ZEOLITE SYNTHESIS DIRECTLY FROM ALUMATRANE AND SILATRANE VIA SOL-GEL PROCESS AND MICROWAVE TECHNIQUE

Ms. Mathavee Sathupunya

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002

ISBN 974-17-1367-3

Thesis Title		Zeolite Synthesis Directly from Alumatrane and
		Silatrane via Sol-Gel Process and Microwave
		Technique
By	:	Ms. Mathavee Sathupunya
Program	:	Polymer Science
Thesis Advisors	•	Assoc. Prof. Sujitra Wongkasemjit
		Prof. Erdogan Gulari

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy

Kumham Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Kunchana Bunyahint.

(Assoc. Rrof. Kunchana Bunyakiat)

onglessingit

(Assoc. Prof. Sujitra Wongkasemjit)

(Prof. Erdogan Gulari)

(Prof. Somchai Osuwan)

(Mishalal

(Assoc. Prof. Jumras Limtrakul)

บทคัดย่อ

นาง มาธาวี สาธุปัญญา: การสังเคราะห์ ซีโอไลท์ จากสารตั้งต้น อลูมาเทรน และ ไซลา เทรน ที่สังเคราะห์ได้ โดยผ่านกระบวนการโซล-เจล และการให้ความร้อนภายใต้ความดันโดยใช้ ไมโครเวพ เป็นแหล่งกำเนิดความร้อน (Zeolite Synthesis Directly from Alumatrane and Silatrane by Sol-Gel Process and Microwave Heating Technique) อ. ที่ปรึกษา: ผศ. คร. สุจิตรา วงศ์เกษมจิตต์ และ ศ. คร. เออร์โดแกน กูลารี 192 หน้า ISBN 974-17-1367-3

รายงานวิจัยฉบับนี้ได้กล่าวถึงความสำเร็จในการสังเคราะห์ ซีโอไลท์ หรือ โครงสร้าง ผลึกของ อลูมิโนซิลิเกต จาก สารตั้งต้น อลูมาเทรน และ ไซลาเทรน โดยกระบวนการ โซล-เจล และ การตกผลึกภายใต้อุณหภูมิและความคัน โดยในการทคลองนี้ ได้ใช้ คลื่นไมโครเวฟ เป็น แหล่งกำเนิดพลังงานความร้อน และใช้ สารละลายค่าง ของสารจำพวกโลหะแอลคาไลด์ เป็นตัว ทำให้เกิดปฏิกิริยา ไฮโดรไลซิส ซึ่งอัตราการเกิดปฏิกิริยาโดยการใช้สารละลาย จำพวกแอลคา ใลด์ด่างนั้นจะเร็วกว่าประมาณสองเท่าของการใช้สารละลายจำพวกเกลือแกง อุณหภูมิที่ใช้ในการ สังเคราะห์สารจำพวกซีโอไลท์ ในตัวกลางที่เป็นค่างแต่ละชนิคนั้นไม่เท่ากัน ในตัวกลางที่เป็น สารละลายค่างของโพแทสเซียม จะเกิดที่อุณหภูมิสูง และต้องการพลังงานที่สูงกว่าสารละลายค่าง ของโซเดียม และลิเทียม ตามลำดับ ผลึกที่ได้นั้นจะมีลักษณะรูปร่างที่สมบูรณ์และมีขนาดใกล้ เคียงกัน การเปลี่ยนแปลงอัตราส่วนต่างๆ มีผลทั้งต่อ รูปร่าง ชนิค และขนาคของผลผลิตที่ได้ เช่น การเปลี่ยนแปลงชนิดของสารละลายค่าง มีผลต่อ ชนิด รูปร่าง อุณหภูมิ และ ระยะเวลาของการ ้สร้างผลึกแต่ละชนิด หรือ การเปลี่ยนแปลงอัตราส่วนของ ซิลิกา และ อลูมินา ก็มีผลต่อทั้งชนิด และรูปร่างของผลึกที่ได้เช่นกัน การเปลี่ยนแปลงความเข้มข้นของสารละลายค่าง จะมีผลต่อระยะ เวลาการเกิดผลึกและรูปร่างของผลึก ในขณะที่การเปลี่ยนแปลงอัตราส่วนของน้ำ จะมีผลต่อ ขนาดและรูปร่าง ซึ่งเกิดเนื่องมาจากผลของการเกิดจำนวนผลึกตัวถ่อที่ลดลง อันเป็นผลจากการ เจือจางของสารละลายทั้งหมุดที่ใช้ในการสังเอราะห์

ABSTRACT

4192001063 : POLYMER SCIENCE PROGRAM

Ms. Mathavee Sathupunya: Zeolite Synthesis Directly from
Alumatrane and Silatrane via Sol-Gel Process and Microwave
Technique
Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit and
Prof. Erdogan Gulari, 192 pp.

