CHAPTER I

INTRODUCTION

1.1 Introduction.

Dyeing is an ancient art which predates written records, its history can be traced back at least 4000 years [1]. Up to the middle of the nineteenth century only natural dyes were available. Then in 1856, W.H. Perkin discovered aniline dye. Here after, synthetic dyes slowly began replacing natural dyes [2]. In general, most dyes used for textile dyeing are organic compounds, which possess following characteristics; intense colour, solubility in aqueous solution ability to be absorbed and retained by the substrate, and colour fastness [3]. For any dyes to be classified as natural dyes, it shall be extracted from vegetative matter or animal residual. The natural dyes may have, a wide range of shades, which can be obtained from various parts of plants including rocts, barks, leaves, flowers and fruits [4]. They normally require mordants, which are metallic salts of aluminum, iron, chromium, copper and others, for ensuring the reasonable fastness of the colour to sunlight and washing [5]. Lately, there has been increasing interest in the natural dyes, as public becomes aware of ecological and environmental problems related to the use of synthetic dyes. As the use of natural dyes cuts down significantly on amount of toxic effluent resulting from the synthetic dye process.

In order to understand its chemical structure, the chemistry of some important natural colouring matters is summarized in Table 1.1 [6].

Table 1.1 The important natural colouring matter. [6]

Colour	Class	Typical Dyes	Structure Name	Source
Yellow	Flavone	Weld	ОН	Seeds, Stems and
			но	leaves of the
				Reseda luteola
				L plant
			Luteolin	

Table 1.1 The important natural colouring matter. (Continued)

Colour	Class	Typical Dyes	Structure Name	Source
Yellow	Flavonol	Quercitron	HO OH OH OH OH OH OH OH	Bark of North American oak, Quercus tinctoria nigra
Yellow	Chalcone	Safflower	Carthamin	Dried petals of Carthamus tinctorius
Yellow	Polyene	Saffron	Me Me OH OH OH OH OH OH	Stigmas of Crocus sativus
Red	Anthra- quinone	Kermes	HO OH COME HO OH COME CO,H O OH Kermesic acid	Female scale insects, Coccus ilicis, which infect the kermes oak.
Red	Anthra- quinone	Madder or Alizarin	Alizaline	Root of the Rubia tincto rum plant
Red	Anthra- quinone	Cochineal	HO OH CGH, CG	Female insect, Coccus cacti, which lives on cactus plants of the Prickly Pear Family found in Mexico

Table 1.1 The important natural colouring matter. (Continued)

Colour	Class	Typical Dyes	Structure Name	Source
Purple	Indigoid	Tyrian Purple	0H Br H0 6,6-dibromoindigo	Mollusc
				(i.e. shellfish)
				usually Murex
				brandaris
				plentiful in the
				Mediterranean
Blue	Indigoid	Woad; Indigo	0H	Leaves of indigo
				plant, Indigofera
			, H0	tinctolia L
			Indigo	
Black	Chroman	Logwood	ОН	Heartwood of the
			HOOO	tree Haematoxy
				lon campechiancum
				L found in Central
				America (The
				colourant is red but
		Haematin		in combination with
				Cr(VI) it gives black
				shade)

After the discovery of synthetic dyes, natural dyers virtually stopped using the natural dyes dues to many advantages of the synthetic dyes have to offer. This includes improved colour fastness, cost reduction and simplified colour matching. Overall, it was a more reliable and easier dyeing method [7]. Despite these benefits, Thai natives still use natural dyes in home industries as well as in handicraft works. In Thailand, a number of different types of plants are employed for dyeing [8]. A list of such natural dyes used is given in Table 1.2 [7].

Table 1.2 The important natural dyes in Thailanc.

