sigm oid function  as shown in equation  3.2. These  tw o functions 
are com b ined  as a generic e llip tic  radial basis function  (G ERBF). The  e llip tic  activation 
function  w as presented as h 11 (c, พ ,  r) fo r each neuron k and the s igm oid  function  was 
show n below  as y  11 (h )  fo r each neuron k too.

F igure 3.2 dem onstra tes the e ffec ts o f c and พ  on the shap e  o f the G ERBF 
function . The c irc le  is the result o f p lotting G ERBF w hen พ 1 =  พ 2 w h ile  the e llipse is 

the result o f p lotting G ERBF when พ, > พ 2 and r ^ I (w here I is an Identity  m atrix) 
w ith  the sam e cen te r vector c .

If w e p lot the com position function o f K  (c, พ ,  r) and y k {h )  in th ree d im ensions, 
the shape o f th is function looks like a m ultivaria te  G aussian  function . The steepness of 
the shape is contro lled  by the steepness constan t p. The s teep ness o f the function  is

(3.1)

(3.2)

Figure 3.1 The figure  o f c and พ

increased accord ing ly  to the va lue o f p. เท our a lgorithm , p  is chosen random ly and
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used in each learn ing tim e for find ing an optim al ne tw ork (the netw ork tha t used sm allest 
num b er of h idden node).

Figure 3.2 The figure o f the com position function o f hk (c, พ, r) and y k (h)

The rotation o f our G ERBF is contro lled by r . The trans la tion  is contro lled  by 
chang ing  the va lue o f c and the size is scaled by พ . The constan t p  is used to 

de te rm ine  the steepness o f our function. The output o f the  each data vec to r decreases 

(or increases) กาonoton ica lly  w ith the d istance from  a cen te r vector. If the data vec to r is 

near the center vector, the output o f this vec to r w ill c lose to one. On the other hand, the 

ou tp u t is near zero  if it locates far from  the rim o f the function . Then, w e  use this feature 
to c lassify  the sam e class data vectors. If the data vec to rs  are in the  sam e class, the 

ou tp u t o f each one is close to one. So our netw ork need a set o f G ER B Fs fo r covering a 
c lass o f data vector. เท the sam e way, the output o f the  o the r c lass vectors should be 

nearly zero w h ile  they  locate far from  the rim o f the set o f G ERBFs.
For the learn ing, the grad ient descent o f the cos t function  is used to contro l the 

variab les c, พ and r. From the m eaning o f covered  data, the va lue o f y  k(h k)  
should  be nearly one. So our cost function is defined as fo llows.

f
1 -

V
(3.3)
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w here  m is the num ber o f tra ined data vec to rs  and (j)■1 is the  ou tpu t o f G ERBFs 
covering  data vec to r X  .. The cost function is m in im al w hen every (j.i are equal to one. 

The param eters c, พ and r are ad justed by the g rad ien t descen t learn ing  rule.

3.2 Learning Algorithm

O ur learn ing a lgorithm  is based on the learn ing  o f RAN [2]. To  fo llow  the main 

idea o f RAN, w e begin our a lgorithm  w ithou t any h idden node in h idden layer. The 
learning is p rocessed until all data in the sam e class are covered. To learn any data set, 
we p ick up a c lass o f input data set random ly first. Suppose the data se t is in c lass A. A 

firs t data vec to r tha t w as selected random ly from  A is perform ed as an in troducer o f the 

firs t G RBF to the network. Then, the o ther sam e class data ve c to r are random ly 

se lected  and fed sequentia lly  one by one to the netw ork. If it is not a lready covered by 
any h idden node then the ad justing w ill be started to cover th is  data vector. The shape 

o f the nearest h idden node is stretched to cover it by ad justing  the param eters c, 'พ 
and r . The ad justing  is done step by step by a g rad ien t d escen t o f the  cost function. 
Enlarg ing  a G ERBF shape m ay cover the data in the  o ther c lasses. If th is even occurs, 

the en larg ing  process for this G ERBF should be stopped and the s ize o f the h idden 
node is shrunk instead. For exam ple, the shrinking  o f พ, o f the ad justed  h idden node, 

w h ich is an e lem ent o f the w id th vectors, should  be decreased . The delta va lue (the 

sm all va lue  tha t is used to shrinking เท each step o f learn ing) is com puted  by a small 

ratio o f the old พ,. If the shrinkage is not successfu l, a new  G ER B F neuron w ill be 

in troduced  to the network. Suppose tha t the data vectors  in c lass A w ill be covered first. 
Let  ̂ be a constan t g reater than one.
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Covering A lgorithm

1.