ISBN 974-17-1367-3

Keywords : Zoelite synthesis/ Sol-Gel process/ Atranes/ Microwave preparation

Zeolites or crystalline aluminosilicate are successfully synthesized directly from alumatran and silatrane by sol-gel process using metal hydroxide: lithium, sodium or potassium hydroxide as hydrolytic agent and hydrothermal crystallization using microwave-heating technique. Hydrolysis rate in the sodium hydroxide system is approximately two times faster than that of sodium chloride system and crystallization occurred only in alkali base solution. For each metal hydroxide system, temperatures using for transforming to crystalline aluminosilicate are different. Potassium hydroxide system requires higher energy orderly as measured by DSC, and temperature than sodium and lithium hydroxide. Different hydrolytic agent resulted in different crystal, microwave heating temperature and time. Pure and nice crystal products are obtained with small particle size distribution. Varying Si:Al ratio mostly affected the type and morphology of synthesized product while varying metal hydroxide concentration mostly affected reaction time and crystal morphology. In case of lithium hydroxide, its concentration also influences on the type of synthesized product. Increasing water content ratio reduces the overall concentration and rate of nuclei generation.

ACKNOWLEDGMENTS

This acknowledgment is gratefully made to Thailand Research Fund, the author's sponsor for providing her a chance to get Royal Golden Jubilee Scholarship to continue her Ph.D. study including doing her research work at University of Michigan, USA.

The author greatly appreciates her research advisors for originating this dissertation work and giving her a chance in doing this job. She would like to give her special and sincere thanks to Assoc. Prof. Sujitra Wongkasemjit, her advisor for advising, criticizing and proofreading on all of her works, manuscripts and dissertation. She also appreciates for her inspiring, suggesting, helping and encouraging on her works. She also would like to give her best regard to Prof. Erdogan Gulari, her co-advisor for his advice, criticism and proofreading through out her works and for his best help, support and cooperation on everything, especially when she was in the University of Michigan, USA.

She would like to give a special thank to all of master and Ph.D. students for their valuable friendship, all of PPC staffs for their laboratory and official supports and all lecturers for their encouragement and cheerfulness.

She would like to express her thankfulness to her truly belove family, especially her mother, Asst. Prof. Surang, and her father, Asst. Prof. Netr Suwankrughasn, for their love, understanding, encouragement, well supporting, limitless sacrifice and advice, and well effort whenever she needs.

She also would like to deliver her grateful thank to her husband, Mr. Prinya Sathupunya, for his love and being beside her all the time. Finally she would like to thank herself for keeping high passion and never giving up on anything.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	ix
List of Figures	х

CHAPTER

ΙΙΝ	TRODUCTION	1
1.1	Introduction	1
	1.1.1 Classification of Zeolites	7
	1.1.2 Zeolite Synthesis	11
1.2	Background and Literature Review	17
1.3	Objective	25

II ANA	ANA AND GIS SYNTHESIS DIRECTLY FROM			
ALU	JMATRANE AND SILATRANE BY SOL-GEL			
PRO	DCESS AND MICROWAVE TECHNIQUE	26		
2.1	Abstract	26		
2.2	Introduction	27		
2.3	Experimental	28		
	2.3.1 Materials	28		
	2.3.2 Instrumentals	29		
	2.3.3 Precursor Synthesis	30		
	2.3.3.1 Silatrane Synthesis (SiTEA)	30		
	2.3.3.2 Alumatrane Synthesis (AlTIS)	30		

54

2.3.4 Sol-Gel Process and Microwave Technique	31
2.3.5 Characterization	31
2.4 Results and Discussion	31
2.4.1 Precursor Synthesis	32
2.4.2 Sol-Gel Process	32
2.4.3 Transformation to Aluminosilicate	33
2.4.4 Effect of Crystallization Condition	34
2.5 Conclusions	35
2.6 Acknowledgment	36
2.7 References	36

