CHAPTER III

RESULTS

3.1 Cloning and characterization of Major Royal Jelly Protein 1 and 2 (MRJP1 and MRJP2) from *A. cerana*

3.1.1 Primer designation for isolation of AcMRJP1 and AcMRJP2

The AcMRJP1 and AcMRJP2 cDNAs were isolatated by RT-PCR using total RNA extracted from head of *A. cerana* nurse honeybee. The MRJPs were regarded as member of MRJP family resulted in high homology among this group. The AcMRJP1 and AcMRJP2 gene specific primers were designed on the basis of the conserved nucleotide and amino acid sequences of the *N*-terminal. The nucleotide and amino acid sequences of the *N*-terminal. The nucleotide and amino acid sequences of AmMRJP1-5 from *A. mellifera* were retrieved from the GenBank (http://www.ncbi.nlm.nih.gov/) and aligned together (Figure 3.1). The gene-specific oligonucleotide primers which spanned the putative first ATG codon were designed and used for amplification of its homologue in *A. cerana*.

The forward primer, designated as FMJ, was 5' - TAG<u>GAATTCTAAATGACAAGGTGGTTGTTCATG-3'</u>. The initiation codon ATG and *Eco*R I site were underlined. The sequence of reverse primer, designated as RMJ, was:5'-GG<u>GGTACCC(T)₂₈A-3'</u>. The *Kpn* I site added to the 5' end to facilitate cloning were underlined. The expected full length of AcMRJP1 and AcMRJP2 cDNAs were approximately 1,500 bp and 1,600 bp as estimated from their corresponding size of AmMRJPs cDNA.

		М	Т	R		L	F	М	\mathbf{L}	V	С	\mathbf{L}	G	I	v	С	Q	G	Т	Т	G	Ν	I	\mathbf{L}	
AmMRJP1	AA	ATG	ACA	AGA		TTG	TTT	ATG	СТ	GGT	ATG	CCT	TGG	CAT	AGT	TTG	TCA	AGG	TAC	GAC	AGG	CAA	CAT	TCT	67
		М	Т	R	W	L	F	М	v	А	С	\mathbf{L}	G	I	Α	С	Q	G				А	I	v	
AmMRJP2	AA	ATG	ACA	AGG	TGG	TTG	TTC	ATG	GT	GGC	ATG	CCT	CGG	CAT	AGC	TTG	TCA	AG-			- - G	CGC	CAT	TGT	61
		М	Т	К	W	L	\mathbf{L}	\mathbf{L}	v	v	С	\mathbf{L}	G	I	Α	С	Q	D	v	Т	S	Α	A	v	
AmMRJP3	AA	ATG	ACA	AAG	TGG	TTG	TTG	CTG	GT	GGT	ЗТG	ССТ	TGG	TAT.	AGC	TTG	TCA	AGA	TGT	AAC	AAG	CGC	AGC	TGT	70
		М	Т	К	W	L	L	L	М	v	С	L	G	I	А	С	Q	Ν	I	R	G	G	v	v	
AmMRJP4	AA	ATG	ACA	AAA	TGG	TTG	CTG	TTG	AT	GGT	ATG	CCT	TGG	CAT	AGC	TTG	TCA	AAA	TAT	TAG	AGG	TGG	CGT	TGT	70
		М	Т	Т	W	L	L	L	v	v	С	L	G	Ι	А	С	Q	G	I	Т	S	v	Т	V	
AmMRJP5	CA	ATG	ACA	ACT	TGG	TTG	TTG	CTG	GT	CGT	GTG	ССТ	TGG	CAT.	AGC	TTG	TCA	AGG	TAT	CAC	AAG	CGT	CAC	TGT	70
	*	***	***	*		***	*	* *	*	*	**	* * *	**	**	* *	***	***	*			*			* *	
						** * * * * * * * *	••••••		••••••		••••••	•••••	••••••		•••••						•••••••	••••••		••••	
										_												_			
AMMRJPI	'T'A'	I'A'I'A'	I"I'AA	A.I.A.I	I'TCTC	GAA	A−1.1.	rciri.		TO	CCA	TTA	TGA	ATG	TAT	'AAA'	ATA	AAT	ATT	GTT	TTC	G	CAT	AAT	1430
AmMRJP2	TA'	TAAA	CCAA	TAT	TTTGI	TAAA)	AATC	TTTT?	ΓAΑ.	ATT	ATA	TTA	TAA	ATG.	AAT	'AAA'	ATA	T						<u>T</u>	1544
AmMRJP3	TG'	TAAA	CAAA	AT 7	TTTG	TAAA	A-TC	rttc.	;	ATTA	ATA	TTA	TAA	ATA	AAT	'AAA'	ATA	AAT	ATC	GTT	TTC	GC-		-AT	1830
AmMRJP4		-AAG	ICAA)	ATAT	TTA/		AATT	CAT.		T/	ACA	TTA	TAA	AAC	GAT	'AAA'	ATA	ААТ	ATC	GTT	TTT	TTG	CAT	AAT	1612
AmMRJP5	TA	TAAA	CCAA	ATAT	CTTT		A-TT	CTT.		T/	ATA	TTA	TAA	ATG	ААТ	AAA	АТА	ААТ	ATT	TTT		G	CAT	GAT	1966
		*	* * :	** :	ł.	**1	* * *	e i		*	*	***	* *	*	**	* * *	* * *							_	

Figure 3.1 Multiple alignment of the cDNA sequence of AmMRJP1-5. The nucleotide sequences of MRJPs from *A. mellifera;* AmMRJP1 (GenBank accession number AF000633), AmMRJP2 (AF000632), AmMRJP3 (Z26318), AmMRJP4 (Z26319) and AmMRJP5 (AF004842). Conserve sequences used for designation of primers were underlined.

84

3.1.2 Total RNA extraction

The total RNA was extracted from head of individual nurse honeybee (*A. cerana*) using TRI REAGENT[®] (Molecular Research Center, Inc., USA). The concentration of total RNA was determined by measuring the optical density at 260 nm. An amount of extracted RNA was approximately 3-5 μ g per honeybee individual. An OD₂₆₀ / OD₂₈₀ ratio in the range of 1.9 to 2.0 indicated pure prepared RNA.

An ethidium bromide stained 1.0% agarose gel of total RNA revealed predominant bands; 28S and 18S ribosomal RNAs and low-molecular-weight RNAs along with smeared RNA with molecular sizes up to approximately 8-12 kb (Figure 3.2)

Figure 3.2 A 1.0% agarose gel electrophoresis of total RNA extracted from head of *A. cerana*.

Lane M = λ -*Hind* III DNA marker

Lane m = 100 bp DNA marker

Lane 1 = extracted total RNA from individual 1

Lane 2 = extracted total RNA from individual 2

3.1.3 RT-PCR analysis

The first strand cDNA synthesized from total RNA extracted from head of nurse honeybee was used as template in RT-PCR reaction. The expected full length of AcMRJP1 and AcMRJP2 cDNA were about 1,500 bp and 1,600 bp as estimated from their corresponding size of AmMRJP1 and AmMRJP2 cDNA, respectively. The amplification product was analyzed on 1.2% agarose gel electrophoresis.

Two bands of PCR product at expected sizes approximately 1,500 and 1,600 bp were obtained from amplification with specific primers using Ampli *Taq* DNA polymerase (Figure 3.3) and *Pfu* DNA polymerase (Figure 3.4). These PCR products were selected and purified from agarose gel by using QIAquick Gel Extraction kit.

Figure 3.3 Amplification products of AcMRJP1 and AcMRJP2 cDNAs using Ampli *Taq* DNA polymerase (Perkin Elmer Cetus, USA) analyzed on 1.2% agarose gel.

- Lane M = λ / *Hind* III standard marker
- Lane m = 200 bp DNA ladder
- Lane 1 = RT-PCR amplification product

Figure 3.4 Amplification products of AcMRJP1 and AcMRJP2 cDNAs using *Pfu* DNA polymerase (Promega Corporation Medison, Wisconsin, USA) analyzed on 1.2% agarose gel

Lane M = λ / *Hind* III standard marker

Lane m = 200 bp DNA ladder

Lane 1 = RT-PCR amplification product

3.1.4 Cloning and restriction analysis

The DNA fragments amplified from Ampli Taq DNA polymerase were purified from agarose gel and ligated to the pGEM[®]-T easy vector. The ligation products were used to transform E. coli XL1-Blue. The transformants were selected by ampicillin resistance and blue/white selection. Twelve of white colonies from each experiment were randomly picked for recombinant plasmid extraction. The restriction endonuclease analyses using several enzymes were exploited as a means to characterize the transformed clones. The AmMRJPs sequences were mapped by **NEBcutter** V2.0 the analyzed on on www Server (http://tools.neb.com/NEBcutter2/index.php). The DNA insert fragment from each recombinant clones were mapped by digestion with restriction endonucleases on the basis that MRJP cDNA sequence should have the restriction map related to restriction map predicted from A. mellifera MRJPs cDNA. From sequence analysis, all AmMRJPs cDNA sequences contain Ssp I recognition sites at differnt location. In addition, the recognition sites of BamH I was present in AcMRJP2 cDNA but not in AmMRJP1 cDNA. Therefore, these enzymes can be used to differentiate the family of MRJP cDNAs before being verified by their nucleotide sequence. Restriction fragment sizes of MRJP1 and MRJP2 cDNAs after digestion with Ssp I and BamH I were shown in Table 3.1.

The 1,500 bp insert DNA fragment was digested with restriction endonuclease *Ssp* I (Figure 3.5, lane 2). Two excised fragments of 901 and 427 bp were obtained whereas the restriction enzymes *Bam*H I can not cut within the cDNA insert (Figure 3.5 lane 5). These digested products sizes were similar to those obtained from AmMRJP1 cDNA (Table 3.1). It showed that 1,500 bp cDNA insert was most likely be AcMRJP1.

The 1,600 bp insert DNA fragment was digested with restriction enzymes *Ssp* I (Figure 3.5 lane 3). The digested product size of 1,458 bp was detected. When digested with *Bam*H I the digested product sizes of 582, 304 and 679 bp were obtained (Figure 3.5, lane 6). The sizes of digested product were compared with those of AmMRJP2 cDNA (Table 3.1). The result showed similar digested product with the addition of one recognition site of *Bam*H I in AcMRJP2 cDNA sequence. Therefore, the 1,600 bp cDNA insert might be AcMRJP2. These recombinant plasmids

designated as pRT-AcMRJP1-Taq and pRT-AcMRJP2-Taq were subjected to nucleotide sequencing.

The DNA fragments amplified from Pfu DNA polymerase (Promega Corporation Medison, Wisconsin, USA) were digested with *EcoR* I and *Kpn* I and cloned into corresponding site of pUC18 vector. The ligation products were used to transform *E. coli* XL1-Blue. The transformants were selected by ampicillin resistance and blue/white selection. Six white colonies of each transformant were randomly selected and screened by colony PCR approach. All recombinant clones were found to carry approximately 1,500 or 1,600 bp DNA fragment insert (Figure 3.6). The amplification product from colony PCR was singly digested with restriction enzymes (*Ssp* I, *Bam*H I). The fragment sizes of restricted products were compared with those of AmMRJP. Then the recombinant plasmids were designated as pRT-AcMRJP1-Pfu and pRT-AcMRJP2-Pfu according to the restriction digested results. Further confirmation of those two recombinant plasmids was performed by DNA sequencing.

 Table 3.1 Restriction fragments of AmMRJP1-AmMRJP2 and AcMRJP1-AcMRJP2

 cDNA digested with restriction enzyme Ssp I (AAT/ATT) and BamH I (GG/ATCC)

Family	Length	Digested fragm	ent size (bp)	Reference
	(bp)	Ssp I	BamH I	
AmMRJP1	1444	898, 427, 42, 77	1444	Schmitzova et al., 1998
AcMRJP1	1421	901, 427, 47, 46	1421	This study
AmMRJP2	1579	1424, 22, 44, 89	883, 696	Schmitzova et al., 1998
AcMRJP2	1565	1458, 32, 75	582, 304, 679	This study

Figure 3.5 Restriction analysis of recombinant plasmid pRT-AcMRJP1 and pRT-AcMRJP2 analyzed on 1.2% agarose gel

- Lane M = 100 bp DNA ladder
- Lane 1 = Gel-eluted 1,500 bp DNA fragment insert
- Lane 2 = Gel-eluted 1,500 bp DNA fragment insert digested with Ssp I
- Lane 3 = Gel-eluted 1,600 bp DNA fragment insert digested with Ssp I
- Lane 4 = Gel-eluted 1,600 bp DNA insert fragment
- Lane 5 = Gel-eluted 1,500 bp DNA fragment insert digested with BamH I
- Lane 6 = Gel-eluted 1,600 bp DNA fragment insert digested with BamH I
- Lane m = λ / *Hind* III standard marker

Figure 3.6 Colony PCR analysis analyzed on 1.2% agarose gel

- Lane M = 100 bp DNA ladder
- Lane 1-6 = 1,500 bp insert
- Lane 7-12 = 1,600 bp insert

3.1.5 Characterization of cDNA sequences of AcMRJP1

The recombinant plasmids containing 1,500 bp cDNA fragment, pRT-AcMRJP1-Taq and pRT-AcMRJP1-Pfu which were expected to be AcMRJP1 cDNA from *Ssp* I and *Bam*H I digestion analysis, was initially sequenced using M13 forward and M13 reverse primers. Internal sequencing primers (1F750 and 1R750) of this gene were then designed and used for sequencing along the entire length. The nucleotide sequences derived from both strands were assembled and blasted against data in the GenBank using Blast*N* and Blast*X* (http://www.ncbi.nlm.nih.gov).

The nucleotide sequences of pRT-AcMRJP1-Taq and pRT-AcMRJP1-Pfu showed an insert of 1,420 bp and 1,421 bp, respectively. The sequence comparisons showed a single deletion at $A_{1,015}$ in pRT-AcMRJP1-Taq. This deletion giving rise to a frameshift that introduces fifteen alternative amino acids followed by a termination codon representing the open reading frame (ORF) of 1,062 nucleotides encoding 353 amino acid residues.

In pRT-AcMRJP1-Pfu, nucleotide sequences obtained revealed an insert of 1,421 bp representing the complete open reading frame (ORF) of 1,302 nucleotides encoding 433 amino acid residues (GenBank accession number AF525776). The putative polyadenylation signal, AATAAA, is present 14 nucleotide upstream of the poly (A) tail (Figure 3.7). The nucleotide and deduced amino acid sequence comparison showed significant similarity of this sequence to the homologues A. mellifera MRJP1 (designated as AmMRJP1). Sequence analysis showed 93% nucleotide identity and 90% deduced amino acid similarity to AmMRJP1. The alignment of nucleotide sequences and deduced amino acid residues of MRJP1 was shown in Figure 3.8 and 3.9. This sequence was most likely to be AcMRJP1 cDNA. The sequence analysis of deduced AcMRJP1 revealed putative cleavage site of signal peptidase located between S_{20} - S_{21} . The deduced amino acid (without putative signal peptide) composition of AcMRJP1 contained 43.3% hydrophobic, 28.1% neutral and 28.6% hydrophilic amino acid residues. The essential amino acid content was 47.4%. The estimated molecular weight was 46.7 kDa. The pI-value of AcMRJP1 was estimated to be 5.3. Three putative N-link glycosylation sites (NXS/T) were predicted at 29th, 145th and 178th amino acid residues using GENETYX (Software Development Inc.) (Figure 3.7).

AT	GAC	AAG	GTG	GTT	GTT	CAT	GGT	GGT	ATG	ССТ	TGG	CAT	AGT	TTG	TCA	AGG	TAC	GAC	AAGC	60
<u>M</u>	Т	R	W	L	F	M	V	v	С	L	G	I	V	С	Q	G	Т	Т	S	
AG	CAT	TCT'	TCG	AGG	AGA	ATC'	TTT	ААА	CAA	ATC	ATT	AAG	CGT	CCT	TCA	CGA	ATG	GAA	ATTC	120
S	I	\mathbf{L}	R	G	Ε	S	г	N	К	S	L	S	v	L	Н	Ε	W	к	F	
TT	TGA	TTA'	TGA'	TTT	CGA	TAG	CGA	TGA	AAG	AAG	ACA	AGA	TGC	AAT	тст	ATC	TGG	CGA	ATAC	180
F	D	Y	D	F	D	S	D	Ε	R	R	Q	D	A	Ι	L	S	G	E	Y	
GA	CTA	CAG	GAA	ΑΑΑ΄	TTA'	ICC.	ATC	CGA	CGT	TGA	TCA	ATG	GCA	TGG	ТАА	GAT	TTT	TGT	CACC	240
D	Y	R	К	N	Y	Ρ	S	D	v	D	Q	W	Н	G	К	I	F	v	Т	
AT	GCT	AAG	ATA	CAA'	TGG	CGT	ACC	TTC	стс	TTT	GAA	CGT	GAT	'ATC'	ТАА	ААА	GAT	CGG	TGAT	300
Μ	L	R	Y	N	G	v	Ρ	S	S	\mathbf{L}	N	v	I	S	к	к	I	G	D	
GG	TGG	ACC'	TCT	TCT	TCA	ACC'	ТТА	TCC	CGA	TTG	GTC	GTT	TGC	TAA	АТА	TGA	CGA	TTG	стст	360
G	G	Ρ	L	L	Q	Ρ	Y	Ρ	D	W	S	F	A	К	Y	D	D	C	S	
GG.	AAT	CGT	GAG	CGC	CAC	AAA	ACT	TGC	GAT	CGA	CAA	ATG	CGA	CAG	ATT	GTG	GGT	TCT	GGAC	420
G	I	v	S	A	Т	К	L	A	I	D	к	С	D	R	L	W	v	L	D	
TC.	AGG	ICT'	TGT	CAA'	TAA'	TAC'	TCA	ACC	CAT	GTG	TTC	тсс	AAA	ACT	GCT	CAC	CTT	TGA	TCTG	480
S	G	\mathbf{L}	v	N	N	Т	Q	Ρ	Μ	С	S	Ρ	К	L	L	Т	F	D	L	
AC	TAC	CTC	GCA	ATT	GCT	CAA	GCA	AGT	CGA	AAT	ACC	GCA	TGA	TGT	TGC	CGT		TGC	CACC	540
Т	Т	S	Q	L	L	К	Q	v	Ε	I	Ρ	Н	D	v	A	v	N	A	Т	
AC.	AGG	AAA	GGG	AAG	ACT	ATC	ATC	TCT	AGC	TGT	TCA	ACC	TTT	AGA	TTG	CAA	TAT		TGGT	600
Т	G	К	G	R	L	S	S	\mathbf{L}	A	v	Q	Ρ	\mathbf{L}	D	С	N	I	N	G	
GA	TAC	TAT	GGT	ATA	CAT	AGC	AGA	CGA	GAA	AGG	TGA	AGG	TTT	ААТ	CGT	GTA	TCA	TGA'	TTCT	660
D	Т	Μ	v	Y	I	A	D	Ε	К	G	Ε	G	\mathbf{L}	I	v	Y	Н	D	S	
GA	TAA'	TTC'	TTT	CCA	rcgi	ATT	GAC	TTC	CAA	AAC	TTT	CGA	TTA	CGA	TCC	TAA	ATT	TAC	CAAA	720
D	N	S	F	Н	R	L	т	S	К	Т	F	D	Y	D	Ρ	к	F	Т	К	
AT	GAC	GAT	CAA'	TGG	AGA	AAG'	ттт	CAC	AAC	GCA	AAG	TGG	AAT	TTC	TGG	AAT	GGC	TCT	TAGT	780
М	Т	I	N	G	E	S	F	Т	Т	Q	S	G	I	S	G	Μ	A	\mathbf{L}	S	
CC	CAT	GAC'	TAA	CAA'	TCT (CTA'	ТТА	CAG	TCC	TGT	AGC	TTC	TAC	CAG	TTT	GTA	TTA	TGT	TAAC	840
Ρ	М	Т	N	N	L	Y	Y	S	Ρ	v	Α	S	Т	S	L	Y	Y	v	N	
AC	GGA	ACA	ATT	CAG	AAC	ATC	CAA	TTA	TGA	ACA	ААА	TGC	CGT	ACA	ТТА	TGA	AGG	AGT	TCAA	900
Т	Ε	Q	F	R	Т	S	N	Y	Ε	Q	N	A	v	Н	Y	Ε	G	v	Q	
AA	TAT	TTT	GGA'	TAC	CCA	ATC	GTC	TGC	ТАА	AGT	AGT	ATC	GAA	AAG	TGG	CGT	CCT	CTT	CTTC	960
N	I	L	D	Т	Q	S	S	A	К	v	v	S	к	S	G	v	L	F	F	
GG	ACT	GGT	GGG	CGA'	TTC	AGC'	тст	TGG	CTG	CTG	GAA	CGA	ACA	TCG	ATC	ACT	TGA	AAG	ACAC	1020
G	L	v	G	D	S	A	L	G	С	W	N	E	Н	R	S	L	E	R	Н	

Figure 3.7

93

ATATCCGTACCGTCGCTCAAAGTGATGAGACACTTCAAATGATCGTTGGCATGAAGATT													1080							
N	I	R	Т	v	A	Q	S	D	E	Т	L	Q	М	I	v	G	М	K	I	
AA	GGA	AGC	ССТ	TCC	ACA	CGT	GCC	CAT	ATT	CGA	TAG	ATA	TAT	AAA	CCG	TGA	ATA	CAT	ATTG	1140
K	Е	А	\mathbf{L}	Ρ	Η	V	Ρ	Ι	F	D	R	Y	Ι	N	R	Ε	Y	Ι	L	
GT	TTT.	AAG	TAA	CAG	ААТ	GCA	ААА	AAT	GGC	GAA	TAA	TGA	CTA	TAA	CTT	'CAA	CGA	TGT	AAAC	1200
v	\mathbf{L}	S	Ν	R	М	Q	К	М	Α	Ν	Ν	D	Y	Ν	F	Ν	D	v	N	
TT	CAG.	AAT	TAT	'GGA	CGC	TAA	TGT	AAA	TGA	CTT	'GAT	'ATT	'GAA	CAC	TCG	TTG	CGA	AAA	TCCT	1260
F	R	Ι	Μ	D	A	N	v	N	D	\mathbf{L}	I	\mathbf{L}	N	Т	R	С	Ε	N	Ρ	
AA	TAA	TGA	TAA	CAC	ccc	TTT	CAA	AAT	TTC	AAT	ACA	TCI	GTA	AAA	TCI	GTI	TTT	TTC	GATA	1320
N	N	D	N	Т	Ρ	F	К	Ι	S	I	Н	\mathbf{L}	*							
TA	TAT	TAA	ATA	TTG	TTC	GAA	ATT	TCT	TAT	GAA	TGT	'ATT	ATG	AAT	GTA	TAA	AAT	ааа	TATT	1380
GT	TTT	CGC	ATA	AAA	ААА	ААА	ААА	AAA	AAA	AAA	AAA	AAA	AAA	14	21					

Figure 3.7 Nucleotide and deduced amino acid sequences of AcMRJP1. Initiation and termination of translational codons and putative polyadenylation signal are boldfaced. The signal peptide sequence is underlined. *N*-linked glycosylation sites are boxed.

