

โดรงการ

การเรียนการสอนเพื่อเสริมประสบการณ์

ชื่อโครงการ	Association between living in an e-waste recycling area and health effects among children in Buriram, Thailand
ชื่อนิสิต	Mr. Krittayot Panyakhong
ภาดวิชา	Environmental Science
ปีกาธศึกษา	2018

<u>ดณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย</u>

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของโครงงานทางวิชาการที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของโครงงานทางวิชาการที่ส่งผ่านทางคณะที่สังกัด The abstract and full text of senior projects in Chulalongkorn University Intellectual Repository(CUIR) are the senior project authors' files submitted through the faculty.

SENIOR PROJECT

Title	Association between living in an e-waste recycling area and health
	effects among children in Buriram, Thailand
Student name	Krittayot Panyakhong
Project advisor	Sitthichok Puangthongtub, Ph.D.
Faculty of Science	Department of Environmental Science
Academic year	2018

Department of Environmental Science Faculty of Science, Chulalongkorn University

ASSOCIATION BETWEEN LIVING IN AN E-WASTE RECYCLING AREA AND HEALTH EFFECTS AMONG CHILDREN IN BURIRAM, THAILAND

Mr. Krittayot Panyakhong

A Senior Project Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science Program in Environmental Science Department of Environmental Science, Faculty of Science Chulalongkorn University

Academic Year 2018

Title	Association between living in an e-waste recycling area and health	
	effects among children in Buriram, Thailand	
Student Name	Krittayot Panyakhong ID: 5833301523	
Project Advisor	Sitthichok Puangthongtub, Ph.D.	
Faculty of Science	Department of Environmental Science	
Academic Year	2018	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Bachelor's degree

anda _____

(Professor Wanida Jinsart)

Environmental Science

Head of Department of

Senior project committee

Sous M_

Chairman

(Assistant Professor Dr. Vorapot Kanokkantapong)

Committee

(Assistant Professor Dr. Pasicha Chaikaew)

Chidsznophony Chert-252

Committee

(Dr. Chidsanuphong Chart-asa)

24

Project Advisor

(Assistant Professor Dr. Sitthichok Puangthongtub)

หัวเรื่อง	การศึกษาความสัมพันธ์ระหว่างการอาศัยอยู่ในพื้นที่คัดแยกขยะ อิเล็กทรอนิกส์	
	กับผลกระทบทางสุขภาพของเด็กในจังหวัดบุรีรัมย์	
ชื่อนิสิต	นายกฤตยศ ปัญญาคง รหัสนิสิต 5833301523	
อาจารย์ที่ปรึกษา	ผู้ช่วยศาสตราจารย์ ดร. สิทธิโชค พวงทองทับ	
คณะวิทยาศาสตร์	ภาควิชาวิทยาศาสตร์สิ่งแวดล้อม	
ปีการศึกษา	2561	

บทคัดย่อ

การอาศัยอยู่ในพื้นที่คัดแยกขยะอิเล็กทรอนิกส์สามารถส่งผลให้ประชากรที่มีความไวต่อการรับ สัมผัส เช่น เด็ก ได้รับสารมลพิษจากขยะอิเล็กทรอนิกส์และอาจส่งผลเสียต่อระบบต่าง ๆ ในร่างกาย ้ก่อให้เกิดความเสี่ยงต่อการเกิดโรคร้ายแรงตามมา การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ ระหว่างการอาศัยอยู่ในพื้นที่คัดแยกขยะอิเล็กทรอนิกส์กับผลกระทบทางสุขภาพของเด็กในจังหวัดบุรีรัมย์ โดยใช้การศึกษาแบบตัดขวาง (Cross-sectional study) วิเคราะห์ข้อมูลผู้ป่วยเด็ก 125,823 คน (อายุ 0-15 ปี) ทดสอบความสัมพันธ์ใช้แบบจำลองการถดถอยโลจิสติกเพื่อคำนวณความสัมพันธ์และระดับความ เสี่ยง adjusted odd ratio (AOR) ผลการศึกษาแสดงให้เห็นว่าในตำบลที่มีการคัดแยกขยะอิเล็กทรอนิกส์ มีความชุกของโรคมากกว่าพื้นที่อ้างอิงอย่างมีนัยสำคัญทางสถิติ 5 โรค และพบความสัมพันธ์อย่างมี ้นัยสำคัญทางสถิติ ระหว่างการอาศัยอยู่ในพื้นที่คัดแยกขยะอิเล็กทรอนิกส์กับการเกิดโรคเนื้องอก (AOR [95%CI] = 3.150 [1.722-5.761]) โรคของเลือดและอวัยวะสร้างเลือดและความผิดปกติบางอย่างของ กลไกภูมิคุ้มกัน (AOR [95%CI] = 1.723 [1.303-2.279]) โรคของระบบประสาท (AOR [95%CI] = 2.033 [1.320-3.132]) โรคของตาและอวัยวะเคียงลูกตา (AOR [95%CI] = 3.001 [1.596-5.643]) และ โรคของระบบสืบพันธุ์และระบบปัสสาวะ (AOR [95%Cl] = 1.728 [1.149-2.599]) ในกลุ่มเด็กอายุ 0-6 ้ปี พบความสัมพันธ์อย่างมีนัยสำคัญทางสถิติกับการเกิดโรคของเลือดและอวัยวะสร้างเลือดและความ ผิดปกติบางอย่างของกลไกภูมิคุ้มกัน (AOR [95%CI] = 2.086 [1.442, 3.016]) โรคของระบบประสาท (AOR [95%CI] = 2.826 [1.694, 4.715]) โรคของตาและอวัยวะเคียงลูกตา (AOR [95%CI] = 3.862 [1.708, 8.734]) โรคของผิวหนังและเนื้อเยื่อใต้ผิวหนัง (AOR [95%CI] = 1.858 [1.058, 3.263]) โรคของ ระบบกล้ามเนื้อโครงร่างและเนื้อเยื่อเกี่ยวพัน (AOR [95%CI] = 3.143 [1.164, 8.487]) และโรคของ ระบบสืบพันธุ์และระบบปัสสาวะ (AOR [95%CI] = 1.947 [1.107, 3.422]) ในกลุ่มเด็กอายุ 7-12 ปี พบ

ความสัมพันธ์อย่างมีนัยสำคัญทางสถิติกับการเกิดโรคเนื้องอก (AOR [95%CI] = 5.890 [2.845, 12.195]) และในกลุ่มเด็กอายุ 13-15 ปี พบความสัมพันธ์อย่างมีนัยสำคัญทางสถิติกับการเกิดโรคของระบบย่อย อาหาร (AOR [95%CI] = 2.051 [1.110-3.789]) และโรคของระบบสืบพันธุ์และระบบปัสสาวะ (AOR [95%CI] = 2.743 [1.214-6.199]) ผลการศึกษาซี้ให้เห็นว่าเด็กที่อาศัยอยู่ในพื้นที่คัดแยกขยะ อิเล็กทรอนิกส์มีความเสี่ยงต่อการเกิดโรคเกี่ยวกับระบบต่าง ๆ ในร่างกายมากกว่าบริเวณอื่น โดยเฉพาะ กลุ่มเด็กเล็ก 0-6 ปี เป็นกลุ่มที่ควรให้ความสำคัญในการลดการรับสัมผัสสารมลพิษที่ผ่านการดูดซึมทาง ผิวหนัง การหายใจ และการกิน ด้วยเด็กเล็กใช้เวลาเกือบ 24 ชั่วโมงในบ้านที่มีการคัดแยกขยะ อิเล็กทรอนิกส์ การศึกษานี้ไม่ได้วิเคราะห์การรับสัมผัสมลพิษเชิงปริมาณหรือมลพิษจากแหล่งอื่น ๆ

คำสำคัญ : ขยะอิเล็กทรอนิกส์, ผลกระทบต่อสุขภาพ, เด็ก, ความสัมพันธ์

Title	Association between living in an e-waste recycling area and health effects among children in Buriram, Thailand	
Student Name	Krittayot Panyakhong II	D: 5833301523
Project Advisor	Sitthichok Puangthongtub, Ph.D.	
Faculty of Science	Department of Environmental Science	
Academic Year	2018	

