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บทคัดย่อ 
 

 ไมโครพลาสติกในดินส่งผลกระทบในวงกว้างต่อสิ่งแวดล้อมอย่างมาก โดยเฉพาะสิ่งมีชีวิตที่อาศัยอยู่ใน
ดิน ในการวิเคราะห์หาปริมาณไมโครพลาสติกด้วยวิธีดั้งเดิมเช่นเทคนิคโครมาโทรกราฟี ต้องใช้การสกัดแยกไม
โครพลาสติกออกจากดินและมีความยุ่งยากในการวิเคราะห์ เนื่องจากต้องเตรียมตัวอย่าง ทำได้ยาก และต้องใช้
เวลานานในการวิเคราะห์ ในงานวิจัยนี้ผู้วิจัยได้เสนอการตรวจวัดไมโครพลาสติกในดินด้วยวิธีเนียร์อินฟราเรด 
สเปกโทรสโกปีซึ่งตรวจวัดในช่วงความยาวคลื่นตั้งแต่ 1100 - 2300 นาโนเมตร และวิเคราะห์ร่วมกับเทคนิค
ทางเคโมเมทริกซ์ซึ่งเป็นวิธีการทางคณิตศาสตร์และสถิติ ข้อดีของเทคนิคเนียร์อินฟราเรดสเปกโทรสโกปี ได้แก่ 
ตรวจวัดได้ง่ายและรวดเร็ว ไม่ต้องเตรียมตัวอย่างก่อนการวิเคราะห์ ในการทดลองได้ใช้แก้วและจานพลาสติก
ซึ่งทำมาจากพลาสติกชนิดพอลิเอทิลีนเทเรฟทาเลต (พีอีที) และพอลิสไตรีน ตามลำดับ นำมาบดและปั่นให้
ละเอียดด้วยเครื่องปั่นเพื่อทำให้พลาสติกมีขนาดเล็กลงจนได้ไมโครพลาสติกนำไมโครพลาสติกที่ได้มาวิเคราะห์

ขนาดและการกระจายด้วยกล้องจุลทรรศน์แบบใช้แสง ได้ขนาดของพีอีทีและพอลิสไตรีนคือ 44.45 ± 66.68 
และ 103.39 ± 101.13 ไมครอนตามลำดับ ในการตรวจวัดด้วยเทคนิคเนียร์อินฟราเรดสเปกโทรสโกปีได้เตรียม
ตัวอย่างไมโครพลาสติกในดินที่มีความเข้มข้นตั้งแต่ 1-10 ร้อยละโดยมวล และตรวจวัดโดยใช้โหมดสะท้อน
กลับ ในการสร้างแบบจำลองสำหรับตรวจวัดไมโครพลาสติกในดินได้นำแบบจำลองกำลังสองน้อยที่สุดบางส่วน
มาใช้ประกอบกับการเลือกช่วงความยาวคลื่นโดยใช้โปรแกรมแมตแล็บ พบว่าการตรวจวัดพีอีทีและพอลิสไตรีน
ไมโครพลาสติกในดินได้ค่ารากที่สองของค่าเฉลี่ยความคลาดเคลื่อนจากการทำนายคือ 1.30 (R2 = 0.8030) 
และ 1.19 (R2 = 0.8253)  ร้อยละโดยมวลตามลำดับ เมื่อทำการเลือกช่วงความยาวคลื่นพบว่าการตรวจวัดพีอี
ทีและพอลิสไตรีนไมโครพลาสติกในดินได้ค่ารากที่สองของค่าเฉลี่ยความคลาดเคลื่อนจากการทำนายคือ 1.35 
(R2 = 0.7854, 47 ตัวแปร) และ 1.09 (R2 = 0.8582, 56 ตัวแปร) ร้อยละโดยมวลตามลำดับ ในการตรวจวัด
ไมโครพลาสติกที่ผสมกันทั้งสองชนิดในดินได้ทำการแปลงสเปกตรัมด้วยวิธีอีพีโอ พบว่าสามารถตรวจวัดไมโค
รพลาสติกชนิดพีทีเอและพอลิสไตรีนได้ ซึ่งมีค่ารากที่สองของค่าเฉลี่ยความคลาดเคลื่อนจากการทำนายคือ 
3.17 และ 3.26 ร้อยละโดยมวลตามลำดับ ดังนั้นสามารถตรวจวัดไมโครพลาสติกในดินได้ด้วยวิธีเนียร์
อินฟราเรดสเปกโทรสโกปีและเคโมเมทริกซ์ 
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Abstract 
 
 Microplastic pollution in soil have a vital impact on organisms living in soil. To quantify 
amount of microplastics in soil, the preparation approach need to be performed in order to 
separate plastic from soil. Therefore, the conventional methods such as chromatography are 
complicated and time-consuming method to identify and quantify microplastics in soils. In the 
study, the powerful of near infrared spectroscopy (NIRS) ranging 1100 – 2300 nm combined 
with chemometrics tools are demonstrated as a technique for rapidly monitoring microplastics 
in soil as the preparation step is unrequired. Polyethylene terephthalate (PET) and polystyrene 
(PS) were grinded by blender to generate the artificially microplastics. Size of grinded 
microplastics of PET and PS are in the range of 44.45 ± 66.68 and 103.39 ± 101.13 µm, 
respectively. Sets of artificially polluted soil samples were prepared by mixing the 
microplastics in soil with various concentrations (1-10 %w/w). The reflectance mode of NIR 
were used to acquire the NIR spectra of soil contaminated with microplastic. The models for 
microplastic prediction were generated using machine learning algorithms, partial least squares 
regression (PLSR), with data pre-processing in MATLAB®. The performance of models was 
evaluated showing that RMSEP for PET was 1.30 %w/w with R2 = 0.8030 and RMSEP for PS was 
1.19 %w/w with R2 = 0.8253. After using variable selection method (shaving method), the 
RMSEP for PET was 1.35% w/w with R2 = 0.7854 (47 variables) and RMSEP for PS was 1.09 
%w/w with R2 = 0.8582 (56 variables). The mixture of PET and PS microplastics in soil samples 
were quantified using external parameter orthogonalization (EPO) to extract only the 
reflectance spectra of target analyzes. The results presented RMSEP was 3.17 %w/w and 3.26 
%w/w for PET and PS, respectively. It could be concluded that NIRS combined with 
chemometrics is potential technique for microplastics detection in soil. 
Keywords: microplastics, near infrared spectroscopy, soil, chemometrics 
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CHAPTER I 

INTRODUCTION 

 

 1.1. Introduction 

 Every minute, tons of plastic have been produced continuously and there is enormous 

use of plastics. Microplastics are very small plastic particles that come from a variety of 

sources, including from a bulk plastic piece that gradually degrades into smaller pieces. Plastic 

is widely used and presented everywhere. Microplastics are increasingly considered as an 

environmental problem in recent years. People have been mainly focusing on environmental 

impacts from microplastics especially in the ocean and soil. In the ocean, effects of 

microplastics on marine organism is very concerned as a challenge problem to solve and to 

detect the microplastics particles. In contrast, microplastics in soil have been overlooked. 

Plastic wastes are landfilled in soil, therefore, microplastic pollution in soil or agricultural 

landscapes has potential consequences to plants and animals. Soils are essential components 

of landscapes in the world that can be polluted easily from waste or chemical substances. 

The potential consequences are biodiversity impacts and ecological effects. Although 

microplastics are presented in soils, the analytically available method has no standard method 

for microplastic detection including identification and quantification1. Many available protocols 

to qualify and quantify microplastics in soil have to extract microplastics from soil before 

analysis using chemical analysis instruments. Therefore, the conventional protocols are 

urgently needed to develop2. 

 In last decade, various techniques for the microplastic detection have been published. 

Several standard techniques were used to determine amount and type of microplastics 

including Raman spectroscopy, Infrared (IR) spectroscopy and chromatography2. In 2018, 

Catarina F. Araujo. et. al.2 reported the use of Raman spectroscopy to identify of microplastics. 

