
Chapter 4 
Results

This chapter we will apply Feynman path integral formulation to Bose- 
Einstein condensation in a system of a dilute weakly interacting bose gas trapped 
in an anisotropic magnetic field. By using variational method we can derived 
the approximated density matrix. This lead to the ground state energy and 
wavefunction. Our results are then compared to the mean field approach both 
analytically [51] and numerically [49].

It is known that magnetic trap can be approximated by harmonic oscil
lator potential. The interaction potential is approximated by a zero-range (hard 
sphere) potential in which the strength is given by the s-wave scattering length 
as mentioned in Chapter 3. Then the Lagrangian is

where m  is the atomic mass of the alkali gas. Ti and T j are the coordinates of 
particles. a>j_ and 0Jz are the radial and axial frequencies and a is s-wave scattering 
length.

We know from chapter 2 that density matrix can be written as propagator 
in an imaginary time from Eq. (2.73)

where
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with the conditions

Ua = 0 , Ub = p, (4.3)

and r",r ' denote an initial and final points in the configuration space น3N. p is 
1 /k T , where k is the Boltzmann’s constant and T  is the absolute temperature. 
From now on h is set to unity and can be put back by dimensional investigation. 
Note that the action in imaginary time is a real number.

Since this density matrix can not be solved exactly, we seek to approximate it 
instead. One way to do this is the variational method in path integral formalism 
first introduced by Feynman in the polaron problem [56].

From the definition of the partition function

where the choice of the 3 N —coordinates f  = (r!,r2, ...,rN) is arbitrary. We have 
neglected the permutation of the particle at the end points. However this is not 
actually correct when consider that the system is composed of identical particles. 
The effect of indistinguishability is the (anti)symmetry of density matrix when 
any pair of (fermionic)bosonic particles have been exchanged. The correct form 
of the partition function can then be written as

where £ = +1 for bosons and £ = — 1 for fermions, p  denotes the permutation 
of the particles. pD is density matrix for distinguishable system. It should be 
emphasized that p  acts on the particle indices, not on the components of r 
separately.

(4.4)
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However this is not the case in obtaining the ground state properties. Since 
it was derived from T  =  0 limit. Then we can write the density matrix as below

= $o(f")$S(r')e“^ 0. (4.6)

where $ 0  is the ground state wavefunction.

Now we apply the variational method to our problem. We choose the trial 
action to be that of harmonic oscillator with transverse and axial frequency fi_L> ̂ 2  

as variational parameters

ร' = y  f 0 [*i +  ( ^  +  y2i ) +  Q2zzt] du (4-7)

and the trial density matrix can be readily evaluated by transform the propagator 
of harmonic oscillator in real time to negative imaginary time. The result is

p'(r',/3;f, 0) = ( 21rftsinh(f111ร))

x  e x p  + * 2 )  c o s h ( ! i ^ )  -

x ^  { ~ 2 f i lh ( fU f f ) 1(ya + ÿ2) C0Sh(S2jJJ) -  2๙1}

x  exp { - 2 » s . g ) 1(ltt +  z2) C0Sh(Q^  -  2zz'] }  <4'8)

Consider the average terms. Since the kinetic term in ร  and ร ' always cancel 
each other, the argument then

( ร - ร ' ) ร ,  =  y  d u [ ( u l - n 2± ) ( x 2i +  y* )  51 +  ( พ ? - f t , )  {z2i )  3]

+ - ^ — ^ 2  f 0 du (6(r i  ~ ร’ - (4-9)

Since there is no coupling between each coordinate then
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(ท +  yï)s, — (ท)ร14~ (y*) ร' - (4-10)

First evaluate (x?) ร,, using generating function. Consider the system of forced 
harmonic oscillator in one dimension, the generating function in imaginary time 
is as follow:

/ 6/ / (น)X(น) du \  _  K force (x , P] X , 0)
\  /  S'(x) K ho(x ',p - ,x ,0 )

=  e(sน -3cl) (4-11)

where /(น) is the force function and can be chosen arbitrarily. Sd and ร ,01 is 
the classical action in an imaginary time of the forced harmonic oscillator and 
harmonic oscillator respectively.