IIINA A (LTA) SYNTHESIS DIRECTLY FROMALUMATRANE AND SILATRANE BY SOL-GELPROCESS AND MICROWAVE TECHNIQUE

3.1	Abstract		54
3.2	Introducti	on	55
3.3	Experime	ntal	56
	3.3.1	Materials	56
	3.3.2	Instrumental	57
	3.3.3	Precursors Synthesis	58
	3.3.4	Sol-Gel Process and Microwave Technique	58
	3.3.5	Moisture Absorption	58
3.4	Results an	nd Discussion	59
	3.4.1	Precursor Synthesis	59
	3.4.2	Sol-Gel Process	60
	3.4.3	Gel Transformation to Aluminosilicate	60
	3.4.4	Effect of NaOH Concentration	62
	3.4.5	Effect of Water Quality	63
	3.4.6	Moisture Absorption Testing	64
3.5	Conclusio	ns	64

CHAPTER		PAGE
	3.6 Acknowledgment	65
	3.7 References	65
IV	ZEOLITE SYNTHESIS DIRECTLY FROM	
	ALUMATRANE AND SILATRANE BY SOL-GEL	
	PROCESS AND MICROWAVE TECHNIQUE	83
	4.1 Abstract	83
	4.2 Introduction	84
	4.3 Experimental	85
	4.3.1 Materials	85
	4.3.2 Instrumentals	85
	4.3.3 Precursor Synthesis	86
	4.3.4 Sol-Gel Process and Microwave Technique	87
	4.3.5 Moisture Absorption	88
	4.4 Results and Discussion	88
	4.4.1 Sol-Gel Process	88
	4.4.2 Transformation to Aluminosilicate	88
	4.4.3 Moisture Absorption Testing	91
	4.5 Conclusions	91
	4.6 Acknowledgment	92
	4.7 References	92
	4.8 Biography	94
V	EFFECT OF STARTING MATERIAL RATIO, HEATI	NG
	TEMPERATURE AND TIME ON MORPHOLOGY OF	۱
	NA A ZEOLITE	105
	5.1 Abstract	105
	5.2 Introduction	106
	5.3 Experimental	107
	5.3.1 Materials	107

CHAPTER

	5.3.2 Instrumentals	108
	5.3.3 Precursor Synthesis	109
	5.3.4 Sol-Gel Process and Microwave Technique	110
	5.4 Results and Discussion	110
	5.4.1 Gel Transformation to Aluminosilicate	111
	5.4.2 Effect of Microwave Heating Time	112
	5.4.3 Effect of NaOH Concentration	112
	5.4.4 Effect of Water Amount	114
	5.4.5 Effect of Microwave Heating Temperature	114
	5.5 Conclusions	114
	5.6 Acknowledgment	115
	5.7 References	115
	5.8 Biography	118
VI	MICROWAVE PREPARATION OF K-ZEOLITE	
	DIRECTLY FROM ALUMATRANE AND SILATRANE	131
	6.1 Abstract	131
	6.2 Introduction	132
	6.2 Introduction6.3 Experimental	132 133
	6.2 Introduction6.3 Experimental6.3.1 Materials	132 133 133
	6.2 Introduction6.3 Experimental6.3.1 Materials6.3.2 Instrumentals	132 133 133 133
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 	132 133 133 133 133
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 6.3.4 Sol-Gel Process and Microwave Technique 	132 133 133 133 135 135
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 6.3.4 Sol-Gel Process and Microwave Technique 6.4 Results and Discussion 	132 133 133 133 133 135 135 136
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 6.3.4 Sol-Gel Process and Microwave Technique 6.4 Results and Discussion 6.4.1 Gel Transformation to Aluminosilicate and 	 132 133 133 133 135 135 136
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 6.3.4 Sol-Gel Process and Microwave Technique 6.4 Results and Discussion 6.4.1 Gel Transformation to Aluminosilicate and Effect of Microwave Heating Temperature 	 132 133 133 133 135 135 136 136
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 6.3.4 Sol-Gel Process and Microwave Technique 6.4 Results and Discussion 6.4.1 Gel Transformation to Aluminosilicate and Effect of Microwave Heating Temperature 6.4.2 Effect of Si:Al Ratio in Loading State 	 132 133 133 133 135 135 136 136 137
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 6.3.4 Sol-Gel Process and Microwave Technique 6.4 Results and Discussion 6.4.1 Gel Transformation to Aluminosilicate and Effect of Microwave Heating Temperature 6.4.2 Effect of Si:Al Ratio in Loading State 6.4.3 Effect of K₂O Concentration 	 132 133 133 133 135 135 136 136 137 137
	 6.2 Introduction 6.3 Experimental 6.3.1 Materials 6.3.2 Instrumentals 6.3.3 Precursor Synthesis 6.3.4 Sol-Gel Process and Microwave Technique 6.4 Results and Discussion 6.4.1 Gel Transformation to Aluminosilicate and Effect of Microwave Heating Temperature 6.4.2 Effect of Si:Al Ratio in Loading State 6.4.3 Effect of K₂O Concentration 6.4.4 Effect of Microwave Heating Time 	 132 133 133 133 135 135 136 136 137 138