The technique can analyze of very small microplastic particles (< 20 micron). The authors 

have been reported that the technique drawbacks long measurement time of analysis. In 

2018, Philipp M. Anger. et. al.3 reported the use of Raman microspectroscopy technique to 

analyze microplastic particles. In 2018, Araujo C. F., et. al.4 reported a review on occurrence 

of microplastics and detection including infrared spectroscopy, Raman spectroscopy, scanning 

electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy. Although this 
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method is specific to individual microplastic signals in Raman spectrum, but they require single 

determination for each compound, which time consuming and expensive.  

 In many analytical tools, near infrared spectroscopy (NIRS) has been reviewed as a 

potential tool becoming popular technique to qualify and quantify a wide range of chemical 

analyses6 in agriculture, food industry, pharmaceuticals and chemical process monitoring. The 

interesting benefits of this technique is mostly attributed to the rapid and easy detection, 

nondestructive analysis of bulk materials and unnecessary sample preparations. Near infrared 

(NIR) spectra are based on the rules of vibrational motions and observed in several bands 

including overtones and combination bands which differ from fundamental vibrational modes 

in mid infrared spectra. NIR spectroscopy is a vibrational spectroscopy which measures 

wavelengths from 800 nm to 2500 nm corresponding to overtone and combination bands of 

vibrational transitions in anharmonic oscillating potential model. The NIR absorptions are 

sensitive to C-H, O-H and N-H bonds which are mainly functional groups in chemical 

molecules. In contrast, NIR spectra containing overtone and combination bands are too 

complex to interpret using a conventional univariate calibration. The chemometrics or 

machine learning have to be employed to extract analytical signals and information from the 

NIR spectra. The development of chemometric models, involving mathematical and statistical 

method is required in order to interpret near infrared data. To solve NIRS analytical problems, 

the mathematical and statistical treatment are the major factor in order to develop a powerful 

predictive model. NIRS combined with chemometrics tools can be used in qualitative and 

quantitative analysis. Multivariate analysis or many machine learning algorithms are especially 

used for generating a complex model in NIRS to determine several targeted molecules. 

 Chemometrics, mathematical and statistical method for chemical data, is an important 

method in NIRS to interpret and extract relevant chemical data6. Multivariate analysis is mainly 

used for dimensionality reduction, data visualization, data classification, regression and 

statistical inference in NIR spectra. In regression problems, multivariate linear regression used 

for explaining the relationship between the predictor (X) and response (y). The predictor (X) 

consisting of independent variables are NIR spectra collected in matrix form and the response 

(y) is dependent variables which linearly related to the predictor (X). In the case of NIRS, the 

predictor (X) is the NIR spectra containing the reflection value of each wavelengths and the 

response (y) is the effects from the predictor such as chemical concentrations. The predictive 

models based on multivariate linear regression have two major parts including model training 
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with or without model selection and prediction to evaluate model validity and model 

performance. The training data set as a predictor (X) consists of NIR spectra in matrix form 

whose dimension are M rows (M observations) and N columns (N variables) and the response 

(y) consists of response values in vector form whose dimension are M rows corresponding to 

M observations and the number of columns is corresponding to the targeted responses usually 

have a one column. In linear regression model, the coefficient vector (b) were found by 

optimizing to minimize an error between predictor (X) of the training model and response (y) 

in L2-norm or high-dimensional Euclidean distance. The obtained coefficients were used to 

predict response called predicted response of the unknown predictor or test data sets. 

 In NIR spectroscopy, calibration curve built from a single selected peak from NIR 

spectra in univariate analysis fashion is obviously not sufficient. According to patterns of 

chemical signals in NIR spectra, chemometrics has been used to extract the pattern from all 

of wavelengths in NIR spectra for effective interpretation. Multivariate analysis can analyze the 

pattern from all of wavelengths in NIR spectra such as principal component analysis (PCA) and 

partial least squares (PLS) regression. Mostly, the PLS regression has been frequently used to 

generate the multivariate calibration model from NIR training data set. The PLS regression is 

mathematical model which is a relationship between partially latent variables from predictor 

(X) and response (y). The calibration model has been practically generated to quantify the 

predicted response for any system and using multivariate analysis in NIR spectroscopy is very 

importance to achieve the accuracy with high performance of the calibration model. 

 
Figure 1.1 summary of partial least squares (PLS) model in calibration and prediction 

  

 

predictor (X)

N variables

M observations

(1) Model training

Y

response (Y)

training data set

b

regression coefficients

PLS regression

(2) Model validation
N variables

unknown samples

test data set
regression coefficients

b

N+1 coefficients

N+1 coefficients Ypred

predicted response
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 There is only one article of using NIR spectroscopy for detection of microplastics. 

Recently, in 2019, Fabio Corradini et. al.5 reported the use of near infrared (NIR) spectroscopy 

to quantify microplastic in soil. This research used multilinear regression baes on Bayesian 

approach. For the result, root mean squared deviation (RMSD) of 8, 18 and 10 g/kg for LDPE, 

PET and PVC, respectively. The root mean squared deviation (RMSD) in mixture treatment 

were reported of 8, 10, 15 g/kg for LDPE, PET and PVC, respectively. 

 In this work, the NIR spectroscopy was used and combined with chemometrics to 

propose calibration model using partial least squares (PLS) regression. Firstly, the predictor (X) 

were regressed on the response concentration vector to optimize number of PLS components. 

Secondly, the optimized number of PLS component was used to generate predictive model. 

Finally, the test data set was used to evaluate model performance and root mean squared 

error of prediction (RMSEP) was calculated. 

 

 1.2. Objective of this work 

 To develop and demonstrate a potential of predictive model based on partial least 

squares (PLS) regression to quantify polyethylene terephthalate (PET) and polystyrene (PS) in 

soil using near infrared spectroscopy and chemometrics 

 

 1.3. Scope of this work 

 This study involves the development of calibration model based on chemometrics to 

perform the predictive model to quantify polyethylene terephthalate (PET) and polystyrene 

(PS) in soil using near infrared spectroscopy. This study used data pre-processing techniques 

including smoothing, standard normal variate (SNV) and external parameter orthogonalization 

(EPO). The developed model, partial least squares (PLS) model with and without variable 

selection method, shaving method were used in this study. 

 

 1.4. Theoretical background 

 1.4.1. Near infrared spectroscopy 

 Near infrared (NIR) spectroscopy is vibrational spectroscopy between the infrared (IR) 

region and visible light that can be expressed in range of 800 – 2500 nm6. NIR spectroscopy is 

based on overtone and combination transitions of chemical bonds especially C-H, O-H and N-

H. Combination bands are based on concurrently interaction of two or more vibrational 
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modes. Generally, the overtone bands are related to vibrational transitions that the vibrational 

quantum number is changed of two or more. According to the selection rules of quantum 

mechanics, NIR spectroscopy is based on anharmonic oscillator vibrational potential. 

Transition from ground (!	= 0) to the first excited state, called fundamental vibration, which 

absorbs strongly light in infrared (IR) spectroscopy according selection rules. The transition 

from ground state to the second excited state with absorption of NIR light called first overtone. 

The transition from ground state to the third and fourth excited state with absorption of NIR 

light called second and third overtone, respectively (Figure 1.2.). The overtone and 

combination bands are characteristic bands of chemical compounds. As a result, it is difficult 

to interpret NIR spectrum without mathematical and statistical methods. Therefore, 

chemometrics combined with NIR spectroscopy for extracting relevant signals are very 

important.	

 
Figure 1.2. summary of vibrational transition in NIR spectroscopy 

 

 1.4.2. Chemometrics 

 1.4.2.1. Principal component analysis (PCA) 

 PCA is an unsupervised technique to reduce dimension of data and extract relevant 

features6. The concept of PCA is to find the orthonormal basis corresponding to the maximum 

variance extracted form data. The orthonormal basis is used to project the data onto the basis 

to obtain coefficients. The coefficients are a representative of the original data called scores. 