Abstract

Living in an e-waste recycling area could harm sensitive population like children to be exposed to toxic substances such as heavy metals and toxic chemicals. These can impact various systems of the children body. This work aimed to investigate association between living in e-waste recycling sites and children health effects in Buriram, the largest e-waste site in Thailand. This cross-sectional study analyzed 125,823 inpatient children records (aged 0 to 15 years old) from Buriram Hospital. A logistic regression model was fitted to investigate the association and adjusted odd ratio (AOR). The result showed statistically higher prevalence for 5 diseases in e-waste subdistricts and statistically confirmed the association and increased risk for neoplasms (AOR [95%CI] = 3.150 [1.722-5.761]), blood and immune diseases (AOR [95%CI] = 1.723 [1.303-2.279]), nervous system diseases (AOR [95%CI] = 2.033 [1.320-3.132]), eye diseases (AOR [95%CI] = 3.001 [1.596-5.643]) and genitourinary system diseases (AOR [95%CI] = 1.728 [1.149-2.599]). For young children (0-6 years old), we found statistically increased AORs for blood and immune mechanism diseases (AOR [95%CI] = 2.086 [1.442, 3.016]), nervous system diseases (AOR [95%CI] = 2.826 [1.694, 4.715]), eye diseases (AOR [95%CI] = 3.862 [1.708, 8.734]), skin diseases (AOR [95%CI] = 1.858 [1.058, 3.263]), musculoskeletal system diseases (AOR [95%CI] = 3.143 [1.164, 8.487]) and genitourinary system diseases (AOR [95%CI] = 1.947 [1.107, 3.422]). In middle age group (7-12 years old), the association was statistically

confirmed for neoplasms (AOR [95%CI] = 5.890 [2.845, 12.195]) and eye diseases (AOR [95%CI] = 2.732 [1.001, 7.457]). For old children (13-15 years old.), significantly increased AORs were observed for digestive system disease (AOR [95%CI] = 2.051 [1.110-3.789]) and genitourinary system disease (AOR [95%CI] = 2.743 [1.214-6.199]). The findings confirmed the association between childhood living in an e-waste recycling area and greater risks of various disease. The young group are at a priority to reduce exposure through skin absorption, inhalation and digestion as spending almost 24 hours in home as an e-waste workplace. This work did not account for chemical exposure or other contaminant sources.

Keywords: E-waste, health effects, children, association

ACKNOWLEDGEMENTS

First, I would like to express my deep and sincere gratitude to my project advisor Sitthichok Puangthongtub, Ph.D. for providing invaluable guidance and support throughout this research. Without him, I might be not able to complete this project properly. Beside my advisor, I offer my sincere appreciation for the learning opportunities goes to my committees: Assistant Professor Dr. Vorapot Kanokkantapong, Assistant Professor Dr. Pasicha Chaikaew and Dr. Chidsanupong Chart-asa.

Second, I would like to thanks to Buriram Hospital for giving advice about data requested and approving this data requested. Without all these supports, this project would not be complete in time.

Finally, thanks to my parent for giving encouragement, enthusiasm and assistance to me throughout my study. Thanks to my friends and Puttapatsorn Laohatrakul's father for helping to coordinate with Buriram hospital in requesting the data.

CONTENTS

	PAGE
ABSTRACT IN THAI	ivv
ABSTRACT IN ENGLISH	vi
ACKNOWLEDGEMENTS	∨iiiiii
CONTENTS	ix
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER I INTRODUCTION	1
1.1 Problem statement	1
1.2 Research objectives	3
1.3 Scope of the research	3
1.4 Expected benefits	4
CHAPTER II LITERATURE REVIEW	5
2.1 Definition of electronic waste	5
2.2 Categories of electronic waste	5
2.3 Hazardous chemicals in electronic waste	7
2.4 Health impacts caused by electronic waste	9
2.5 Epidemiological study	9
CHAPTER III METHODOLOGY	11
3.1 Description of study area	11
3.2 Study design	12

3.3 Data collection	13
3.4 Statistical analysis	13
CHAPTER IV RESULTS AND DISCUSSION	16
4.1 All age analysis	17
4.2 Age specific analysis	21
CHAPTER V CONCLUSIONS	
REFFERENCES	36
APPENDIX	40
BIOGRAPHY	46

LIST OF TABLES

Table 2.2.1	Categories and products of e-waste	5
Table 2.3.1	Hazards association with metal/acid/compound and sources	7
Table 3.2.1	ICD-10 codes	12
Table 3.4.1	Table 2x2 showing number of children with and without a specific	
	disease in children in the exposed and the reference area	14
Table 4.1	Distribution of children according to residence area	16
Table 4.2	Frequencies and Chi-square statistic of children in exposed zone	
	and reference zone	17
Table 4.3	The prevalences of diseases	18
Table 4.4	Adjusted odd ratios of diseases	21
Table 4.5	The prevalence of diseases (0 – 6 years old)	22
Table 4.6	The prevalence of diseases (7 - 12 years old)	24
Table 4.7	The prevalence of diseases (13 - 15 years old)	26
Table 4.8	Adjusted odd ratio of diseases (0 – 6 years old)	28
Table 4.9	Adjusted odd ratio of diseases (7 - 12 years old)	30
Table 4.10	Adjusted odd ratio of diseases (13 - 15 years old)	32

LIST OF FIGURES

Page

CHATPER I

INTRODUCTION

1.1 Problem statement

Electrical and electronic waste, also referred to informal word as e-waste, is defined as any electronic equipment or any electronic products such as televisions, mobile phones, computers, printers, lighting equipment or any electronic machines which are discarded, broken or nearing the end of useful life (Chan & Wong, 2013). E-waste is a source of a variety of materials that contain various toxic metal and persistent organic pollutants. Over 1,000 different chemicals which are heavy metals, polycyclic aromatic hydrocarbon (PAHs), polychlorinated biphenyls (PCBs) and brominated flame retardants, such as polybrominated diphenyl ethers (PBDEs), plus a number of plastics components identified in the e-waste streams (Schluep et al., 2009).

Disposal of e-waste is emerging environmental problem, as these wastes have become the most rapidly growing waste in the world, which is almost three time faster than the municipal waste stream is growing generally (Sankhla et al., 2016). If e-waste is handled informal recycling, these chemicals can release these chemical into the air, soil, groundwater and terrestrial ecosystems (Leung, Cai, & Wong, 2006), also could cause environmental problem and serious health effects to human. Studies found that soil samples from e-waste recycling area in Nigeria and China are highly contaminated to the toxic chemicals that are associated with human health (Alabi et al., 2012). Children's health can be easily affected from toxicants in many exposure pathways. Children between 0 to 15 years old have imperfect immune and they are very active in indoor and outdoor activities (Bearer, 1995). Previous studies had reported the association between living near to an e-waste recycling area and respiratory symptom among children (Zeng et al., 2016) and other effects such as cardiovascular disease(Cong et al., 2018), low lung function symptom (X. Zheng et al., 2018) and thyroid disruption and reduced mental development (L. Liu et al., 2018).

It was reported that 50% - 80% of e-waste collected for recycling in developing countries, ends up in recycling center in Asia (Puckett et al., 2002). In Thailand, the domestic consumption of electrical and electronic devices is increasing rapidly, which is leading to rapidly growing e-waste volumes. Buriram is one of the biggest e-waste recycling area in Thailand. There are two e-waste recycling sites in Buriram which are Daeng Yai subdistrict, Ban Mai Chaiyaphot district and Ban Pao sub-district, Phutthaisong district. The main occupation of population in both districts is agriculture. The average income from agriculture is about 30,000 baht per year. Their supplementary occupation is e-waste recycling job by purchasing and separating discarded electrical or electronic devices from household in their area including the outside by importing from industrial factories in neighboring provinces. The average income from e-waste recycling is about 60,000 to 80,000 baht per year, which is the main income of people in this area. Total population of those districts are 10,286 people which are 5,052 men and 5,234 women, there are 15 major e-waste buyers and 374 separators, e-waste is collected for separating in this area around 383 tons per week, remaining e-waste that is useless about 46 tons per week. In addition, Thailand has no strict laws on electrical and electronic waste management. It may lead to an increase in e-waste in this area, resulting in the risk of health problems on people in the area (Saijai Withayaanumas, 2017). As there are few studies on the impacts from e-waste recycling in Thailand, therefore this study aims to investigate the association between living near to e-waste recycling area and the health effects among children in Buriram which has many e-waste recycling sites.