		Х

CHAPTER		PAGE
	6.6 Acknowledgment	139
	6.7 References	139
VII	MICROWAVE PREPARATION OF LI-ZEOLIT	E
	DIRECTLY FROM ALUMATRANE AND SILAT	TRANE 155
	7.1 Abstract	155
	7.2 Introduction	156
	7.3 Experimental	157
	7.3.1 Materials	157
	7.3.2 Characterization	157
	7.3.3 Precursor Synthesis	158
	7.3.4 Sol-Gel Process and Microwave Techr	ique 159
	7.4 Results and Discussion	159
	7.4.1 Gel Transformation to Aluminosilicate	and
	Effect of Microwave Heating Tempera	ture 160
	7.4.2 Effect of Si:Al Ratio in the Precursors:	161
	7.4.3 Effect of Li ₂ O Concentration	161
	7.4.4 Effect of Microwave Heating Time	162
	7.5 Conclusions	163
	7.6 Acknowledgment	164
	7.7 References	164
VIII	CONCLUSIONS	180
	8.1 Conclusions	180
	8.2 Suggestion for Future Work	183
	REFERENCES	185

CURRICULUM VITAE	191

LIST OF TABLES

TABLE		PAGE
	Chapter I	
1.1	Characteristics of major synthetic zeolite sorbents	3
1.2	The chemical compositions of some important aluminosilicate	
	zeolite	4
1.3	Physicochemical characteristic of zeolite ZSM-5 samples	7
1.4	Microporous zeolite-type materials	10
1.5	Microwave-active element, natural minerals and compounds	15
	Chapter II	
2.1	Results of crystal analysis	40
	Chapter III	
3.1	Results of crystal analysis	67
3.2	Moisture absorption of synthesized zeolites at SiO ₂ :Al ₂ O ₃ :xNa ₂ O	4
	$410H_2O$ (x = 3 and 10) and $110^{\circ}C$ as compared with commercial	
	zeolite (purchased form Aldrich)	68
	Chapter IV	

Chapter IV

4.1	Moisture absorption of synthesized zeolites	96
-----	---	----

LIST OF FIGURES

FIGURE		PAGE
	Chapter I	
1.1	Cation site of six-membered ring zeolite (a); structure of	
	K-LTA zeolite on the [100] direction (b), which shaded balls are	
	K ⁺ ion	2
1.2	Correlation between pore size of molecular sieves ad the kinetic	
	dimention of various molecules with pore size of molecular	
	sieves in range of $4 - 14$ Å (a) and $4 - 8.5$ Å (b)	5
1.3	Schematic of zeolite framework. The synthetic faujasites are	
	zeolites NaX and NaY (different between NaX and NaY is the	
	$Si/Al \equiv 1.1$, $NaY \cong 2.4$)	8
1.4	Different Secondary Building Units (SBUs) of today known	
	zeolite structures	8
1.5	Selected zeolite cages: A A = 4-ring (window opening to cage of	
	infinite length); B = 6-ring (window opening to cage of infinite	
	length); C = 8-8-cage (δ -cage); D = 4-4-cage; E = 8-ring (window	
	opening to cage of infinite length); $F = cancrinite cage (\varepsilon - cage);$	
	gemlinite cage (γ -cage); H = 6-6-cage; I = sodalite cage (β -cage);	
	J = Ievyne cage; K = chabazite cage; L = α -gage; M = erionite	
	cage; N = faujasite supercage	9
1.6	Line representation of unit cell structures: type A zeolite or LTA	
	and type X and Y or faujasite (b)	9
1.7	Framework density of selected zeolites in respect to normal	
	tectosilicates	11
1.8	Steady-state temperatuer vs. power plots for three different	
	ceramics under single mode irradition conditions. Solid lines were	;
	calculation from equations for heating rate in a single-mode	
	resonant cavity	14