To perform PCA, the singular value decomposition was used to decomposition of data and 

find the loading (orthonormal basis). In summary, the PCA algorithm work as follows: 

1.) Data matrix or predictor X whose dimension is M rows and N columns 

2.) Orthogonal Decomposition of Covariance Matrix 

C = 
#

$%#XTX = WDW-1 = WDWT 

ν = 0
ν = 1
ν = 2
ν = 3
ν = 4

Energy

Bond length

Fundamental
First overtone
Second overtone
Third overtone
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3.) Singular Value Decomposition (SVD) of data matrix X 

 X = UCWT 

 X = &1u1w1
T + &2u2w2

T + … &rurwr
T 

For &1 ≥ &2 ≥ &3 ≥ …	 ≥ &r  we select the w1 and w2 are orthonormal basis for 

orthogonal projection 

4.) Orthogonal Projection of Data X 
 t1 = Xw1 and t2 = Xw2 to obtain T = XW and X = TPT + E 

 

1.4.2.2. Partial least squares (PLS) model 

 In order to generate calibration model based on linear regression, partial least squares 

(PLS) is one of the most popularly used in spectroscopy6. Its purpose is to predict the output 

or response (y) related to predictor (X). The predictor (X) was projected onto coefficient 

subspace optimized from minimization of error term in L2-norm. In this regression, the training 

data set as a predictor (X) consists of NIR spectra in matrix form whose dimension are M rows 

(M observations) and N columns (N variables) and the response (y) consists of response values 

in vector form whose dimension are M rows corresponding to M observations and the number 

of columns is corresponding to the targeted responses usually have a one column. According 

to loading of the predictor (X) extracted from singular value decomposition (SVD) of X, the 

score matrix (T) is obtained from projecting predictor (X) onto loading. The following matrix 

equations are PLS algorithms and the PLS model is equation (1) by obtain the vector of 

regression coefficients (b). 

 

   X = TPT + E and T = XW 
   Y = TQT + F 
   b = WQT 
   Y = Xb     … (1)  

 

 1.4.2.3. Standard Normal Variate (SNV) 

 Standard normal variate (SNV) is a data pre-processing technique to normalize NIR 

spectra  and remove unsystematic effects such as temperature and spectral baseline shift6. 

When NIR spectroscopy was performed, the obtained NIR spectra might be fluctuated from 

environmental effects and causing baseline shift of spectra. To normalize NIR spectra, SNV is 
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used as popular pre-processing method. This method used the average value (') and standard 

deviation (SD) of all of values in NIR spectra to subtract the interferences (equation 2). 

 

 Xnew =  
()%	*
+,        … (2)	

 

 1.4.2.4. External parameter orthogonalization (EPO) 

 The external parameter orthogonalization was used as an algorithm to remove the 

effect of soil such as organic matters in soil7. The algorithm finds the regions in the spectra 

which are affected by target microplastic and projects the spectra data onto the orthogonal 

variation. The unsystematic and unwanted signals can be effectively removed. This analysis is 

related to principal component analysis (PCA). The subspace of spectra data was divided into 

three parts including chemical spectral responses, external parameter and residuals. In matrix 

form, the spectra or predictor (X) can be written as orthogonal decomposition of predictor6. 

  X = XP + XQ + R 
 P is projection matrix corresponding to useful part of spectra 

 Q is projection matrix corresponding to not useful part of spectra 

 R is residual matrix 

 

In summary, the EPO algorithm work as follows: 

1.) Calculate difference spectra: D = Xpredictor - Xplastic 

2.) Perform singular value decomposition of D  

3.) Define number of EPO components and corresponding V (eigenvector) 

4.) Find Q = VVT 
5.) Calculate the projection matrix as P = I – Q 
6.) The transformed spectra are calculated as Xnew = XpredictorP 
 

1.4.2.5. Variable selection (shaving method) 

The shaving using selectivity ratio (SR) is a visualization tool for searching what are the 

important variables of a multivariate data set8,9. The ratio between the explained and the 

residual (unexplained) variance for each variable in the target projection vector (TP) defines 

the SR for the variables. This target projection utilizes both the predictive ability (regression 

vector) and the explanatory ability (spectral variance and covariance matrix) for the calculation 
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of the selectivity ratio. Given the PLS regression vector, b, target Projection is performed by 

projecting of the rows of X onto the normalized regression coefficients vector b. The score tTP 

is proportional to the predicted values. The loadings, pTP, are obtained by projecting the 

columns of X onto the score vectors, tTP, which again is proportional to y = Xb 
ttp = XbPLS/||bPLS|| 

ptp = Xttp/(ttp
Tttp) 

The ratio of the explained variance SSexplained (and of the residual variance for each variable   

SSresidual) in the sum of squares respectively, is used then to determine the variable importance 

using selectivity ratio (SR). 

 SSi,explained = ||ttp,iptp,i
T||2 

 SSi,residual = ||etp,i||
2 

 etp = X - ttp,iptp,i
T 

 SRi = SSi,explained/SSi,residual 

 

 1.4.2.6. Root Mean Squared Error (RMSE) 

 The root mean squared error (RMSE) is a measure of the differences between the 

values observed and values predicted by model. The RMSE is used for evaluating the model 

performance. Typically, the more complex model, the lower the bias, but the higher the 

variance reflected in mean squared error (MSE). The RMSE is the standard deviation of the 

error or residuals which can be calculated by the following equation. 

 

 RMSE = (./01234512	 − 	.78910:12)<=
3>?  

 

 

 

 

 
 



	 9	

CHAPTER II 

EXPERIMENTS 

 

2. Materials and Method 

 2.1. Chemicals and Materials 

 Plastic glasses and bowls were purchased from local supermarkets (Gourmet market, 

Siam Paragon, Bangkok). Organic soils were purchased from HomePro (Home Product Center 

Public Company Limited), Ploenchit, Bangkok. The commercialized plastic glasses and bowls 

were collected from the supermarket. They were made from polyethylene terephthalate (PET) 

and polystyrene (PS), respectively. The plastics glassed and bowls were cut into smaller pieces 

and were later grinded for 30 minutes to obtain microplastics. The organic soil was heated in 

an oven at 60 oC for 1 hour in order to remove excess water prior for further analysis.                

All glassware was cleaned up with detergent followed by DI water for several times. 

 

 2.2. Sample preparation 

 For preparation microplastic mixed in soil samples, each type of microplastics was 

prepared using % w/w to control the contamination. For example, to prepare 1 % w/w of 

microplastics in soil, the microplastics were weighed to approximately 1 g and then soil was 

added until the final weight of mixture is equal to 10 g, the microplastic concentrations of PET 

and PS in soil were 1 – 10 % w/w approximately for 10 contamination points (Table 2.1.).        

In mixture of microplastic in soil samples, the PET and PS microplastics were weighed and 

mixed with the total concentrations of to 10 % w/w as shown in Table 2.2. An external set of 

mixture of microplastics in soil samples was prepared with microplastic concentrations at         

1, 3, 5, 7, 9 % w/w for each type of microplastics to be used as a test set for model validation. 
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Microplastic in soil samples 

(one type of microplastic) 

Concentration of PET 

in soil (% w/w) 

Concentration of PS in 

soil (% w/w) 

1 0.93 1.00 

2 1.96 2.03 

3 2.96 3.09 

4 3.92 4.09 

5 5.04 5.11 

6 5.82 6.14 

7 6.59 7.19 

8 7.43 7.86 

9 8.78 8.67 

10 9.76 10.05 

 

Table 2.1. Summary of microplastic concentration of PET and PS in soil (1 – 10 %w/w) 

 

Microplastic in soil samples 

(mixture of microplastic) 

Concentration of PET 

in soil (% w/w) 

Concentration of PS in 

soil (% w/w) 

1 1.01 8.83 

2 3.02 6.75 

3 4.97 4.93 

4 7.03 2.98 

5 9.07 0.99 

 

Table 2.2. Summary of microplastic concentration of mixture microplastic in soil 

samples for validation set 

 

 2.3. Spectral acquisition 

 NIR spectrometer with NIR256-2.5 detector, LS-1 tungsten halogen light source and 

fiber optic connector purchased from Ocean Optics was used to acquire NIR spectra of 

microplastics in soil samples. The window range of NIR spectra was set from 900 to 2500 nm 

with the resolution of 6.9 nm. 
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Figure 2.1. The setup scheme of NIR spectrometer 

 

In this study, the spectral range were selected from 1100 – 2300 nm to avoid the 

fluctuation and unstable signals from environmental effects such as temperature. The number 

of total wavelengths was 176 wavelengths. The setup scheme of NIR instrument is shown 

graphically in Figure 2.1. The NIR spectra of the microplastic in soil samples were collected 

using reflectance mode with integration time of 100 milliseconds, 2 averaged scans with boxcar 

smoothing windows of 4. Each microplastic in soil samples was measured of five different 

areas and five replicated times for each area. Therefore, the number of acquired NIR spectra 

per one sample was 25 spectra. NIR spectra were preprocessed using spectral smoothing and 

standard normal variate (SNV) to remove multiplicative interferences of scattering and particle 

size effects. At each concentration of microplastic in soil samples, the five replicated times 

with different areas were averaged to obtain one representative NIR spectra (Figure 2.2.). The 

preprocessed NIR spectra was used for the further multivariate data analysis. 