2. Research objectives

- 1.2.1 To compare characteristics of children in Daeng Yai sub-district and Ban Pao sub-districts (e-waste exposed zone) with other districts (reference zone).
- 1.2.2 To determine and compare prevalence of diseases between the e-waste exposed zone and the reference zone.
- 1.2.3 To investigate the association between living in the e-waste exposed zone and health effects among children in Buriram

1.3 Scope of the research

- 1.3.1 This study was a cross-sectional design.
- 1.3.2 The study population were children aged 0-15 years who were admitted in Buriram Hospital
- 1.3.3 The period of this study was between 2007 2018
- 1.3.4 The study covered 14 diseases (certain infectious and parasitic diseases, neoplasms, diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism, endocrine, nutritional and metabolic disease, mental, behavioral and neurodevelopmental disorders, disease of the nervous system, diseases of the eye and adnexa, diseases of the ear and mastoid process, diseases of the circulatory system, diseases of the respiratory system, diseases of the digestive system, diseases of the skin and subcutaneous tissue, diseases of the musculoskeletal system and connective tissue and diseases of the genitourinary system).

1.4 Expected benefits

- 1.4.1 The prevalence of adverse health effects in children between the expose area and reference area can be used to develop surveillance program.
- 1.4.2 The strength of association between living in an e-waste recycling area and children's health effects can be used to plan for e-waste education and management to reduce exposure.
- 1.4.3 The found increased risk could be used for prioritizing financial support and risk reduction measures for age-specific group.

CHAPTER II

LITERATURE REVIEW

2.1 Definition of electronic waste

Electrical and electronic waste, also referred to informal word as e-waste, is defined as any electronic equipment or any electronic products such as televisions, mobile phones, computers, printers, lighting equipment or any electronic machines which are discarded, broken or nearing the end of useful life (Chan & Wong, 2013).

2.2 Categories of electronic waste

Electronic equipment has a wide range of products which have different feature and lifetime, thus causing different aspect of e-waste. It covers 10 categories that were shown in **Table 2.2.1** (Parliament, Council, The, & Union, 2003).

No	Category	Products
1	Large household appliances	Refrigerators, freezer, washing machines,
		electric stoves, microwaves, electric fans,
		air conditioner appliances, etc.
2	Small household appliances	Vacuum cleaners, toasters, fryers, electric
		knives, irons, appliances for tooth brushing,
		shaving, massage and other body care
		appliances, etc.

Table 2.2.1 Categories and products of e-waste

3	IT and telecommunications	Printer units, mainframes, personal
	equipment	computers, copying equipment,
		telephones, other products or equipment
		of transmitting sound, images or other
		information by telecommunications, etc.
4	Consumer equipment and	Radio sets, television sets, video cameras,
	photovoltaic panels	video recorders, hi-fi recorders, audio
		amplifiers, musical instruments, etc.
5	Lighting equipment	Luminaires for fluorescent lamps apart
		from luminaires in households, straight
		fluorescent lamps, compact fluorescent
		lamps, etc.
6	Electrical and electronic tools	Drills, saws, sewing machines, equipment
		for turning, milling, sanding, grinding,
		sawing, cutting, shearing, drilling, making
		holes, punching, folding, bending or similar
		processing of wood, metal and other
		materials, etc.
7	Toys, leisure and sports equipment	Electric trains or car racing sets, hand-held
		video game consoles, video games,
		computers for biking, diving, running,
		rowing, sports equipment with electric or
		electronic components, coin slot
		machines, etc.
8	Medical devices	Radiotherapy equipment, cardiology
		equipment, dialysis equipment, pulmonary
		ventilators, nuclear medicine equipment,
		laboratory equipment for in-vitro diagnosis,
		analyzers, etc.

9	Monitoring and control instruments	Smoke detector, heating regulators,
		thermostats measuring, weighing or
		adjusting appliances for household or
		laboratory equipment, other monitoring
		and control instruments used in industrial
		installations (for example, in control
		panels), etc.
10	Automatic dispensers	Automatic dispensers for hot drinks,
		automatic dispensers for hot or cold
		bottles or cans 65, automatic dispensers
		for solid products, automatic dispensers
		for money, all appliances which deliver
		automatically all kind of products

2.3 Hazardous chemicals in electronic waste

Hundreds of different materials are used to make electronic devices. It contains many toxic metals, acids and compounds that are harmful to the environment and human including lead, mercury, cadmium, plastic, chromium, beryllium, acid, selenium, polychlorinated biphenyls, etc. These pollutants can impact on various systems in the body, showing in **Table 2.2.2** (Vats & Singh, 2014).

Metal/Acid	Source and Associated Hazards	
/Compound		
Lead	Mechanical destruction of CRTs, removal of soldering from	
	microchips. Being a neurotoxin affects the kidneys and the	
	reproductive system, mental development in children. In	
	addition, toxins can accumulate in the environment causing	
	acute effects and can be chronic in plant and animals.	

Table 2.2.2 Hazards association with metal/acid/compound and sources

Mercury	Damage to the immune system, impairs fetus growth and
	harms infants through mother's milk and can enter the
	human food chain through water. Inhalation of high
	concentration of mercury vapor can impact to the nervous
	system.
Cadmium	Grinding and milling of plastics, CRTs and circuit boards.
	Being a carcinogen causes Itai-itai disease, affects the
	kidneys and softens bones.
Plastics	It can be found in circuit boards, cabinets and cables all
	contain carcinogens. BFRs or brominated flame retardants
	give out carcinogenic brominated dioxins and furans.
	Dioxins can harm reproductive and immune systems.
Chromium	It is used to protect metal housings and plates in a
	computer from corrosion. The Chromium 6 can damage
	liver and kidneys and cause bronchial maladies including
	asthmatic bronchitis and lung cancer.
Beryllium	It can be found in switch boards and printed circuit boards.
	It is carcinogenic and can cause lung diseases.
Acid	The sulfuric and hydrochloric acids are used to separate
	metals from circuit boards. Fumes of chlorine and sulfur
	dioxide can cause respiratory problems. They are also
	corrosive to the eye and skin.
Beryllium oxide	They can cause cancer by inhalation into the body.
(Beryllia)	
Beryllium metal.	It can also cause cancer by inhalation. However, Beryllium
	component scrap is classified as non-hazardous in the
	OECD, Basel and EU regime.
Selenium	Exposure of selenium in high concentrations can cause
	selenosis.

Polychlorinated	It is used as dielectric fluids, heat transfer fluids, additives
biphenyls (PCBs)	in adhesives and plastics. It can cause cancer in animals.
	Also, effects on the immune system, reproductive system,
	nervous system, endocrine system.

2.4 Health impacts caused by electronic waste

Recycling or separating metal from electronic waste by improperly causing health risks to those involved and can contaminate in the environment. Toxic substances in electronic waste can enter the body through inhalation, digestion and skin contact. People who are working in the separation will be at risk of getting pollutants directly. As for those who live in the surrounding area or family members may be toxic from contamination in soil, air, water and food. In addition, those who work in the e-waste recycling area may be exposed to pollutants in clothing and skin causing children who are in the same house to be harmed as well. Accumulation of pollutants from e-waste would express on the health outcome and could cause impact to body systems such as thyroid function (Guangen et al., 2011), lung function (G. Zheng et al., 2013), reproductive health (Guo et al., 2010), growth (Huo et al., 2007), mental health outcome (J. Liu et al., 2011), DNA damage (Q. Liu et al., 2009) and gene expression (Zhang et al., 2011).

2.5 Epidemiology study

Epidemiological study is the study of the distribution and determinants of healthrelated event in a given population and applying the results of those studies for health prevention and control. Epidemiological studies were classified into 2 studies: observational and experimental studies. The observational studies were also divided into 2 studies: descriptive studies and analytical studies. Analytical studies comprise ecological studies, cross-sectional studies, cohort studies and case-control studies. And there are 3 experimental studies: clinical trials, field trials and community trials, showing in **Figure 2.5.1** (Kasim, 2012).

Figure 2.5.1 Classification of epidemiological study

CHAPTER III

METHODOLOGY

3.1 Description of study area

Daeng Yai sub-district, Ban Mai Chaiyaphot district and Ban Pao sub-district, Phutthaisong district are the biggest e-waste recycling area in Buriram, which located in the northeast of Thailand. Most people were engaged in e-waste recycling in their home (Home e-waste). E-waste and transformers have been an informal process or simply recycling in these 2 sub-districts considered as exposed areas. Control areas were other districts without e-waste recycling activities whose local residents worked mainly in agriculture without any history of e-waste recycling. However, the population, lifestyle, culture, education and traffic density were not different to those of Daeng Yai and Ban Pao sub-districts. Total population of those districts were 10,286 people which were 5,052 men and 5,234 women, there were 15 major e-waste buyers and 374 separators. E-waste was collected for separating in this area around 383 tons per week. Remaining e-waste was useless about 46 tons per week. It was reported that both areas had Pb and As levels in soil more than the levels of WHO standard (Saijai Withayaanumas, 2017).