AmMRJP1 AcMRJP1	ATGACAAGAT TGTTTATGCTGGTATGCCTTGGCATAGTTTGTCAAGGTACGACAGGC ATGACAAGGTGGTTGTTCATGGTGGTATGCCTTGGCATAGTTTGTCAAGGTACGACAAGC ********	57 60
AmMRJP1 AcMRJP1	AACATTCTTCGAGGAGAGTCTTTAAACAAATCATTACCCATCCTTCACGAATGGAAATTC AGCATTCTTCGAGGAGAATCTTTAAACAAATCATTAAGCGTCCTTCACGAATGGAAATTC	117 120
	* *************** *********************	
AmMRJP1	TTTGATTATGATTTCGGTAGCGATGAAAGAAGAAGACAAGATGCAATTCTATCTGGCGAATAC	177
AcMRJP1	TTTGATTATGATTTCGATAGCGATGAAAGAAGACAAGATGCAATTCTATCTGGCGAATAC	180
AmMRJP1	GACTACAAGAATAATTATCCATCCGACATTGACCAATGGCATGATAAGATTTTTGTCACC	237
AcMRJP1	GACTACAGGAAAAATTATCCATCCGACGTTGATCAATGGCATGGTAAGATTTTTGTCACC	240
AmMRJP1	ATGCTGAGATACAATGGCGTACCTTCCTCTTTGAACGTGATATCTAAAAAGGTCGGTGAT	297
AcMRJP1	ATGCTAAGATACAATGGCGTACCTTCCTCTTTGAACGTGATATCTAAAAAGATCGGTGAT	300
AmMRJP1	GGTGGTCCTCTTCTACAACCTTATCCCGATTGGTCGTTTGCTAAATATGACGATTGCTCT	357
AcMRJP1	GGTGGACCTCTTCTTCAACCTTATCCCGATTGGTCGTTTGCTAAATATGACGATTGCTCT	360
AmMRJP1	GGAATCGTGAGCGCCTCAAAACTTGCGATCGACAAATGCGACAGATTGTGGGTTCTGGAC	417
AcMRJP1	GGAATCGTGAGCGCCACAAAACTTGCGATCGACAAATGCGACAGATTGTGGGTTCTGGAC	420
AmMRJP1	TCAGGTCTTGTCAATAATACTCAACCCATGTGTTCTCCAAAACTGCTCACCTTTGATCTG	477
AcMRJP1	TCAGGTCTTGTCAATAATACTCAACCCATGTGTTCTCCAAAACTGCTCACCTTTGATCTG	480

Figure 3.8

94

AmMRJP1	ACTACCTCGCAATTGCTCAAGCAAGTTGAAATACCACATGATGTTGCCGTAAATGCCACT	537
AcMRJP1	ACTACCTCGCAATTGCTCAAGCAAGTCGAAATACCGCATGATGTTGCCGTAAATGCCACC	540

AmMRJP1	ACAGGAAAGGGAAGATTATCATCTCTAGCTGTTCAATCTTTAGATTGCAATACAAATAGC	597
AcMRJP1	ACAGGAAAGGGAAGACTATCATCTCTAGCTGTTCAACCTTTAGATTGCAATATAAATGGT	600
AmMRJP1	GATACTATGGTGTACATAGCAGACGAGAAAAGGTGAAGGTTTAATCGTGTATCATAATTCT	657
ACMROPI		660
AmMRJP1	GATGATTCCTTCCATCGATTGACTTCCAACACTTTCGATTACGATCCTAAATTTACCAAA	717
AcMRJP1	GATAATTCTTTCCATCGATTGACTTCCAAAACTTTCGATTACGATCCTAAATTTACCAAA	720
	*** **** ******************************	
AmMRJP1	ATGACGATCGATGGAGAAAGTTACACAGCCCAAGATGGAATTTCTGGAATGGCTCTTAGT	7 77
AcMRJP1	ATGACGATCAATGGAGAAAGTTTCACAACGCAAAGTGGAATTTCTGGAATGGCTCTTAGT	780
AMMRJPI		837
ACMROFI		840
AmMRJP1	ACGGAACAATTCAGAACATCCGATTATCAACAGAATGACATACAT	897
AcMRJP1	ACGGAACAATTCAGAACATCCAATTATGAACAAAATGCCGTACATTATGAAGGAGTTCAA	900

AmMRJP1	AATATTTTGGATACCCAATCGTCCGCTAAAGTAGTATCAAAGAGTGGCGTTCTCTTCTC	957
AcMRJP1	AATATTTTGGATACCCAATCGTCTGCTAAAGTAGTATCGAAAAGTGGCGTCCTCTTCTTC	960

AmMRJP1	GGATTGGTGGGCGATTCAGCTCTTGGCTGCTGGAACGAAC	1017
AcMRJP1	GGACTGGTGGGCGATTCAGCTCTTGGCTGCTGGAACGAAC	1020
AmMRJP1	AATATCCGTACCGTCGCTCAAAGTGATGAGACTCTTCAAATGATCGCTAGCATGAAGATT	1077
AcMRJP1	AATATCCGTACCGTCGCTCAAAGTGATGAGACACTTCAAATGATCGTTGGCATGAAGATT	1080

AmMRJP1	AAGGAAGCTCTNCCACACGTGCCTATATTCGATAGGTATATAAACCGTGAATACATATTG	1137
AcMRJP1	AAGGAAGCCCTTCCACACGTGCCCATATTCGATAGATATATAAACCGTGAATACATATTG	1140
	******** ** *********** ******** ******	
AmMRJP1	GTTTTAAGTAACAAAATGCAAAAAATGGTGAATAATGACTTCAACTTCGACGATGTTAAC	1197
AcMRJP1	GTTTTAAGTAACAGAATGCAAAAAATGGCGAATAATGACTATAACTTCAACGATGTAAAC	1200

AmMRJP1	TTCAGAATTATGAACGCGAATGTAAACGAATTGATATTGAACACTCGTTGCGAAAATCCC	1257
ACMRJP1	TTCAGAATTATGGACGCTAATGTAAATGACTTGATATTGAACACTCGTTGCGAAAATCCT	1260
AmMRJP1	GATAATGATCGAACACCTTTCAAAATTTCAATCCATTTGTAA 1299	
AcMRJP1	AATAATGATAACACCCCTTTCAAAAATTTCAATACATCTGTAA 1302	
	******** ** ********************	

Figure 3.8 An alignment of nuclotide sequence of AcMRJP1 (GenBank accession number AF525776) and AmMRJP1 (AF00062).

AcMRJP1	MTRWLFMVVCLGIVCQGTTSSILRGESLNKSLSVLHEWKFFDYDFDSDERRQDAILSGEY	60
AmMRJP1	MTR-LFMLVCLGIVCQGTTGNILRGESLNKSLPILHEWKFFDYDFGSDERRODAILSGEY	59
	*** ***********************************	
AcMRJP1	DYRKNYPSDVDQWHGKIFVTMLRYNGVPSSLNVISKKIGDGGPLLQPYPDWSFAKYDDCS	120
AmMRJP1	DYKNNYPSDIDQWHDKIFVTMLRYNGVPSSLNVISKKVGDGGPLLQPYPDWSFAKYDDCS	119

AcMRJP1	GIVSATKLAIDKCDRLWVLDSGLVNNTQPMCSPKLLTFDLTTSQLLKQVEIPHDVAVNAT	180
AmMRJP1	${\tt GIVSASKLAIDKCDRLWVLDSGLVNNTQPMCSPKLLTFDLTTSQLLKQVEIPHDVAVNAT$	179

AcMRJP1	TGKGRLSSLAVQPLDCNINGDTMVYIADEKGEGLIVYHDSDNSFHRLTSKTFDYDPKFTK	240
AmMRJP1	TGKGRLSSLAVQSLDCNTNSDTMVYIADEKGEGLIVYHNSDDSFHRLTSNTFDYDPKFTK	239

AcMRJP1	MTINGESFTTQSGISGMALSPMTNNLYYSPVASTSLYYVNTEQFRTSNYEQNAVHYEGVQ	300
AmMRJP1	MTIDGESYTAQDGISGMALSPMTNNLYYSPVASTSLYYVNTEQFRTSDYQQNDIHYEGVQ	299
	::*:*:*:*************************	
AcMRJP1	NILDTQSSAKVVSKSGVLFFGLVGDSALGCWNEHRSLERHNIRTVAQSDETLQMIVGMKI	360
AmMRJP1	NILDTQSSAKVVSKSGVLFFGLVGDSALGCWNEHRTLERHNIRTVAQSDETLQMIASMKI	359

AcMRJP1	KEALPHVPIFDRYINREYILVLSNRMQKMANNDYNFNDVNFRIMDANVNDLILNTRCENP	420
AmMRJP1	KEALPHVPIFDRYINREYILVLSNKMQKMVNNDFNFDDVNFRIMNANVNELILNTRCENP	419

AcMRJP1	NNDNTPFKISIHL 433	
AmMRJP1	DNDRTPFKISIHL 432	
	,**.*******	

Figure 3.9 An alignment of deduced amino sequences of AcMRJP1 (GenBank accession number AF525776) amd AmMRJP1 (AF00062).

3.1.6 Characterization of cDNA sequences of AcMRJP2

The 1,600 bp cDNA fragment inserted in recombinant plasmid, pRT-AcMRJP2-Taq and pRT-AcMRJP2-Pfu, was expected to be AcMRJP2 cDNA as analyzed from *Ssp* I and *Bam*H I digestion. The recombinant plasmid was initially sequenced using M13 forward and M13 reverse primers. Internal sequencing primers (2F850 and 2R850) were then designed and used for sequencing along the entire length. The nucleotide sequences derived from both strands were assembled and compared with the DNA sequence deposited in GenBank database using Blast*N* and Blast*X* (http://www.ncbi.nlm.nih.gov).

The nucleotide sequence of pRT-AcMRJP1-Taq and pRT-AcMRJP1-Pfu showed an identical insert sequence of 1,565 bp insert fragment representing the complete open reading frame of 1,392 nucleotides encoding a polypeptide of 463 amino acid residues (accession number AF525777). The putative multiple (AATAAATAAAATAAA) polyadenylation signals was found at 14 nucleotides upstream from the poly (A) tail. The AcMRJP2 also contained a consensus AATAAA at 73 bp upstream from the multiple polyadenylation signal sequence. (Figure 3.10). The nucleotide and deduced amino acid sequence comparison showed significant similarity of this sequence to the homologues A. mellifera MRJP2 (designated as AmMRJP2). Sequence analysis revealed 92% nucleotide identity and 86% deduced amino acid similarity to AmMRJP2. The alignment of nucleotide sequences and deduced amino acid residues of MRJP2 was shown in Figure 3.11 and 3.12. This sequence was most likely to be AcMRJP2 cDNA. The sequence analysis of deduced AcMRJP2 revealed putative cleavage site of signal peptidase located between G_{17} - A_{18} . The deduced amino acid (without putative signal peptide) composition of AcMRJP2 comprised of 41.3% hydrophobic, 31.6% neutral and 27.1% hydrophilic amino acid residues. The essential amino acid content was 45%. The estimated molecular weight was 50.6 kDa. The pI-value of AcMRJP2 was estimated to be 7.7. Two putative N-link glycosylation sites were found at 145th and 178th amino acid residues (Figure 3.10). The interesting character of the AcMRJP2 protein compared to AmMRJP2 is the direct repeat region located at C-terminal (amino acid residue 423 to 457). The repeat unit consists of tandemly arranged NQKNN pentapeptide unit encoded by AATCAGAA(A/G)AATAAC, pentadecanucleotide. This motif appears in 6 copies making this part of the sequence were nitrogen-rich domain. The nucleotide and deduced amino acid sequence of the repeat region was searched in the GenBank and the SwissProt databases. No region of significant identity was detected suggested this decapeptide motif is unique to AcMRJP2. The feature of the repeat regions is the appearance of polar uncharged, asparagine (N), glutamine (Q) and positively charge lysine (K) residue.

AT	GAC	AAG	GTG	GTT	GTT	CAT	GGT	GGC	ATG	CCT	TGG	CAT	AGC	TTG	TCA	AGG	CGC	CAT	TATT	60
M	Т	R	W	L	F	М	V	Α	С	L	G	I	Α	С	Q	G	A	I	I	
CG.	ACA	AAA'	TTC	TGC	AAA	AAA	CTT	GGA	AAA	TTC	GTT	GAA	CGT	TAA	TCA	CGA	ATG	GAA	ATAT	120
R	Q	N	S	Α	К	N	\mathbf{L}	E	N	S	L	N	V	I	Н	Ε	W	К	Y	
AT	CGA	TTA'	TGA	TTT	CGG	TAG	CGA	AGA	AAG	AAG	ACA	AGC	TGC	GAT	TCA	ATC	TGG	CGA	ATAC	180
I	D	Y	D	F	G	S	Ε	Е	R	R	Q	Α	Α	I	Q	S	G	Ε	Y	
GA'	TCA	TAC	GAA	ימממ	ימידי	TCC	CTT	CGA	тст	CGA	тса	ATG	GCA	TGA	במד	GAC	ጥጥጥ	тст	CACC	240
D	н	т	ĸ	N	Ŷ	p	F	ם. ח	v	0	0	W	н	D	ĸ	Т	F	v	т	210
_	••	-			-	•	•	2	•	2	×		••	2		-	-	•	1	
AT.	ACT	AAA	GTA	CGA	FGG	TGT	GCC	TTC	TAC	TTT	'GAA	CAT	GAT	ATC	TAA	CAA	ААТ	CGG	TAAG	300
Ι	\mathbf{L}	К	Y	D	G	v	Ρ	S	Т	\mathbf{L}	N	Μ	I	S	Ν	К	I	G	К	
GG'	TGG	ACG	CCT	гсти	ACA	ACC		тсс	TGA	TTG	GTC	GTG	GGC	AGA	GAA	таа	AGA	TTG	СТСТ	360
G	G	R	L	L	0	P	Y	P	D	W	S	W	A	E	N	к	D	C	S	200
					-															
GG.	AAT	CGT	GAG	CGC	TTT	CAA	AAT	TGC	GAT	TGA	CAA	ATT	'CGA	CAG	ATT	GTG	GGT	TTT	GGAT	420
G	I	v	S	Α	F	К	I	А	I	D	К	F	D	R	\mathbf{L}	W	v	L	D	
TC	AGG'	ТСТ	ТАТ	יממר	TAG	ייאמ	TGA	ACC	тат	ATG	TGC	ידרכ	מממי	GTT	GCA	тдт	רידי	TGA	тстс	480
S	G	L	ΙI	N	R	T	E	ее	I	C	A	P	ĸ	T.	н	v	F	D	L	100
	-	_	- [_	-	-	-		-		_		•	-	_		
AA	AAA	CAC	AAA	GCA	CCT	TAA	GCA.	AAT	CGA	AAT	'ACC	GCA	TGA	TAT	TGC	CGT	AAA	TGC	CACC	540
K	N	Т	К	Н	L	к	Q	I	Ε	I	Ρ	Н	D	I	A	v	Ν	Α	Т	
AC	AGG		GGG	AGG	GCT	AGT	CTC	тст	AGT	TGT		AGC	САТ	GGA	тсс	דאד	GAA	ייסמיד	ጥጥጥል	600
Т	G	ĸ	G	G	T.	v	S	T.	v	v	0	а.ос А	M	оол П	P	M	N N	T	T.	000
-	0		0	0	-	•	5	-	•	•	×	••	••	2	-			-	1	
GT.	ATA	CAT	AGC	AGA	CCA'	TAA	GGG	TGA	TGC	TTT	GAT	CGI	CTA	TCA	AAA	TTC	CGA	TGA	TTCC	660
v	Y	I	Α	D	Η	К	G	D	А	\mathbf{L}	I	v	Y	Q	N	S	D	D	S	
~ ~	000	Taa	.	a 1 a			a 1 a	mmm	~~ ~		001	mac			m		3 3 00		a	700
TT		rcg.	AATO	GAC	ITC:			T.L.L	CGA	ATTA V	CGA	TCC D	CAG	ATA	TGC		AAT	GAC	GATC	720
F	н	R	М	.T.	5	N	Т	F.	D	Y	D	Р	R	Y	А	ĸ	М	Т	T	
AA	TGG	AGA	AAG'	TTT	CAC	ATT	GAA	ААА	TGG	AAT	TTG	TGG	AAT	GGC	TCT	TAG	TCC	CGT	GACG	780
N	G	Е	S	F	т	\mathbf{L}	К	N	G	I	С	G	М	А	\mathbf{L}	S	Ρ	v	Т	
AA	CAA'	TCT	TTA'	TTA	CAG'	TCC'	TCT	CGC	TTC	TCA	CGG	TTT	GTA	ATT	TGT	'CAA	CAC	GGA	ACCA	840
N	N	L	Y	Y	S	Ρ	L	А	S	Н	G	L	Y	Y	v	N	Т	E	Р	

Figure 3.10

TTTATGAAATCACAATTTGGAGACAATAATAACGTGCAATATGAAGGATCCCAAGATACT													900							
F	Μ	к	S	Q	F	G	D	N	N	N	v	Q	Y	Ε	G	S	Q	D	Т	
TT	GAA	CAC	GCA	ATC.	ATT	GGC	TAA	AGC	AGT	ATC	GAA	AGA	TGG	CGT	ССТ	CTT	CGT	CGG.	ACTT	960
\mathbf{L}	N	Т	Q	S	\mathbf{L}	A	К	A	v	S	К	D	G	v	\mathbf{L}	F	v	G	\mathbf{L}	
GT	GGG	ТАА	TTC	AGC	TCT'	TGG.	ATG	CTT	GAA	CGA	GCA	TCA	ACC	ACT	TCA	GAG	AGA	AAA	TTTA	1020
v	G	N	S	A	\mathbf{L}	G	С	\mathbf{L}	N	Ε	Н	Q	Ρ	\mathbf{L}	Q	R	Ε	N	\mathbf{L}	
GA	ACT	GGT	CGC	CCA	'AAA	TGA	AAA	AAC	ACT	TCA	ААТ	GAT	CGC	AGG	TAT	GAA	ААТ	TAA	GGAA	1080
Ε	L	V	A	Q	N	Ε	К	Т	\mathbf{L}	Q	Μ	I	A	G	М	К	I	К	E	
GA	GCT	TCC	ACA	TTT	CGT	AGG	AAG	ТАА	CAA	ACC	TGT	ААА	GGA	CGA	АТА	TAT	GTT.	AGT	TTTA	1140
Ε	L	Ρ	Н	F	v	G	S	N	К	Ρ	v	К	D	Е	Y	Μ	\mathbf{L}	v	L	
AG	ТАА	CAA	AAT	GCA	GAA	AAT	AGT.	ААА	TAA	TGA	TTT	ТАА	TTT	'CAA	CGA	CGT	AAA	CTT	CCGA	1200
S	Ν	К	М	Q	К	I	V	Ν	N	D	F	N	F	Ν	D	v	N	F	R	
AT	TTT	GGG	TGC	GAA	TGT	AAA	GGA	ATT	AAT	GAG	AAA	TAC	TCA	TTG	CGC	AAA	TTT	ТАА	CAAT	1260
Ι	\mathbf{L}	G	Α	N	v	К	Ε	\mathbf{L}	Μ	R	N	Т	Н	С	Α	N	F	N	N	
AA	ААА	TAA	TCA	GAA	GAA'	ТАА	CAA	TCA	GAA	GAA	ТАА	CAA	TCA	GAA	CAA	TAA	CAA	TCA	GAAG	1320
к	N	N	Q	ĸ	N	N	N	Q	К	N	N	N	Q	N	N	N	N	Q	К	
AA	ТАА	CAA	TCA	GAA	'AAA	ТАА	CAA	TCA	GAA	GAA	ТАА	CAA	TCA	GAA	GAA	TAA	CAA	TCA	GAAT	1380
N	N	N	Q	К	N	N	N	Q	К	N	N	N	Q	К	N	N	N	Q	N	
AC	TAA	CAA	TTA	GAA	TGA	TAA	TCA	AGT	TCG	TCG	TTC	TTC	AAA	ATC	GCA	TTA	AAA	TCA	АТАА	1440
Т	N	N	*																	
AC	CAA	TTA	TTA	TTT	TAA	AAT	ATT	TTT	TCG	ATG	TAA	ACA	AAA	TTT	TTT	AAA	ATA	TTT	CATT	1500
AT	ATT	ATA	AAT	ааа	TAA	AAT	AAA	TAT	CGT	TTT	CGC	ATA	ААА	AAA	ААА	ААА	ААА	AAA	АААА	1560
AA	ААА	15	65																	

Figure 3.10 Nucleotide and deduced amino acid sequences of AcMRJP2. Initiation and termination of translational codons and putative polyadenylation signal are boldfaced. The signal peptide was underlined. *N*-linked glycosylation sites are boxed.