1.9	Schematic of proposed mechanism for the synthesis of ZSM-5	19
1.10	Schematic representations of organic structure-directing agents	
	and zeolites formed	19

Chapter II

2.1	Hydrolysis behavior of alumatrane and silatrane mixture at the ratio	
	of 1SiO ₂ :0.5Al ₂ O ₃ :0.096Na ₂ O: 63H ₂ O in (a) NaCl/H ₂ O System	
	and (b) NaOH/H ₂ O System	41
2.2	Reduction rate of vC-N peak at 1275 cm ⁻¹ of the mixture containing	
	1SiO ₂ :0.5Al ₂ O ₃ :0.096Na ₂ O: 63H ₂ O in (a) NaCl/H ₂ O and (b)	
	NaOH/H ₂ O systems	42
2.3	Thermal property of gel transformation to aluminosislicate using	
	high pressure DSC cell at heating rate of 10°C/min and	
	1SiO ₂ :0.5Al ₂ O ₃ : 0.7Na ₂ O: 410H ₂ O	43
2.4	Effect of NaOH concentration on microwave heated	
	aluminosilicate synthesized from 1SiO ₂ :0.0115Al ₂ O ₃ :x	
	Na ₂ O:410H ₂ O (Si:Al = 87:1, $x = 1 - 3$) at 150°C/15h	44
2.5	Effect of Si:Al ratio (2:1 – 87:1) on microwave heated	
	aluminosilicate synthesized from 1SiO ₂ :x Al ₂ O ₃ :3Na ₂ O:410H ₂ O	
	(x = 0.01149 - 0.25) at 150°C/15h	45
2.6	SEM micrographs of (a) Analcime zeolite (ANA) and (b) the unit	
	cell structure	46
2.7	Effect of microwave heating temperature on aluminosilicate	
	synthesized from $1SiO_2:0.091Al_2O_3:3Na_2O:410H_2O$ at x °C /15h	
	$(x = 90^{\circ} - 150^{\circ}C)$	47
2.8	SEM micrographs of (a) Na-P1 zeolite (GIS) and (b) the unit cell	
	structure	48
2.9	Effect of microwave heating time on aluminosilicate synthesized	
	from $1SiO_2:0.25Al_2O_3:3Na_2O:410H_2O$ at $130^{\circ}C/x$ h (x = 1 - 9h)	49

2.10	Fraction of GIS and ANA calculated from XRD area under the	
	peak at 25.93 (2 θ) for ANA and 28.27 (2 θ) for GIS	50
2.11	SEM micrographs of aluminosilicate synthesized from	
	$1SiO_2:0.25Al_2O_3:3Na_2O:410H_2O$ at $130^{\circ}C/x$ h (x = 1 - 9h)	51
2.12	Effect of microwave heating time on aluminosilicate synthesized	
	at $1SiO_2:0.25Al_2O_3:3Na_2O:410H_2O$ and $110^{\circ}C/x$ h (x = $1.5 - 4h$)	52
2.13	SEM micrographs of aluminosilicate synthesized form	

$$1SiO_2:0.25Al_2O_3:3Na_2O:410H_2O \text{ at } 110^{\circ}C/x \text{ h} (x = 1.5 - 4h)$$
 53