 

  

 

 

 

 

 

Microplastics in Soil

Probe Holder

Reflectance
probe

1 cm
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Figure 2.2. Sample preparation and analytical steps to obtain  

training and test data set using data pre-processing 

 

 

Weigh microplastic
(target concentration)
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3
4
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Average readings 
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2.4. NIR spectra of training and test data set 

 In the analysis procedures, the total 250 NIR spectra were acquired. To eliminate the 

unsystematic variation, the NIR of five positions were averaged to a single NIR spectrum as a 

representative of replication. Therefore, the total of 50 averaged spectra was further used as 

a training data set for building the calibration model using partial least squares (PLS) to predict 

PET and PS microplastic concentration in soil. In addition, the total 125 NIR spectra of mixture 

of microplastics in soil samples were acquired. In the same way, to eliminate the unsystematic 

variation, the NIR of five positions were averaged to a single NIR spectrum as a representative 

of replication. Therefore, the total 25 averaged spectra was further used as a test data set for 

model validation. 

 

 2.5. Chemometrics 

 2.5.1. Regression model for prediction one type of microplastics in soil 

 The pre-processed NIR spectra were used as a training data set containing 50 spectra 

in the case of both PET and PS. The training data set was regressed on the concentration of 

microplastics using partial least squares (PLS) model and the root mean squared error of 

calibration (RMSEC) was calculated. In addition, the root mean squared error of cross validation 

(RMSECV) was calculated to select the optimized number of PLS components. The optimized 

PLS component was used to generate the PLS model to predict microplastic concentration. 

The test data set was used to evaluate the model performance by calculating root mean 

squared error of prediction (RMSEP) and R2.  

 

 2.5.2. Regression model for prediction mixture of microplastics in soil 

 The pre-processed NIR spectra from the model for prediction of one type of 

microplastic in soil were used as a training data set for prediction mixture of microplastics in 

soil. Firstly, the training data set was processed by external parameter orthogonalization (EPO) 

before building PLS model. The EPO spectra for prediction of PET were calculated from the 

different matrix between the training data set (for PET prediction) and the PET spectrum in 

algebraic manipulation. In the same way, The EPO spectra for prediction of PS were calculated 

from the different matrix between the training data set (for PS prediction) and the PS spectrum 

in linear manipulation. Then, the EPO spectra used as a predictor was regressed on the 

concentration of microplastics using partial least squares (PLS) model and the root mean 
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squared error of calibration (RMSEC) was calculated. In addition, the root mean squared error 

of cross validation (RMSECV) was calculated to select the optimized number of PLS 

components. The optimized PLS component was used to generate the PLS model to predict 

microplastic concentration. The test data set was used to evaluate the model performance 

by calculating root mean squared error of prediction (RMSEP). 

 

 2.5.3. Variable selection method 

 According to the PLS model, to quantify microplastic concentration more precisely, a 

selection of signal region in NIR spectra from the target analytes might be necessary. Therefore, 

the wavelengths in NIR spectra related to the variations of PET and PS microplastic were 

identified and selected systematically. In this study, shaving method was used to select the 

informative regions. PLS model was performed on the training data set and the PLS coefficients 

were used to calculated selectivity ratio (SR) which are corresponded to the variable 

importance. Extended detailed following in this step: 

 

Step 1: The NIR spectra of training data set was regressed on microplastic concentration and 

the number of PLS component was selected from optimization using k-fold cross validation. 

The PLS model was generated from the selected PLS components to obtain PLS coefficient 

vector. The test data set was used to evaluate the model performance by RMSEP and R2 

Step 2: The coefficient vector was used as a basis and the training data set was projected on 

to the basis to obtain coefficient of each sample. Then, the loading corresponding to the 

obtained coefficients was calculated. 

Step 3: The coefficients and loading were used to calculate selectivity ratio (SR) of each 

variable corresponding to variable importance. The average selectivity ratio (SR) was calculated 

and used as criteria to determine selected wavelengths. The wavelengths whose selectivity 

ratio (SR) is higher than the average selectivity ratio (SR) were selected in spectral region. 

Step 4: After selecting wavelengths in spectral region, the selected region considered as 

training data set was regressed on microplastic concentration and the number of PLS 

component was selected from optimization using k-fold cross validation again. The new PLS 

model was generated from the selected region NIR spectra to obtain PLS coefficient vector. 
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Step 5: The test data set was used to evaluate the model performance by RMSEP and R2 using 

the PLS coefficients in Step 4. The model performances with and without variable selection 

were analyzed and discussed in advance. 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

 3.1. Microplastic particle size analysis 

 Microplastics were artificially made by grinding the bulk plastic pieces. The plastic 

glasses made from polyethylene terephthalate (PET) and the plastic bowls made from 

polystyrene (PS) were grinded by the blender. The bulk plastic pieces were grinded into 

smaller particles. In particle size analysis, an optical microscope (OM) was used to measure 

size of particles. The samples of microplastics were prepared by adding the microplastic 

particles into water forming a suspension. The suspension was dropped onto a glass slide and 

was analyzed by optical microscope. The condition used in this experiment was 20x objective 

lens and 10x eyepiece lens. The obtained pictures were snapped using dark field with the 

reference red 100 µm scale bar. The particle size of microplastics was analyzed using ImageJ 

and the particle sizes (> 300 particles) were collected in Excel to investigate size distribution. 

In size distribution, the model parameters were evaluated using maximum likelihood (ML) 

criteria to find mean and standard deviation of the particle sizes in probabilistic manipulation. 

The number of PET microplastic particles was 327 (N=327) and the number of PS microplastic 

particles was 312 (N=312). The results show that the size of grinded microplastics of PET and 

PS are in the range of 44.45 ± 66.68 µm (Figure 3.1. (a)) and 103.39 ± 101.13 µm (Figure 3.1. 

(b)), respectively. The PET microplastic particles were mostly smaller than the PS microplastic 

particles.  

 
Figure 3.1. microplastic size distribution of (a) polyethylene terephthalate (PET) 

and (b) polystyrene (PS) measured by optical microscope (OM) 

  

(a) (b) 



	 17	

3.2. Near infrared spectrum of microplastics and soil 

 The near infrared (NIR) spectra of microplastics and soil in reflectance mode were 

measured using NIR reflectance probe. To visualize the characteristic of NIR spectrum 

consisting pattern in overtone and combination bands, NIR spectrum of pure soil (green line), 

pure PET microplastic (blue line) and pure PS microplastic (red line) were shown (Figure 3.2.). 

It can be seen that soil spectrum mainly differed from microplastic spectrum in the range of 

1600 – 1700 nm and 2100 – 2200 nm. In PET microplastic spectrum, the dominant bands are 

1400 – 1450 nm, 1650 – 1700 nm and 2100 – 2180 nm corresponding to (1) combination of 

C-H stretching and blending of -CH2 (methylene) and –CH in aromatic ring, (2) first overtone of 

C-H stretching in aromatic ring and (3) another combination mode of C-H bond, respectively. 