99

AmMRJP2 ACMRJP2	ATGACAAGGTGGTTGTTCATGGTGGCATGCCTCGGCATAGCTTGTCAAGGCGCCATTGTT ATGACAAGGTGGTTGTTCATGGTGGCATGCCTTGGCATAGCTTGTCAAGGCGCCATTATT *******************************	60 60
AmMRJP2 AcMRJP2	CGAGAAAATTCTCCAAGAAACTTGGAAAAATCATTGAACGTAATTCACGAATGGAAGTAT CGACAAAATTCTGCAAAAAACTTGGAAAATTCGTTGAACGTAATTCACGAATGGAAATAT *** ******** *** ****	120 120
AmMRJP2	TTTGATTATGACTTCGGTAGCGAAGAAAGAAGACAAGCTGCGATTCAATCTGGCGAATAT	180
AcMRJP2	ATCGATTATGATTTCGGTAGCGAAGAAGAAGAAGACAAGCTGCGATTCAATCTGGCGAATAC * ******* ***************************	180
AmMRJP2 AcMRJP2	GACCATACGAAAAATTATCCCTTCGACGTCGATCAATGGCGTGATAAGACTTTTGTCACC GATCATACGAAAAATTATCCCTTCGATGTCGATCAATGGCATGATAAGACTTTTGTCACC	240 240
AmMRJP2 AcMRJP2	ATACTAAGATACGATGGTGTTCCTTCTACTTTGAACGTGATATCTGGTAAAACTGGTAAG ATACTAAAGTACGATGGTGTGCCTTCTACTTTGAACATGATATCTAACAAAATCGGTAAG	300 300
AmMRJP2 AcMRJP2	GGTGGACGACTTTTAAAACCATATCCTGATTGGTCGTTTGCAGAGTTTAAAGATTGCTCT GGTGGACGCCTTCTACAACCATATCCTGATTGGTCGTGGGCAGAGAATAAAGATTGCTCT ******** *** ** ** ****************	360 360
AmMRJP2 AcMRJP2	AAAATTGTGAGCGCTTTCAAAATTGCGATTGACAAATTCGACAGATTGTGGGTTTTGGAT GGAATCGTGAGCGCTTTCAAAATTGCGATTGACAAATTCGACAGATTGTGGGTTTTGGAT	420 420
AmMRJP2 AcMRJP2	TCAGGTCTTGTCAATAGAACTGTACCTGTATGTGCTCCAAAGTTGCACGTCTTTGATCTG TCAGGTCTTATCAATAGAACTGAACCTATATGTGCTCCAAAGTTGCATGTCTTTGATCTG ********	480 480
AmMRJP2 AcMRJP2	AAAACCTCAAATCACCTTAAGCAAATCGAGATACCGCATGATATTGCCGTGAATGCCACC AAAAACACAAAGCACCTTAAGCAAATCGAAATACCGCATGATATTGCCGTAAATGCCACC **** * **** **********************	540 540
AmMRJP2 AcMRJP2	ACAGGAAAGGGAGGGCTAGTGTCTTTGGCTGTTCAAGCTATAGATCTTGCAAATACTTTA ACAGGAAAGGGAGGGCTAGTCTCTCTAGTTGTTCAAGCCATGGATCCTATGAATACTTTA *********	600 600
AmMRJP2 AcMRJP2	GTGTACATGGCAGACCATAAAGGTGATGCTTTAATCGTCTACCAAAATGCCGATGATTCC GTATACATAGCAGACCATAAGGGTGATGCTTTGATCGTCTATCAAAATTCCGATGATTCC ** ***** ******	660 660
AmMRJP2 AcMRJP2	TTCCATCGATTGACTTCCAACACTTTCGACTACGATCCCAGATATGCCAAAATGACGATC TTCCATCGAATGACTTCCAACACTTTCGATTACGATCCCAGATATGCCAAAATGACGATC	720 720
AmMRJP2 AcMRJP2	GATGGAGAAAGTTTCACACTGAAAAATGGAATTTGTGGAATGGCTCTTAGTCCCGTGACG AATGGAGAAAGTTTCACATTGAAAAATGGAATTTGTGGAATGGCTCTTAGTCCCGTGACG	780 780
AmMRJP2 AcMRJP2	AACAATCTTTATTACAGTCCTCTCGCTTCTCACGGTTTGTATTATGTTAACACGGCACCA AACAATCTTTATTACAGTCCTCTCGCTTCTCACGGTTTGTATTATGTCAACACGGAACCA **********	840 840
AmMRJP2 AcMRJP2	ТТТАТGAAATCACAATTTGGAGAAAATAAСGTCCAATACCAAGGATCCGAAGATATT ТТТАТGAAATCACAATTTGGAGACAATAATAACGTGCAATATGAAGGATCCCAAGATACT **********************************	897 900
AmMRJP2 AcMRJP2	TTGAACACGCAATCATTGGCTAAAGCAGTATCGAAAAATGGCGTCCTCTTCGTCGGACTT TTGAACACGCAATCATTGGCTAAAGCAGTATCGAAAGATGGCGTCCTCTTCGTCGGACTT ***********************************	957 960
AmMRJP2 AcMRJP2	GTAGGTAATTCAGCTGTTGGCTGCTGGAACGAGCATCAATCA	1017 1020
AmMRJP2 AcMRJP2	GAAATGGTCGCTCAAAATGACAGAACACTTCAAATGATCGCAGGTATGAAAATTAAGGAA GAACTGGTCGCCCAAAATGAAAAAACACTTCAAATGATCGCAGGTATGAAAATTAAGGAA *** ******* ******** * **********	1077 1080

Figure 3.11

AmMRJP2	GAGCTTCCACATTTCGTAGGAAGCAACAAACCTGTAAAGGATGAATATATGTTAGTTTTA 11	37
AcMRJP2	GAGCTTCCACATTTCGTAGGAAGTAACAAACCTGTAAAGGACGAATATATGTTAGTTTTA 11	40

AmMRJP2	AGTAACAGAATGCAGAAAATAGTAAATGATGATTTTAATTTCGACGATGTAAACTTCCGA 11	97
AcMRJP2	AGTAACAAAATGCAGAAAATAGTAAATAATGATTTTAATTTCAACGACGTAAACTTCCGA 12	200
	******* *******************************	
AmMRJP2	ATTTTGGGTGCAAATGTAAAGGAATTAATAAGAAATACTCATTGCGTAAAT 12	248
AcMRJP2	ATTTTGGGTGCGAATGTAAAGGAATTAATGAGAAATACTCATTGCGCAAATTTTAACAAT 12	260
	********** ****************************	
AmMRJP2	AACAATCAGAATGATAACATTCAAAATACTAACAATCAGAATGATAACAATCAGAAG 13	05
AcMRJP2	ΑΑΑΑΑΤΑΑΤCAGAAGAATAACAATCAGAAGAATAACAATCAGAACAATAACAATCAGAAG 13	20
	** ******** ****** *** ** * ***********	
AmMRJP2	AATAACAAGAAAAATGCTAACAATCAAAAGAATAACAATCAGAATGATAATTAA 13	59
AcMRJP2	AATAACAATCAGAAAAATAACAATCAGAAGAATAACAATCAGAAGAATAACAATCAGAAT	80
	******** * ** ********* ***************	
AmMRJP2		
AcMRJP2	ACTAACAATTAG 1392	

Figure 3.11 An alignment of nucleotide sequence of AcMRJP2 (AF525777) and AmMRJP2 (AF00063).

MTRWLFMVACLGIACQGAIVRENSPRNLEKSLNVIHEWKYFDYDFGSEERRQAAIQSGEY	60
MTRWLFMVACLGIACQGAIIRQNSAKNLENSLNVIHEWKYIDYDFGSEERRQAAIQSGEY	60

DHTKNYPFDVDQWRDKTFVTILRYDGVPSTLNVISGKTGKGGRLLKPYPDWSFAEFKDCS	120
DHTKNYPFDVDQWHDKTFVTILKYDGVPSTLNMISNKIGKGGRLLQPYPDWSWAENKDCS	120

KIVSAFKIAIDKFDRLWVLDSGLVNRTVPVCAPKLHVFDLKTSNHLKQIEIPHDIAVNAT	180
GIVSAFKIAIDKFDRLWVLDSGLINRTEPICAPKLHVFDLKNTKHLKQIEIPHDIAVNAT	180

${\tt TGKGGLVSLaVQAIDLANTLVYMADHKGDALIVYQNADDSFHRLTSNTFDYDPRYAKMTI$	240
${\tt TGKGGLVSLVVQAMDPMNTLVYIADHKGDALIVYQNSDDSFHRMTSNTFDYDPRYAKMTI$	240
*********.***.**	
DGESFTLKNGICGMALSPVTNNLYYSPLASHGLYYVNTAPFMKSQFGENN-VQYQGSEDI	299
NGESFTLKNGICGMALSPVTNNLYYSPLASHGLYYVNTEPFMKSQFGDNNNVQYEGSQDT	300

LNTQSLAKAVSKNGVLFVGLVGNSAVGCWNEHQSLQRQNLEMVAQNDRTLQMIAGMKIKE	359
LNTQSLAKAVSKDGVLFVGLVGNSALGCLNEHQPLQRENLELVAQNEKTLQMIAGMKIKE	360

ELPHFVGSNKPVKDEYMLVLSNRMQKIVNDDFNFDDVNFRILGANVKELIRNTHCV	415
ELPHFVGSNKPVKDEYMLVLSNKMQKIVNNDFNFNDVNFRILGANVKELMRNTHCANFNN	420

NNNQNDN I QNTNNQNDNNQKNNKKNANNQKNNNQNDN-452	
KNNQKNNNQKNNNQNNNNQKNNNQKNNNQKNNNQKNNN	
****::* **.***::*****::: *********	
	MTRWLFMVACLGIACQGAIVRENSPRNLEKSLNVIHEWKYFDYDFGSEERRQAAIQSGEY MTRWLFMVACLGIACQGAIIRQNSAKNLENSLNVIHEWKYIDYDFGSEERRQAAIQSGEY MTRWLFMVACLGIACQGAIIRQNSAKNLENSLNVIHEWKYIDYDFGSEERRQAAIQSGEY DHTKNYPFDVDQWRDKTFVTILRYDGVPSTLNNISGKTGKGGRLLKPYPDWSFAEFKDCS DHTKNYPFDVDQWHDKTFVTILKYDGVPSTLNMISNKIGKGGRLLQPYPDWSWAENKDCS KIVSAFKIAIDKFDRLWVLDSGLVNRTVPVCAPKLHVFDLKTSNHLKQIEIPHDIAVNAT GIVSAFKIAIDKFDRLWVLDSGLINRTEPICAPKLHVFDLKNTKHLKQIEIPHDIAVNAT TGKGGLVSLAVQAIDLANTLVYMADHKGDALIVYQNADDSFHRLTSNTFDYDPRYAKMTI TGKGGLVSLAVQAMDPMNTLVYIADHKGDALIVYQNSDDSFHRMTSNTFDYDPRYAKMTI DGESFTLKNGICGMALSPVTNNLYYSPLASHGLYYVNTAPFMKSQFGENN-VQYQGSEDI NGESFTLKNGICGMALSPVTNNLYYSPLASHGLYYVNTEPFMKSQFGENN-VQYQGSEDI LNTQSLAKAVSKNGVLFVGLVGNSALGCLNEHQSLQRQNLEMVAQNDRTLQMIAGMKIKE LNTQSLAKAVSKDGVLFVGLVGNSALGCLNEHQPLQRENLELVAQNEKTLQMIAGMKIKE

Figure 3.12 An alignment of deduced amino acid sequences of AcMRJP2 (AF525777) and AmMRJP2 (AF00063).

3.1.7 Genetic distance and phylogenetic relationships of AcMRJPs

Interspecific sequence divergence between MRJP1 and MRJP2 of *A. cerana* and *A. mellifera* was 0.0618 - 0.0934 and 0.0912 - 0.1438 whereas divergence between different families of MRJPs in *A. mellifera* was 0.2419 (AmMRJP2 - AmMRJP3) - 0.4490 (AmMRJP3 - AmMRJP5) and 0.4252 - 0.8439 at nucleotide and deduced protein levels, respectively.

A bootstrapped NJ tree constructed from sequence divergence of nucleotides and deduced amino acids (Figure 3.13) revealed close relationships between AcMRJP1 - AmMRJP1 and AcMRJP2 - AmMRJP2 from different bee species typically found in genes born from gene duplication process (Mitsuo *et al.*, 2001). Albert *et al.* (1999a) determined evolutionary relationships of AmMRJP families and reported that family variants of MRJP genes resulted from near-simultaneous gene duplication, with MRJP4 possibly being the earliest divergence within these gene families.

Figure 3.13 A bootstrapped neighbor-joining tree illustrating relationships between different families of AmMRJPs (1 - 5) and AcMRJP1 and AcMRJP2. Values at the node (nucleotides, above and deduced amino acid, below) indicated the percentage of times that the particular node occurred in 1000 trees generated by bootstrapping the original nucleotide or deduced protein sequences.

۰.

3.2 Cloning and characterization of AcMRJP1 and AcMRJP2 genes

3.2.1 Genomic DNA extraction

Genomic DNA was extracted from thorax of each *A. cerana* individual using phenol-chloroform-SDS method. The genomic DNA was further analyzed by 0.7% agarose gel electrophoresis. A single band of a high-molecular weight genomic DNA at the size above 23.1 kb was observed (Figure 3.14). The total DNA concentration was determined by measuring the optical density at 260 nm. An OD_{260}/OD_{280} ratio in the range of 1.8 to 2.0 indicated pure prepared DNA. An amount of extracted DNA was approximately 1.5-2.0 µg per honeybee individual.

Figure 3.14 A 0.7 % ethidium bromide stained - agarose gel showing the quality of total DNA extracted from thorax of *A. cerana*

```
lane M = \lambda / HindIII
lanes 1-6 = Total DNA extracted from six individuals of A. cerana
```

3.2.2 Amplification of AcMRJP1 and AcMRJP2 genes

The genomic organization of AcMRJP1 and AcMRJP2 genes were determined by Polymerase Chain Reaction (PCR). The several of specific and degenerated primers were designed from cDNA sequences of AcMRJP1 and AcMRJP2 obtained from RT-PCR experiment. Including the cDNA of AmMRJP1 and AmMRJP2 deposited in GenBank. Gene sequences were deduced from nucleotide sequences of three overlapping regions. The genomic structures were determinined by comparison between the genomic sequences and the cDNA sequences.

3.2.2.1 Isolation of AcMRJP1 gene

Genomic DNA of A. cerna was initially amplified using degenerated FMRJP and RMRJP primers (Table 2.2) designed from conserved cDNA sequence at location 28th-48th nucleotides, 767th-787th nt in AcMRJP1 cDNA and 28th-48th nt, 758th-778th nt in AcMRJP2 cDNA. The PCR product was checked on 1.2% agarose gel electrophoresis. A band of PCR product with the size around 1,500 bp was purified from agarose gel. To improve specificity, the nested gene specific primer; nM1F (Table 2.2), was designed and subsequently employed in a second round of amplification. Semi-nested PCR (nM1F and RMRJP) was carried out using the geleluted PCR product as template. The PCR products were analyzed on 1.2% agarose gel electrophoresis. After amplification, approximately 1,500 bp of semi-nested PCR product were obtained (Figure 3.15, A). The PCR product was purified from agarose gel and phosphorelated by T4 polynucleotide kinase. The DNA fragment was ligated to dephosphorylated / Sma I - digested $pGEM^{\oplus}-3Zf(+)$ and subsequently electrotransformed to E. coli XL1-Blue. Three recombinant clones were selected for sequencing in both directions by M13 forward and reverse primers using and automated DNA sequencing. Analysis of the DNA sequence of all clones revealed that they contained 1,501 nucleotide sequences corresponding to part of exon 1 to exon 4 of the AcMRJP1 gene encoding 242 amino acid residues.

In the second overlapping region, the degenerated primer 3M1/2F designed from AcMRJP1 cDNA at location 660th - 687th nt and at 654th - 678th nt of AcMRJP2 cDNA sequence together with AcMRJP1 gene-specific primer (3M1R, located at 1,364th - 1,387th nt) were used to amplified the genomic DNA. The PCR product of about 1,600 bp was obtained followed by eluting from agarose gel. Nested primer (3*n*M1F, located at 685th -710th nt of AcMRJP1 cDNA) was designed and used to amplified the gel-eluted first PCR product with the same reverse primer; 3M1R. The result showed approximately 1,600 bp of nested PCR products were obtained (Figure 3.15, B). The amplification product was eluted and subjected to further analysis by DNA cloning and sequencing. Three recombinant plasmids were subjected to sequencing. DNA sequence analysis revealed that the nucleotides sequence of the recombinant clones contained the 1,596 bp product correspoded to part of the exon 4 to exon 6 of AcMRJP1 gene encoding 205 amino acid residues.

In the third region; the upstream 5' region of AcMRJP1 gene was performed using primer designed from the 5' upstream of AmMRJP1 which deposited in GenBank (AF388203). The 5M1F primer designed from 604 bp upstream region of AmMRJP1 and the gene-specific primer; 5M1R designe was based on the known nucleotide sequence of the AcMRJP1 gene previously obtained from the first amplification. These primers were used to amplify the genomic DNA. After amplification, a band of approximately 1,200 bp of PCR product (Figure 3.15, C) was purified from agarose gel and subjected to clone. The colony was analyzed by colony PCR amplification. Three clones were identified to have the expected insert fragment. The recombinant plasmid was chosen for further analysis by DNA sequencing. Nucleotide sequence analysis revealed the inserted fragment of 1,196 bp corresponded to 5' upstream region, exon 1 and exon 2 encoding for 129 amino acid residues.

Figure 3.15 The amplification products of the 1st and 2nd regions (A and B) and 3rd region (C) of AcMRJP1 gene.

Lane M = 100 bp DNA ladder

(A): Lane 1 = Semi-nested PCR product of AcMRJP1 amplified with nM1F and RMRJP primers

(B): Lane 1 = Semi-nested PCR product of AcMRJP1 amplified with 3nM1F and 3M1R primers

(C): Lane 1= PCR products of AcMRJP1 amplified with 5M1F and 5M1R primers

3.2.2.2 Isolation of AcMRJP2 gene

The 1,500 bp major band of PCR product amplified from degenerated FMRJP and RMRJP primers was extracted from agarose gel. Nested primer, *n*M2F (Table 2.2), was designed and subsequently used in PCR reaction together with RMRJP primer. Semi-nested PCR (*n*M2F and RMRJP) was carried out using the gel-eluted PCR product as template. The PCR product was analyzed on 1.2% agarose gel. After amplification, approximately 1,500 bp of semi-nested PCR product were obtained (Figure 3.16, A). The PCR product was purified form agarose gel. The DNA fragment was further analyzed by cloning and sequencing. Ten recombinant clones were subjected to colony PCR. Three clones revealed the expected insert DNA fragment. Plasmid DNA was extracted from each recombinant clone and double-strand sequenced. Analysis of the DNA sequence of all clones revealed that they contain 1,480 nucleotide sequences corresponding to part of exon 1 to exon 4 of the AcMRJP2 gene encoding 232 amino acid residues.

In the second overlapping region, the degenerated primer 3M1/2F designed from AcMRJP1 cDNA at location 660th - 687th nt and at 654th - 678th nt of AcMRJP2 cDNA sequence together with AcMRJP2 gene-specific primer (3M2R, located at 1,425th - 1,449th nt) were used to amplified the genomic DNA. The PCR product of 1,800 kb was obtained, followed by eluting from agarose gel. The gel-eluted PCR product was used as template in the second semi-nested PCR. Nested primer (3M2F, located at 682th -706th of AcMRJP2 cDNA) was designed and used to amplified the gel-eluted first PCR product with the same reverse primer; 3M2R. The result showed approximately 1,800 bp of nested PCR products were observed (Figure 3.16, B). The amplification product was eluted and subjected to further analysis by DNA cloning and sequencing. DNA sequence analysis revealed that the nucleotides sequence of the recombinant clones contained the 1,811 bp product corresponded to part of the exon 4 to exon 6 of AcMRJP2 gene encoding 236 amino acid residues.

In the third region; the upstream 5' region of AcMRJP2 gene was performed using primer designed from the 5' upstream of AmMRJP2 which deposited in GenBank (AY078399). The 5M2F primer designed from 859 bp upstream region of AmMRJP2 and the gene-specific primer; 5M2R designe was based on the known nucleotide sequence of the AcMRJP2 gene previously obtained from the first

109

amplification were used to amplified the genomic DNA. After amplification, a band of approximately 1,200 bp of PCR product was purified from agarose gel and subjected to second round of PCR. Semi-nested PCR was carried out using the original forward 5M2F primer and 5nM2R-1 (133rd -160th nt). The PCR product was analyzed on 1.2% agarose gel electrophoresis. The result showed the amplified PCR product of approximately 800 bp (Figure 3.16, C). The PCR product was then eluted and subjected to clone and sequence. The recombinant plasmid were selected for further analysis by DNA sequencing. Nucleotide sequence analysis revealed the inserted fragment of 790 bp correspoded to 5' upstream region and part of the exon 1 encoding for 53 amino acid residues.

Figure 3.16 The amplification products of the 1st and 2nd regions (A and B) and 3rd region (C) of AcMRJP2 gene.

Lane M = 100 bp DNA ladder

(A): Lane 1 = Semi-nested PCR product of AcMRJP2 amplified with nM2F and RMRJP primers

(B): Lane 1 = Semi-nested PCR product of AcMRJP2 amplified with 3M1/2F and 3M2R primers

(C): Lane 1= Semi-nested PCR product of AcMRJP2 amplified with 5M2F and 5nM2R-1 primers

3.2.3 Characterization of AcMRJP1 gene

To analyze the AcMRJP1 gene, a Polymerase Chain Reaction (PCR) approach was used. After sequencing of three overlapping recombinant clones, the sequence datas were assembled into a single contig of 3,663 bp in length (Figure 3.17; GenBank accession number AY515688). The intron-exon organization of AcMRJP1 gene was performed by comparison of the 3,663 bp sequence with the cDNA coding for AcMRJP1. The coding region of the AcMRJP1 gene spans over 2,968 bp. The sequences around the exon/intron boundaries were determined and are shown in Table 3.2. Six exons were found in the coding region and all intron-exon boundaries followed the GT-AG rule (Figure 3.18, Table3.2). The continuous ORF encoded the AcMRJP1 protein, which is 433 amino acid residues in length.