Chapter III

3.1	The structures of synthesized silatrane and alumatrane	69
3.2	Hydrolysis behavior of alumatrane and silatrane mixture at	
	the ratio of $1SiO_2:0.5Al_2O_3:0.096Na_2O:63H_2O$ in (a) $NaCl/H_2O$	
	and (b) NaOH/H ₂ O system	70
3.3	Reduction rate of vC-N peak at 1275 cm ⁻¹ of the mixture containing	
	$1SiO_2{:}0.5Al_2O_3{:}0.096Na_2O{:}63H_2O$ in (a) $NaCl/H_2O$ and (b)	
	NaOH/H ₂ O system	71
3.4	XRD spectra of aluminosilicate synthesized from SiO ₂ :Al ₂ O ₃ :	
	$3Na_2O:410H_2O$ and $110^{\circ}C$ for 180 min in $NaCl/H_2O$ and	
	NaOH/H ₂ O system	72
3.5	Unit cell structure and crystal morphology of Na A zeolite	
	synthesized from SiO_2 : Al_2O_3 : $3Na_2O$: $410H_2O$ and $110^{\circ}C$ for 180	
	min in NaOH/H ₂ O system	73
3.6	XRD spectra of calcinated Na A zeolite at various temperature	
	(room temperature to 1000 °C)	74
3.7	XRD spectra of Na A zeolite synthesized from SiO ₂ :Al ₂ O ₃ :	
	$3Na_2O:410H_2O$ and $110^{\circ}C$ for x min (x = $30 - 180$ min)	75

3.8	SEM micrographs of Na A zeolite synthesized from SiO_2 :Al ₂ O ₃ :	
	3Na ₂ O: 410H ₂ O and 110°C for (a) 60, (b) 100, (c) 140 and (d)	
	160 min	76
3.9	Na/Al and Si/Al ratios of synthesized zeolites at SiO_2 :Al ₂ O ₃ :	
	3Na ₂ O:410H ₂ O and 110°C for x min (30 – 180 min)	77
3.10	Effect of NaOH concentration on Na A zeolite synthesis using	
	$SiO_2:Al_2O_3: xNa_2O:410H_2O (x = 3 - 10) and 110°C$	78
3.11	Agglomerated particle size distribution of Na A zeolite	
	synthesized at various Na ₂ O concentration at SiO ₂ :Al ₂ O ₃ :	
	$xNa_2O:410H_2O$ (x = 3 - 10) and 110°C/180 min	79
3.12	SEM micrographs of Na A zeolite synthesized using SiO ₂ :Al ₂ O ₃ :	
	$xNa_2O: 410H_2O$ and $110^{\circ}C$, with $x = (a) 3$, (b) 7, (c) 8 and (d) 10	80
3.13	Effect of water quantity on the Na A zeolite synthesized from	
	$SiO_2:Al_2O_3: 10Na_2O:xH_2O$ (x = 410(a) and 510(b)) and 110°C/5	
	min	81
3.14	Phase diagram of Na A zeolite synthsized at microwave heating	
	temperature of 110°C	82

Chapter IV

4.1	Thermal property of gel transformation to aluminosislicate using	
	high pressure DSC cell at heating rate of 10° C/min and 1 SiO ₂ :	
	0.5Al ₂ O ₃ : 0.7Na ₂ O: 410H ₂ O	97
4.2	Unit cell structure and crystal morphology of Na A zeolite	
	synthesized from SiO_2 :Al ₂ O ₃ :3Na ₂ O:410H ₂ O and 110°C for 180	
	min in NaOH/H ₂ O system	98
4.3	XRD spectra of calcinated Na A zeolite at various temperature	
	(room temperature to 1000 °C)	99

PAGE

4.4	Unit cell structure and crystal morphology of Zeolite K-H	
	synthesized from $SiO_2:0.1Al_2O_3:3K_2O:410H_2O$ and $150^{\circ}C$ for	
	240 min in NaOH/H ₂ O system	100
4.5	XRD spectra of calcinated Zeolite K-H at various temperature	
	(room temperature to 1000 °C)	101
4.6	Unit cell structure and crystal morphology of FAU type zeolite	
	synthesized from $SiO_2:0.5Al_2O_3:1Li_2O:410H_2O$ and $110^{\circ}C$ for	
	120 min in NaOH/H ₂ O system	102
4.7	XRD spectra of calcinated FAU type zeolite at various	
	temperature (room temperature to 1000 °C)	103
4.8	Agglomerated particle size distribution of synthesized zeolites	104