In PS microplastic spectrum, the dominant bands are 1350 – 1450 nm, 1650 – 1750 nm and           

2150 – 2200 nm corresponding to (1) combination of C-H stretching and blending of -CH2 

(methylene) and –CH in aromatic ring, (2) first overtone of C-H stretching in –CH2 (methylene) 

and –CH of alkyl and aromatic ring and (3) another combination mode of C-H bond in –CH2 

(methylene) group, respectively. In soil spectrum, the dominantly distinct bands are             

1400 – 1600 nm and 1900 – 2100 nm corresponding to first overtone of O-H and N-H stretching 

of water in soil and combination of O-H and N-H bonds due to organic matters in soil. 

 

 
Figure 3.2. NIR spectrum of pure PET (blue), PS (red) microplastic and soil (green) 

 PET   PS Soil 
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 Although the NIR spectra of pure PET and PS are quite similar, the pattern and variation 

of each wavelength of these spectra are different. In multivariate analysis, principal 

component analysis (PCA) was employed to extract the variance of the spectral data. The NIR 

spectra of each type of microplastics in soil and pure soil were collected in matrix form. The 

data matrix was analyzed using PCA to extract the orthonormal basis corresponding to the 

mainly contributed components in spectral data with maximum variance. The scores were 

obtained by projecting the spectral data matrix onto the orthonormal basis which are first and 

second principal axes. The important role of PCA is dimensionality reduction of the data matrix 

by extracting the pattern of data. After applying PCA on the spectral data matrix, the scores 

were plotted (Figure 3.3.) and the result shows that the scores of microplastics in soil which 

are PET in soil (red dot) and PS in soil (blue dot) and pure soil (black dot) were clearly 

separated. According to the result, spectral signals of the microplastics can be extracted using 

PCA to qualify and quantify microplastics in soil using partial least squares (PLS) model.  

 
Figure 3.3. PCA scores plot of NIR spectral data, PET in soil (red dot), PS in soil  

(blue dot) and pure soil (black dot) 

 

 3.3. Variations of near infrared spectra of microplastics in soil 

 The microplastics in soil samples were measured using NIR spectrometer and the NIR 

spectra were collected at each microplastic concentration (1-10 % w/w). The concentration 

effects on NIR spectra were analyzed by visualization. To visualize the characteristic overtone 

and combination bands of analytes, the NIR spectra of microplastics in soil were averaged at 
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each concentration to obtain only one representative NIR spectra of each microplastic 

concentration in soil. The NIR spectra of PET in soil at each concentration (1-10 % w/w) were 

plotted (Figure 3.4. (a)) and can be clearly observed the variation of the NIR spectra with 

different concentrations. The characteristic overtone and combination bands of soil spectra 

were changed by adding different amount of microplastic in soil. Although the obtained NIR 

spectra were similar to soil spectra, the variation of the characteristic bands can be obviously 

observed by visualization. According to the NIR spectra of PET in soil at each concentration, 

there are three major bands with high variation were observed including 1100 – 1300 nm, 

1450 – 1600 nm and 2150 – 2300 nm corresponding to (1) second overtone of –CH2 

(methylene) around 1140 – 1210 nm, (2) combination of –CH in aromatic around 1440 – 1450 

nm and (3) combination of –CH2 (stretching and bending), respectively. In addition, because 

of increasing in microplastic concentration, the amount of soil is reduced relatively. In the 

range of 1100 – 1300 nm and 1450 – 1600 nm, the reflection of the highest PET concentration 

(red line) was higher than the lowest PET concentration (blue line) due to the amount of soil 

and microplastics. The larger amount of soil, the more light is absorbed from soil which causes 

lower reflection of these bands. Although the PET microplastic concentrations were changed, 

the characteristic band of soil around 1900 – 2100 nm were not changed. Therefore, the NIR 

spectra are related to microplastic concentration only. In the range of 2150 – 2300 nm, the 

reflection of the highest PET concentration (red line) was lower than the lowest PET 

concentration (blue line) because of increasing in PET microplastic concentration. The range 

of 2150 – 2300 nm obviously corresponds to the combination mode of C-H bond in pattern 

of pure PET spectra. The variation of these bands are influenced by the amount of PET 

microplastic in soil. According to the results, it could be implied that these bands are strongly 

correlated to the concentration of PET microplastic in soil. 

 In the same way, The NIR spectra of PS in soil at each concentration (1-10 % w/w) 

were plotted (Figure 3.4. (b)) and can be similarly observed the variation of the NIR spectra 

with different concentrations. According to the NIR spectra of PS in soil at each concentration, 

there are three major bands with high variation were observed including 1100 – 1600 nm, 

1650 – 1750 nm and 2150 – 2300 nm corresponding to (1) second overtone of –CH2 (around 

1140 – 1210 nm) and combination of –CH in aromatic (around 1440 – 1450 nm), (2) first 

overtone of –CH stretching (around 1755 – 1775 nm) and (3) combination of –CH2 (around 

2300 nm), respectively. In the range of 1100 – 1600 nm, the reflection of the highest PS 



	 20	

concentration (red line) was higher than the lowest PS concentration (blue line) due to the 

amount of soil and microplastics. Although The PS microplastic concentrations were changed, 

the characteristic band of soil around 1900 – 2100 nm were not changed. Similarly, the NIR 

spectra are related to microplastic concentration only. In the range of 1650 – 1750 nm and 

2150 – 2300 nm, the reflection of the highest PS concentration (red line) was lower than the 

lowest PS concentration (blue line) because of increasing in PS microplastic concentration. 

These bands, 1650 – 1750 nm and 2150 – 2300 nm, obviously correspond to the first overtone 

of C-H stretching and combination of vibrational motion of C-H bond in –CH2 (methylene) 

group of polystyrene (PS) which are similar to the pattern of pure PS spectra. The variation of 

these bands are influenced by the amount of PS microplastic in soil. According to the results, 

it could be implied that these bands are strongly correlated to the concentration of PS 

microplastic in soil. Therefore, in order to visualize the variability direction of NIR spectra along 

with overtone and combination bands pattern of microplastic in soil is required.  

 
Figure 3.4. NIR spectrum of (a) PET in soil and (b) PS in soil with highest concentration 

(red line) and lowest concentration (blue line) and the arrows demonstrate the 

direction of variability of NIR spectrum 
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3.4. Calibration and prediction of microplastics in soil 

 Partial least squares regression (PLSR) model was employed to build the model for 

detection and determination of microplastics in soil using near infrared spectra as a training 

data set. Partial least squares (PLS) model is a linear regression model for multivariate analysis 

problem using linear least squares formulation to minimize prediction error. In calculation, 

near infrared spectra with all wavelengths were used as a variable to generate multivariate 

linear regression model. The data matrix collecting from near infrared spectra is an input data 

called predictor which strongly correlates to a response or microplastic concentration in this 

case. The data matrix consists of near infrared spectra whose row and column are sample and 

wavelengths respectively. In PLSR algorithm, the data matrix as an input data was regressed 

on response (concentration in this case) by optimization with loading of both data matrix and 

response. In near infrared spectroscopy, the data matrix has a number of columns or variables 

more than number of row or samples which caused the regression coefficients does not exist 

and has not a unique solution. Therefore, the partial least squares (PLS) model was frequently 

used to generate model in spectroscopy. In model building method, the training data set 

consists of total 50 near infrared spectra which are divided into 10 concentration points. Each 

concentration points have 5 spectra which are measured repeatedly. Therefore, the data 

matrix of training data set has 50 samples and 176 wavelengths.  

 In model selection method, the data matrix was fitted to response vector and a root 

mean squared error of calibration (RMSEC) for polyethylene terephthalate (PET) (Figure 3.5. 