The length of each exon varied from 133 bp (exon 5) - 284 bp (exon 4) whereas introns varied between 84 bp (intron 2) and 563 bp (intron 5) in length (Table 3.3). The ATG translation initiation codon is located in exon 1 and the TAG termination codon is in exon 6. The GC content reflects a slightly greater thermal stability in exons (34% - 42%) than in introns (15% - 29%) (Table 3.3). Introns 2, 3, and 5 interrupt ORFs between two codons (type 0 intron) whereas the remaining introns interrupt ORFs after the 1st or 2nd of the codons (type 1 and type 2 intron, respectively). The sequence of AMRJP1 gene was in good agreement with the cDNA sequence.

ACATCACTATTCTCATTGCATCAGACCTGCAAAAGAAATTGAATTTTTTGGATTTTTGTA 60 120 180 240 TGTGACATAATAGATAAACAAAATTTTGTAAAATTTCTACTCAAACAATATCTTTTAGG 300 GAATATAAATTATAGACCTGTCACATTCTAAATTCTTTACAACATATCTACAAGATAAATA 360 AGATAATTTCAAGAATTTCAAAGGAATTTTAAAATACAATTTACTTTATCTCTATAAAGT 420 ATACGTCATTACCGCCCTAT/ATCATTGACCGATCGTTGGTGAAAAATTCAACAGCTCCTGCA 480 GTTCACGTACAATATCCATTGCTTCGTTACTCGCAGCCTAGGTAAGTGTTCCAAATATCT 540 CAATTGTAATACTCCTATACGAAACACCTTATTATTTTCTGACAAGACGAAATATTTTGT 600 AGAAAA JICAAAGGTGGTTGTTTATGGTGGTATGCCTTGGCATAGTTTGTCAAGGTACG 660 M T R W L F M V V C L G I V C Q G T ACAAGCAGCATTCTTCGAGGAGAATCTTTAAACAAATCATTAAGCGTCCTTCACGAATGG 720 T S S I L R G E S L N K S L S V L H E W AAATTCTTTGATTATGATTTCGATAGCGATGAAAGAAGAAGAAGATGCAATTCTATCTGGC 780 K F F D Y D F D S D E R R Q D A I L S G GAATACGACTACAGGAAAAATTATCCATCCGACGTTGATCAATGGCATGgtaaattagat 840 E Y D Y R K N Y P S D V D Q W H G cataaaatattttaatattgcattttacttgtccaaaattcttaatatccaatgattaca 900 atttaaaaaatattaaacatttttcatttcttattcaagGTAAGATTTTTGTCACCATGC 960 KIFVTML TAAGATACAATGGCGTACCTTCCTCTTTGAACGTGATATCTAAAAAGATCGGTGATGGTG 1020 R Y N G V P S S L N V I S K K I G D G G GACCTCTTCTTCAACCTTATCCCGATTGGTCGTTTGCTAAATATGACGATTGCTCTGGAA 1080 PLLQPYPDWSFAKYDDCSGI TCGTGAGCGCCACAAAACTTGCGqtaattqaacattqtctttatqattatatcttcacaa 1140 VSATKLA ttaattttccaaagaaaaaagaagattcatttgttatgtgatatttagATCGACAAATGCG 1200 IDKCD ACAGATTGTGGGTTCTGGACTCAGGTCTTGTCAATAATACTCAACCCATGTGTTCTCCAA 1260 R L W V L D S G L V N N T Q P M C S P K 1320 L L T F D L T T S Q L L K Q V E I P H D ATGTTGCCGTAAATGCCACCACAGGAAAGGGAAGACTATCATCTCTAGCTGTTCAACCTT 1380 V A V N A T T G K G R L S S L A V Q P L TAGATTGCAATATAAATGGTGATACTATGgtgagtttataattataaagtaggcaactta 1440 DCNINGDTM cttttcttggaattttcattcactttgtgtatttctagcgatgctaagcgatgaataatt1500 catatqqaaatataacttaaattaqaaaaqtaatatcqcaqaatqataaaatatccaaaaa1560 ${\tt taataccctcttaaataattctacctgaaatcttaagacaaagaattagaatgtctctta$ 1620 1680 1740 1800 attttcaatattttttatttaaatatatttataattatattgagagaaataaaattc1860 ${\tt ttctcaacgcattaggatttataaaaaaaaaaaacatctatgaaagttacaaaaatcaaaaaa$ 1920 aaaaaqttqaaatttatcqqacaatattattaattacaatataatcataccatqataatq 1980 ${\tt atataacag} {\tt GTATACATAG} {\tt CAGACGAG} {\tt AAAG} {\tt GTGAAG} {\tt GTGTATCATG} {\tt ATGTTCT} {\tt ATGTTCATG} {\tt ATGTTCT} {\tt ATGTTCATG} {\tt ATGTTCT} {\tt ATTCATG} {\tt ATGTTCT} {\tt AttacATAG} {\tt ATGTTCT} {\tt ATTCATG} {\tt AttacATAG} {\tt At$ 2040 V Y I A D E K G E G L I V Y H D S

Figure 3.17

112

GAT	AA	TTC	TTT	CCI	ATC	GA	TT	GAC	TTC	CA	AAA	CT	ТΤ	CGA	ATT.	ACO	GAI	rcc	TA	AAI	TT	AC	CA	AA	2100
DI	N	S	F	Н	R		L	Т	S	к	Т		F	D	Y	Ι	D	Ρ	к	H	7	Т	к		
ATG	ACO	דמב	ממר	TG	JAG	ממ	۵G	ኮጥጥ	CAC	ממי	റററ	ממי	۵G	TGC	ממנ	ጥጥና	ריי	rgg	יממ	TGO	2CT	ירי	יידמ	ገጥ	2160
M '	T	I	N	G	E		S	F	T	T	ç) (S	G	I	2	S	G	M	7	A	L	S	51	2100
CCC	אדמ	320	ממד	CA	סדר	יידיר	ימיד	מידיד	CAC	TC.	CTG	מדצ	GC	ጥጥረ	מידי	cci	۵GI	Гтт	GT	ስጥባ	דמי	יכיד	ג <u>מ</u> ידיי		2220
P I	M	T	N	N	L		Y	Ŷ	S	P	v		A	S	T	ہے۔ ع	S	L	Y	7	 [V	N		2220
ACG T	GA/ E	ACA O	ATI F	CAC R	GAA T	CA	TC(S	CAA N	TTA Y	ATG. E	AAC C	:AA:	AA' N	TGC A	CG V	TAC H	CAI H	ГТА Y	TGI E	AAC O	Gc Gc	jta	aat	ta	2280
taa	aat	tta	aqt	tta	act	tt	taa	aat	aat	at	tac	ta	ta	tto	aq	tq	aa	aa	tt	at	tc	ta	aaa	at	2340
ata	acq	gtt	ttt	caa	act	tg	tci	tga	ato	gt	gat	taa	ag	ata	at	ttt	taa	iqt	at	tto	ta	at	taa	aa	2400
aata	ati	Lca	aat	at	tga	aa	cat	ttg	tta	iaa	tga	aat	ta	ago	gct	qaa	aaa	ata	ta	qaa	itt	qt	ato	ct	2460
ctg	cta	aac	gca	aat	ttt	aa	at	tac	tta	ica	att	taa	at	aaa	ita	aaa	act	tq	aa	att	at	ta	tad	ca	2520
aca	ata	att	tcc	tat	tag	ct	tti	tag	aat	cq	ata	tca	ac	aqa	att	tqt	tto	ica	tt	tt	ta	at	taa	aa	2580
tcc	aca	att	ttt	ta	ctq	at	tco	caq	AGI	TC.	ААА	AT	AT	TTI	GG.	ATA	ACC	CCA	AT	CGI	CT	GC	TA	AA	2640
					- J				v	0	N	r :	I	L	D	5	Г	0	S	S	3	A	к		2010
										-								•	-						
GTA	GT	ATC	GAA		GTG	GC	GT	ССТ	CTI	CT	TCG	GA	CT	GGI	rGG	GCO	GAJ	гтс	'AG	стс	TT	GG	CTC	GC	2700
v v	v	S	к	s	G	;	v	L	F	F	G	;]	L	v	G	I	D	S	A	I		G	С		
TGG. W J	AA(N	CGA E	ACA H	TCO R	GAT S	CA	CT' L	TGA E	AAC R	JAC. H	ACA N	ATA.	AT I	Cgt	ta	gca	aad	ctg	ICG	aat	ga	itt	tti	tg	2760
att	t.t.t	tat	tat	ati	ttt	ca	- tai	tca	cat	•++•	ctt	CCI	- Fa	cca	ita	tat	t t a	ato	act	Fac	•ta	ad	cat	Γa	2820
aac	tta	rtc	aca	aad	rac	aa	aad	caa	too	ac	tac	tad	aa.	tta	Jac	ad	aas	aac	aad	nt c	.ec	rat	rat	ta	2880
cga	aad	nta	ctt	ada	300	aa	ta	aca	tac	rcc.	tat	at	at.	ata	at	aad	rat	- 22	ta	hac	nat	at	cal	-9 ++	2940
tca	aat	tto	ago	·99:	rαa	at	ta	aat	ata	at	att	ad	ta	ata	aa	au:	aar	.uu 1aa	ato	res rtr	st c	.uc .ta	ca		3000
tta	tat	tta	αta		59∝ Fot	++	to	tot	ata	ta	tat	ati	ta.	ata	at	att	+++	- 00			at	ct	ta	at	3060
++++	tas		ycu tta	ta	+++	at	oti	tra	att	at.	cto	++:	22 22	tac	it c		ato	.cy	221	tat	.a.		at.		2120
otai	ta	aaa	taa	+++		at	++/	aca	att	-++	aat	+ -	aa at	tas	1+2	201	222	.ya				ica	act	by ta	2100
Gaa	200 200		uya ∍+∍		age	ac	ta	yca aaa	566	at	tta	at	at	cac aas	ita	aya	aac 7++	ta			ja.		gai	ta	3240
gaa	ati	et a	aca		-ya -++	ac	220		aci	at	222	tate	a	yac	icy		966		ty:	rac	at	aa to	gu	~~	3240
alli	ala	aca	Lai		566	aa	aad	aay	yat	au	aaa	La	aa	aay	jaa	aaı	LLC	ILL		Jac	au	.La	Cay	yc p	3300
GTA	CCC	ንጥር	GCT	ירא		TG	אידמ	GAG	ארז	T	тсъ	יממ	TG	אדמ	ገርጥ	TG	302	אדכ	יע בי	רמב	ב ידי	סמ	CD 2	NG	3360
T	1	V	A	Q	S	D		E	T	L	Q	M	10.	I	v	G	N	1	K	I	F	(E	A	2200
CCC		202	CAC	יכדני	200	<u>م</u>	ימיד	רידיר	רגם	סמי	מידמ	ימיד	גיד	אא	202	TCI	רתא	ראר	ית איי	ח ער ע		יחיי	יחיתי	אא	2420
T.	1 1 1	D	U U	v	ייים ס	л.). Т		r ร	נתט	D	v	т. Т	1	nn(N	D 20	10/ F	ر بربر ۱	7	.н. т	T.	100	7 I I 7	т. Т.		3420
Ц		5	11	v	F	-		Γ.	D	ĸ	1	1		TA	ĸ	Ľ		L	1	Ц	``		Ц	5	
GTA	ACI	AGA	ΔΤΩ	CA	מממ	ממ	тG	9.79	רממ	ממי	тса	CT	ът) ۵ ۵	ግጥጥ			דמב	GT	זממ	۲. ۲	יידר	נסמי	ממ	3480
N	1	R	м	0	ĸ	м		Δ	N	N	מ	v		N	F	N	T	ייי ר	v	N	т Эл	7	P	т	5400
			1.1	¥		1.1					2	-			1		-		۷	14	-		IC I	1	
TTA	TG	GAC	GCT	יאאי	ГGТ	אמי	АТ	GAC	ттс	TAF	тта	GA	AC	ACI	rcg	тта	GCC	3AA	יממ	гсс	TT	ТА	יאמי	TG	3540
м	I	D	Δ	N	v	N	1	D	 T.	Т	τ.	N		т Т	R	С	र स	7	N	P	 N	 J	N	ס	5510
••	•				•			0		-	-			•		C	-	-		•	•	•		2	
ATA	AC	ACC	сст	TT	CAA	АА	TT	TCA	АТА		тст	G		AAT	гст	GT	TTT	гтт	TC	GAI	ראי	דאי	' א די	ГА	3600
N	, ,	г	P P	F	К	Т		S	т	н	L	-													0000
		-	-	-	- `	-		-	-		_														
ААТ	ΑТ	ГСТ	тсе	AA;	ላጥጥ	ידר	TT	атс	יממ	ГGT	атт	אידמי	GΑ	аπα	ата	тал	זעמ	מדא	יממ	רמד	r r o	3TT	יידיני	CG	3660
דער		- 0 1							• •						1 }								**'		3663
Fig	11.84	. 2	174	Ora	ani	70	tion	n of	• •	\ / I	ם נס	1 .	or		$C \sim$	lin	۰ ۱		ما	tid.	90	<u>an</u>	4.4	educ	ad ami
rigi	ure	: J.	1/1	org	am	Zä	IOI	1 01	A	1111	ωr	гg	çei.	IC.		ann	g t	iuc	160	uu	52	aii(u u	euuc	

Figure 3.17 Organization of AcMRJP1 gene. Coding nucleotides and deduced amino acids of each exon are capitalized. Introns are shaded and illustrated with lower letters. The TATA box and start and stop codons are shaded and bold–italicized. Signal peptide sequence and the poly A additional signal site are underlined.

113

Figure 3.18 Schematic diagrams of *A. cerana* MRJP1 cDNA and gene. Complete cDNA was obtained by RT–PCR whereas genomic DNA fragment of AcMRJP1 was obtained from overlapping PCR amplification products. Non–coding regions are represented by solid bars. Introns (with numbers) are gray–shaded. Primers used for amplification of genomic AcMRJP1 and corresponding clones are illustrated.

Exon no.	Exon size				Seque	ence at exon-intro	Intron no.	Intron size	Amino interrupted					
	(bp)	5	'splic	e dor	ior			3'sp	lice a		(bp)			
1	223	CAA Q	TGG W	CAT H	G G	gtaaattagat catacattt cttattcaag	GT	AAG K	ATT I	TTT F	GTC V	1	110	Gly-75
2	164	ACA T	aaa K	CTT L	GCG A	gtaattgaaca ttgtttatg tgatatttag		ATC I	GAC D	aaa K	TGC C	2	84	Ala-129
3	222	GGT G	GAT D	ACT T	ATG M	gtgagtttata attaataat gatataacag		GTA V	TAC Y	ATA I	GCA A	3	580	Met-203
4	284	САТ Н	TAT Y	GAA E	GG G	gtaaatataaa attatttta ctgattccag	A	GTT V	CAA Q	AAT N	ATT I	4	330	Gly-298
5	133	AGA R	CAC H	AAT N	ATC I	gttagcaactg cgaaatttt gaaattacag		CGT R	ACC T	GTC V	GCT A	5	563	Ile-342
6	276													

Table 3.2 Exon-intron splice junctions of the AcMRJP1 gene

The exon sequences are shown in upper-case letters and the intron sequences are shown in lower-case letters.

Exon	Genomic DNA	GC	Intron	Genomic DNA	GC
	(No. of nucleotides)	content		(No. of nucleotides)	content
		(%)			(%)
AcMRJ	P1				
1	1-223 (223 bp)	37	1	224-333 (110 bp)	15
2	334-497 (164 bp)	40	2	498-581 (84 bp)	20
3	582-803 (222 bp)	41	3	804-1383 (580 bp)	21
4	1384-1667 (284 bp)	35	4	1668-1997 (330 bp)	20
5	1998-2130 (133 bp)	42	5	2131-2693 (563 bp)	29
6	2694-2969 (276 bp)	34			

Table 3.3 GC content and length of exons and introns in AcMRJP1 gene

3.2.4 Characterization of AcMRJP2 gene

The PCR approach was used to analyze AcMRJP2 gene. After sequencing of three overlapping recombinant clones, the sequence datas were assembled into a single contig of 3,963 bp in length (Figure 3.19; GenBank accession number AY515689). The intron-exon organization of AcMRJP2 gene was performed by comparison of the 3,663 bp sequence with the cDNA coding for AcMRJP2. The coding region of the AcMRJP2 gene spans over 3,187 bp. The sequences around the exon/intron boundaries were determined and are shown in Table 3.4. Six exons were found in the coding region and all intron-exon boundaries followed the GT-AG rule (Figure 3.20, Table 3.4). The continuous ORF encoded the AcMRJP2 protein, which is 463 amino acid residues in length.

The length of each exon varied from 133 bp (exon 5) - 372 bp (exon 6) whereas introns varied between 88 bp (intron 2) and 868 bp (intron 5) in length. The ATG translation initiation codon is located in exon 1 and the TAG termination codon is in exon 6. The GC content reflects a slightly greater thermal stability in exons (28% - 42%) than in introns (16% - 24%) (Table 3.5). Introns 2, 3, and 5 interrupt ORFs between two codons (type 0 intron) whereas the remaining introns interrupt ORFs after the 1st or 2nd of the codons (type 1 and type 2 intron, respectively). The sequence of AMRJP2 gene was in good agreement with the cDNA sequence, except for A₈ in cDNA sequence that was corrected to G from this result.

118

TG	AGA	A AT	'GA	ЪТ	TGC	CAG	TAA	TAT	GG	rcg	CT	AAT	'AA'	[A]	AGA	CT?	[TTT	CAA	AT	TA	TT	GTI	CT.	AC	60
AATTAAGATTTTCCAATTTTAATTCCGTATTTAACTCATCATATGTGAATATATAT														120											
TG	AT	ГТТ	'GA	TA.	AGA	AA	ATA	\TT	AC	AAA	AT	GTT	'AA/	AT(GGG	AA	TTT.	AAA	ATC	тс	GAJ	TAAC	CAT	GA	180
AT	000	CTA	AA	TT	TTG	'AA	TGA	GA	AT	ATA	AA	AAC	ATT	[A]	ACA	TAT.	LAA,	TTA	ATT	CT	'ATI	TTT	TAA.	AA	240
AA	TT	GCT	'CT	TC.	ATA	\TT	TTT	TT	TG	GAA	CT	AAA	TAT	CL7	ATC	TC:	rct'	TAA	ATA	GT	TTT	TT	AGA.	AC	300
TC	CG.	ΓΑΤ	'GA	AG	CTA	AA	CAC	CAC	AC	GCA	AA	TAA	'AG/	łG(GTG	TGC	GCA	AAG	GCA	TT	TTT	AGC	GA	AT	360
ΑT	'AA/	ATT	TA	'AA	CCC	GT	CAC	CAT	TC	ГАА	TC	CTT	TA	AG/	AAA	TAT	ICT.	ACA	AG	AT	AAA	ACGA	AA	AT	420
TT	TG		AT	'TC	AAA	AA	AAC	'AA	TT	ГАС	'TT'	TAT	CTC	CTC	GTA	AA	STA	CGI	AC	CA	TTA	CCF	ACC	\overline{Q}_{i}	480
Ч¢;	¥¥;¥	ы́нG	AC	CA	ACC	GT	AGI	CA	AA	ITA	'CA	ACA	GT1	CLC	GTA	CAC	GTT(CAC	TT	AC	'ATI	CTC	SCA	GT	540
AT	CC.	ГАА	GT	'AA	GTI	TC'	TTG	JAT	TA?	гст	TG	TTA	AT/	AA?	TAT	TT	ATT'	TGC	'AA	TC	TTT	CAJ	TTT.	AT	600
CT	'GG <i>l</i>	AAA	ΓA	'GA	TAA	'TAT	TTT	TAT	TT?	TAG	AA	AAA	H(C)	ACI	AAA	GTO	GGT	ГGІ	TT	AT	GGJ	GGG	CAT	GC	660
												M]	[К	W	L	F	י	M	V	A	С		
OT	maa		m 7	~~	~~ ~					~ ~ ~ ~	י גרדיו			ותר		mm/		~~ ~			000	1007		2 (1)	200
C1	TGC	GCΑ τ	AT A	GC	TTG	STC.		, ,	GCC		TA	TTC מ	GAC	CAP N	AAA N		STG.		AA ,	AA N	CT.	GGA	AA.	A.I.	720
Ц	G			A	<u> </u>	Q		-	A	Ŧ	Ŧ	R	. ,	2	N	5	А	K		N	Ц	E	N		
ጥር	יכידיי	ΓCA	20	יכידי	דעע	יחרי		גאי	TC	<u>מ א ב</u>	איי	ለጥለ	т <i>С</i> (ימב	ר ידי ד	TCI	ידידי	TCC	صت	NC	CCI	ACI		C N	700
e IC	. т. О. Т.	ND 1		.G1. W	T	ביב. ש	E DJA	, ,	т. w	JAA V	v	нтн т	TCC	אנ. ר	v				100	AG C	E E	LAGA E	AA) D	GA	/80
5	Ц	14		v	1	11	Ľ	-		ĸ	1	-	1	,	1	D	T.	G	3	5	Ľ	E	К		
۵G	201	200	ст		۲۵D	יחרי	דממ	ירי		ഹാ	מידמ		מידמ	ימי	гас	נבטי	ממ	דידי מ	יד מי	CC	ירידי			тC	840
P		۵AC ۵		۵C م	T	. 10	۲. ۲	2	C C	ਸ ਹਿ	v	ncu n		-n. 1	T T	лю. Х	M	v	, ,	D	רבט. ק	קטט. ח	v	IC	040
ĸ	Q	-	•	A	1	Q		,	G		1	Ľ	. 1	1	1	K	IN	1	•	r	r	D	v		
GA	TC	TAP	'GG	CA	TGg	gta	aaa	itt	tto	ctt	at	ttt	aaa	act	tat	taa	ata	gca	itt	tt	aat	cgt	cg	aa	900
D	Q	W		н	D																				
ac	act	tta	at	at	tca	at	aat	tt	TC2	atc	gc	сcg	tat		LCT	tCa		ttt	ga	at	aat	taa	aa	ag	960
at	att	ccc	ac	gt	ttt	gt	att	tc	ttg	gtt	τα	agA	TAA	AG	AC'I	"I"I"I	rGT		CA:	TA	.CTF		STA	CG	1020
													ĸ		r	F.	V	т	T		Г	ĸ	Y	D	
								222	201		1.20		ר הרחו			3 000								ma	1000
AI	GG.	rG1	GC	CT.	TCI	. AC	T.T.T	GA.	ACA	ATG	ΑΠ τ	ATC		ACA	AAA v	T AT	266	TAA	999 2	GI	GGF	ICG(CT.	TC	1080
	G	v	P		5	T	Ц	IN	1	4]	T	5	IN	1	r.	T	G	r	G		G	R	Ц	Ц	
אידי	C \ 1		יאי	ידי מי	COT	יתיי	TTC	CT	CC	TCC		אכא	C N 7	\m 1	תתת	C N 1	rma	സ്റ	יידיכ	C٦	አጥር	יריירי	סגי	~~	1140
10		ס	ν. ν	, T.	D	חט. ח	w	2	100	и Ш	D D	F	M	117	nnn K	ם.	с С		םו. ב	Gh	T	v	c C	<u>م</u>	1140
	Ŷ	Ľ	1		Ľ	D		5			^		14		I.	D	C	5	0		1	v	5	Ā	
СТ	ידידי	ממר	ממ	TT	GCC	at	aat	·ta	aad	cat	++	+++	tot	at	tat	tta	ato			a a	tta	att	-++	cc	1200
C1	F	K	ייייי ד		Δ Δ	gu	uat	.cg	au	cat				- 41	cuc				.aa	aa		act			1200
to	+++	nat	an	aa		na	ana	.++	cat		at	cat	ato	tat	Fat	++=	مە	TTG	ac	ממ	רידע	rcaz		GD	1260
		Juc	ug	Juu	auc	igu	ugu		cui		ge	cgc	uc	jui	cut		T	г)	K	F	. COr	R	On	1200
																	-	2			•	D			
тт	GTO	366	דידי	ידידי	GGZ	TT	CAC	GT	ירדי	דמי		ата	GAZ		TGA	ACO	ימדר	тат	GT	'GC	ידרכ	זממי	AGT'	TG	1320
T.	w	v	, 1	T.	נטט. ת	S	слс С	3	T.	Т	N	R	- -	гС.	E	P	Т	 C	, 01	Δ	P	K	T.	10	1920
-		•		-	D	U			2	-				•	2	•	-		-		-		1		
C۵	TG	гст	יידיי	GA	тст	GA	מממ	AC	יארי	מממ	GC	ACC	ידדי	אמ	GCA	יממ	rcg	מממ	ата	cc		TG	מדע	ΤT	1380
н	v.	। ज	, 1	D	T.	K	N	J	T	K	н	T.	, I I I	~	0	T	E.	T		P	ਸ	ים יי ח	T	* *	1000
••	v	1		2			1		•					•	×	-	-	-	-	-	11	D	-		
GC	ירקי	ממח	דמ	יהר	CDC	מרי	CDC	2GD	ממ	322	:AG	പറ	אמידי	зта	CTC	יירי	rag'	ттс	ነጥጥ	2	AGO	ימסי	rgg	ът	1440
۵C م	v. V	N		۵C م	UAC T	т. т	0,70	207	K	200 C	יטהי. ב	3000 т	7 I.	, ,	cic	т.	V	U U	7		AGC A	M	םם ח	T 1	1440
-	v	1	,	п	1	1		,	I.	0	0	-			0		•	v		¥	п	1-1	D		
CC	ימידי	TG P	τд	יאר	ጥጥባ	'Aa	taa	ar	tt:	a.a.a	tt:	aca	tt:	aa	aat	tta	122	tta	ισa	σa	++=	aat	ta	aa	1500
P	M	רים א		т	т. Т.		-90	-90						~~~					Ju	30			Lu	34	1000
- C2	++ +++	лС5 1	ta	ita	ata	aa	aat		aat	tto	at	aac	+++		aaa	ata	aot.	a a a	at	an	***	aat	-++	aσ	1560
at	ta	322	aa	itt	ace	at	tta	ica	at	ata	ita	cta	att		tar	tat	-gu ttt:	tt+	ta	ita	taa	aaa	aaa	∽9 at	1620
a	++1	tta	ta ta	ac	546	ot.	oto	iat	ati	ttt	ac		aa	יפי אאני	222	itte	rat	cat	at	ta	aat	tar	rat	++	1680
30				uc				Juc	30		.uc		~90		~~0		Juc	Jul	- 4 6	Ju	יייתו	Juag	Juc		1000