3.2 Study design

Cross-sectional study was used in this study to investigate the association between living near to an e-waste recycling site and health effects on children, aged between 0-15 years old in Buriram and its vicinity. This work included two group of children as exposed group and reference group and can be further classified as cases and controls.

- **Exposed group**: Children who living in Daeng Yai sub-district and Ban Pao subdistrict of e-waste activities
- **Reference group**: Children who living in the other sub-districts without e-waste recycling activities.
- **Cases:** Children who diagnosed with a specific disease
- **Controls:** Children who diagnosed with other diseases

Children who living in e-waste recycling area in Daeng Yai sub-district (Ban Mai Chaiyaphot district) and Ban Pao sub-district (Phutthaisong district) were compared with children who living in the other sub-districts to determine prevalence for diseases regarding the International Classification of Disease, Revision 10 (ICD-10) as shown in **Table 3.2.1**.

Disease	ICD-10 code
Certain infectious and parasitic diseases	A00 – B99
Neoplasms	C00 - D49
Diseases of the blood and blood-forming	D50 - D89
organs and certain disorders involving the	
immune mechanism	
Endocrine, nutritional and metabolic	E00 - E89
disease	

Table 3.2.1 ICD-10 codes

Mental, behavioral and	F01 - F99
neurodevelopmental disorders	
Disease of the nervous system	G00 - G99
Diseases of the eye and adnexa	H00 – H59
Diseases of the ear and mastoid process	H60 – H95
Diseases of the circulatory system	100 - 199
Diseases of the respiratory system	966 - 00
Diseases of the digestive system	КОО – К95
Diseases of the skin and subcutaneous	L00 – L99
tissue	
Diseases of the musculoskeletal system	M00 – M99
and connective tissue	
Diseases of the genitourinary system	N00 – N99

3.3 Data collection

Patient hospitalization data on children who suffered on diseases were acquired from the hospital's computer database of the Buriram Hospital between 2007 - 2018. The data were obtained on daily inpatients with variables including; age, gender, living address and disease diagnoses regarding to ICD 10.

3.4 Statistical analysis

Characteristics and prevalence exploratory analysis and analytical risk analysis were performed using Statistic Analysis System (SAS®) university edition for descriptive and inferential statistics. Chi-square was used to compare the differences of children's characteristics between the exposed group and the reference group and to determine prevalence of diseases. Logistic regression analytical analysis was performed to investigate the association between living in e-waste recycling site in Daeng Yai sub-district and Ban Pao sub-district and diseases.

The association between living in an e-waste recycling area and associated diseases was determined with odd ratio (OR) and 95% confidence interval (CI). The crude odd ratio can be calculated from a 2x2 table as shown in **Table 3.4.1** by Equations (1), (2) and (3)

Table 3.4.1 Table 2x2 showing number of inpatient children with and without a specific disease in children living in exposed and reference area.

	a specific disease (cases)	other diseases (controls)	
Daeng Yai sub-district and			
Ban Pao sub district	A	В	
(exposed zone)			
Other sub-districts (reference	C	D	
zone)		U	

A = Children who lived in Daeng Yai sub-district and Ban Pao sub-district with a specific disease

B = Children who lived in Daeng Yai sub-district and Ban Pao sub-district with other diseases

C = Children who lived in Other sub-districts with a specific disease

D = Children who lived in Other sub-district with other diseases

Crude odd ratio (OR) =
$$\frac{AD}{BC}$$
 (1)

SE{ln(OR)} =
$$\sqrt{\frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D}}$$
 (2)

SE = Standard error

95% CI =
$$\exp\{\ln(OR) \pm 1.96 \ x \ SE\{\ln(OR)\}\$$
 (3)

If an OR is greater than 1 that means living in the exposed area associated with a specific disease while an odd ratio is less than 1 or equal to 1 that means no association between living in exposed area and a specific disease. Furthermore, If a 95% CI lower bound of OR is greater than 1, that OR is considered as statistically significant increased risk.

Logistic regression can be used for controlling confounder factors that have influence on diseases such as age and sex. The obtained result can be called "adjusted odd ratio (AOR)". Logistic regression can be calculated as following Equations (4) and (5):

Prob (a specific disease) = Z =
$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_1 X_n$$
 (4)

Adjusted odd ratio = $\frac{prob(case incidence)}{prob(control incidence)} = e^{\beta_{0+}\beta_{1\times 1+}\beta_{2\times 2+...+}\beta_{1\times n}}$ (5)

Where Z = Prob (a specific disease) X₁ = Living area

 $X_2 = Sex$ $X_3 = Age$ $\beta_0 = Constant$ $\beta_n = Coefficients$

CHAPTER IV

RESULTS AND DISCUSSION

A total of 125,823 inpatient children records from the Buriram Hospital between 2007 to 2018 were analyzed. The number of children in the exposed zone and the number of children in the reference zone are shown in Table 4.1. It presents a distribution that 0.29% of granted hospital admission records were in the exposed zone and 99.71% were in the reference zone.

Area	Number of children (%)	
Exposed zone	366 (0.29)	
Reference zone	125,457 (99.71)	
total	125,823 (100)	

Table 4.1 Distribution of inpatient children according to residence area

The characteristics of the children are shown in **Table 4.2**. The inpatient records of children consisted variables of living address, age (0 – 15 years), and sex. Age was categorized into 3 group 0–6, 7–12, 13–15 years. The age distribution between two areas was statistically different. The results showed that the highest number of children aggregated in 0-6 years with 56.28% followed by 7-12 years with 30.60% and 13-15 years with 13.11% respectively. The results showed that there were more boys in the exposed zone (60.38%) than those in the reference zone (58.03%) while less girls in the exposed zone (39.62%) than those in the reference zone (41.97%).

Characteristic	Exposed zone	Reference zone Total		p-value
	N= 366 (%)	N = 125,457 (%)	N = 125,823 (%)	
Age				
0-6	206 (56.28)	80,647 (64.28)	80853 (64.26)	0.0014 *
7-12	112 (30.60)	28682 (22.86)	28794 (22.88)	
13-15	48 (13.11)	16128 (12.86)	16176 (12.86)	
Sex				
Male	221 (60.38)	72805 (58.03)	73026 (58.04)	0.3628
Female	145 (39.62)	52652 (41.97)	52797 (41.96)	

 Table 4.2 Frequencies and Chi-square statistic of children in exposed zone and

 reference zone

*Statistically significant difference at p-value < 0.05

4.1 All age analysis

The prevalence of diseases between the exposed zone and the reference zone are shown in **Table 4.3**. When comparing differentiation of all 14 diseases in the exposed zone and the reference zone, we found that 9 of 14 diseases were more prevalent in the exposed zone than in the reference zone. Four of nine diseases showed statistically significant higher prevalence in the e-waste exposed area at p < 0.001 for neoplasms, diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism, diseases of the nervous system, and diseases of the exposed sub-districts at p < 0.05 which was diseases of the genitourinary system. These prevalence results were consistent with other toxicological report. Xu et al. 2015 reported that human exposure to e-waste in China could cause several toxicities on human. We found that 2 of 14 diseases were with statistically lower prevalence in the e-waste exposed zone than in the reference zone for certain infectious and parasitic diseases (p < 0.001)

and endocrine, nutritional and metabolic diseases (p < 0.05). Both disease groups were not reported or not relevant to toxicants found in e-waste activities (Xu et al. 2015). Many areas in the reference zone clearly had higher population density compared with those 2 less dense districts in the exposed zone. The reference zone with more populated districts may have more infectious and parasite sources such as municipal sewage, insufficient and improper toilets, food waste, vectors, contaminated food, school etc. These sources could cause infectious diseases more prevalent in the reference area. In addition, parents of children in the exposed zone clearly had better economic status to afford better food quality, sanitary toilets and health care as well as owned vehicles as they had greater income from e-waste recycle. So, we found lower prevalence for endocrine, nutritional and metabolic disease and infectious and parasitic diseases in the e-waste exposed zone than in the reference zone. For diseases of the respiratory system, its prevalence was close between two zones as many adverse respiratory health effects and cold were common in children and may not be purely related to e-waste sources. There were no children admitted with mental, behavioral and neurodevelopmental disorders and diseases of the ear and mastoid process in the exposed zone, thus their prevalence cannot be estimated for those e-waste subdistricts due to a small number of populations in Daeng Yai and Ban Pao sub-district.