(a)) and polystyrene (PS) (Figure 3.5. (b)) can be evaluated at each number of PLS components 

extracted from training data set. The RMSEC of each PLS components reduces while increasing 

in number of PLS components due to decreasing in model bias, in other words, the model is 

overfitting to training data set while increasing in number of PLS components. The optimized 

number of PLS components was selected at the optimum point of root mean squared error 

of cross validation (RMSECV) using resampling method, k-fold cross validation when k = 5, 10, 

15 and 20 partitions. The optimized number of PLS components is 2 as it gave the lowest 

RMSE for most case in the model for predicting polyethylene terephthalate (PET) 

concentration (Figure 3.5. (c)) and optimized number of PLS components is 2 in the model for 

predicting polystyrene (PS) concentration (Figure 3.5. (d)) in soil samples. The test data set 

consisting of total 50 additional spectra for each type of microplastics was used to evaluated 

the PLSR model performance. The results show that the root mean squared error of prediction 
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(RMSEP) for polyethylene terephthalate (PET) was 1.30 % w/w with R2 = 0.8030 (Figure 3.5. (e)) 

and the root mean squared error of prediction (RMSEP) for polystyrene (PS) was 1.19 % w/w 

with R2 = 0.8253 (Figure 3.5. (f)). The PLSR model is a potential model for detection 

microplastics in soil using near infrared spectroscopy. Furthermore, the prediction of 

polystyrene (PS) has lower root mean squared error of prediction (RMSEP) and R2 is greater 

than the prediction of polyethylene terephthalate (PET) because the NIR spectra of PS 

microplastic in soil have obviously variation in range of 2150 – 2300 nm corresponding to the 

pattern of pure PS spectrum. The PLSR model can be used to predicting microplastic 

concentration accurately in soil samples which consist of single microplastic component. 

 

	  

	
Figure 3.5. (a), (b) RMSEC plot (c), (d) RMSECV plot and (e), (f) correlation plot between 

actual and predicted concentration for PET and PS in soil, respectively 

(a) PET (b) PS 

(c) PET (d) PS 

(e) PET (f) PS 

RMSEP = 1.30 % w/w 

R2 = 0.8030 

RMSEP = 1.19 % w/w 

R2 = 0.8253 
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 In general, partial least squares regression (PLSR) model in near infrared spectroscopy 

was employed to create multivariate linear regression with full spectral range 1100 – 2300 

nm. However, some wavelengths or variables do not relevant to the underlying information 

of the targeted samples and these variables might be considered as some residuals or noise. 

The variable selection or feature selection method was used to increase performance of the 

model by systematically eliminate irrelevant variables using mathematical and statistical 

method. In spectroscopic aspect, the variable selection is a powerful approach to extract the 

informative signals which are correlated to chemical patterns. In this study, shaving method 

was used as a variable selection method. The parameter of each wavelengths called 

selectivity ratio (SR) was calculated using targeted projection to the PLS coefficients.  The PLS 

coefficients were calculated from normal equation previously and the training data set was 

projected onto the PLS coefficients vector whose norm is one and the scores were obtained. 

The selectivity ratio (SR) was calculated by the ratio between the explained variance and the 

residual variance from covariance matrix extracted from training data set using the scores and 

loading. The variables with selectivity ratio (SR) higher than average of selectivity ratio (SR) 

were selected and the variables whose selectivity ratio (SR) is lower than average of selectivity 

ratio (SR) were eliminated from the model. The selectivity ratio (SR) for polyethylene 

terephthalate (PET) model (Figure 3.6. (a)) and the selectivity ratio (SR) for polystyrene (PS) 

model (Figure 3.6. (b)) was plotted with the dotted red line which represents the average of 

selectivity ratio (SR) to analyze the significant wavelengths for variable selection. The 

wavelengths for polyethylene terephthalate (PET) prediction model were selected in range 

1433 – 1535 nm, 1650 – 1678 nm and 2127 – 2305 nm corresponding to (1) combination of 

C-H stretching and blending of -CH2 (methylene) and –CH in aromatic ring, (2) first overtone of 

C-H stretching in aromatic ring and (3) another combination mode of C-H bond, respectively 

and whose selectivity ratio (SR) are higher than the average of selectivity ratio (SR) (Figure 3.6. 

(c)) and the wavelengths for polystyrene (PS) prediction model were selected in range         

1439 – 1507 nm, 1630 – 1808 nm and 2184 – 2305 nm corresponding to (1) combination of 

C-H stretching and blending of -CH2 (methylene) and –CH in aromatic ring, (2) first overtone of      

C-H stretching in –CH2 (methylene) and –CH of alkyl and aromatic ring and (3) another 

combination mode of C-H bond in –CH2 (methylene) group, respectively (Figure 3.6. (d)). The 

main wavelengths from shaving method are related to the variability of NIR spectra whose 

overtones and combination modes of the characteristic bands mentioned previously. The 
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selected variables of each model were used to fit the partial least squares regression model 

again and the number of PLS components was optimized again with the selected regions of 

predictor in training data set. The optimized number of PLS components was selected at the 

optimum point of root mean squared error of cross validation (RMSECV) using resampling 

method, k-fold cross validation when k = 5, 10, 15 and 20 partitions. The optimized number 

of PLS components is 2 as it gave the lowest RMSE for most case in the model for predicting 

polyethylene terephthalate (PET) concentration (Figure 3.5. (e)) and optimized number of PLS 

components is 3 in the model for predicting polystyrene (PS) concentration (Figure 3.5. (f)) in 

soil samples. When partial least squares regression (PLSR) was fitted again using selected 

variables as a predictor, the test data set was used to evaluated the PLSR model performance. 

The results show that the root mean squared error of prediction (RMSEP) for polyethylene 

terephthalate (PET) was 1.35 % w/w with R2 = 0.7854 (Figure 3.5. (g)) and the root mean 

squared error of prediction (RMSEP) for polystyrene (PS) was 1.09 % w/w with R2 = 0.8582 

(Figure 3.5. (h)). The PLSR model combined with variable selection will reduce the number of 

variables which are fitted in the model. The number of selected variables for polyethylene 

terephthalate (PET) is 47 variables and the number of selected variables for polystyrene (PS) 

is 56 variables whereas the total variables before variable selection is 176 variables. The lower 

number of variables is preferred for model selection which excludes residual or noise from 

some uninformative variables. Although the root mean squared error of prediction (RMSEP) of 

predictive model for polyethylene terephthalate (PET) was slightly increased in comparison 

to the model with all variables but it is acceptable. On the other hand, the root mean squared 

error of prediction (RMSEP) of predictive model for polystyrene (PS) were obviously reduced 

with increasing in model performance. Therefore, the shaving method as a variable selection 

method can reduce number of variables in the model with maintaining a acceptable model 

performance or increasing in model performance. 

 It can be concluded that the promising values (Table 3.1.) for root mean squared error 

of prediction (RMSEP) were obtained to be 1.35 % w/w (R2 = 0.7854) and 1.09 % w/w                     

(R2 = 0.8582) corresponding to  the prediction of polyethylene terephthalate (PET) and 

polystyrene (PS), respectively. Therefore, it might be implied that the PLSR model can be used 

to predict  amount of microplastic in soil. 
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Figure 3.6. (a), (b) selectivity ratio plot with the average selectivity ratio in red line 

(c), (d) selected wavelengths in NIR spectra (e), (f) RMSECV plot  

and (g), (h) correlation plot between actual and predicted concentration  

for PET and PS in soil, respectively 

(a) PET (b) PS 

(c) PET (d) PS 

(e) PET (f) PS 

(g) PET (h) PS 

RMSEP = 1.35 % w/w 

R2 = 0.7854 

47 variables 

 

RMSEP = 1.09 % w/w 

R2 = 0.8582 

56 variables 
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Generative model Prediction of PET Prediction of PS 

Number of training samples 50 (smoothing + SNV) 50 (smoothing + SNV) 

Number of test samples 50 (smoothing + SNV) 50 (smoothing + SNV) 

Optimized number of PLS 

component (ncomp) 

2 

(176 variables) 

2 

(176 variables) 

RMSEP (test data set) 1.30 % w/w 1.19 % w/w 

R2 0.8030 0.8253 

Selected region from 

shaving method 

1433 – 1535 nm 

1650 – 1678 nm  

and 2127 – 2305 nm  

(47 variables) 