Figure 3.19
ttt gaa aat ato aaa tag	tat atta ttt ctcc aaat gGTA V	cat tta aaa aga tta TAC Y	taa gaa atc aaa ATA I	ttt aag caa tgg ttt GCA A	icat icat igca atc GAC D	ataa aat aaa cgaa CCAT H	aaat taa cgac attt acaa TAAC K	cttt aata ctat cata atat GGGI G	taa tat tat tat TGAT D	aaat tata gcat tat IGC A	taat aat caaa caca cgat TTT L	cta caa aag att tat GAT I	tat ttt cta taa gat CGT V	ttti tgta tgaa ataa CTA Y	tgat tatg atto atga rCAi Q	tgt gat cta tta att AAA N	ttt cga gaa taa aat TTC S	igt iaa iaa CG D	tat gag aaa tca tat AT(tt gtt aag aag caa GAT	1740 1800 1860 1920 1980 2040
TCC S	CTTC F	САТ Н	CGA R	ATG M	ACI T	rtco S	CAAC N	CACI T	rtt(F	CGAT D	rta Y	CGA D	TCC P	CAG2 R	ATA Y	IGC A	CAA K	AA' M	TG <i>I</i> J	ACG r	2100
AT(I	CAAT N	GGA G	GAA E	AGT S	TTC F	T T	ATTC L	GAAJ K	AAA? N	rgg/ G	I I	ГТG С	TGG G	AAT(M	GGC' A	rct L	TAG S	TC P	CC(1	GTG /	2160
ACC T	GAAC N	AAT N	CTT L	ТАТ Ү	'TAC Y	CAGI S	rCC1 P	L L	CGC. A	rtc: S	rca H	CGG G	TTT L	GTA: Y	rta: Y	rgt V	CAA N	CA T	CG(I	GAA E	2220
CC# P	ATTT F	ATG M	AAA K	TCA S	CAA Q	ATTI F	rgg <i>i</i> G	AGA(D	CAA: N	raa: N	raa) N	CGT V	GCA Q	ATA Y	rgaj E	AGG G	gta	aa	tat	aa	2280
aaa	ataa	ttt	ctt	aaa	ttt	tat	gaa	aata	agaa	ataa	atg	tta	aat	aata	atgi	tta	ata	tg	tto	gt	2340
gaa	att	ttt	ttg	taa	agt	taa	atto	caag	gaat	cago	gti	ttc	aat	tta	ttta	att	ctt	gc	aca	agc	2400
ato	cttg	cac	att	ctt	agt	tag	gttg	geet	att	cct	ta	tta	att	tcag	gAT(S	CCC. Q	AAG I	AT.	ACI T	L L	2460
GAJ N	ACAC T	GCA Q	ATC. S	ATT L	'GGC A	CTAA K	AAG(A	CAGI V	rato S	CGA/ K	AAG D	ATG G	GCG V	TCC	ICT. F	rcg V	TCG	GA ;	CTI L	rgt V	2520
GGC G	STAA N	TTC S	AGC A	TCT L	TGC G	GATC C	GCTI L	rgaj N	ACGA E	AGCI H	ATC Q	AAC P	CAC	TTC/ Q	AGA(R	GAG. E	AAA N	AT I	TT <i>I</i> L	\gt	2580
tag	gtag	ttt	ttt	att	gtg	gtct	ctt	ttt	ct	ccad	at	ttt	ttg	tta	tat	ttt	ctt	gg	tad	cat	2640
tto	ttc	cta	tca	gac	gct	att	ato	cact	ata	aati	aa	acc	tga	att	ttca	aca	tga	aa	agt	tat	2700
aca	atcg	act	gta	gat	tto	gaca	agaa	aaca	agga	aato	ga	cgt	gat	atga	atq	caa	act	tq	ctt	tq	2760
cto	gtag	atc	acg	tga	tat	ata	aatt	ate	gtag	gtad	cta	gta	gtg	ggal	taal	tgt	gat	ga	cat	tat	2820
cct	gtt	cgt	gaa	ttg	icga	agto	gtgg	gtat	tag	gtal	ag	atg	acg	tag	ttaa	agt	- ccc	tt	cta	aga	2880
ttt	atg	aga	aat	ttt	tct	taa	ata	atat	ata	ati	at	aat	tcq	ttta	atti	tca	tta	tt	ttt	tc	2940
ctt	taa	aaa	tct	taa	att	tta	aaat	taa	ataa	aaat	tt	taa	cgq	caa	cgaa	aaa	acc	tg	aaa	aag	3000
tag	jata	tat	aat	taa	att	tat	zaat	agt	gco	cgta	agti	taa	att	ttt	ctg	ctt	tto	ICq	ttt	tt	3060
tct	ctt	taa	aaa	taa	tca	ataa	atat	taa	atca	atti	cg	ttt	cat	ttc	tate	cgt	ttť	tt	tct	tt	3120
tta	ataa	aat	ctg	ttc	ttt	ttt	tta	aaaa	agti	tat	at	tta	aga	tcti	ttta	atc	gac	aa	tco	gaa	3180
ata	itaa	ctt	tga	ata	agt	tag	gaat	tat	tag	gtta	at	tta	gaa	att	ctta	aat	taa	tt	tag	qta	3240
aat	gct	tca	att	tga	gtt	cga	agtt	gat	agi	tga	atta	aaa	aat	tat	ttga	atg	taa	ac	gca	aat	3300
ttt	ctt	tgt	aaa	cat	ate	idda	aaca	aatt	tat	tagi	at	gtt	gaa	aata	acti	taa	tta	aa	taa	atc	3360
gaa	attt	atg	tca	att	tat	gtt	cto	caaa	agea	aaca	aaa	tgt	ttt	ata	tga	tga	aat	at	aaa	ata	3420
aaa	atg	aaa	cta	ttt	cga	aaat	tac	cag	GAAC	CTG	STC	GCC	CAA	AAT	GĀAJ	AĀA	ACA	\CT	TCA	AAA	3480
	_							Ī	E I	L V	7	A	Q	N I	E]	К	т	\mathbf{L}	Q	М	
TGA	ATCG	CAG	GTA	TGA	AAA	ATT/	AAG	GAAG	GAG	CTTC	CA	CAT	TTC	GTA	GGA	AGT	AAC	AA	AC	CTG	3540
2	[A	G	M	K		E F	K I	ΞI	Ξ]	L I	2]	н	F	V (G S	S	N	К	Ρ	v	
י אידי																					
IM	AGG	ACG	AAT	ATA	TGI	TTAC	GTT	TTA	AGT	AAC		ATG	CAG		ATA	GTA	LAA	AA	TG	ATT	3600

Figure 3.19

119

TTAATTTCAACGACGTAAACTTCCGAATTTTGGGTGCGAATGTAAAGGAATTAATGAGAA											AA	3660								
N	F	N	D	V	N	F	R	Ι	L	G	A	N	V	К	Ε	\mathbf{L}	Μ	R	N	
ATAC	TCA	TTG	CGC.	AAA	TTT	ТАА	CAA	AAT	ААА	TAA	TCA	GAA	GAA	TAA	CAA	TCA	GAA	GAA	TA	3720
Т	Н	С	A	N	F	N	N	к	N	N	Q	K	N	N	N	Q	К	N	N	
ACAA	TCA	GAA	CAA	таа	CAA	TCA	GAA	GAA	TAA	CAA	TCA	GAA	AAA	ТАА	CAA	TCA	GAA	GAA	TA	3780
N	Q	N	N	N	N	Q	К	N	N	N	Q	к	N	N	N	Q	К	N	N	
ACAA	TCA	GAA	GAA	таа	CAA	TCA	GAA	TAC	ТАА	CAA	T	GAA	TGA	ТАА	TCA	AGT	TCG	тсg	TT	3840
N	Q	К	Ν	Ν	Ν	Q	Ν	Т	N	N										
CTTC	AAA	ATC	GCA	TTA	AAA	TCA	ATA	AAC	CAA	ATT	TTA	TTT	TAA	ТАА	ATT	TTT	TCG	ATG	TA	3900
AACA	ААА	TTT	TTT.	ААА	ATA	TTTT	CAT	TAT	ATT	ATA	AAT	ААА	TAA	ААТ	AAA	ТАТ	CGT	TTT	CG	3960
CAT																				3963

Figure 3.19 Organization of AcMRJP2 gene. Coding nucleotides and deduced amino acids of each exon are capitalized. Introns are shaded and illustrated with lower letters. The TATA box and start and stop codons are shaded and bold-italicized. Signal peptide sequence and the poly A additional signal site are underlined. Pentameric amino acid repeats (NQKNN) are found at the C terminus of this deduced protein

Figure 3.20 Schematic diagrams of *A. cerana* MRJP2 cDNA and gene. Complete cDNA was obtained by RT–PCR whereas genomic DNA fragment of AcMRJP2 was obtained from overlapping PCR amplification products. Non–coding regions are represented by solid bars. Introns (with numbers) are gray–shaded. Primers used for amplification of genomic AcMRJP2 and corresponding clones are illustrated.

Exon no.	Exon size		-		Seque	ence at exon-intro	Intron no.	Intron size	Amino interrupted					
	(bp)	5 acce	'splic ptor	e dor	or					3's	plice		(bp)	
1	223	CAA	TGG	CAT	G	gtaaaattttc	AT	AAG	ACT	TTT	GTC	1	137	Asp-75
		Q	W	н	D	ttattattt cttgtttaag		к	Т	F	v			
2	164	TTC	ААА	ATT	GCG	gtaattgaaca		ATT	GAC	AAA	TTC	2	88	Ala-129
		F	к	I	A	tttttcgta tgatatttag		I	D	К	F			
3	213	ATG	AAT	ACT	TTA	gtgagtttaaa		GTA	TAC	ΑΤΑ	GCA	3	528	Leu-200
		м	N	Т	L	ttacttaat catataatag		v	Y	I	A			
4	287	CAA	TAT	GAA	GG	gtaaatataaa	A	TCC	CAA	GAT	ACT	4	175	Gly-296
		Q	Y	Е	G	aatacctta ttaatttcag		S	Q	D	Т			-
5	133	AGA	GAA	ААТ	TTA	gttagtagttt		GAA	CTG	GTC	GCC	5	868	Leu-340
		R	E	N	L	tttaatttc gaaattacag		E	L	v	A			
6	372													

Table 3.4 Exon-intron splice junctions of the AcMRJP2 gene

The exon sequences are shown in upper-case letters and the intron sequences are shown in lower-case letters.

Exon	Genomic DNA	GC	Intron	Genomic DNA	GC
	(No. of nucleotides)	content		(No. of nucleotides)	content
		(%)			(%)
AcMRJ	P2				
1	1-223 (223 bp)	37	1	224-360 (137 bp)	20
2	361-524 (164 bp)	40	2	525-612 (88 bp)	18
3	613-825 (213 bp)	39	3	826-1353 (528 bp)	16
4	1354-1640 (287 bp)	37	4	1641-1815 (175 bp)	20
5	1816-1648 (133 bp)	42	5	1949-2816 (868 bp)	24
6	2817-3188 (372 bp)	28			

 Table 3.5 GC content and length of exons and introns in AcMRJP2 gene

3.2.5 Identification of the 5' upstream (the putative promoter sequence, transcription initiation start site and upstream regulatory elements) of AcMRJP1 and AcMRJP2 genes

The Neural Network Promoter Prediction (NNPP2.1) software of the Berkeley drosophila Project on www. Server (<u>http://www.fruitfly.org/seq-tools/promoter.html</u>) was used in order to find putative promoter regions in the putative regulatory sequences of AcMRJP1 and AcMRJP2 genes.

In AcMRJP1 gene, a nucleotide at position 468 (A) was predicted to be a potential transcription initiation start site with a score cut off 0.94. In AcMRJP2 gene, a nucleotide at position 511 (A) was predicted to be a potential transcription initiation start site with a score cut off 0.62 (Figure 3.21 and 3.22). The putative promoter sequence of both genes were detected with the sequence TATATATT that was highly homologous to the TATA box like element (TATAAA consensus sequence). The putative TATA box of AcMRJP1 and AcMRJP2 were found at -31 and -32 nucleotides upstrem from the transcription initiation sites, respectively. The putative CAAT box (CCAAT) was found in AcMRJP1 (CAAAT) at an identical position to the CCAAT in AmMRJP1, but the consensus sequence was not found in AcMRJP2 gene.

Potential transcription factor binding site within the 5' upstream region of the AcMRJP1 and AcMRJP2 genes were identifed by Genomatixsuit on www. Server (<u>http://genometix.de</u>). The TF (transcription factors) binding sites for dead ringer (Dri) (binding site core sequence: GATTA or AATTA) and ultraspiracle (USP) (binding site core GGTCA) were detected in both AcMRJP1 and AcMRJP2 putative regulatory sequences (Figure 3.21 and 3.22). The distribution of the predicted regulatory elements found in the putative regulatory sequences of AcMRJP1 and AcMRJP2 genes was shown in Figure 3.21 and 3.22. The ultraspiracle transcriptional factor (USP-TF) is a member of the ligand-modulated transcription factors that regulate cell homeostasis, reproduction, differentiation and development (Sergaves, 1991). In AcMRJP1 and AcMRJP2 contained a single USP-TF binding site at the 5' UTR immediately following the TATA box.

AcMRJP1	ACATCACTATTCTCATTGCATCAGACC TGCAAAAGAAATTGAATTTTTGGATT	54
AmMRJP1	ATACATCACTATTCTCATTGCATCAGATCGATCTGCAAAAGAAATTGAATTTTTTAAATT	60

	Dri	
ACMR.TP1	TTTGTATCTACATCTTTTTTTTAATTGCAATAATTTCCAAATAAATTAAAT	112
AmMRJP1	TTTGTATCTGCATCTTTTTTTTTAAATTGCAATAATTTCTAAATAAA	120
	Dri Dri	
AcMRJP1	AATATTTTTCAATATAATTATTCTAATTTTTAAAAAATTACACTACATATTTTTT	172
AmMRJP1	AATATTTTTCAATATAATTATTCTAATTTTTAAAAAATCACATATTTTATTT	172

	Dri Dri Dri	
AcMRJP1	TGAATTAATCATTATCTCAATTAACATTTCTCCAGAACTATA-GATGAAGCGAGACACAA	231
AmMRJP1	AGAATTAATCATTATCTCGATTAACATTTCTCCAGAATTATATGATGAAGCGAGACGTAA	232
ACMR TP1	Α-ΔΑΑΑΤΑΩΤΩΤΩΤΩΑΓΑΤΑΑΤΑΩΤΑΩΑΤΑΔΑΓΑΑΑΑΤΤΤΤΩΤΑΔΑΑΤΤΤΩΤΑΟΤΩΟΤΩΑΔΑΣΑ	288
AmMR.TP1	AGAAAAATTGTGCGACATAGTAGATAAACGAAAATTTTTTTT	200
	* ****** *** ****** ******** *** **** ****	252
	Dri	
ACMRJP1	TATCTTTTAGGGAATATAAATTATAGACCTGTCACATTCTAATTCTTTACAACATATAT	348
AmMRJP1	TATCTTTTTAGGGAATATAAATTATA-ACCTGTCACATTCTTAAATTCTTTACAACATATCT	351
	*****	551
AcMRJP1	ACAAGATAAATAAGATAATTTCAAGAATTTCAAAGGAATTTTAAAATACAATTTACTTTA	408
AmMRJP1	ΑCAAAATAAACAAGATAATTTCAAAAAΑΑΤΤΤΑΑΑΑΑΤΑCAATTTACTTTA	402
	**** ***** ********** ** **************	
	TATA box USP	
AcMRJP1	TCTCTATAAAGTATACGTCATTACCGCCTATATATT CONSCIENTSGTGGTGAAAATTCA	468
AmMRJP1	TCTCTATAAAGTATACGTCATTACCACCTATATATI TOACGGATCGTTGGTCAAAATTCA	462

AcMRJP1	ACAGCTCCTGCAGTTCACGTACAATAT - CCATTGCTTCGTTACTCGCAGCCTAGGTAAGT	527
AmMRJP1	ACAGCTCCTGCAGTTCACGTACAATATTCCATTGCTTCGTTACTCGCAGCTTAGGTAAGT	522

	CAAT box	
AcMRJP1	GTTCCAAAAUATCTCAATTGTAATACT-CCTATACGAAACACCTTATTATTTTCTGA	582
AmMRJP1	GTTTCCAATATCTCAATTGTAATATTTCCTATAAGAAATATTTTATTTA	582
	*** * ***************** * ****** * *****	
AcMRJP1	CAAGACGAAATATTTTGTAGAAAAATGACA 612	
AmMRJP1	CAAGACGAAATATTTTGTAGAAAAATGACA 612	

Figure 3.21 Putative regulatory elements in the 5' upstream region of the AcMRJP1 gene. The position are relative to the predicted transcription start site. The putative TATA box was underlined and highlighted. The binding sites for transcription factors were highlighted. The predicted transcription initation start site was indicated by arrow.