Disease	Exposed zone N = 366	Reference zone N = 125,457	Total N = 125,823	p-value
Certain infectious and parasitic	39 (10.66)	28,675 (22.86)	28,714 (22.82)	<.0001**
diseases		-,,	-, , , , ,	
Neoplasms	11 (3.01)	1,199 (0.96)	1,210 (0.96)	<.0001**
Diseases of the blood and	50 (16 12)	12 (07 (0.80)	12 466 (0.01)	<.0001**
blood-forming organs and	J7 (10.1Z)	12,401 (9.09)	12,400 (9.91)	

Table 4.3 Th	he preva	lence of	diseases
---------------------	----------	----------	----------

certain disorders involving the				
immune mechanism				
Endocrine, nutritional and	20 (9 20)	17.964 (14.34)	17 004 (14 00)	0.0010*
metabolic diseases	50 (8.20)	17,864 (14.24)	17,894 (14.22)	
Mental, Behavioral and	0	947 (0 69)	947 (0 67)	0.1147
Neurodevelopmental disorders	0	047 (0.08)	047 (0.07)	
Diseases of the nervous system	22 (6.01)	3,791 (3.02)	3,813 (3.03)	0.0009**
Diseases of the eye and	10 (2 72)	1 128 (0.01)	1 1 4 9 (0 0 1)	0.0002**
adnexa	10 (2.75)	1,136 (0.91)	1,140 (0.91)	
Diseases of the ear and	0	270 (0.20)	270 (0.20)	0.2981
mastoid process	0	570 (0.29)	570 (0.29)	
Diseases of the circulatory	0 (2 46)	2065 (165)	2074 (165)	0.2225
system	9 (2.40)	2,005 (1.05)	2,074 (1.05)	
Diseases of the respiratory	97 (22 77)	22 280 (25 72)	20 267 (25 72)	0.3918
system	01 (23.11)	52,200 (25.15)	JZ,JUT (ZJ.TZ)	
Diseases of the digestive	51 (12 02)	14 005 (11 23)	14 146 (11 24)	0.1026
system	51 (15.95)	14,095 (11.25)	14,140 (11.24)	
Diseases of the skin and	17 (4 64)	4 254 (3 30)	1 271 (2 30)	0.1859
subcutaneous tissue	17 (4.04)	4,234 (3.39)	4,271 (J.J9)	
Diseases of the				0.4672
musculoskeletal system and	6 (1.64)	1,532 (1.22)	1,538 (1.22)	
connective tissue				
Diseases of the genitourinary	25 (6.82)	4 040 (3 04)	1 065 (2 05)	0.0045*
system	25 (0.05)	4,740 (J.74)	4,700 (0.70)	

*Statistically significant difference at p-value < 0.05

**Statistically significant difference at p-value < 0.001

This work estimated AORs (result of logistic regression for predicting the diseases among children by adjusting for age and sex) as shown in **Table 4.4**. We found positive association in 9 out of 14 diseases. Five of 9 AORs were statistically significant increased risks in a descending order for neoplasms (AOR [95%CI] = 3.150 [1.722, 5.761]), diseases of the eye and adnexa (AOR [95%CI] = 3.001 [1.596, 5.643]), diseases of the nervous system (AOR [95%CI] = 2.033 [1.320, 3.132]), diseases of the genitourinary system (AOR [95%CI] = 1.728 [1.149, 2.599]) and diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (AOR [95%CI] = 1.723 [1.303, 2.279]). AOR analyses confirmed that there were statistically increased risks in children population living in the e-waste recycling area for various health effects. These findings agree with most results of waste site studies. I et al. 2015 reported that children, who living near to a nonsanitary landfill that had some toxic substances like the e-waste recycling site, had an increased risk of rash and itching on body, mental and behavioral and cold. Wong et al. 2010 found that people involved in testing of manufactured products (such as electronics, equipment, chemicals, etc.) were at a statistically significant increased risk of B-cell neoplasm. Huo et al. 2019 studied the decreased erythrocyte CD44 and CD58 expression link of e-waste Pb toxicity to change in erythrocyte immunity in preschool children and found relationship between Pb exposure and the change of erythrocyte immunity. Everett et al. 2008 reported that seven of the 11 PCBs in blood were significantly associated with hypertension. However, we cannot estimate AORs of mental, behavioral and neurodevelopmental disorders, and diseases of the ear and mastoid process because there were no children who suffered from these diseases in the exposed zone. The found magnitude of risk level could be used to for plaining in environmental health education and managment to reduce the risks. Financial support for taking care these children health and improving their houses as e-waste workplaces to protect them from those associated disease is needed.

 Table 4.4 Adjusted odd ratio of diseases.

Disease	Adjusted Odd	95% CI
	Ratio ^a	
Certain infectious and parasitic diseases	0.405	0.291, 0.565
Neoplasms	3.150	1.722, 5.761 *
Diseases of the blood and blood-forming organs and	1.723	1.303, 2.279 *
certain disorders involving the immune mechanism		
Endocrine, nutritional and metabolic diseases	0.533	0.367, 0.775
Mental, Behavioral and Neurodevelopmental disorders	-	-
Diseases of the nervous system	2.033	1.320, 3.132 *
Diseases of the eye and adnexa	3.001	1.596, 5.643 *
Diseases of the ear and mastoid process	-	-
Diseases of the circulatory system	1.448	0.745, 2.814
Diseases of the respiratory system	0.968	0.755, 1.242
Diseases of the digestive system	1.225	0.907, 1.656
Diseases of the skin and subcutaneous tissue	1.393	0.855, 2.268
Diseases of the musculoskeletal system and connective	1.256	0.558, 2.828
tissue		
Diseases of the genitourinary system	1.728	1.149, 2.599 *

* Statistically significant increased risks

^aAdjusted for age and sex

4.2 Age specific analysis

The prevalence of diseases between the exposed zone and the reference zone for children aged 0-6 years are shown in **Table 4.5**. When comparing differentiation of those diseases in the exposed zone and the reference zone, we found that 8 of 14 diseases had greater prevalence in the exposed zone than in the reference zone. Three

of eight diseases were observed for statistically significant higher prevalence at p < 0.001 for diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism, diseases of the nervous system, and diseases of the eye and adnexa. Three of eight diseases were found for statistically significant higher prevalence at p < 0.05 for diseases of the skin and subcutaneous tissue, diseases of the musculoskeletal system and connective tissue and diseases of the genitourinary system. There were no children with mental, behavioral and neurodevelopmental disorders, and diseases of the ear and mastoid process in exposed zone so their prevalence could not be determined.

Disease	Exposed zone N = 206	Reference zone N = 80,647	Total N = 80,853	p-value
Certain infectious and parasitic diseases	20 (9.71)	18497 (22.94)	18517 (22.90)	<.0001**
Neoplasms	2 (0.97)	577 (0.72)	579 (0.72)	0.6641
Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism	34 (16.50)	7017 (8.70)	7051 (8.72)	<.0001**
Endocrine, nutritional and metabolic diseases	18 (8.74)	11047 (13.70)	11065 (13.69)	0.0386*
Mental, Behavioral and Neurodevelopmental disorders	0	137 (0.17)	137 (0.17)	0.5538
Diseases of the nervous system	16 (7.77)	2330 (2.89)	2346 (2.90)	<.0001**
Diseases of the eye and adnexa	6 (2.91)	619 (0.77)	625 (0.77)	0.0004**

Table 4.5 The prevalence of diseases (0 – 6 years)

Diseases of the ear and	0	238 (0.30)	238 (0.29)	0.4349
mastoid process				
Diseases of the circulatory	л (1 9л)	931 (1 15)	935 (1 16)	0.2911
system	- (1.)-)	<i>yyyyyyyyyyyyy</i>	<i>y y y y y y y y y y</i>	
Diseases of the respiratory	6E (21 EE)	27164 (22.69)	27220 (22.60)	0.5184
system	05 (31.55) 27164 (33.68)		21229 (55.00)	
Diseases of the digestive	11 (5 34)	6037 (7.40)	6048 (7.48)	0.2423
system	11 (J.J4)	0057 (1.49)	0040 (7.40)	
Diseases of the skin and	12 (6 21)	2812 (2.40)	2825 (3.40)	0.0275*
subcutaneous tissue	15 (0.51)	2012 (3.49)	2023 (3.49)	
Diseases of the				0.0171*
musculoskeletal system and	4 (1.94)	505 (0.63)	509 (0.63)	
connective tissue				
Diseases of the genitourinary	13 (6 31)	2736 (3 30)	2740 (3.40)	0.0210*
system	(10.0) 01	(2.27)	Z147 (J.40)	

*Statistically significant difference at p-value < 0.05

**Statistically significant difference at p-value < 0.001

The prevalence of diseases between exposed zone and reference zone for children aged 7 – 12 years are shown in **Table 4.6**. When comparing differentiation of those diseases in the exposed zone and the reference zone, we found that 7 out of 14 diseases had greater prevalence in the exposed zone than in the reference zone. One of seven diseases showed statistically significant higher at p < 0.001 in neoplasm. Another one of seven diseases showed statistically significant higher at (p < 0.05) in diseases of the eye and adnexa. In addition, there were no children with mental, behavioral and neurodevelopmental disorders and diseases of the ear and mastoid process in exposed zone.