1439 – 1507 nm 

1630 – 1808 nm  

and 2184 – 2305 nm  

(56 variables) 

Optimized number of PLS 

component (ncomp) 

2 

(47 variables) 

3 

(56 variables) 

RMSEP (test data set) 1.35 % w/w 1.09 % w/w                      

R2 0.7854 0.8582 

 

Table 3.1. Summary of the model performance for detection of PET and PS 

microplastic in soil with and without variable selection 

 

 3.5. Calibration and Prediction of mixture of microplastics in soil 

 The near infrared spectra of microplastics which are composed of polyethylene 

terephthalate (PET) and polystyrene (PS) in soil are extracted for prediction the concentration 

of microplastics. The data pre-processing method called External Parameter Orthogonalization 

(EPO) was used to extract each spectrum or basis of each considered microplastic 

components. However, External Parameter Orthogonalization (EPO) was used when the signals 

of analyte are completely overlapped which cannot be determined directly. In this case, the 

signals of each microplastics are combined as mixture spectra. The data pre-processing 

method, External Parameter Orthogonalization (EPO), was used to extract of polyethylene 

terephthalate (PET) and polystyrene (PS) basis, respectively. Firstly, a different spectra 

between training set and microplastic average spectra was calculated as a matrix. The 

eigenvalue of the different spectra was calculated from covariance matrix of different spectra 

using eigenvalue decomposition or singular value decomposition (SVD). Secondly, the number 
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of eigenvector or EPO components was selected by the significant component with large 

eigenvalue. In this case, the number of EPO component for extracting polyethylene 

terephthalate (PET) was 1 corresponding to largest eigenvalue (Figure 3.7. (a)). Similarly, the 

number of EPO component for extracting polystyrene (PS) was 1 corresponding to the largest 

eigenvalue (Figure 4.7. (c)). The selected number of EPO components were 1 because the 

accumulative variance that calculated from eigenvalue was more than 99 percent of the total 

extracted variance. Finally, the basis of considered analyte was calculated in algebraic 

manipulation. The EPO spectra for prediction polyethylene terephthalate (PET) (Figure 3.7. (b)) 

was obtained from projection the training data set onto the subspace of the basis. The EPO 

spectra for prediction polyethylene terephthalate (PET) have pattern which is similar to 

polyethylene terephthalate (PET) spectrum at around 1400 – 1500 nm, 1650 – 1700 nm and 

at 2150 nm, but the EPO spectra also include the soil signal around 1900 - 1950 nm. The EPO 

spectra for prediction polystyrene (PS) (Figure 3.7. (d)) have pattern which is similar to 

polystyrene (PS) spectrum at around 1400 – 1500 nm, 1650 – 1700 nm and 2150 – 2200 nm, 

but the EPO spectra also include the soil signal around 1950 - 2050 nm. Both EPO spectra are 

different according to the training data set are projected onto the different signal’s subspace. 

The EPO spectra was used for prediction of the microplastic concentrations of the mixture 

microplastic in soil samples consisting of both polyethylene terephthalate (PET) and 

polystyrene (PS) using the partial least squares regression with and without variable selection. 

The EPO spectra showed that EPO minimized the variability of soil spectra induced by other 

components. This adds flexibility to the implementation of transformed EPO spectra in 

predicting concentration of each type of microplstics in mixture microplastics in soil samples. 

EPO would be an important and essential part for the prediction microplastic in soil in NIR 

spectroscopy based soil sensing technology, because the chemical signal of organic matters 

in soil have to be exclueded for improving the prediction performance. 
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Figure 3.7. (a), (c) extracted EPO components corresponding to their eigenvalue of PET 

and PS, respectively. (b), (d) EPO spectra for prediction of PET and PS, respectively 

with the highest (red line) and the lowest (blue line) microplastic concentration 

 

The EPO spectra was used as a training and test data set for prediction the microplastic 

concentrations of mixture microplastic in soil samples. The EPO spectra for prediction of 

polyethylene terephthalate (PET) and polystyrene (PS) has completely different from each 

others due to the signal’s pattern of different type of microplastics. In model selection 

method, the EPO training data matrix was fitted to response vector and a root mean squared 

error of calibration (RMSEC) for polyethylene terephthalate (PET) (Figure 3.8 (a)) and 

polystyrene (PS) (Figure 3.8. (b)) can be evaluated at each number of PLS components 

extracted from EPO training data set. The RMSEC of each PLS components reduces while 

increasing in number of PLS components due to decreasing in model bias, in other words, the 

model is overfitting to training data set while increasing in number of PLS components. The 

optimized number of PLS components was selected at the optimum point of root mean 

squared error of cross validation (RMSECV) which is similar to the previous model selection 

using resampling method, k-fold cross validation when k = 5, 10, 15 and 20 partitions. The 

optimized number of PLS components is 1 in the model for predicting polyethylene 

terephthalate (PET) concentration (Figure 3.8. (c)) and proper number of PLS components is 3 

in the model for predicting polystyrene (PS) concentration (Figure 3.8. (d)) of mixture 

(a) PET (b) PET 

(c) PS (d) PS 
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microplastic in soil samples. The EPO test data set consisting of total 25 spectra of mixture 

microplastics in soil samples was used to evaluated the PLSR model performance. The results 

show that the root mean squared error of prediction (RMSEP) for polyethylene terephthalate 

(PET) was 3.17 % w/w (Figure 3.8. (e)) and the root mean squared error of prediction (RMSEP) 

for polystyrene (PS) was 3.26 % w/w (Figure 3.8. (f)). The PLSR model can predict only high 

microplastic concentration around 5 – 10 % w/w approximately of each microplastic 

components but the prediction of low microplastic concentration around 1 – 3 % w/w 

approximately has an large error significantly. However, the samples which have high 

microplastic concentration can be predicted accurately especially polystyrene (PS) in mixture 

microplastic in soil samples. 

	  

	 	

	 	
	
Figure 3.8. (a), (b) RMSEC plot (c), (d) RMSECV plot and (e), (f) correlation plot between 

actual and predicted concentration for PET and PS in soil, respectively using EPO 

(a) PET (b) PS 

(c) PET (d) PS 

(e) PET (f) PS 
RMSEP = 3.17 % w/w RMSEP = 3.26 % w/w 
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The prediction of microplastic concentration of mixture microplastic in soil sample is 

used the EPO spectra as a training data set for partial least squares regression (PLSR) model 

with full spectral range previously. The variable selection in partial least squares regression 

(PLSR) of EPO spectra is similar to the shaving method. The criteria parameter is variance of 

EPO reflection value of each wavelengths or variables which is comparable to the selectivity 

ratio (SR) in targeted projection. The variance of EPO reflection value of each wavelengths was 

calculated from the EPO training data set. The variance for polyethylene terephthalate (PET) 

(Figure 3.9. (a)) and for polystyrene (PS) (Figured 3.9. (b)) prediction is plotted against each 

wavelength and the dotted red line is the average of the variance of EPO reflection value. 

The variables whose variance is higher than average of variance were selected and the 

variables whose variance are lower than average of variance were eliminated from the model. 

The wavelengths for polyethylene terephthalate (PET) prediction model were selected in 

range 1100 – 1106 nm, 1582 – 1842 nm, 1897 – 1980 nm and 2233 – 2305 nm whose variance 

are higher than the average of variance (Figure 3.9. (c)) and the wavelengths for polystyrene 

(PS) prediction model were selected in range 1100 – 1242 nm, 1918 – 2106 nm, 2141 – 2191 

nm and 2248 – 2305 nm whose variance are higher than the average of variance (Figure 3.9 

(d)). The mainly selected wavelengths from variance criteria are related to the variability of 

NIR spectra whose overtone and combination modes of the characteristic bands that were 

mentioned previously. The selected variables of each model were used to fit the partial least 

squares regression model again and the number of PLS components was optimized again with 

the selected region of predictor in training data set. The optimized number of PLS components 

was selected at the optimum point of root mean squared error of cross validation (RMSECV) 

using resampling method, k-fold cross validation when k = 5, 10, 15 and 20 partitions. The 

optimized number of PLS components is 1 as it gave the lowest RMSE for most case in the 

model for predicting polyethylene terephthalate (PET) concentration (Figure 3.9. (e)) and 

optimized number of PLS components is 2 in the model for predicting polystyrene (PS) 

concentration (Figure 3.9. (f)) in soil samples. When partial least squares regression (PLSR) was 

fitted again using remained variables as a predictor, the test data set was used to evaluated 

the PLSR model performance. The results show that the root mean squared error of prediction 

(RMSEP) for polyethylene terephthalate (PET) was 3.00 % w/w (Figure 3.9. (g)) and the root 

mean squared error of prediction (RMSEP) for polystyrene (PS) was 3.53 % w/w (Figure 3.9. (h)). 