Thai name	Botanical name	Family	English	Usaged part	Colour
Eucalyptus	Eucalyptus	Euphorbiaceae	Eucalyptus	Leaf, Bark	Yellow,
	gunnii		leaves		Brown light
					beige.
Hu-kwaang	Terminalia	Combretaceae	Dear ear	Leaf	Yellowish
	catappa				green
	linn.				
Kanoon	Artocarpus	Moraceae	Jack fruit	Hardwood	Yellow
	heterophylla				
Kham Foi	Carthamus	Compositae	Saf flower	Flower	Red
	tinctorius				
Khamin	Curcuma	Zingiberaceae	Turmeric	Rhizome	Yellow
Chan	longa				
Khraam	Indigofera	Papilionaceae	Ind go	Leaf	Dark blue
	tinctoria				
Krang	Cocus lacca		Lac		Red or red-
		-		-	purplish
Kum-saet	Bixa	Bixaceae	Annatto or	Seed	Orange
	orellana		Lipstick		
Ma Klua	Diospyros	Ebenaceae	Ebony	Seed pot or	Black
	mollis			fluit	
Mai Alang	Peltophoum	Leguminosae	2.	Hardwood	Pink or red
(Nonsi)	dasyrachrr.				
	kurr				

Table 1.2 The important natural dyes in Thailanc. (Continued)

Thai	Botanical	Family	English	Usaged	Colour
name	name		Liigiisii	part	
Mai Kae	Cudriana	Moraceae	_	Hardwood	Yellow
	jave m ensis				
Mai Lidmai	Indicum	Bignoniaceae	Bones,	Hardwood	Brown
	vent		Ind an	:	
			Trumpet		
Sa Mor	Terminalia	Combretaceae	Myrobalan	Fruit	Tan
(fruit)	chebula		Wood		
	Retz.				
Si Siad	Acacia	Leguminosae	Betel Palm,	Hardwood	Brown
	catechu		or Cutch		
Yo Pa or Yo	Morinda	Rubiaceae	Madder fam	Root, bark,	Red
	coreia			wood	
Mai Daeng	Xylia	Leguminosae	Iron Wood	Bark	Brown
	xylocarpa				
Mai Fany	Caesalpinia	Leguminosae	Sappan	Hardwood	Pink or red
	sappan		Wood		
Mai Pradoo	Pterocarpus	Papilionaceae	Burmese	Hardwood	Brown
	indicus		Ebony		
Mai Sa Mor	Terminalia	Combretaceae		Hardwood	Red-brown
	chebula	Chebula Rets	<u>-</u>		
Sa Douw	Agaditachta	Meliaceae	Neem Tree	Leave	Yellowish
	Indica A.,				green
	luss. Var.				
	Siamensis				
	Vakton				

One of the plant uses for dyeing is Eucalyptus, although Eucalyptus has been used in paper industry, oil eucalyptus and textile dyeing for several years the dyeing technique including effect of temperature, time, mordant, type of solvent, ratio of solvent and material have not yet been reported in the literature. Thus the main purpose of this work is to study extraction from eucalyptus leaves and bark as well as applying the compounds obtained on silk and cotton fabric.

1.2 Objectives

- 1.2.1 Search for the appropriate condition for extracted dye from the leaves and bark of eucalyptus.
- 1.2.2 Search the appropriate method for silk and cotton fabric dyeing from extracted dye.
- 1.2.3 Study effects of mordants in dyeing process.
- 1.2.4 Study the influences and effects of dyeing factor such as temperature, time and pH value.
- 1.2.5 Study quality of silk and cotton fabric after dyeing such as colour fastness to washing, colour fastness to rubbing, colour fastness to perspiration and colour fastness to water.

1.3 Scope of the research

The scope of this research work involves the dye extraction from the leaves and bark of eucalyptus and application on silk and cotton fabric then observes the effect of various parameters in extraction and dyeing. The stepwise investigation was carried out as follows.

- 1.3.1 To do literature survey for related research work.
- 1.3.2 To prepare the soxhlet extractor, materials and chemical reagent.
- 1.3.3 Search for the suitable condition for dye extracted parameter e.g. temperature, type of solvent, time and ratio of material and solvent
- 1.3.4 Search for the appropriate condition for dyaing on silk and cotton fabric parameter e.g. type of mordants, temperature, time, liquur ratio and pH value.
- 1.3.5 To determine the colour fastness properties e.g. colour fastness to washing, colour fastness to light, colour fastness to perspiration, colour fastness to water and colour fastness to rubbing.
- 1.3.6 To summarize the result.