	Dri Dri	
AcMRJP2	TGAGAATGAATTGCAGAATATGGTCGCTAATAATAAGACTTTT-	43
AmMRJP2	ATAAAATTATGAAATTTGAGAATGAAATTGCAGAATATGGTCGCTAATAATAAGATTATTA	60
	Dri Dri	
ACMRJP2	CAAATTATTAGTTCTACAATTAAGATTTTCCAATTTTAATTCCGTATTTAACTCATCA	101
AmMRJP2	TTCAGATTATTAGTTCTACAGTCAAGATTTTCCAATTTTAATTCCGTATTTAACTCATCA	120
AcMRJP2	TATGTGAATATATATATATTGATTTTGAATAGAAAAATATTACAAAATGTTAAATGGGA	159
AmMRJP2	TATGTGAATATATATATATTGATTTTGAATAAAAAAATATTACAAAAAAATATTAAAATTTAAATTTAAAT **********	180
AcMRJP2	ATTTAAATCTCGATAACATGAATCCCTAAATTTTGAATGAGAATATAAAAACA	212
AmMRJP2	TTAATTAAATCTTCATAATATGAATCCTTGAATTTTAAATGTCAATATAAACATGTCACA	240
	* ******* **** ******* * ****** ****	210
AcMRJP2	ТТААСАТА	220
AmMR,TP2	TTA A CATAGCA CATTCTTCAGTTCTATCAGATCA ATTTGCA A A AGA AGTCA A CA A	300
And I 2	******	300
AcMRJP2		
AmMRJP2	ATAATTCGTATTTCCATTATGTATTCTTTGTATATGTACTAACTTCGTTTAAATTTTTAA	360
	Dri	
AcMRJP2	TAATTATTCTATTTTTAAAAAATTGCTCTTCATAT	255
AmMRJP2	ATAAATTCAATAAATAGATATTCAATAATTAATCTATTTTTAAAAAATTGCTCTTCATAC	420
A CMP TP2		216
AmMRJP2	TTTTTTTAGAACTAAATATTATCTCGATTAATAGTTTTTTAGAACTCCGAAACTAAATAA	480
ACMP TP2	ACACACACCAAAAAATACACCTCTCCCCAAACC	247
AmMRJP2	ACACACAC - AAAAAATAGAGGTGTGACAAAGCTGGCAAATAAAATTCCGTAAAATTTTTA	538
	Dri	
ACMRJP2		396
AmMRJP2	GTTAAGCTGGCACCTTTAGGGAATATAAATTATAACCTGTCACATTCTAATCCTTTAAAA	598
ACMP TP2		450
AmMRJP2	ТТТАТСТАСА САКОАТАЛАССКАЛАЛТТТСАЛАЛАТСАЛАЛАСА САЛТТАСТТТАТС ТТТАТСТАСААСААСАТАЛАССАЛАЛТТТСАЛАЛАТТСАЛАЛАЛАЛ	658
	TATA boy IISP	-
ACMR.TP2	TOTOTALAGTACCTACCATTACCACCTATATATTAATAAAAAAACCACC	511
AmMRJP2	TCTGTGAAATACATACCATTACCACC <u>TATATATATAA</u> AACCGTTAGTCAAAATTCAACA	718
AcMRJP2	GTTTGTACAGTTCACTTACATTCTGC	543
AmMRJP2	GTTCTTTTACAGTTCACTTACATTCTGCCATCCCTTGAAATTGTCACTCGTAAAATATCT	778
	*** * ********************************	
AcMRJP2		595
AmMRJP2	GCAGTATCTAAGTAAGTGTTTCCGTATATCTTGATTATAATATTTATT	838
AcMRJP2	TTTATCTGGAAAATGAAATATTTTATTTTAGAAAAATGACA 636	
AmMRJP2	TTTATCTGACGAGAACGAAATATTTTATTTTAGAAAAATGACA 881	

Figure 3.22 Putative regulatory elements in the 5' upstream region of the AcMRJP2 gene. The position are relative to the predicted transcription start site. The putative TATA box was underlined and highlighted. The binding sites for transcription factors were highlighted. The predicted transcription initation start site was indicated by arrow.

3.3 Expression of AcMRJP1 and AcMRJP2 proteins in E. coli expression system

3.3.1 Expression of AcMRJP1 and AcMRJP2 under control of Lac promoter of pGEM[®]-3Zf(+) vector

3.3.1.1 Construction of AcMRJP1 and AcMRJP2 in pGEM[®]-3Zf(+) expression vector

To verify that the obtained AcMRJP1 and AcMRJP2 cDNAs actually encoded for AcMRJP1 and AcMRJP2, the preliminary E. coli expression under the lac promoter of pGEM[®]-3Zf(+) was constructed. The fragment of mature AcMRJP1 and AcMRJP2 cDNA of A.cerana were amplified from the plasmid pRT-AcMRJP1-Taq and pRT-AcMRJP2-Taq as a template using Ampli Taq DNA polymerase (Perkin Elmer Cetus, USA). The AcMRJP1 and AcMRJP2 were amplified as an intense band of 1,253 bp and 1,352 bp, respectively. The amplified fragments were purified, digested with Pst I and Kpn I and cloned into the corresponding site of pTrcHis2c. After transformation to E. coli XL1-Blue, the recombinant clones were identified by colony PCR and the recombinant plasmids were extracted. The recombinant plasmids were digested with Sal I and Kpn I and cloned into the Xho I and Kpn I of pGEM[®]-3Zf(+) to generate the translational reading frame of AcMRJP1 and AcMRJP2 under the lac promoter. The recombinant plasmids were subsequently transformed to E. coli DH5 α . Three white colonies were random picked for plasmid extraction and double digested with Hind III and EcoR I. The result of electrophoretically analyzed show that all three recombinant plasmids contained the expected size of either AcMRJP1 or AcMRJP2 fragments (Figure 3.23). These recombinant plasmids were designated as pGEM[®]-3Zf(+)-AcMRJP1-Taq or pGEM[®]-3Zf(+)-AcMRJP2-Taq, respectively.

Figure 3.23 Restriction endonuclease analysis of recombinant plasmids pGEM[®]-3Zf (+)-AcMRJP1-Taq and pGEM[®]-3Zf(+)-AcMRJP2-Taq analyzed on 1.2% agarose gel

- Lane M = λ / *Hind* III standard marker
- Lane m = 100 bp DNA ladder
- Lane 1-3 = $pGEM^{\textcircled{0}}-3Zf(+)$ vector digested with *Hind* III and *EcoR* I
- Lane 4-6 = $pGEM^{\textcircled{B}}-3Zf(+)$ -AcMRJP1-Taq vector digested with *Hind* III and *Eco*R I

Lane 7-9 = $pGEM^{\textcircled{B}}-3Zf(+)$ -AcMRJP2-Taq vector digested with *Hind* III and *Eco*R I

3.3.1.2 Expression of AcMRJP1 and AcMRJP2 under control of Lac promoter of pGEM[®]-3Zf(+) vector

The expression of AcMRJP1 and AcMRJP2 was preliminarily performed under the control of lac promoter in $pGEM^{\textcircled{B}}-3Zf(+)$ vector. The lac promoter in general purpose vector, $pGEM^{\textcircled{B}}-3Zf(+)$ vector designed for blue/white screening of clones containing foreign DNA insert. It can be used to express a foreign protein, usually as a fusion protein with the amino terminus of the lacZ gene and/or the polylinker sequence. Although the lac promoter is not as strong as the tac or trc promoters, the high copy number of most general-purpose vectors allows expression of foreign proteins at acceptable level.

The constructed recombinant plasmids $pGEM^{\oplus}-3Zf(+)$ -AcMRJP1-Taq and $pGEM^{\oplus}-3Zf(+)$ -AcMRJP2-Taq were transformed to *E. coli* DH5 α cell and expression of the AcMRJP1 and AcMRJP2 were initiated by addition of 1 mM IPTG at 37 °C for 3 hours. The time course of expression of AcMRJP1 and AcMRJP2 after induction with IPTG for 15 minute, 1 hour and 3 hours was monitored by SDS-PAGE. For comparison, the amount of lysate loaded on SDS-PAGE was normalized basing on optical density at each sample collection. The whole cell lysate of IPTG induced $pGEM^{\oplus}-3Zf(+)$ was parallely analyzed as control.

A dense protein band with molecular mass approximately 43 or 55 kDa were observed at 0 hour of induction (Figure 3.24 and 3.25). This band was absent in negative control with induced pGEM[®]-3Zf(+) (Figure 3.24 and 3.25). The calculated molecular weight of recombinant AcMRJP1 and AcMRJP2 protein deduced from DNA sequences were 40.2 and 54.4 kDa. The amount of induced protein appeared to be maximum at 15 minutes of induction. The expressed protein band was not stable as it was decreased after 1 hour of induction.

Figure 3.24 SDS-PAGE of AcMRJP1 expression under the control of Lac promoter of $pGEM^{\ensuremath{\mathbb{S}}-3Zf(+)}$ vector. The *E. coli* DH5 α harboring $pGEM^{\ensuremath{\mathbb{S}}-3Zf(+)}$ -AcMRJP1-Taq was grown at 37 °C for 3 hours after induction with 1 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = Protein molecular weight markers (bovine serum albumin; 68 kDa, ovalbumin; 43 kDa)

Lane 1, 3, 5, 7 = Crude extract of the induced *E. coli* containing $pGEM^{\textcircled{B}}-3Zf(+)$ vector at 0 hr, 15 min, 1 hr and 3 hr, respectively

Lane 2, 4, 6, 8 = Crude extract from induced *E. coli* containing $pGEM^{\text{B}}-3Zf(+)$ -AcMRJP1 at 0 hr, 15 min, 1 hr and 3 hr, respecitivey

Figure 3.25 SDS-PAGE of AcMRJP2 expression under the control of Lac promoter of pGEM[®]-3Zf(+) vector. The *E. coli* DH5 α harboring pGEM[®]-3Zf(+)-AcMRJP2-Taq was grown at at 37 °C for 3 hours after induction with 1 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = Protein molecular weight markers (bovine serum albumin; 68 kDa, ovalbumin; 43 kDa)

Lane 1, 3, 5, 7 = crude extract of the induced *E. coli* containing $pGEM^{\textcircled{B}}-3Zf(+)$ vector at 0 hr, 15 min, 1 hr and 3 hr, respectively

Lane 2, 4, 6, 8 = crude extract from induced *E. coli* containing $pGEM^{\textcircled{B}}-3Zf(+)$ -AcMRJP2 at 0 hr, 15 min, 1 hr and 3 hr, respectively

3.3.2 Expression of AcMRJP1 and AcMRJP2 under control of Trc promoter of pTrcHis2c vector

3.3.2.1 Construction of AcMRJP1 and AcMRJP2 under control of Trc promoter of pTrcHis2c vector

Attempts were made to express the AcMRJP1 and AcMRJP2 as fusion protein with C-terminal His-Tag of pTrcHis2c vector. The primers were designed to amplified the AcMRJP1 and AcMRJP2 cDNAs to translate in frame with the initiation ATG and a C-terminal six histidine fusion peptide in pTrcHis2c vector. The recognition sites for Pst I and Kpn I were introduced to facilitate further cloning of PCR products. The AcMRJP1 and AcMRJP2 fragments were amplified from pRT-AcMRJP1-Pfu and pRT-AcMRJP2-Pfu using Pfu DNA polymerase (Promega Corporation Medison, Wisconsin, USA). The AcMRJP1 and AcMRJP2 cDNAs were amplified as an intense band of 1,253 bp and 1,352 bp, respectively. The amplified fragments were purified, digested with Pst I and Kpn I and cloned into the corresponding site of pTrcHis2c. The ligated product was transformed to E. coli DH5 α . White colonies were randomly picked for plasmid extraction. The recombinant plasmids were analyzed by restriction digestion with Pst I and Kpn I. The results showed that all recombinant plasmids contained the expected size of DNA insert of either AcMRJP1 or AcMRJP2 (Figure 3.26). These recombinant plasmids designated as pTrcHis2c-AcMRJP1-Pfu or pTrcHis2c-AcMRJP2-Pfu, were respectively.

Figure 3.26 Restriction endonuclease analysis of recombinant plasmids pTrcHis2c-AcMRJP1-Pfu and pTrcHis2c-AcMRJP2-Pfu analyzed on 1.2% agarose gel

Lane M	$= \lambda / Hind$	III sta	ndard	marker
--------	--------------------	---------	-------	--------

- Lane m = 100 bp DNA ladder
- Lane 1 = pTrcHis2c vector digested with *Pst* I and *Kpn* I
- Lane 2 = pTrcHis2c-AcMRJP1-Pfu digested with *Pst* I and *Kpn* I
- Lane 3 = pTrcHis2c-AcMRJP2-Pfu digested with *Pst* I and *Kpn* I

3.3.2.2 Expression of AcMRJP1 and AcMRJP2 under control of Trc promoter of pTrcHis2c vector

The AcMRJP1 and AcMRJP2 were expressed as fusion protein with Cterminal His-Tag of pTrcHis2c vector. The pTrcHis2c plasmid is pUC-derived expression vector designed for efficient recombinant protein expression and purification in *E. coli*. High level of expression is possible using trc (trp-lac) promoter; -35 region of the trp promoter together with the -10 region of the lac promoter. The DNA inserts are positioned downstream and in frame with the initiation ATG and a C-terminal six histidine fusion peptide that function as a metal binding site in the expressed protein.

The recombinant plasmids pTrcHis2c-AcMRJP1 and pTrcHis2c-AcMRJP2 were transformed into *E. coli* DH5 α cells. Expression was initiated using 1 mM IPTG and the cells were incubated at 37 °C for 6 hours. Expression of AcMRJP1 and AcMRJP2 were performed according to the recommended procedure from the manufacturer. The time course of expression of AcMRJP1 and AcMRJP2 after induction with IPTG for 0-6 hours was determined by SDS-PAGE. The whole cell lysate of induced pTrcHis2c was parallely analyzed as control.

All cell lysates obtained from various time intervals contained many protein bands. However, the presence of protein bands of expected apparent molecular mass of 50 or 55 kDa were always observed (Figure 3.27 and 3.28). The molecular weight of induced protein band was corresponded well to the calculated molecular weight of recombinant AcMRJP1 (51.3 kDa) or AcMRJP2 (55.2 kDa) protein deduced from DNA sequence. The expressed proteins were observed within the first hour after induction and increased according to the incubation time. The amount of induced protein appeared to be maximum at 6 hours of induction.

Figure 3.27 SDS-PAGE of AcMRJP1 expression under the control of Trc promoter of pTrcHis2C vector. The *E. coli* DH5 α harboring pTrcHis2c-AcMRJP1 was grown at at 37 °C for 6 hours after induction with 1 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = BenchMarkTM Protein Ladder

Lane 1, 9 = crude extract of the induced *E. coli* containing pTrcHis2C vector at 0 hr Lane 2,10= crude extract from induced *E. coli* containing TrcHis2C-AcMRJP1 at 0 hr Lane 3, 5, 7, 11, 13, 15 = crude extract of the induced *E. coli* containing pTrcHis2C vector at 1-6 hr, respectively

Lane 4, 6, 8, 12, 14, 16 = crude extract from induced *E. coli* containing TrcHis2C-AcMRJP1 at 1-6 hr, respecitivey

Figure 3.28 SDS-PAGE of AcMRJP2 expression under the control of Trc promoter of pTrcHis2C vector. The *E. coli* DH5α harboring pTrcHis2c-AcMRJP2 was grown at 37 °C for 6 hours after induction with 1 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = BenchMarkTM Protein Ladder

Lane 1, 9 = crude extract of the induced *E. coli* containing pTrcHis2C vector at 0 hr Lane 2,10= crude extract from induced *E. coli* containing TrcHis2C-AcMRJP1 at 0 hr Lane 3, 5, 7, 11, 13, 15 = crude extract of the induced *E. coli* containing pTrcHis2C vector at 1-6 hr, respectively

Lane 4, 6, 8, 12, 14, 16 = crude extract from induced *E. coli* containing pTrcHis2c-AcMRJP2 at 1-6 hr, respectively

3.3.2.3 Purification of AcMRJP1 or AcMRJP2 from *E. coli* containing pTrcHis2c-AcMRJP1 or pTrcHis2c-AcMRJP2

The supernatant and pellet fractions of E. coli lysate harboured recombinant plsmid were analyzed for the presence of AcMRJP1 or AcMRJP2 by SDS-PAGE. As shown in Figure 3.29, most of the expressed AcMRJP1 and AcMRJP2 were express in inclusion body in the pellet fraction (Figure 3.29A and B). Therefore, the pellet fraction of induced samples (1 mM IPTG for 6 hours) were used for further purification. To remove the other contaminant proteins, which co-precipitate with AcMRJP1 and AcMRJP2, the pellet fraction was washed in washing buffer. The pellet fraction of AcMRJP1 and AcMRJP2 inclusion bodies was then solubilized in buffer containing 8 M urea and further purified by Ni⁺²-affinity chromatography. After washing the column with washing buffer, proteins bound to Ni-NTA resin were eluted using washing buffer containing various concentration of imidazole (0, 20, 60, 100,150, 200, 250, 300 and 500 mM). The SDS-PAGE patterns of all samples (lysate, pellet, supernatant and eluate) are shown in Figure 3.30. The recombinant AcMRJP1 was eluted by washing buffer containg 60 mM imidazole from affinity column chromatography purification. There was minor protein band of approximately 38 kDa eluted with AcMRJP1. The recombinant AcMRJP2 was eluted by washing buffer containing 60 mM imidazole from affinity column chromatography.

3.3.2.4 Immunoblot analysis of AcMRJP1 and AcMRJP2 proteins

The purified rAcMRJP1 (recombinant *A. cerana* major royal protein 1) and rAcMRJP2 were analyzed by SDS-PAGE and Western blot analysis. For rAcMRJP1, two positive protein bands were detected. A major one around 50 kDa that corresponding with the predicted molecular weight of rAcMRJP1(51.3 kDa) and a minor one at about 38 kDa. For rAcMRJP2, one major protein band was observed with a molecular weight around 55 kDa, which is very close to the predicted molecular weight of rAcMRJP2 (Figure 3.30).

Figure 3.29 SDS-PAGE of *E. coli* DH5 α harboring pTrcHis2c-AcMRJP1 (A) or pTrcHis2c-AcMRJP2 (B) grown at 37 °C for 6 hours after induction with 1 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = BenchMarkTM Protein Ladder

Lane 1 = Crude extract of the non-induced *E. coli*

Lane 2 = Crude extract of the induced *E. coli*

Lane 3= Soluble fraction of the induced *E. coli*

Lane 4 =Insoluble fraction of the induced *E. coli*

Figure 3.30 SDS-PAGE and Western blot analysis to examine the expression of AcMRJP1 (A and B) and AcMRJP2 (C and D). *E. coli* DH5α harboring pTrcHis2c-AcMRJP1 (A) or pTrcHis2c-AcMRJP2 (B) grown at 37 °C for 6 hours after induction with 1 mM IPTG.

- Lane M = BenchMarkTM Protein Ladder
- Lane 1 = Crude extract of the non-induced *E. coli*
- Lane 2 = Crude extract of the induced *E. coli*
- Lane 3= Purified protein eluted with 60 mM imidazole

3.3.3 Expression of AcMRJP1 and AcMRJP2 under control of T7 promoter of pET17b vector

3.3.3.1 Construction of AcMRJP1 and AcMRJP2 cDNA under control of T7 promoter of pET17b vector

The AcMRJP1 and AcMRJP2 were expressed as fusion protein with Nterminal His-Tag of the pET17b. The forward primers contained nucleotide sequences encoding for six histidine were designed. The recognition site for Nhe I and Kpn I were introduced to facilitate further cloning of the PCR products. The AcMRJP1 and AcMRJP2 cDNA fragments were amplified from pRT-AcMRJP1-Pfu and pRT-AcMRJP2-Pfu using Pfu DNA polymerase (Promega Corporation Medison, Wisconsin, USA). The amplified products were purified, digested with Nhe I and Kpn I and cloned into the compatible sites of the pET17b. The ligated products were transformed to E. coli DH5a. Seven colonies of each transformation experiment were first screened by colony PCR using T7 and Exp1R or Ex2R primers. Six and five each transformants showed the expected insert fragment of 1,349 bp and 1,448 bp, respectively (Figure 3.31). These recombinant colonies were picked for plasmid extraction and then double digested with Nhe I and Kpn I. Restriction digestion analysis revealed the presence of the expected of ether AcMRJP1 or AcMRJP2 fragment in the recombinant plasmid. The nucleotide sequence of the insertion fragment was confirmed by sequencing using T7 primer. The obtained nucleotide and deduced amino acid showed that gene fragment had correct reading frame. The recombinant plasmids designated as pET17b-AcMRJP1 and pET17b-AcMRJP2 were electrotransformed to several E. coli host strain, E. coli BL21(DE3)pLysS, BL21 Star (DE3)pLysS and Rosetta (DE3)pLysS. The transformant were selected on plate containing ampicillin and chloramphenicol. The transformants of various E. coli host strain were random picked for screening by colony PCR. The result from electrophoretic analysis showed that all of these clones contained the correct insert fragment.

Figure 3.31 Colony PCR analysis of recombinant plasmids pET17b-AcMRJP1 and pET17b-AcMRJP2 analyzed on 1.2% agarose gel

Lane M = 100 bp DNA ladder

Lane 1-7 = Putative recombinant clone containing pET17b-AcMRJP1 (clone 1-7)

Lane 8-14 = Putative recombinant clone containing pET17b-AcMRJP2 (clone 1-8)

3.3.3.2 Expression of AcMRJP1 and AcMRJP2 under control of T7 promoter of pET17b vector

The pET17b plasmids are original and basic pET vectors developed for the cloning and expression recombinant protein in *E. coli*. The target genes are cloned in pET plasmids under control of strong bacteriophage T7 transcription promoter, expression is induced by providing a source of T7 RNA polymerase in the *E. coli* host cell. To express the AcMRJP1 and AcMRJP2 as fusion protein with *N*-terminal His-Tag of the pET17b, the forward primers containing nucleotide sequences encoding for six histidine were designed and used to amplify the AcMRJP1 and AcMRJP2 gene from pRT-AcMRJP1-Pfu and pRT-AcMRJP2-Pfu using *Pfu* DNA polymerase.