2 .

3.

4.
5.
6 .

7.

8 .

9.

10. 

11.

12.

A oI o .

14.
15.
16.

Let ท -  1
In troduce a G ERBF neuron,^ ,. and in itia lize  its p aram eters  (c, พ ,  r, /?). 
Se lect the firs t data vec to r random ly and set the firs t G ER B F neuron f  to 
cover this vector by set C l  =  X / .

While there are som e data vectors in c lass A still not tra ined  do 
Feed a new data vec to r X / tha t is se lected  rand om ly  
If X, is not covered by fa  then

Try to stretch the size o f fa  to cover X ;

Let T = 1
While there is a data vec to r from  o the r c lasses covered 

by th is function and T < 5 do 
Shrink the size o f fa  and T = T + 1 

End While 
If T > ร then

n - n  + 1 and in troduce a new  G ERBF neuron

End If
End If 

End While

Figure 3.3 shows the process o f ad justing  the size o f a G ER B F to cover the data

in c lass A. Each num ber ind icates the sequence o f size ad justing .
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Data vectors

Figure 3.3 The en largem ent o f tra in ing  h idden node in learn ing  season.
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3.3 Pruning Algorithm

A fte r the learning process, the netw ork m ay have the  m any redundant hidden 
nodes. A  redundant G ERBF node is the node w hose all o f its data  vec to rs  are covered 

by som e other G ERBF nodes. The pruning procedure  is needed the reduced of the 
redundant nodes. S ince the prob lem  of pruning all redundant neurons can be viewed as 
a prob lem  of find ing m inim um  set cover [8], any existing heuris tic  a lgorithm  can be 
app lied  to th is problem . Here, we propose the fo llow ing  pruning  a lgorithm .

Pruning Algorithm

1. For each G ERBF hidden n o d e /,
2. If fa  is not a firs t consideration or it has not been pruned, Then
3. For each data vector in th is hidden node

4. If th is data vec to r is covered by som e o ther h idden node too, Then

5. Feed a next h idden node. /* Th is  h idden does not be pruned. 7
6. End If
7. End For
8. Prune th is hidden node.
9. End If
10. End For
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Figure 3.4 P runing the redundant h idden.

Figure 3.4 show s an exam ple o f a red und ant h idden node. Each ellipse 

presents the position o f each h idden node, w h ich  is a lloca ted  a fte r w e fin ish the 

covering a lgorithm . The dashed ellipse presents the red und an t h idden node tha t should 
be pruned.
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3.4 Generalization Algorithm

The genera liza tion  o f a G ERBF netw ork m eans the ab ility  to correc tly  c lassify  a 
new incom ing data vector. This im plies tha t all untra ined vec to rs  m ust p roperly be 

c o v f » by som e G ERBF neurons. To m ake th is  coverage possib le , the size of each 
G ERBF neuron should  be ad justed  accord ing ly  to the natura l d is tribu tion  o f the 
untra ined vec to rs  and the location o f each G ER B F cen te r m ust be estim ated  and 
re located. F igure 3.5 shows an idea o f estim ating  a new  ad justed  and re located  hidden 

node. A ll data vectors are in a 2-d im ensiona l space and are show n by sym bols and 
“+” correspond ing  to the ir coord inates in X and y axes. The data o f C la s s l is the tra in ing  
data set and the data o f C lass2 is the other class data set.
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Figure 3.5 G enera liza tion  idea
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W e app ly the technique o f Bootstrap  [5], [6], and [7] to estim ate  the mean as 
w ell as the variance o f the size and find the new  cen te r o f each G ERBF. The estim ation 
m ust be perform ed on both classes, the c lass covered by the G ERBF and the class 
outs ide the GERBF. The details o f the a lgorithm s are g iven as fo llow s. Let T  be a 
constant, X j  the data vectors covered by g a 1 N g the num ber o f data vec to rs  covered 
by ga 1 and Cg the new  estim ated center of G ERBF g a .