Table 4.6 The prevalence of diseases (7 - 12 years)

Disease	Exposed zone N = 112	Reference zone N = 28,682	Total N = 28,794	p-value
Certain infectious and parasitic	13 (11.61)	7094 (24.73)	7107 (24.68)	0.0013*
Neoplasms	8 (7.14)	392 (1.37)	400 (1.39)	<.0001**
Diseases of the blood and				0.1228
blood-forming organs and	19 (16 07)	2076 (11 40)	2204 (11 44)	
certain disorders involving the	18 (16.07)	3270 (11.42)	5294 (11.44)	
immune mechanism				
Endocrine, nutritional and	8 (7 1 1)	3055 (13 70)	2062 (12 76)	0.0416*
metabolic diseases	0 (7.14)	5955 (15.79)	J90J (1J.70)	
Mental, Behavioral and	0	296 (1 03)	296 (1.03)	0.2798
Neurodevelopmental disorders	U	290 (1.03)	290 (1.03)	
Diseases of the nervous system	6 (5.36)	897 (3.13)	903(3.14)	0.1766
Diseases of the eye and	1 (3 57)	363 (1 27)	367 (1 27)	0.0299*
adnexa	4 (5.51)	505 (1.27)	501 (1.27)	
Diseases of the ear and	0	95 (0 33)	95 (0 33)	0.5418
mastoid process	0	75 (0.55)	75 (0.55)	
Diseases of the circulatory	2 (1 79)	655 (2.28)	657 (2.28)	0.7247
system	2 (1.17)	000 (2.20)	051 (2.20)	
Diseases of the respiratory	17 (15 18)	3675 (12.81)	3692 (12.82)	0.4548
system	17 (15.10)			
Diseases of the digestive	25 (22 32)	5111 (17 82)	5136 (17 84)	0.2142
system		5111 (11.02)	5150 (11.04)	
Diseases of the skin and	4 (3 57)	1055 (3.68)	1059 (3.68)	0.9522
subcutaneous tissue	. (3.31)	1000 (0.00)	1007 (0.00)	

Diseases of the		587 (2.05)		0.8457
musculoskeletal system and	2 (1.79)	507 (2.05)	589 (2.05)	
connective tissue				
Diseases of the genitourinary	5 (1 16)	1221(4.20)	1236 (4 20)	0.9284
system	J (4.40)	1231(4.29)	1200 (4.29)	

*Statistically significant difference at p-value < 0.05

**Statistically significant difference at p-value < 0.001

For children aged 13-15, the prevalence of diseases between the exposed zone and the reference zone are shown in **Table 4.7**. When comparing differentiation of those diseases in the exposed zone and the reference zone, we found that 6 out of 14 diseases had greater prevalence in the exposed zone than in the reference zone. Two of six diseases showed statistically significant difference at p < 0.05 in diseases of the digestive system and diseases of the genitourinary system. There was no children with mental, behavioral and neurodevelopmental disorders, diseases of the nervous system, diseases of the eye and adnexa, diseases of the ear and mastoid process, diseases of the skin and subcutaneous tissue, and diseases of the musculoskeletal system and connective tissue in exposed zone, thus their prevalence could not be estimated. This could be due to a small number of populations in Daeng Yai and Ban Pao sub-district. It can be noticed that these older children group was healthier than those two younger children groups as having no prevalence in exposed zone as older children had more complete immune system than young children.

Table 4.7 The prevalence	of diseases	(13 - 15 years)
--------------------------	-------------	-----------------

Disease	Exposed zone	Reference zone	Total	p-value
Disease	N = 48	N = 16,128	N = 16,176	
Certain infectious and parasitic	6 (12 50)	2084 (10.12)	2000 (10 10)	0.2439
diseases	0 (12.50)	5064 (19.12)	5090 (19.10)	
Neoplasms	1 (2.08)	230 (1.43)	231 (1.43)	0.7016
Diseases of the blood and				0.7623
blood-forming organs and	7 (14 50)	2114 (13.11)	0101 (12 11)	
certain disorders involving the	7 (14.30)		2121 (15.11)	
immune mechanism				
Endocrine, nutritional and	4 (9.22)	2962 (17 75)	2966(1772)	0.0881
metabolic diseases	4 (0. <i>33)</i>	2002 (17.75)	2000 (17.72)	
Mental, Behavioral and	0	414 (2 57)	414 (2 5 6)	0.2608
Neurodevelopmental disorders	U 414 (2.37)		414 (2.30)	
Diseases of the nervous	0	564 (3 50)	564 (3.40)	0.1872
system	0	504 (5.50)	J04 (J.49)	
Diseases of the eye and	0	156 (0.07)	156 (0.06)	0.4935
adnexa	0	130 (0.97)	100 (0.90)	
Diseases of the ear and	0	37 (0.23)	27 (0.22)	0.7397
mastoid process	0	57 (0.25)	51 (0.25)	
Diseases of the circulatory	3 (6.25)	170 (2 07)	182 (2 08)	0.1820
system		479 (2.97)	402 (2.90)	
Diseases of the respiratory	5 (10 42)	1441 (8.03)	1446 (8 04)	0.7194
system	5 (10.42)	1441 (0.95)	1440 (0.94)	
Diseases of the digestive	15 (31 25)	2947 (18 27)	2062 (18 31)	0.0203*
system	1.7 (21.23)	2/41 (10.21)	2702 (10.31)	
Diseases of the skin and	0	387 (2.40)	387 (2 20)	0.2774
subcutaneous tissue		JUT (Z.4U)	JUI (Z.J7)	

Diseases of the				0.2460
musculoskeletal system and	0	440 (2.73)	440 (2.72)	
connective tissue				
Diseases of the genitourinary	7 (14 58)	073 (6.03)	080 (6.06)	0.0132*
system	7 (14.30)	975 (0.05)	900 (0.00)	

*Statistically significant difference at p-value < 0.05

AORs and 95% CI of children aged 0-6 years are shown in **Table 4.8**. For this youngest group, we found positive association in 8 out of 14 diseases. Six of eight diseases showed AORs with statistically significant increased risks in diseases of the eye and adnexa (AOR [95%CI] = 3.862 [1.708, 8.734]), diseases of the musculoskeletal system and connective tissue (AOR [95%CI] = 3.143 [1.164, 8.487]), diseases of the nervous system (AOR [95%CI] = 2.826 [1.694, 4.715]), diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (AOR [95%CI] = 2.086 [1.442, 3.016]), diseases of the genitourinary system (AOR [95%CI] = 1.947 [1.107, 3.422]), and diseases of the skin and subcutaneous tissue (AOR [95%CI] = 1.858 [1.058, 3.263]). However, we cannot calculate AORs of mental, behavioral and neurodevelopmental disorders and diseases of the ear and mastoid process because there were no children who suffered from these diseases in the exposed zone.