The recombinant plasmid of pET17b-AcMRJP1 or pET17b-AcMRJP2 were transformed into several E. coli host strains; BL21(DE3)pLysS, BL21(DE3)pLysS star, Rosetta(DE3)pLysS, to evaluate in vivo expression levels. The expression was performed according to the recommend procedure from the manufacturer. BL21(DE3) pLysS is a host strain used for high-stringency expression of genes constructed in expression vectors containing the bacteriophage T7 promoter. This host is a lysogen of bacteriophage DE3, a lambda derivative that carries the lac I gene and the gene for T7 RNA polymerase under lacUV5 control. Addition of IPTG to a growing culture of the lysogen induces T7 RNA polymerase expression, which in turn transcribes the target genes under contol of T7 promoter of pET vectors (Novagen, Madison, WI, USA). BL21 Star (DE3)pLysS host strain is BL21 derivatives containing a mutation in the *rne* gene which encodes the endonuclease RNaseE, a key enzyme responsible for mRNA degradation, enhanced transcript stability and improved protein yield (Invitrogen, USA). Rosetta (DE3)pLysS host strain is BL21 derivatives designed to enhance the expression of eukaryotic proteins that contain codons rarely used in E. coli. These strains supply tRNAs for the codons AUA, AGG, AGA, CUA, CCC, GGA on a compatible chloramphenicol resistant plasmid (Novagen, Madison, WI, USA).

The *E. coli* containing pET17b-AcMRJP1 or pET-17b-AcMRJP2 was cultured, and the expression of AcMRJP1 or AcMRJP2 was achieved by induction with 0.4 mM IPTG at 37 °C. Cell lysate was analyzed for the presence of AcMRJP1 or AcMRJP2 by SDS-PAGE. Under the control of T7 promoter, AcMRJP1 and

AcMRJP2 were expressed as fusion protein of molecular mass approximately 50 and 52 kDa, respectively which corresponded to 47.8 and 51.7 kDa, the calculated molecular weight of recombinant AcMRJP1 and AcMRJP2 protein deduced from DNA sequences. The major protein of either AcMRJP1 or AcMRJP2 was found only in IPTG induced cell lysate but could not be detected in noninduced cell culture (Figure 3.32-3.34). All host strains expressed the AcMRJP1 and AcMRJP2 gene. The results in Figure 3.32 show that BL21(DE3)pLysS host cell expressed the AcMRJP1 and AcMRJP2 as observed expected size band at 1-7 hours after induction. The level of expression increased according to the incubation time and the highest expression level appeared to be at 4 hour after induction with IPTG.

In the BL21 Star (DE3)pLysS host strains, the expected protein band was observed after IPTG induction (Figure 3.33). The level of expression of AcMRJP1 was highest at 4 hours after induction with IPTG and 2 hours after induction in AcMRJP2. The expression level in this host strain were higher than that of BL21 (DE3)pLysS.

The Rosetta (DE3)pLysS host strains expressed the AcMRJP1 and AcMRJP2 as observed expected size band at 1-5 hours after induction (Figure 3.34). The level of expression increased according to the incubation time and the highest expression level appeared to be at 4 hours after induction with IPTG. The expression level in this host strain was higher than that of BL21(DE3)pLysS and BL21 Star (DE3)pLysS host strains.

The results in Figure 3.32-3.34 showed that all host strains could express the AcMRJP1 and AcMRJP2 gene but Rosetta host cell showed the highest expression yield. Therefore, the Rosetta host strain was chosen to carry on further experiments of purification. Based on the above observation, scale-up of expression experiment was performed using Rosetta cells induced with 0.4 mM IPTG for 4 hours. One hundred millilitres culture expressing AcMRJP1 or AcMRJP2 was grown and induced with 0.4 mM IPTG for 4 hours and these proteins were purified using a Ni/NTA column.

Figure 3.32 SDS-PAGE of AcMRJP1 (A) and AcMRJP2 (B) expression in *E. coli* BL21(DE3)pLysS under the control of T7 promoter of pET17b vector. The BL21 (DE3)pLysS harboring pET17b-AcMRJP1 (A) and pET17b-AcMRJP2 (B) was grown at at 37 °C for 7 hours after induction with 0.4 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = BenchMarkTM Protein Ladder

Lane 1 = Crude extract of the non-induced *E. coli* containing pET17b vector

Lane 2-9 = Crude extract from induced *E. coli* at 0, 1, 2, 3, 4, 5, 6 and 7 hour, respectively

Figure 3.33 SDS-PAGE of AcMRJP1 and AcMRJP2 expression in *E. coli* BL21 Star (DE3)pLysS under the control of T7 promoter of pET17b vector. The BL21 Star (DE3)pLysS harboring pET17b-AcMRJp1 and pET17b-AcMRJP2 was grown at 37 C for 8 hours after induction with 0.4 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = Protein marker

Lane 1, 4, 7, 10, 13 = Crude extract of the induced *E. coli* containing pET17b vector at 0, 1, 2, 4 and 8 hour, respectively

Lane 2, 5, 8, 11, 14 =Crude extract of the induced *E. coli* containing pET17b-AcMRJP1 at 0, 1, 2, 4 and 8 hour, respectively

Lane 3, 6, 9, 12, 15 =Crude extract of the induced *E. coli* containing pET17b-AcMRJP2 at 0, 1, 2, 4 and 8 hour, respectively

Figure 3.34 SDS-PAGE of expressed AcMRJP1 (A) and AcMRJP2 (B) in *E. coli* Rosetta (DE3)pLysS under the control of T7 promoter of pET17b vector. The Rosetta (DE3)pLysS harboring pET17b-AcMRJP1 (A) and pET17b-AcMRJP2 (B) was grown at at 37 °C for 7 hours after induction with 0.4 mM IPTG. The crude extract was prepared and analyzed by SDS-PAGE.

Lane M = BenchMarkTM Protein Ladder

Lane 1 = Crude extract of the non-induced *E. coli* containing pET17b vector Lane 2-7 = Crude extract of the induced *E. coli* at 0, 1, 2, 3, 4 and 5 hour, respectively

146

3.3.3.3 Purification of AcMRJP1 or AcMRJP2 from recombinant clone harboring pET17b-AcMRJP1 or pET17b-AcMRJP2

Aliquots of supernate and pellet fractions were analyzed for the presence of AcMRJP1 and AcMRJP2 by SDS-PAGE. The results showed that most of the expressed AcMRJP1 and AcMRJP2 were detected in the precipitate of induced sample but not present in supernatant fraction (Figure 3.35A and B). From the result, it was concluded that the AcMRJP1 and AcMRJP2 were expressed as inclusion bodies in pellet fraction. Therefore, the pellet fraction of induced samples were used for further purification. To remove the other contaminant proteins, which coprecipitate with AcMRJP1 and AcMRJP2, the pellet fraction was washed in washing buffer. The pellet fraction of AcMRJP1 and AcMRJP2 inclusion bodies were then solubilized in buffer containing 8 M urea and further applied to Ni⁺²-affinity chromatography for purification. After washing the column with washing buffer, proteins bound to Ni-NTA resin were eluted using washing buffer containing various concentration of imidazole (0, 20, 60, 100,150, 200, 250, 300 and 500 mM), respectively. The SDS-PAGE patterns of all samples (lysate, pellet, supernatant and eluate) were shown in Figure 3.35. The recombinant AcMRJP1 and AcMRJP2 was eluted by washing buffer containing 250 mM imidazole. After affinity column chromatography purification, the protein fractions was dialyzed to remove imidazole. The yield of purified AcMRJP1 and AcMRJP2 from the 1 liter flask culture was approximately 20 mg and 8 mg, respectively.

3.3.3.4 Immunoblot analysis and N-terminal protein sequence of AcMRJP1 and AcMRJP2

molecular weight of purified rAcMRJP1 and rAcMRJP2 were 47.9 and 51.7 kDa determined by SDS–PAGE and positively identified by Western blot analysis (Figure 3.35). The purified AcMRJP1 and AcMRJP2 separated on the SDS-PAGE were transferred to PVDF membrane by electroblotting. The *N*-terminal sequence of AcMRJP1 and AcMRJP2 were determined by amino acid sequencing. Twenty residues were obtained from the *N*-terminus of both AcMRJP1 and AcMRJP2, which were ASHHHHHHSILRGESLNKSL and ASHHHHHHAIIRQN(S/N)(S/A)KNL, respectively. The sequences were identical with that predicted from the corresponding open reading frame of AcMRJP1 and AcMRJP2.

149

Figure 3.35 SDS-PAGE (A and C) and Western blot (B and D) analyses to examine

the expression of AcMRJP1 (A and B) and AcMRJP2 (C and D)

Lane M = BenchMarkTM Protein Ladder

Lane 1 = Crude extract of the non-induced *E. coli*

Lane 2 = Crude extract of the IPTG induced *E. coli*

Lane 3= Soluble fraction of the IPTG induced E. coli

Lane 4 =Insoluble fraction of the IPTG induced *E. coli*

Lane 5 = Purified AcMRJP

3.4 Expression of AcMRJP1 in plant expression system

3.4.1 Construction of expression vector

3.4.1.1 Amplification of AcMRJP1 gene for cloning into plant expression cassette

The AcMRJP1 gene was amplified by PCR from pET17b-AcMRJP1 using F1500SalKosak and R1500Exp primers. The oligonucleotide sequence surrounding the translation initation codon of the AcMRJP1 gene was changed to a preferred nucleotide context for translation in eukaryotic cells (Kozak, 1981). The oligoncleotide sequence encoding the ER retention signal (KDEL) and the hexa-histidine coding sequence were included at the 3' end of the coding sequence of the AcMRJP1 gene. The restriction site of *Sal* I and *Kpn* I was introduced to the 5'end of primers to facilitate cloning.

The strong DNA fragment of approximately 1.3 kb, which was the expected size of AcMRJP1 gene, was obtained (Figure 3.36). The PCR product was extracted and purified from agarose gel. The PCR-amplified fragment of AcMRJP1 was digested with *Sal* I and *Kpn* I and used for subsequence cloning.

Figure 3.36 Amplification of the AcMRJP1 gene from pET17b-AcMRJP1 using specific primers (F1500SalKosak and R1500Exp primers). PCR product was analyzed by 1.2% agarose gel electrophoresis and stained with ehtidium bromide.

Lane M = 100 bp DNA ladder

Lane 1 = PCR amplification product

3.4.1.2 Amplification of Nopaline synthase (Nos) terminator fragment

The Nos terminator was amplified by PCR using FNosHis and RNosHis primers. The restriction site of *Kpn* I and *Eco*R I was added to the 5' end of primers. The Nos terminator was amplified from plasmid pCAMBIA2301. The 328 bp of PCR-amplified fragment of Nos was purified and digested with *Kpn* I and *Eco*R I and and used for subsequence cloning (Figure 3.37).

Figure 3.37 Amplification of the Nos terminator from pCMABIA2301 using specific primers (FNoshis and RNoshis primers). PCR product was analyzed by 1.2% agarose gel electrophoresis and stained with ehtidium bromide.

Lane M = 100 bp DNA ladder

Lane 1 = PCR amplification product

3.4.1.3 Construction of potato expression vector under control of GBSS gene promoter

The expression cassette containing the GBSS gene promoter, AcMRJP1 and the nos terrminator was constructed in pGEM[®]-GBSS-AcMRJP1-Nos as described in 2.6.1.1. The cassette was isolated by Hind III and EcoR I digestion. The 2.4 kb fragment was ligated into Hind III and EcoR I site of plant transformation vector, pCAMBIA2301 (Appendix A) and transformed into E. coli DH5a strain. The pCAMBIA2301 contains the GUS (uidA) with an intron as a reporter gene, the kanamycin-resistant gene (npt II) as a plant and bacterial selectable marker within the T-DNA. Each gene was under the control of an 35S promotor. After transformation, six kanamycin resistant colonies were randomly picked and analyzed by colony PCR screening. The recombinant plasmids were extracted and then digested with Hind III and *Eco*R I to determine the corrected insert fragment. The insert fragment size was determined as approximately 2.4 kb. Restriction endonuclease analysis of this recombinant plasmid with Kpn I release a 14 kb linear fragment corresponding to the size of this vector (11.6 kb) plus insert fragment of 2.4 kb (Figure 3.38). The sequence at the 5' end of the AcMRJP1 gene was verified by sequencing. The result showed that the AcMRJP1 gene in recombinant plasmids contained the ATG initiation codon in-frame (translatable) with ORF of AcMRJP1 gene. The resulting plasmid was designated as pCAMBIA2301-GBSS-AcMRJP1-Nos.

Figure 3.38 Restriction analysis of recombinant plasmid pCAMBIA2301-GBSS-AcMRJP1-Nos analyzed on 1.2% agarose gel.

- Lane m = λ / *Hind* III standard marker
- Lane M = 200 bp DNA ladder

Lane 1 = pCAMBIA2301-GBSS-AcMRJP1-Nos digested with *Hind* III and *Eco*RI

Lane 2 = pCAMBIA2301-GBSS-AcMRJP1-Nos digested with Kpn I
3.4.1.4 Construction of potato expression vector under control of B33 patatin gene promoter

155

The expression cassette containing the B33 patatin gene promoter, AcMRJP1 and the nos terrminator was constructed in pGEM[®]-Nos-AcMRJP1-B33 as described in 2.6.1.2. The cassete was isolated by *Hind* III and *Eco*R I digestion. The 3.1 kb fragment was ligated into *Hind* III and *Eco*R I site of plant transformation vector, pCAMBIA2301 and transformed into *E. coli* DH5 α strain. After transformation, six kanamycin resistant colonies were randomly picked and analyzed by colony PCR screening. The recombinant plasmids were extracted and then digested with *Hind* III and *Eco*R I to determine the corrected insert fragment. The insert fragment size was determined as approximately 3.1 kb. Restriction endonuclease analysis of this recombinant plasmid with *Kpn* I release two fragments of 2.7 and 11.9 kb (Figure 3.39). The sequence at the 5' end of the AcMRJP1 gene was verified by sequencing. The result showed that the AcMRJP1 gene in recombinant plasmids contained the ATG initiation codon in-frame (translatable) with ORF of AcMRJP1 gene. The resulting plasmid was designated as pCAMBIA2301-B33-AcMRJP1-Nos.

Figure 3.39 Restriction analysis of recombinant plasmid pCAMBIA2301-B33-AcMRJP1-Nos analyzed on 1.2% agarose gel.

Lane m = λ / *Hind* III standard marker

Lane M = 200 bp DNA ladder

Lane 1 = pCAMBIA2301-B33-AcMRJP1-Nos digested with *Hind* III and *Eco*RI

Lane 2 = pCAMBIA2301-B33-AcMRJP1-Nos digested with Kpn I

3.4.1.5 Construction of potato expression vector under control of 35S promoter

The CaMV 35S promoter was introduced into the binary transformation vector pCAMBIA2301 as a *Hind* III / *Xho* I fragment and ligated into *Hind* III / *Sal* I of plasmid pCAMBIA2301-AcMRJP1-Nos as described in 2.6.1.3. The AcMRJP1 in the construct was flanked by strong constitutive CaMV 35S promoter and a nos terminator. The ligated product was transformed into *E. coli* DH5 α strain. After transformation, six kanamycin resistant colonies were randomly picked and analyzed by colony PCR screening. The recombinant plasmids were extracted and then digested with *Kpn* I. Restriciton endonuclease analysis of this recombinant plasmid released two fragments of 2.3 and 11.9 kb (Figure 3.40). The sequence at the 5' end of the AcMRJP1 gene was verified by sequencing. The result showed that the AcMRJP1 gene in recombinant plasmids contained the ATG initiation codon in-frame (translatable) with ORF of AcMRJP1 gene. The resulting plasmid was designated as pCAMBIA2301-35S-AcMRJP1-Nos.

Figure 3.40 Restriction analysis of recombinant plasmid pCAMBIA2301-35S-AcMRJP1-Nos analyzed on 1.2% agarose gel.

Lane M = λ / *Hind* III standard marker

Lane 1 = pCAMBIA2301-35S-AcMRJP1-Nos digested with Kpn I

3.4.1.6 Construction of rice expression vector under control of 35S promoter

For rice transformation, pCAMBIA1301 was employed. The CaMV 35S promoter was introduced into the binary transformation vector pCAMBIA1301 (Appendix A) as a Hind III / Xho I fragment and ligated into Hind III / Sal I of plasmid pCAMBIA1301-AcMRJP1-Nos as described in 2.6.1.4. The AcMRJP1 in the construct was flanked by strong constitutive CaMV 35S promoter and a nos terminator. The ligated product was transformed into E. coli DH5a strain. The pCAMBIA1301 contains the GUS (uidA) with an intron as a reporter gene, the kanamycin-resistant gene (npt II) as a bacterial selectable marker, the hygromycinresistant gene (hpt II) as a plant selectable marker within the T-DNA. Each gene was under the control of an 35S promotor. After transformation, six kanamycin resistant colonies were randomly picked and analyzed by colony PCR screening. The recombinant plasmids were extracted and then digested with Kpn I to determine the corrected insert fragment. Restriciton endonuclease analysis of this recombinant plasmid release two fragments of approximately 2.3 and 12.2 kb (Figure 3.41). The sequence at the 5' end of the AcMRJP1 gene was verified by sequencing. The result showed that the AcMRJP1 gene in recombinant plasmids contained the ATG initiation codon in-frame (translatable) with ORF of AcMRJP1 gene. The resulting plasmid was designated as pCAMBIA1301-35S-AcMRJP1-Nos.

Figure. 3.41 Restriction analysis of recombinant plasmid pCAMBIA1301-35S-AcMRJP1-Nos analyzed on 1.2% agarose gel.

Lane m = λ / *Hind* III standard marker

Lane M = 200 bp DNA ladder

ŧ

Lane 1 = pCAMBIA1301-35S-AcMRJP1-Nos digested with Kpn I

3.4.2 Plant transformation

3.4.2.1 Transformation of potato

Agrobacterium-mediated T-DNA transformation was used to introduced the AcMRJP1 construct into potato *Solanum tuberosum* cultivar Atlantic. Three constructs were produced for transformation of AcMRJP1 in potato. The binary plasmid pCAMBIA2301- GBSS -AcMRJP1-Nos, pCAMBIA2301-B33-AcMRJP1-Nos and pCAMBIA2301-35S-AcMRJP1-Nos, carrying the translatable of AcMRJP1, β -glucuronidase (*gus*) reporter gene and a kanamycin-resistance selectable marker (*npt* II) genes, were constructed and transformed into *A. tumefaciens* EHA105 by electroporation.

The sprouting shoot of potato was sterilized and grown on shoot culture media for two to three weeks (Figure 3.42). The leaves of in vitro grown were used as starting material for leaf disks transformation by co-cultivation with A. tumefaciens EHA105 carrying the recombinant plasmid (Figure 3.43). After the co-cultivation, potato segments were transferred to the selective regeneration medium supplemented with 50 mg/l kanamycin and 250 mg/l cefotaxime to select the transformed shoots and eliminated Agrobacterial overgrow, respectively (Figure 3.44). The calli on the cut edges of the explants were observed after 2-3 weeks of cocultivation. These explant were transferred to fresh selection medium, shoots were regenerated form resistant calli within 8 weeks. There were 9 shoots regenerated from 110 explants (8.2%) transformed with pCAMBIA2301-GBSS-AcMRJP1-Nos, 10 shoots regenerated from 100 explants (10%) transformed with pCAMBIA2301-B33-AcMRJP1-Nos and 6 shoots regenerated from 100 explants (6%) transformed with pCAMBIA2301-35S-AcMRJP1-Nos (Figure 3.42). Shoot were elongated on regeneration media until they were 1-1.5 cm long, then excised from the leaf explant and subcultured on the RIM or selective root induction media for 2 weeks. The nodal segments of *in vitro* grown plantlet were subsequently transferred to microtuber induction medium (Figure 3.45). No differences were observed in the morphology between transformed and nontransformed plants.

Figure 3.42 Tissue culture of potato (S. tuberosum) cultivar Atlantic

- (A) Tuber of potato used in tissue culture to produce potato plantlet in vitro
- (B) Sprouting shoot formation
- (C and D) Potato plantlet in vitro

Figure 3.43 Callus formation of transgenic potato plant

- (A) Culture of potato leaf discs after co-cultivation with Agrobacterium
- (B) Callus formation on selective regeneration medium for 4 weeks

Figure 3.44 Regeneration of transformed potato.

- (A) Callus formation of potato
- (B) Shoot induction on selective regeneration medium for 8 weeks
- (C) Transformed shoot on selective root induction medium

(B)

Figure 3.45 In vitro microtuberization of transformed potato

- (A) Microtuber formation of transformed plant grown *in vitro* for 8 weeks in the dark on medium containing 8% sucrose
- (B) Microtuber from transformed (left) and non-transformed control potato (right)

3.4.2.2 Transformation of rice

A. tumefaciens strain EHA105 habouring pCAMBIA1301-AcMRJP1-Nos, a strong constitutive 35S-AcMRJP1-Nos expression construct, was used for transformation of rice. The seeds of rice were sterilized and grown in callus induction NB medium. Callus is a mass of undifferentiated plant cells which, depending on the presence of different growth substances, can be induced to form shoots or roots. The six weeks old of rice calli were used as target tissues for *Agrobacterium*-mediated transformation (Figure 3.46).

After co-cultivation with Agrobacterium carrying the recombinant plasmid, the transformed calli were transferred to the selection medium containing 50 mg/l hygromycin to inhibit growth of non-transformed rice cells and supplemented with 500 mg/l cefotaxime to inhibit A. tumefaciens growth. Hygromycin resistant calli were obtained after 4 weeks selection. These growing calli were excised and transferred to fresh selection medium and incubated in the dark at 28 °C for 4 weeks. The uninoculated control calli did not show continuous growth, turned brown and died in selection medium (Figure 3.47). The resistant calli were transferred to selective regeneration medium. Shoots were regenerated form resistanat calli within four weeks on regeneration medium. When the shoot were 1.0 to 1.5 cm height, shoots were cut from the calli and subcultured on root induction media. A total of 6 hygromycin-resistant putative transformants were obtained from transformation of 80 explants for an apparent transformation efficient of 7.5%. Plantlets with extensive root systems were established on root induction medium after another 2-3 weeks (Figure 3.48). No differences were observed in the morphology between transformed and untransformed plants. These putative transformant were subsequently transferred to soil.