Estimating Center Location Algorithm

1. For each G ERBF ga do
2 . /  = 1

3. While /  < T  do
4. Let k > 0  be a random  integer.

5. R andom ly se lect a set ร ,  o f k data vec to rs  covered by g0 .
6. C om pute  the mean center

7. / =  /  +1 .
8. End While

9. L e t  c  = ~ y T, € 1 .Sa Y  £—เ1=\ 1

10. End For

F o r a ll d a ta  v e c to r s  in ga , th e  m e a n  a s  w e ll a s  th e  v a r ia n c e  o f  th e  G E R B F  s iz e  

a re  e s t im a te d  in te rm s  o f  th e  a v e ra g e  d is ta n c e  a n d  th e  v a r ia n c e  o f  th e  d is t a n c e  w ith  

r e s p e c t  to  th e  Cg . L e t f / ; b e  th e  E u c l id e a n  d is t a n c e  b e tw e e n  Cg a n d  X -  (w h e re  X j - 1 

a re  th e  d a ta  v e c to r s  tha t, c o v e r e d  b y  g a ), Dg th e  e s t im a te d  m e a n  o f  th e  d is t a n c e s  o f  

a ll d a ta  v e c to r s  in  g a 1 a n d  Vg th e  e s t im a te d  v a r ia n c e  o f  th e  d is t a n c e s  o f  a ll d a ta  

v e c to r s  in  g a .
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Estimating Size A lgorithm

1.

2 .
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15.
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17.

18.

Fo r each G ERBF ga do 
Com pute Cg

l  =  1
W hile  / < T  do

Let A: > 0  be a random  integer.

Random ly se lect a set ร  1 o f k  data vec to rs  covered by 
For each X . in ร  1 do 

Com pute d J .
End For

Let d 1 =

/ = / + 1 . 
End W hile

Let ๙ ,:
Fo r each X j  covered by g a do 

Com pute d J 
End For

Com pute variance K  = - 1 _  1} J z J *  (dj  -  D g„ )

End For

Figure 3.6 show s an exam ple o f how the estim ating  size a lg orithm  w orks. The 

sm all e llipse at the cen te r of the figure is the size o f D  (w here p lotted by using Dg as 
the w id th  o f the G ERBF to show the approx im ation  size o f Dg ). The m idd le  e llipse is 
the variance o f tra in ing  data set o f c lass A, VgtA) 1 w h ich covered by g[A) and the largest 

e llipse is the variance o f the other c iass data set (c lass B), V 111, w h ich  covered  by g(B>.
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Figure 3.6 The variances o f two c lasses o f sam p le  data set.
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Suppose tha t class A is the considered  class. To sep ara te  c lass A from  class 

B , som e G ERBF neurons are required to cover the data vectors  in c lass A and there is 

no need to use any G ERBF to cover the data vectors  in class B . เท the o ther word, all 

data in c lass B can be considered as covered by on ly one large G ERBF neuron. 

Fience, the above algorithm  can be applied to both c lasses w ith o u t any m odification. 
The size ad justm ent m ust be perform ed on both classes. The re  m ay be the case that 

the estim ated  size o f a G ERBF in one c lass w ill be expanded  ove r its neighboring 

G ERBF in ano ther class. To avoid th is s ituation, a com pensation  o f va riances of both 

c lasses m ust be estab lished. Let g (aA) be a G ERBF neuron covering  the data vectors in 
c lass A and g (B) a G ERBF neuron covering data vectors in c lass B . g l'r> and g (B) 
are ad jacent.
Let พ 1A) be the w id th o f g (aA) p rior to app ly ing  the Bootstrap  estim ation . The w idth 

w w  is ad justed  by the fo llow ing  variance com pensation .
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Figure 3.7 shows the approximated distribution size after generalization with 
enlarging by the variance ratio cc (the middle ellipse) which is created by equation 3.6. 
The outer ellipse presents the variance of the data set in class B  and the middle ellipse 
presents the estimated variance of the training data set of class A .

The  a p p ro x im a te d

V a r ia n ce  o f th e  tra in in g d is tr ib u t io n  s ize  a fte r

d a ta  se t o f c la s s  A e n la rg in g  w ith  oc

-  -  D is tribu tion  o f
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Figure 3.7 The approximated size after enlarging with the ratio.
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F ig u re  3 .8  s h o w s  th e  re su lt o f g e n e ra liz a t io n . T h e  d a s h e d  e llip s e  c o m e s  fro m  th e  

m id d le  e llip s e  in F ig u re  3 .7  (g e n e ra liz e d  e llip se ). T h e  m id d le  e llip s e  is th e  o r ig in a l s ize  

a n d  p o s itio n .
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F ig u re  3 .8  T h e  c o m p a r is o n  o f th e  s iz e s  o f th e  G E R B F  b e fo re  a n d  a fte r  g e n e ra liz a t io n .
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