The PLSR model combined with variable selection will reduce the number of variables which 
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are fitted in the model. The number of selected variables for polyethylene terephthalate 

(PET) is 65 variables and the number of selected variables for polystyrene (PS) is 67 variables 

whereas the total variables before variable selection is 176 variables. The lower number of 

variables is preferred for model selection which is excluded residual or noise from elimination 

of some uninformative variables. The root mean squared error of prediction (RMSEP) of 

polyethylene terephthalate (PET) prediction was obviously lower than root mean squared 

error of prediction (RMSEP) of the previous model which is fitted with all spectral range but 

the root mean squared error of prediction (RMSEP) of polystyrene (PS) prediction was 

increased. The variance of EPO reflection value can help to select the range of informative 

variables. Although the root mean squared error of prediction (RMSEP) is lower after applying 

variable selection in case of detection of PET in soil, the prediction of low microplastic 

concentration around 1 - 3 % w/w approximately still has an large error significantly. However, 

the samples which have high microplastic concentration around 5 - 10 % w/w approximately 

can be predicted more accurately in polyethylene terephthalate (PET) and polystyrene (PS) 

in mixture microplastic in soil samples. According to the PCA scores plot (Figure 3.3.) of the 

NIR spectra, the resulted show that polyethylene terephthalate (PET) and polystyrene (PS) in 

soil samples cannot be extracted completely using principal component analysis (PCA). 

According to the extracted principal components and the data were regressed with the 

response using partial least squares (PLS) model, the microplastic component which is higher 

concentration than the others may be interference and caused to the large error for predicting 

the low concentration of mixture mixture microplastic in soil samples. 
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Figure 3.9. (a), (b) variance plot with the average variance in red line  

(c), (d) selected wavelengths in EPO spectra (e), (f) RMSECV plot  

and (g), (h) correlation plot between actual and predicted concentration  

for PET and PS in mixture of microplastic in soil, respectively 

(a) PET (b) PS 

(c) PET (d) PS 

(e) PET (f) PS 

(g) PET (h) PS 

RMSEP = 3.00 % w/w RMSEP = 3.53 % w/w 
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It can be concluded that the promising values (Table 3.2.) for root mean squared error 

of prediction (RMSEP) were obtained to be 3.00 % w/w and 3.53 % w/w corresponding to the 

prediction of polyethylene terephthalate (PET) with 65 variables and polystyrene (PS) with 76 

variables, respectively. Therefore, it might be concluded that the PLSR model combined with 

external parameter orthogonalization (EPO) as a pre-processing data treatment can be used 

to predict microplastic concentrations in soil especially in high concentration at 5 – 10 % w/w 

approximately. 

 

Generative model Prediction of PET Prediction of PS 

Number of training samples 50 (smoothing + SNV + EPO) 50 (smoothing + SNV + EPO) 

Number of test samples 25 (smoothing + SNV + EPO) 25 (smoothing + SNV + EPO) 

Optimized number of PLS 

component (ncomp) 

1 

(176 variables) 

3 

(176 variables) 

RMSEP (test data set) 3.17 % w/w 3.26 % w/w 

Selected region from 

shaving method 

1100 – 1106 nm 

1582 – 1842 nm 

1897 – 1980 nm  

and 2233 – 2305 nm 

(65 variables) 

1100 – 1242 nm 

1918 – 2106 nm 

2141 – 2191 nm  

and 2248 – 2305 nm 

(67 variables) 

Optimized number of PLS 

component (ncomp) 

1 

(65 variables) 

2 

(67 variables) 

RMSEP (test data set) 3.00 % w/w 3.53 % w/w                      

 

Table 3.2. Summary of the model performance for detection of PET and PS in mixture 

of microplastic in soil samples with and without variable selection using EPO spectra 
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CHAPTER IV 

CONCLUSIONS 

 

 This study has demonstrated the potential of NIR spectroscopy combined with 

chemometrics to predict polyethylene terephthalate (PET) and polystyrene (PS) microplastic 

concentration in soil. The regression model, partial least squares (PLS), was proposed in order 

to construct the calibration model from training data set (1-10 % w/w) and use the model to 

predict microplastic concentration in soil. Three stages of methodology including data pre-

processing, partial least squares (PLS) regression and variable selection were applied to NIR 

spectral data in order to obtain the optimized PLS model. The NIR spectra of microplastics in 

soil samples were collected in the range of 1100 – 2300 nm using reflectance mode, 

integration time of 100 milliseconds, 2 averaged scans with boxcar smoothing windows of 4. 

Standard normal variate (SNV) combined with smoothing is useful data pretreatment for raw 

spectra data in order to remove unsystematic signals.  

According to characteristic overtone and combination bands of microplastics, PET 

spectrum shows dominated bands of 1400 – 1450 nm, 1650 – 1700 nm and 2100 – 2180 nm 

corresponding to (1) combination of C-H stretching and blending of -CH2 (methylene) and –CH 

in aromatic ring, (2) first overtone of C-H stretching in aromatic ring and (3) another combination 

mode of C-H bond, respectively and PS spectrum shows dominated bands of 1350 – 1450 

nm, 1650 – 1750 nm and 2150 – 2200 nm corresponding to (1) combination of C-H stretching 

and blending of -CH2 (methylene) and –CH in aromatic ring, (2) first overtone of C-H stretching 

in –CH2 (methylene) and –CH of alkyl and aromatic ring and (3) another combination mode of 

C-H bond in –CH2 (methylene) group, respectively. According to the NIR spectra of PET in soil 

at each concentration, there are three major bands with high variation were observed including 

1100 – 1300 nm, 1450 – 1600 nm and 2150 – 2300 nm corresponding to (1) second overtone 

of –CH2 (methylene) around 1140 – 1210 nm, (2) combination of –CH in aromatic around 1440 

– 1450 nm and (3) combination of –CH2 (stretching and bending), respectively. The NIR spectra 

of PS in soil can be similarly observed the variation of the NIR spectra with different 

concentrations. According to the NIR spectra of PS in soil at each concentration, there are 

three major bands with high variation were observed including 1100 – 1600 nm, 1650 – 1750 

nm and 2150 – 2300 nm corresponding to (1) second overtone of –CH2 (around 1140 – 1210 

nm) and combination of –CH in aromatic (around 1440 – 1450 nm), (2) first overtone of –CH 
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stretching (around 1755 – 1775 nm) and (3) combination of –CH2 (around 2300 nm), 

respectively. There are mainly differences of characteristic bands of PET and PS in soil, it is 

seemly possible to extract each component of microplastic in soil. 

 In case of experimental part, it was used to quantify microplastic concentration in soil 

samples. The promising values for root mean squared error of prediction (RMSEP) were 

obtained to be 1.30 % w/w (without variable selection) and 1.09 % w/w (with variable 

selection) corresponding to PET and PS, respectively. These observations are in good 

agreement with high R2. The prediction of microplastic concentration of mixture microplastics 

in soil samples is used the EPO spectra as a training data set for PLS model. It can be 

concluded that the promising values for root mean squared error of prediction (RMSEP) were 

obtained to be 3.00 % w/w (with variable selection) and 3.26 % w/w (without variable 

selection). Therefore, it might be implied that our PLS model approach can be used to predict 

microplastic concentration in soil. 
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