Figure 3.46 Tissue culture of rice O. sativa cutivar KDML105 used in tissure culture

- (A) Mature seed of rice
- (B) Callus formation of rice on callus induction medium

Figure 3.47 Selection of transformed rice callus on selection medium containing 50 mg/l hygromycin and 500 mg/l cefotaxime

- (A) Resistant callus growing on selective hygromycin medium after 8 weeks
- (B) Brown zone of non-transformed callus

Figure 3.48 Regeneration of transformed rice plant

- (A)Resistant callus formation
- (B) Plantlet with root system

3.4.3 Molecular analysis of transgenic plants

3.4.3.1 Histochemical analysis of GUS expression in putative transformants

The binary plasmid pCAMBIA2301-GBSS-AcMRJP1-Nos, pCAMBIA2301-B33-AcMRJP1-Nos, pCAMBIA2301-35S-AcMRJP1-Nos and pCAMBIA1301-AcMRJP1-Nos carried β -glucuronidase (*gus*) reporter gene within the T-DNA. This reporter gene provided an indication that genetic transformation did take place. Both transformed potato and rice were subjected to analysis for GUS activity. The blue staining by the activity of β -glucuronidase enzyme was observed on the transformed tissue.

The histochemical assay for GUS activity was analyzed in callus, leaves, roots and tubers of putative transformed potato (Figure 3.49 and 3.50). The potato transformed with pCAMBIA2301-GBSS-AcMRJP1-Nos (7/9), pCAMBIA2301-B33-AcMRJP1-Nos (7/10) and pCAMBIA2301-35S-AcMRJP1-Nos (5/6) showed GUS activity. The intensity of blue color production was different from plant to plant. No GUS enzyme activity was observed in tissues from non-transformed control plants.

The GUS activity was analyzed by histochemical analysis in rice transformed with pCAMBIA1301-35S-AcMRJP1-Nos. Difference organs of rice tissues were submerged in staining solution. Of the six rice plants regenerated, all tested positive for GUS (Figure 3.51-3.52). The histochemical assay for GUS activity in different organs revealed intense blue staining in callus, roots (Figure 3.52), embryo and at the cut surfaces of the leaf pieces. The intensity of blue color production was different from plant to plant. Tissues from non-transformed control plants did not show GUS expression.

Figure 3.49 Histochemical analysis of primary transformants of potato

Figure 3.50 Histochemical analysis of GUS expression in leaf, stem, root and tuber of primary transformants of potato. Non-transformed potato was used as control.

Figure 3.51 GUS histochemical staining of hygromycin resistant callus of transformed rice after 8 weeks on selection medium

Figure 3.52 GUS histochemical staining of leaf and root of transformed rice plants. Non-transformed potato was used as control.

3.4.3.2 PCR analyses of putative transformants

To confirm the integration of AcMRJP1 gene into plant genome, the transformants were screened by PCR amplification for the AcMRJP1 gene. The genomic DNA was isolated from *in vitro* grown leaves from either non-transformed control plants or kanamycin resistant putative potato transformants or hygromycin resistant putative rice transformants using a modified CTAB extraction method. The DNA concentrations were spectrophotometrically determined by measuring the optical density at 260 nm. An OD₂₆₀ of 1.0 corresponds to a concentration of 50 μ g DNA/ml double stranded DNA. Approximately 1-5 μ g of nucleic acids were obtained from 100 mg starting plant tissue. The ratio of OD₂₆₀ / OD₂₈₀ was 1.8 - 2.0 indicates pure prepared DNA.

The existence of AcMRJP1 gene in the chromosomal DNA of 25 transformed potato plants and 6 transformed rice plants was verified by PCR. The DNA of a nontransformed plant was used as a negative control and the AcMRJP1-binary vector, pCAMBIA2301-35S-AcMRJP1-Nos, was used as a positivie control. The presence of AcMRJP1 gene was analyzed using primer derived from the 5' and 3' ends of AcMRJP1 coding sequence. The transformants containing the transgene were identified by the presence of an amplified PCR product of 1.3 kb. The result revealed that the specific 1.3 kb band of AcMRJP1 gene was detected in the putative transformants. For transformed potatos, 8 of 9 plants transformed with pCAMBIA2301-GBSS- AcMRJP1-Nos, 8 of 10 potato transformed with pCAMBIA2301-B33-AcMRJP1-Nos, and 4 of 6 plants transformed with pCAMBIA2301-35S-AcMRJP1-Nos showed positive result of 1.3 kb as the positive control (Figure 3.53-3.55). No band was detected in case of negative control DNA. In case of rice trnasformation, all 6 plants transformed with pCAMBIA1301-35S-AcMRJP1-Nos gave specific bands of 1.3 kb of AcMRJP1 genes. No band was detected in case of negative control DNA (Figure 3.56). The presence of the AcMRJP1 gene in the transformants demonstrated integration of the T-DNA in the transformants.

Figure 3.53 PCR analysis of AcMRJP1 gene insertion in the genome of transformed potato plant transformed with pCAMBIA2301-GBSS-AcMRJP1-Nos. PCR product was analyzed on 1.2% agarose gel electrophoresis with ethidium bromide staining. Amplification of a 1.3 kb AcMRJP1 fragment from only the transgenic plants confirms the integration of the T-DNA.

Lane M = 100 bp DNA ladder

Lane P = The amplified products of pCAMBIA2301-35S-AcMRJP1-Nos positive control plasmid

Lane N = The amplified products of non-transformed plant DNA (negative control)

Lane 1-8 = The amplified product of transformed potato line 2301G-A1, 2301G-B2, 2301G-C3, 2301G-D4, 2301G-H6, 2301G-I7, 2301G-J8, 2301G-N9, respectively.

Figure 3.54 PCR analysis of AcMRJP1 gene insertion in the genome of transformed potato plant transformed with pCAMBIA2301-B33-AcMRJP1-Nos. PCR product was analyzed by 1.2% agarose gel electrophoresis with ethidium bromide staining. Amplification of a 1.3 kb AcMRJP1 fragment from only the transgenic plants confirms the integration of the T-DNA.

Lane M = 100 bp DNA ladder

Lane P = The amplified products of pCAMBIA2301-35S-AcMRJP1-Nos positive control plasmid

Lane N = The amplified products of non-transformed plant DNA (negative control)

Lane 1-8 = The amplified product of transformed potato line 2301B-E3, 2301B-F4, 2301B-G5, 2301B-H6, 2301B-I7, 2301B-L8, 2301B-M9, 2301B-N10, respectively.

Figure 3.55 PCR analysis of AcMRJP1 gene insertion in the genome of transformed potato plant transformed with pCAMBIA2301-35S-AcMRJP1-Nos. PCR product was analyzed by 1.2% agarose gel electrophoresis with ethidium bromide staining. Amplification of a 1.3 kb AcMRJP1 fragment from only the transgenic plants confirms the integration of the T-DNA.

Lane M = 100 bp DNA ladder

Lane P = The amplified products of pCAMBIA2301-35S-AcMRJP1-Nos positive control plasmid

Lane N = The amplified products of non-transformed plant DNA (negative control)

Lane 1-4 = The amplified product of transformed potato line 2301C-A1, 2301C-B2, 2301C-C3, 2301C-D4, 2301C-E5, 2301C-F6, respectively.

Figure 3.56 PCR analysis of AcMRJP1 gene insertion in the genome of transformed rice plant transformed with pCAMBIA1301-35S-AcMRJP1-Nos. PCR product was analyzed by 1.2% agarose gel electrophoresis with ethidium bromide staining. Amplification of a 1.3 kb AcMRJP1 fragment from only the transgenic plants confirms the integration of the T-DNA.

Lane M = 100 bp DNA ladder

Lane P = The amplified products of pCAMBIA2301-35S-AcMRJP1-Nos positive control plasmid

Lane N = The amplified products of non-transformed plant DNA (negative control)

Lane 1-6 = The amplified product of transformed potato line 1301C-A1, 1301C-B2, 1301C-C3, 1301C-D4, 1301C-E5, 1301C-F6, respectively.

3.4.3.3 Detection of the AcMRJP1 mRNA in transformed plant by RT-PCR

3.4.3.3.1 Plant total RNA extraction

The expression of AcMRJP1 gene at RNA level was examined by the use of reverse transcription PCR (RT-PCR) using primers specific for AcMRJP1 cDNA. Total RNA was isolated from *in vitro* grown microtuber of putative transformed potato and *in vitro* grown leaves of putative rice transformants using TRI REAGENT[®] (Molecular Research Center, Inc., USA). To eliminate the possibility of DNA contamination in the plant total RNA preparation, the total RNA was incubated with DNase. The total RNA from non-transformed plants was used as a negative control. The concentration of total RNA was determined by measuring the optical density at 260 nm. An amount of extracted RNA was approximately 5-6 µg per 100 mg of plant tissue. An OD₂₆₀ / OD₂₈₀ ratio in the range of 1.8 to 2.0 indicated pure prepared RNA.

Figure 3.57 A 1.0% agarose gel electrophoresis of total RNA extracted from leaf of rice (lanes 1-2) and tuber of potato (lanes 4-10).

Lane M = 100 bp DNA marker

3.4.3.3.2 Detection of the AcMRJP1 mRNA in transformed potatos by RT-PCR

The transformed potatos containing the AcMRJP1 gene insertion as confirmed by PCR was selected to examine the transcription of the AcMRJP1 transgene by RT-PCR analysis. The non-transformed potato was used as a negative control. The total RNA extracted from microtubers were reverse transcribed. The first strand cDNA was used as a template for amplification of AcMRJP1 transcript. Amplifications of 18S and GBSS transcripts were performed in parallel. The presence of AcMRJP1 gene was analyzed using primer derived from the 5' and 3' ends of AcMRJP1 coding sequence. The transformant containing the transgene were identified by the presence of an amplified RT-PCR product of 1.3 kb. To compare the level of AcMRJP1 RT-PCR products of separate plants, the PCR products were compared on the basis of 18S rRNA (356 bp) and GBSS (173 bp) RT-PCR product levels.

The result showed that AcMRJP1 transcript was found in five lines of transformed potato (2301G-D4, 2301G-H6, 2301G-I7, 2301G-J8, 2301G-N9) transformed with pCAMBIA2301-GBSS-AcMRJP1-Nos, six lines of transformed potato (2301B-E3-5, 2301B-E4-6, 2301B-I7, 2301B-L8, 2301B-M9, 2301B-N10) transformed with with pCAMBIA2301-B33-AcMRJP1-Nos, and three lines of transformed potato (2301C-B2, 2301C-D4, 2301C-F6) transformed with pCAMBIA2301-35S-AcMRJP1-Nos (Figure 3.58-3.60). No AcMRJP1 mRNA was detected in non-transformed negative control potato. The transformants gave DNA bands of the expected sized of AcMRJP1 cDNA, demonstraing that they produced mRNA from the corresponding gene. However, the AcMRJP1 mRNA level in individual transformed lines were low. Most of the transformed line under the GBSS and B33 promoter showing the higher AcMRJP1 transcript level than those under the 35S promoter.

Figure 3.58 RT-PCR analysis of AcMRJP1 mRNA in tubers of potato transformed with pCAMBIA2301-GBSS-AcMRJP1-Nos. Amplifications of 18S and GBSS transcripts were performed in parallel. RT-PCR reaction was analyzed by 1.5% agarose gel electrophoresis and ethidium bromide staining. The arrow indicates the expected RT-PCR product of the AcMRJP1 mRNA (1.3 kb).

Lane M = 100 bp DNA ladder

Lane N = The RT-PCR products of non-transformed plant RNA (negative control)

Lane 1-5 = The RT-PCR product of transformed potato line 2301G-D4, 2301G-H6, 2301G-I7, 2301G-J8, 2301G-N9, respectively.

Figure 3.59 RT-PCR analysis of AcMRJP1 mRNA in tubers of potato transformed with pCAMBIA2301-B33-AcMRJP1-Nos. Amplifications of 18S and GBSS transcripts were performed in parallel. RT-PCR reaction was analyzed by 1.5% agarose gel electrophoresis and ethidium bromide staining. The arrow indicates the expected RT-PCR prodcut of the AcMRJP1 mRNA (1.3 kb).

Lane M = 100 bp DNA ladder

Lane N = The RT-PCR products of non-transformed plant RNA (negative control)

Lane 1-6 = The RT-PCR product of transformed potato line 2301B-G5, 2301B-H6, 2301B-I7, 2301B-L8, 2301B-M9, 2301B-N10, respectively.

Figure 3.60 RT-PCR analysis of AcMRJP1 mRNA in tubers of potato transformed with pCAMBIA2301-35S-AcMRJP1-Nos. Amplifications of 18S and GBSS transcripts were performed in parallel. RT-PCR reaction was analyzed by 1.5% agarose gel electrophoresis and ethidium bromide staining. The arrow indicates the expected RT-PCR product of the AcMRJP1 mRNA (1.3 kb).

Lane M = 100 bp DNA ladder

Lane N = The RT-PCR products of non-transformed plant RNA (negative control)

Lane 1-3 = The RT-PCR product of transformed potato line 2301C-B2, 2301C-D4, 2301C-F6, rspectively.

3.4.3.3.3 Detection of the AcMRJP1 mRNA in transformed rices

The transformed rice containing the AcMRJP1 gene insertion as confirmed by PCR was selected to examine the transcription of the AcMRJP1 transgene by RT-PCR analysis. The non-transformed potato was used as a negative control. The total RNA extracted from microtubers were reverse transcribed. The first strand cDNA was used as a template for amplification of AcMRJP1 transcript. Amplifications of actin transcripts were performed in parallel. The presence of AcMRJP1 gene was analyzed using primer derived from the 5' and 3' ends of AcMRJP1 coding sequence. The transformants were identified by the presence of 1.3 kb RT-PCR product corresponding to a portion of the AcMRJP1 cDNA amplified from cDNA prepared from leaves of transformed rice plants. To compare the level of AcMRJP1 RT-PCR products of separate plants, the PCR products were compared on the basis of actin (276 bp) RT-PCR product levels.

In transformed rice, six transformed rice plants were chosen to verify the transcription of AcMRJP1 gene. The result showed that AcMRJP1 transcript was found in all six lines of transformed rice plants (1301C-A1, 1301C-B2, 1301C-C3, 1301C-D4, 1301C-E5 and 1301C-F6) transformed with pCAMBIA1301-35S-AcMRJP1-Nos (Figure 3.61). The specificity of the RT-PCR reaction for the AcMRJP1 gene was confirmed by the absence of an amplificaton product form cDNA prepared from leaves of non-transformed negative control rice plant. The transformants gave bands of the expected sized of AcMRJP1, demonstraing that they produced mRNA transcripts of the corresponding gene. However, the AcMRJP1 mRNA levels in individual transformed lines were variable among different transformants. A high level of AcMRJP1 transcript was found in the 1301C-D4 and 1301C-E5 transformed lines.

Figure 3.61 RT-PCR analysis of AcMRJP1 mRNA in leaves of rice transformed with pCAMBIA1301-35S-AcMRJP1-Nos. Amplifications of actin transcripts were performed in parallel. RT-PCR reaction was analyzed by 1.5% agarose gel electrophoresis and ethidium bromide staining. The arrow indicates the expected RT-PCR prodcut of the AcMRJP1 mRNA (1.3 kb).

Lane M = 100 bp DNA ladder

Lane N = The RT-PCR products of non-transformed plant RNA (negative control)

Lane 1-6 = The RT-PCR product of transformed rice line plants 1301C-A1, 1301C-B2, 1301-C3, 1301-D4, 1301-E5, 1301-F6, respectively.

3.4.3.4 Detection of AcMRJP1 protein in transformed plants by western blot analysis

3.4.3.4.1 Detection of AcMRJP1 protein in transformed potato

To examine AcMRJP1 expression in transformed potato, protein extracts were prepared from each transformed potato tuber and analyzed by SDS-PAGE following by Western blot analysis. The assay of AcMRJP1 gene expression at the protein level was focused on one of each plant line which expressed high transcript levels. Transformed potato line of 2301G-H6, 2301B-H6 and 2301C-B2 were selected for further analysis by immunoblot. Approximately 100 µg total protein extract from tuber of these transformants were analyzed on 8% SDS-PAGE (Figure 3.62) followed by transfer to PVDF membrane and incubation with anti-His antibody or polyclonal rabbit antiserum against WSPs (water soluble proteins) of RJ of *A. mellifera* (Schmitzova *et al.*, 1998). Recombinant AcMRJP1 from *E. coli* was used as a positive control in all blots.

Western blot analysis with an anti-His antibody showed that transformed potato plants contained tagged proteins that migrated with an apparent molecular mass of approximately 70 kDa and 50 kDa corresponding to the predicted size of the GUS and AcMRJP1, respectively (Figure 3.63A). No proteins of this size were detected in extracts from nontransformed plants. The results indicate that pCAMBIA2301-GBSS-AcMRJP1-Nos, pCAMBIA2301-B33-Nos and pCAMBIA2301-35S-Nos plants synthesized and accumulated AcMRJP1 and GUS protein in their tubers. No bands were detected with total protein of non-transformed potato. In the second immunoblot assay using polyclonal rabbit antiserum against WSPs of RJ, only the 50 kDa protein was positively detected but not the 70 kDa peptide of GUS (Figure 3.63 B). The results indicated that pCAMBIA1301-35S-AcMRJP1-Nos plants synthesized and accumulated AcMRJP1 and GUS protein in tubers. These bands were absent from proteins extracted from non-transgenic control plants.

Figure 3.62 SDS-PAGE analysis of protein from tuber extract of the transformed potato tuber. Total protein extract (100 μ g) was fractionated by SDS-PAGE. Molecular masses of the protein marker are indicated at the left.

Lane M = Protein marker

Lane 1 = Protein extract from tubers of nontransformed plant

Lanes 2-4= Protein extracts from tubers of transformed plant lines 2301C-B2, 2301G-H6 and 2301B-H6, respectively

Figure 3.63 Western analysis of protein from tuber extract of the transformed potato plants. Total protein extract (100 μ g) was fractionated by SDS-PAGE, blotted onto a PVDF membrane, and probed with polyclonal rabbit antiserum against WSPs of RJ of *A. mellifera* or anti-His antibody. Molecular masses of the protein marker are indicated at the left. The AcMRJP1 and GUS band is indicated by an arrow.

(A) Western blot using the anti-His antibody at a dilution of 1:1,000

Lane M = Protein marker

Lane P = Purified rAcMRJP1 protein from *E. coli* (100 ng, positve control, 50,kDa)

Lane C = Protein extract from tuber tissue of nontransformed plant

Lanes 1 = Protein extracts from tuber of transformed potato line 2301C-B2

Lanes 2 = Protein extracts from tuber of transformed potato line 2301G-H6

Lanes 3 = Protein extracts from tuber of transformed potato line 2301B-H6

(B) Western blot using the polyclonal rabbit antiserum against WSPs of RJ of A. *mellifera* at a dilution of 1:2,000

Lane M = Protein marker

Lane P = Purified rAcMRJP1 protein from *E. coli* (100 ng, positve control, 50,kDa)

Lane C = Protein extract from tuber tissue of nontransformed plant

Lanes 1 = Protein extracts from tuber of transformed potato line 2301G-H6

Lanes 2 = Protein extracts from tuber of transformed potato line 2301C-B2

Lanes 3 = Protein extracts from tuber of transformed potato line 2301B-H6

3.4.3.4.2 Detection of AcMRJP1 protein in transformed rice by Western blot analysis

In order to confirm the presence of AcMRJP1 protein in transformed rice plants, Western blot analysis of total protein from leaves was performed. The 1301-C3, 1301-D4 and 1301-E5 transformants which accumulated high levels of the AcMRJP1 mRNA were selected for further analysis by immunoblot. Approximately 100 µg total protein extract of 1301C-E5 transformants were analyzed on 8% SDS-PAGE (Figure 3.64) followed by transfer to PVDF membrane and incubation with anti-His antibody or polyclonal rabbit antiserum against WSPs of RJ of *A. mellifera* (Schmitzova *et al.*, 1998). Recombinant AcMRJP1 from *E. coli* was used as a positive control in all blots.

Proteins migrating as 70 and 50 kDa polypeptides were detected in rice plants containing the AcMRJP1 transgene when the blots were probed with anti-His antibody (Figure 3.65A). These bands corresponded to the expected sized of GUS and AcMRJP1 protein, respectively. In the second immunoblot assay using polyclonal rabbit antiserum against WSPs of RJ, only the 50 kDa protein band was positively detected (Figure 3.65B). The results indicate that these transformants synthesized and accumulated AcMRJP1 and GUS protein in leaves. These bands were absent from proteins extracted from non-transgenic control plants.

Figure 3.64 SDS-PAGE analysis of protein extract from leaves of representative of the transformed rice plant. Total soluble protein extract (100 μ g) was fractionated by SDS-PAGE. Molecular masses of the protein marker are indicated at the left.

Lane M = Protein marker

- Lane P = Purified rAcMRJP1 protein from *E. coli* (100 ng, positve control, 50,kDa)
- Lane 1 = Protein extract from leaves of transformed plant line 1301-E5

Lane 2 = Protein extract from leaves tissue of nontransformed plant

Figure 3.65 Western analysis of AcMRJP1 protein from leaves extract of the transformed rice plants. Total protein extract (100 μ g) was fractionated by SDS-PAGE and blotted onto a PVDF membrane. Molecular masses of protein marker are indicated at the left. The AcMRJP1 band is indicated by an arrow.

(A) Western blot using the anti-His antibody at a dilution of 1:1,000

Lane M = Protein marker

Lane P = Purified rAcMRJP1 protein from E. coli (100 ng, positve control, 50,kDa)

Lane C = Protein extract from leaves tissue of nontransformed plant

Lanes 1 = Protein extracts from leaves of transformed potato line 1301-C3

Lanes 2 = Protein extracts from leaves of transformed potato line 1301-D4

Lanes 3 = Protein extracts from leaves of transformed potato line 1301-E5

(B) Western blot using the polyclonal rabbit antiserum against WSPs of RJ of A. *mellifera* at a dilution of 1:2,000

Lane M = Protein marker

Lane P = Purified rAcMRJP1 protein from *E. coli* (100 ng, positve control, 50,kDa)

Lane C = Protein extract from tuber tissue of nontransformed plant

Lanes 1 = Protein extracts from leaves of transformed potato line 1301-C3

Lanes 2 = Protein extracts from leaves of transformed potato line 1301-D4

Lanes 3 = Protein extracts from leaves of transformed potato line 1301-E5