Table 4.8	Adjusted	odd ratio	of diseases	(0 –	6 years)
-----------	----------	-----------	-------------	------	----------

Disease	Adjusted Odd	95% CI
Disease	Ratio ^a	
Certain infectious and parasitic diseases	0.361	0.227, 0.572
Neoplasms	1.352	0.335, 5.452
Diseases of the blood and blood-forming organs and	2.086	1.442, 3.016 *
certain disorders involving the immune mechanism		
Endocrine, nutritional and metabolic diseases	0.602	0.371, 0.979
Mental, Behavioral and Neurodevelopmental disorders	-	-
Diseases of the nervous system	2.826	1.694, 4.715 *
Diseases of the eye and adnexa	3.862	1.708, 8.734 *
Diseases of the ear and mastoid process	-	-
Diseases of the circulatory system	1.690	0.627, 4.556
Diseases of the respiratory system	0.908	0.677, 1.219
Diseases of the digestive system	0.697	0.379, 1.280
Diseases of the skin and subcutaneous tissue	1.858	1.058, 3.263 *
Diseases of the musculoskeletal system and connective	3.143	1.164, 8.487 *
tissue		
Diseases of the genitourinary system	1.947	1.107, 3.422 *

^aAdjusted for sex

* Statistically significant increased risks

AORs and 95% CI of children aged 7-12 years were shown in **Table 4.9**. For this middle age group, we noticed positive association in 6 out of 14 diseases. Two of 6 AORs demonstrated statistically significant increased risks for neoplasm (AOR [95%CI] = 5.890 [2.845, 12.195]) and diseases of the eye and adnexa (AOR [95%CI] = 2.732 [1.001, 7.457]). Other has also reported risk of neoplasm in children who lived nearby area with heavy metals. García-Pérez et al., 2016 found the association between living proximity to a

processing of metals and childhood renal tumors. However, we cannot determine AORs of mental, behavioral and neurodevelopmental disorders and diseases of the ear and mastoid process because there were no children who suffered of these diseases in exposed zone. These findings confirmed that youngest children group who lived in the e-waste recycling area had more chance to be exposed to more toxic substances and developed various e-waste associated diseases. These significant increased AORs agreed with most results of waste site studies. I et al. 2015 observed an increased risk of rash and itching on body in exposed children living near to a non-sanitary landfill that had some toxic substances like the e-waste recycling site. A hospital admission case-control study by Wong et al. 2010 found that people involved in testing of electronics and equipment were at a statistically significant increased risk of B-cell neoplasm. Huo et al. 2019 reported that e-waste Pb toxicity changed in erythrocyte immunity in preschool children and found relationship between Pb exposure and the change of erythrocyte immunity. PCB which can be found in e-waste from fluids in electrical apparatus so Everett et al. 2008 reported blood PCB were significantly associated with hypertension.

Disease	Adjusted Odd	95% CI
Disease	Ratio ^a	
Certain infectious and parasitic diseases	0.407	0.228, 0.726
Neoplasms	5.890	2.845, 12.195 *
Diseases of the blood and blood-forming organs and	1.518	0.915, 2.517
certain disorders involving the immune mechanism		
Endocrine, nutritional and metabolic diseases	0.485	0.236, 0.997
Mental, Behavioral and Neurodevelopmental disorders	-	-
Diseases of the nervous system	1.741	0.763, 3.974
Diseases of the eye and adnexa	2.732	1.001, 7.457 *
Diseases of the ear and mastoid process	-	-
Diseases of the circulatory system	0.775	0.191, 3.146
Diseases of the respiratory system	1.214	0.724, 2.037
Diseases of the digestive system	1.315	0.842, 2.054
Diseases of the skin and subcutaneous tissue	0.925	0.340, 2.517
Diseases of the musculoskeletal system and connective	0.844	0.208, 3.426
tissue		
Diseases of the genitourinary system	0.992	0.403, 2.438

 Table 4.9 Adjusted odd ratio of diseases (7 - 12 years)

^a Adjusted for sex

* Statistically significant increased risks

For oldest children group, AORs and 95% CI of children aged 13-15 years are shown in **Table 4.10**. Positive association can be seen in 6 diseases. Two of six showed AORs with statistically significant increased risks in diseases of the genitourinary system (AOR [95%CI] = 2.743 [1.214, 6.199]) and diseases of the digestive system (AOR [95%CI] = 2.051 [1.110, 3.789]). We only observed an increased AOR for diseases of the respiratory system in these oldest children group although the AOR was not statistically significant. This estimated AOR was still consistent with other study that Zeng et al. 2016 investigated the association between heavy metals in PM_{2.5} and in blood and children's respiratory symptoms and asthma from an e-waste recycling area in Guiyu. The study found positive association of children who have a home near an e-waste recycling site and wheeze (AOR = 1.97, 0.92-4.25), dyspnea (AOR = 1.91, 0.58-6.36), cough (AOR = 1.05, 0.63-1.76) and phlegm (AOR = 1.24, 0.71-2.18). However, as no case in the exposed area, we cannot estimate AORs of mental, behavioral and neurodevelopmental disorders, diseases of the nervous system, diseases of the eye and adnexa, diseases of the ear and mastoid process, diseases of the skin and subcutaneous tissue and diseases of the musculoskeletal system and connective tissue.

Disease	Adjusted Odd	95% CI
Disease	Ratioª	
Certain infectious and parasitic diseases	0.603	0.256, 1.421
Neoplasms	1.471	0.202, 10.710
Diseases of the blood and blood-forming organs and	1.132	0.507, 2.526
certain disorders involving the immune mechanism		
Endocrine, nutritional and metabolic diseases	0.420	0.151, 1.169
Mental, Behavioral and Neurodevelopmental disorders	-	-
Diseases of the nervous system	-	-
Diseases of the eye and adnexa	-	-
Diseases of the ear and mastoid process	-	-
Diseases of the circulatory system	2.173	0.673, 7.020
Diseases of the respiratory system	1.182	0.467, 2.990
Diseases of the digestive system	2.051	1.110, 3.789 *
Diseases of the skin and subcutaneous tissue	-	-
Diseases of the musculoskeletal system and connective	-	-
tissue		
Diseases of the genitourinary system	2.743	1.214, 6.199 *

Table 4.10 Adjusted odd ratio of diseases (13 - 15 years)

^a Adjusted for sex

* Statistically significant increased risks

These significant AORs findings confirmed that children who lived in the e-waste recycling area had more chance to be exposed to more toxic substances and developed many e-waste associated diseases. Greater significant increased risks were observed in the youngest children group (0-6 years old) with 6 diseases. Significant AOR of diseases of the eye and adnexa were pronounced in both youngest and middle age groups. Diseases of the genitourinary system showed the significant increased AOR in the youngest and the oldest children groups.

E-waste education and management to reduce exposure at home workplace must be arranged to reduce those risks for specific subgroups. Implementing proper rules to prevent contamination from e-waste separators to children by mandatory wearing protective masks and gloves and safety glass is recommended when dismantling. The youngest group were at a priority to be taken care well by their parents and health officials to stop exposure through skin absorption, inhalation and digestion as the youngest group was spending almost 24 hours in home as an e-waste workplace. Extra budget support is also needed for the local hospitals for those found e-waste associated diseases.

CHAPTER V

CONCLUSIONS

This work is the first epidemiological study of e-waste related health effects in Buriram province, Thailand. It analyzed 125,823 children inpatient records from the Buriram Hospital between 2007 to 2018. There were a small number of children living in the exposed zone comparing to the reference zone. Characteristics of children were not different between the exposed zone and reference zone except age. We found statistically higher prevalence in 5 diseases in children living in those 2 e-waste subdistricts for neoplasms, diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism, diseases of the nervous system, and diseases of the eye and adnexa. and diseases of the genitourinary system. For living in e-waste area and disease association, the results presented children, who lived in Ban Pao and Daeng Yai sub-districts, an e-waste recycling area in Buriram, could be exposed to toxic substances from e-waste activities and had statistically greater risk than those living in the reference area for neoplasms (AOR [95%CI] = 3.150 [1.722, 5.761]), diseases of the eye and adnexa (AOR [95%CI] = 3.001 [1.596, 5.643]), diseases of the nervous system (AOR [95%CI] = 2.033 [1.320, 3.132]), diseases of the genitourinary system (AOR [95%CI] = 1.728 [1.149, 2.599]) and diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (AOR [95%CI] = 1.723 [1.303, 2.279]). For age-specific AORs, significant increased risk was observed in the young children group (0-6 years old) with 6 diseases, in in the middle age children group (7-12 years old) with 2 diseases and in the old children group (13-15 years old) with 2 diseases.

The study had several limitations. Firstly, there were small exposed population in this study. We suggest that future research should include children inpatient records from more hospitals around the exposed zone. Secondly, there were other confounder factors that could influence on e-waste associated diseases so the future study should account for more confounder factors such as height, weight, education and smoking habit of parents. Moreover, this study did not include chemical exposure and other source contaminants in study area such as air pollution from traffic, crematorium, farming pesticide through air, water and soil.