Chapter V

5.1	XRD spectra of aluminosilicate synthesized from SiO ₂ :Al ₂ O ₃ :	
	$3Na_2O{:}410H_2O$. Conditions $110^\circ C$ for 180 min in $NaCl/H_2O$ +	
	NaOH/H ₂ O system	120
5.2	Unit cell structure and crystal morphology of Na A zeolite	
	synthesized from SiO ₂ :Al ₂ O ₃ :3Na ₂ O:410H ₂ O at 110°C for 180	
	min in NaOH/H ₂ O system	121
5.3	XRD spectra of calcined Na A zeolite at various temperature	122
5.4	SEM micrographs of Na A zeolite synthesized from SiO ₂ :Al ₂ O ₃ :	
	$3Na_2O:410H_2O$ and $110^{\circ}C$ for (a) 60, (b) 100, (c) 140 and (d)	
	160 min	123
5.5	Na/Al and Si/Al ratios of synthesized zeolites at SiO_2 :Al ₂ O ₃ :	
	$3Na_2O:410H_2O$ and $110^{\circ}C$ for varying heating times ($30 - 180$	
	min)	124
5.6	Effect of NaOH concentration on Na A zeolite synthesis using	
	$SiO_2:Al_2O_3:xNa_2O:410H_2O$ (x = 3 - 10) and 110°C	125

5.7	Agglomerated particle size distribution of Na A zeolite	
	synthesized at various Na ₂ O concentration at SiO ₂ :Al ₂ O ₃ :xNa ₂ O:	
	$410H_2O (x = 3 - 10)$ and $110^{\circ}C/180 \text{ min}$	126
5.8	SEM micrographs of Na A zeolite synthesized using SiO ₂ :	
	Al_2O_3 :xNa ₂ O: 410H ₂ O and 110°C, with x = (a) 3, (b) 7, (c) 8	
	and (d) 10	127
5.9	Effect of water amount on the Na A zeolite synthesized from	
	$SiO_2:Al_2O_3: 10Na_2O:xH_2O (x = 410(a) \text{ and } 510(b)) \text{ and } 110^{\circ}C/5$	
	min	128
5.10	SEM micrographs of Na A zeolite synthesized using SiO ₂ :Al ₂ O ₃ :	
	5Na ₂ O: 410H ₂ O and varying temperatures/60 min (a) 90, (b) 110,	
	(c) 130 and (d) 150	129
5.11	Agglomerated particle size distribution of Na A zeolite	
	synthesized at various microwave temperatures for SiO ₂ :Al ₂ O ₃ :	
	$5Na_2O:410H_2O$ and various heating temperatures	130
	Chapter VI	
6.1	Thermal property of gel transformation to aluminosilicate using	
	high presser DSC cell at heating rate of 10 °C/min and 1SiO ₂ :	
	0.1Al ₂ O ₃ :0.7K ₂ O:410H ₂ O	143
6.2	Effect of microwave heating temperature on K-aluminosilicate	
	synthesized from $1SiO_2:0.1Al_2O_3:3K_2O:410H_2O$ and X °C/300	
	min	144
6.3	Si:Al:K ratio of PCC-ZM-1 (a) and their crystal morphology (b)	145
6.4	Thermal property of PCC-ZM-1 synthesized from 1SiO ₂ :	
	0.1Al ₂ O ₃ :3K ₂ O:410H ₂ O and 150 °C/300 min	146
6.5	Crystal morphology of PCC-ZM-1 synthesized from 1SiO ₂ :	
	0.5Al ₂ O ₃ : 3Li ₂ O:410H ₂ O and X °C/300 min; (a) 130, (b) 150	
	and (c)170 °C	147

PAGE

6.6	Effect of Si/Al loading ratio on K-aluminosilicate synthesized	
	from $1SiO_2$: X Al ₂ O ₃ :3K ₂ O:410H ₂ O (X = 1.0 - 0.1) and 150 °	
	C/300 min	148
6.7	Crystal morphology of K-aluminosilicate synthesized from	
	$1SiO_2$:X Al ₂ O ₃ :3K ₂ O:410H ₂ O and 150 °C/300 min which at	
	Si/Al ratio of (a) 5 (b) 11, (c) 40 and (d) 95	149
6.8	Effect of K ₂ O concentration on K-aluminosilicate synthesized	
	from $1SiO_2$: $0.1Al_2O_3$: X K ₂ O:410H ₂ O (X = 1 - 5) and 150 °	
	C/300 min	150
6.9	Crystal morphology of K-aluminosilicate synthesized from	
	$1SiO_2{:}0.1Al_2O_3{:}$ X K_2O:410H_2O and 150 °C/300 min; X = (a) 2	
	(b) 3, (c) 4 and (d) 5	151
6.10	Effect of K2O/SiO2 ratio on microwave heating time by fixing at	
	$1SiO_2:0.1Al_2O_3: X K_2O:410H_2O (X = 2 - 6) and 150 °C/300 min$	152
6.11	Effect of microwave heating time on K-aluminosilicate	
	synthesized from $1SiO_2{:}0.1Al_2O_3{:}3K_2O{:}410H_2O$ and $150\ ^oC/X$	
	min	153
6.12	Crystal morphology of K-aluminosilicate synthesized from	
	1SiO ₂ :0.1Al ₂ O ₃ :3K ₂ O:410H ₂ O and 150 °C/X min	154

Chapter VII

7.1	DSC trace of gel transformation to aluminosilicate using a high	
	pressure DSC cell at a heating rate of 10 °C/min and gel	
	composition of: 1SiO ₂ :0.5Al ₂ O ₃ : 0.7Li ₂ O:410H ₂ O	166
7.2	Effect of microwave heating temperature on aluminosilicate	
	crystallinity synthesized from 1SiO ₂ :0.5Al ₂ O ₃ :3Li ₂ O:410H ₂ O	
	and X °C/300 min	167
7.3	Unit cell structures and crystal morphologies of (a) EDI and	
	(b) ABW product	168

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

and (d) 120 min

PAGE

XRD spectra of EDI (a) and ABW (b) products synthesized from		
$1SiO_2$: $0.5Al_2O_3$: $3Li_2O$: $410H_2O$ and $90 \text{ °C}/300$ min as a function		
of temperature.		
Crystal morphology of aluminosilicate synthesized from 1SiO ₂ :		
$0.5Al_2O_3:3Li_2O:410H_2O$ and X °C/300 min; (a) 70, (b) 90, (c)		
110, (d) 150 °C	170	
Effect of starting Si/Al ratio on aluminosilicate synthesized from		
$1SiO_2$: X Al ₂ O ₃ :3Li ₂ O:410H ₂ O (X = 0.25 - 3) and 110 °C/300		
min	171	
Crystal morphology of aluminosilicate synthesized from 1SiO ₂ :		
X Al ₂ O ₃ :3Li ₂ O:410H ₂ O (X = $0.25 - 3$) and 110 °C/300 min;		
Si:Al = (a) 1:1, (b) 1:2, (c) 1:3 and (d) 1:4 respectively	172	
Effect of Li2O concentration on morphology of aluminosilicate		
synthesized from $1SiO_2:0.5Al_2O_3: X Li_2O:410H_2O (X = 0.7 - 5)$		
and 110 °C/300 min	173	
The unit cell structure, crystal morphology and Si/Al ratio of		
FAU synthesized from $1SiO_2{:}0.5Al_2O_3{:}1Li_2O{:}410H_2O$ and $110\ ^\circ$		
C/300 min	174	
XRD spectra as function of temperature for the FAU product		
synthesized from 1SiO ₂ : 0.5Al ₂ O ₃ :1Li ₂ O:410H ₂ O and 110 °		
C/300 min	175	
Crystal morphology of aluminosilicate synthesized from 1SiO ₂ :		
$0.5Al_2O_3$: X Li ₂ O:410H ₂ O (X = 0.7 - 5) and 110 °C/300 min	176	
Transformation to aluminosilicate as a function of time, starting		
with 1SiO ₂ :0.5Al ₂ O ₃ : 3Li ₂ O:410H ₂ O and 110 °C/X min; (a) 40,		
(b) 60, (c) 120 and (d) 300 min	177	
Transformation to aluminosilicate synthesized from 1SiO ₂ :		

0.5Al₂O₃:3Li₂O:410H₂O and 90 °C/X min; (a) 20, (b) 40, (c) 60

1

178

 7.14
 Transformation to aluminosilicate synthesized from 1SiO₂:

 0.5Al₂O₃:1Li₂O:410H₂O and 110 °C/X min; (a) 80, (b) 100, (c)

 120 and (d) 180 min
 179