REFFERENCES

- Alabi, O. A., Bakare, A. A., Xu, X., Li, B., Zhang, Y., & Huo, X. (2012). Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China. *Science of the Total Environment*, *423*, 62– 72.
- Bearer, C. F. (1995). How are children different from adults? *Environmental Health Perspectives, 103*(SUPPL. 6), 7–12.
- Chan, J. K. Y., & Wong, M. H. (2013). A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. *Science of the Total Environment*, *463–464*, 1111–1123.
- Cong, X., Xu, X., Xu, L., Li, M., Xu, C., Qin, Q., & Huo, X. (2018). Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. *Environment International*, *115*, 117–126.
- Everett, C. J., Mainous, A. G., Frithsen, I. L., Player, M. S., & Matheson, E. M. (2008). Association of polychlorinated biphenyls with hypertension in the 1999-2002 National Health and Nutrition Examination Survey. *Environmental Research, 108*(1), 94–97.
- García-Pérez, J., Morales-Piga, A., Gómez, J., Gómez-Barroso, D., Tamayo-Uria, I., Pardo Romaguera, E., Fernández-Navarro, P., López-Abente, G., Ramis, R. (2016).
 Association between residential proximity to environmental pollution sources and childhood renal tumors. *Environmental Research*, *147*, 405–414.

- Guangen, H. A. N., Gangqiang, D., Xiaoming, L. O. U., Xiaofeng, W., Jianlong, H. A. N., Haitao, S., Yu, Z., Leyan, D. U. (2011). Correlations of PCBs, DIOXIN, and PBDE with TSH in Children's Blood in Areas of Computer E-waste Recycling. *Biomedical and Environmental Sciences*, *24*(2), 112–116.
- Guo, Y., Huo, X., Li, Y., Wu, K., Liu, J., Huang, J., Zheng, G., Xiao, Q., Yang, H., Wang, Y., Chen, A., Xu, X. (2010). Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. *Science of the Total Environment*, *408*(16), 3113–3117.
- Huo, X., Dai, Y., Yang, T., Zhang, Y., Li, M., & Xu, X. (2019). Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. *Science of the Total Environment*, *664*, 690–697.
- Huo, X., Peng, L., Xu, X., Zheng, L., Qiu, B., Qi, Z., Zhang, B., Han, D., Piao, Z. (2007).
 Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. *Environmental Health Perspectives*, *115*(7), 1113–1117.
- Kasim, D. K. (2012). Basic Concepts Of Modern Epidemiology, 116.
- Leung, A., Cai, Z. W., & Wong, M. H. (2006). Environmental contamination from electronic waste recycling at Guiyu, southeast China. *Journal of Material Cycles and Waste Management*, *8*(1), 21–33.
- Liu, J., Xu, X., Wu, K., Piao, Z., Huang, J., Guo, Y., Li, W., Zhang, Y., Chen, A., Huo, X. (2011). Association between lead exposure from electronic waste recycling and child temperament alterations. *NeuroToxicology*, *32*(4), 458–464.
- Liu, L., Zhang, B., Lin, K., Zhang, Y., Xu, X., & Huo, X. (2018). Chemosphere Thyroid disruption and reduced mental development in children from an informal e-waste recycling area : A mediation analysis. *Chemosphere*, *193*, 498–505.

- Liu, Q., Cao, J., Li, K. Q., Miao, X. H., Li, G., Fan, F. Y., & Zhao, Y. C. (2009). Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste. *Environmental Science and Pollution Research*, *16*(3), 329–338.
- Parliament, T. H. E. E., Council, T. H. E., The, O. F., & Union, E. (2003). 2002/96/Ec Weee (1/2). 24–38.
- Puckett, J., Byster, L., Westervelt, S., Gutierrez, R., Davis, S., Hussain, A., ... Liu, H. (2002). *Exporting Harm*. (Svt C), 1–51.
- Saijai Withayaanumas. (2017). E-waste management in Thailand. *Thailand Development Research Institute* (Vol. 91).
- Sankhla, M. S., kumari, M., Nandan, M., Mohril, S., Singh, G. P., Chaturvedi, B., & Kumar, D.
 R. (2016). Effect of Electronic waste on Environmental & amp; Human health- A
 Review. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, *10*(09), 98–104.
- Schluep, M., Hagelueken, C., Kuehr, R., Magalini, F., Maurer, C., Meskers, C., Mueller, E.,
 Wang, F. (2009). Recycling from e-waste to resources. *United Nations Environment Programme & United Nations University*, (June 2015).
- Vats, M. C., & Singh, S. K. (2014). E-Waste characteristic and its disposal. *American* Association for Science and Technology, 1(2), 49–61.
- Wong, O., Harris, F., Armstrong, T. W., & Hua, F. (2010). A hospital-based case-control study of non-Hodgkin lymphoid neoplasms in Shanghai: Analysis of environmental and occupational risk factors by subtypes of the WHO classification. *Chemico-Biological Interactions*, 184(1–2), 129–146.
- Xu, X., Zeng, X., Boezen, H. M., & Huo, X. (2015). E-waste environmental contamination and harm to public health in China. *Frontiers of Medicine*, *9*(2), 220–228.

- Zeng, X., Xu, X., Zheng, X., Reponen, T., Chen, A., & Huo, X. (2016a). Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. *Environmental Pollution*, *210*, 346–353.
- Zhang, Q., Zhou, T., Xu, X., Guo, Y., Zhao, Z., Zhu, M., Li, W., Yi, D., Huo, X. (2011).
 Downregulation of placental S100P is associated with cadmium exposure in Guiyu, an e-waste recycling town in China. *Science of the Total Environment*, 410–411, 53–58.
- Zheng, G., Xu, X., Li, B., Wu, K., Yekeen, T. A., & Huo, X. (2013). Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. *Journal of Exposure Science and Environmental Epidemiology*, 23(1), 67–72.
- Zheng, X., Huo, X., Zhang, Y., Wang, Q., Zhang, Y., & Xu, X. (2018). Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. *Environmental Pollution*, 246, 587–596.

APPENDIX

Frequency	Та	Table of aged by area			
Percent		area			
Row Pct	aged	0	1	Total	
Col Pct	1	80647	206	80853	
		64.10	0.16	64.26	
		99.75	0.25		
		64.28	56.28		
	2	28682	112	28794	
		22.80	0.09	22.88	
		99.61	0.39		
		22.86	30.60		
	3	16128	48	16176	
		12.82	0.04	12.86	
		99.70	0.30		
		12.86	13.11		

The FREQ Procedure

Total	125457	366	125823	
	99.71	0.29	100.00	

Statistics for Table of aged by area

Statistic	DF	Value	Prob
Chi-Square	2	13.2034	0.0014
Likelihood Ratio Chi-Square	2	12.4434	0.0020
Mantel-Haenszel Chi-Square	1	4.9090	0.0267
Phi Coefficient		0.0102	
Contingency Coefficient		0.0102	
Cramer's V		0.0102	

Sample Size = 125823

The LOGISTIC Procedure

Model Information				
Data Set	WORK.SUB0_4			
Response Variable	area			
Number of Response Levels	2			

	Number of Observations Read		68580	
	Number of Obs	ervations Used	68580	
	Mode	l Information		
Model		binary logit		

Model	
Optimization Technique	Fisher's scoring

Response Profile				
Ordered Value	area	Total Frequency		
1	0	68415		
2	1	165		

Probability modeled is area='1'.

Class Level Information					
Class Value Design Variabl					
ICD10	0	1			
	1	0			

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion	Intercept Only	Intercept and Covariates
AIC	2321.440	2304.021
SC	2330.576	2340.564
-2 Log L	2319.440	2296.021

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	23.4191	3	<.0001
Score	20.0396	3	0.0002
Wald	18.6326	3	0.0003

Type 3 Analysis of Effects

Effect	DF	Wald Chi-Square	Pr > ChiSq
ICD10	1	15.4614	<.0001
age	1	2.1500	0.1426

Type 3 Analysis of Effects							
Wald							
Effect DF Chi-Square Pr > ChiSq							
sex 1 1.4200 0.2334							

Analysis of Maximum Likelihood Estimates						
				Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept		1	-7.0199	0.3490	404.6341	<.0001
ICD10	0	1	1.0349	0.2632	15.4614	<.0001
age		1	-0.0938	0.0639	2.1500	0.1426
sex		1	0.1872	0.1571	1.4200	0.2334

Odds Ratio Estimates

Effect	Point Estimate	95% Confiden	Wald ce Limits	
ICD10 0 vs 1	2.815	1.680	4.715	
age	0.910	0.803	1.032	
sex	1.206	0.886	1.641	

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	55.3	Somers' D	0.189	
Percent Discordant	36.4	Gamma	0.206	
Percent Tied	8.3	Tau-a	0.001	
Pairs	11288475	С	0.594	

BIOGRAPHY

NAME	Mr. Krittayot Panyakhong
BORN	Monday 28 October 1996 in Ubon Ratchathani,
	Thailand
EDUCATION	High school: Narinukul school
	Bachelor's degree: Chulalongkorn University