Both classical action can be evaluated easily and the difference between Sd 
and ร ,01 is in the force-dependent terms. So we get

พ - ^  =  ^ m ^

+ rntt±Jo du J0 du'f(u)f(u')

i j  du^
sinhf2_|_(/? — น) 

sinh Çlj_p 
1 sinh f l_L (P — น) sinh น'

sinh Q ±p

Functional derivative of Eq. (4.11) with respect to /(น) gives

. (4 .1 2 )

( x t u ) e t ,iu )‘ iu>4u)\  /  S'(x)
S c l )  p s 'c l - S c i )

ร /(น )
If one sets /  = 0 gives

(ท น )) S'(x)
ร(ร'c1 -  Sel)

รท น ) f=0
Continue the procedure, obtains

^ ( 11)  =\x )̂/ร'(1) =  ร/(น)ร/(น') +
/ —O

ร (ร ,c l -  Sel) ร (Sel - S e l )  
ร /(น) ร /(น,)

(4.13)

(4.14)

(4.15)
1=0
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/ 2 ( พ sinhftx(/?-น) sinhftx น
พ ' ‘ ' พ )  = ------ m Z s in h n i/3 ------ ' (416)

Substituting Eq. (4.12) into Eq. (4.15) and ignoring the coordinate dependent
terms gives

Apply this method to A-body system. Since other coordinates are not cou
pled to X i and are cancelled out by the denominator. Resulting in

J  es(-Xi^x? V  X i(u) 

J  es ' ^  T > X i(u )

— ( x i ( u ) )  ร '(xj) • (4-17)
Also this argument is valid for (y f) 3, and (z f)3,. In summary, we get

!)= (y?)ร.
1 f  sinh f l± (P  — น) sinh ท ±น

y sinh

<4%. 1 (( sinh f l z(/3 — น) sinh น^
mVLz '̂  sinh fไz/3 J (4.18)

Next consider the average of delta function, using Fourier transformation

<<5(r. -  r  J. j  / 1ร-'

(4.19)

where k±, kz are the wave number correspond to fix, f̂ z- In the case of x coordi
nate, let us define

(น) =  ± i k j _ 5 (u  — น') (4.20)
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=  ^ 6 /  f + M x i ( u ) d u ^  1/ 6 / / - ( น ) X j  (น )  d u ^   ̂ ( 4 .2 1 )

both terms on the right-hand side are the propagator of forced harmonic oscillator 
divided by that of harmonic oscillator. In addition, since their prefactors are 
identical, the only difference lies in the exponential term,

( ' ร ท น )  11<.>*.^ = exp { s fe  J* du  ร /  d u ' f  น น )  r  (น) * *  nx"'
+ ร }duf*(u) (*;SS jîf + } (4-22)

Again the end-point terms have no contribution to the energy, we neglect them 
and substitute f + (น) into Eq. (4.22) to get

0 / / + ( น ) X i (น )  d u \  _

ท
exp k \  sinh ท ±(/3 — น) sinh Î2j_u\ 

ท1ท ± sinh ท J (4.23)

for f ~  (น) the result is the same,
[  — L  /Jk_L(xt-x j )\ _  [  dk±  f  fcj sinh ท _L(p -  น) sinh ท 1นJ 2n '6 ' s> J 2n e x ท1ท ± sinh ท ± p

1 f  1ท ท _]_ sinh ท ± p  \  1//2
2 \7T sinh ท ±(/3 — น) sinh J (4.24)

Calculation for y and 2 coordinates can be done in the same manner. Replacing 
this result in Eq. (4.19) gives

0  ( r i ~ r j ) ) S '  =
_____ m f l  I sinh Cl I /3_____
47r sinh Cl ±  ( fd —u )  sinh QJ_ น

/ _____ m C lz  sinh Clz 0 _____ \
l  47Tsinh (/9—น) s in h n 2น J

1/2 (4.25)

Finally substituting Eq. (4.18) and Eq. (4.25) into Eq. (4.9), we get

(ร  -  ร ')3, =  N m (u , l - ท1) f/พ y  “
-  ท ;)  l o ‘‘น

I N 2 2 n a  r@IS du _____ m C l  I sinh Cl บ3
47T sinh ( P —น ) sinh Cl น y m C l z s in h 0 2/3

47F sinh Clz ((d—น ) sinh ท2 (4.26)
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Consider the first term on the right-hand side of Eq. (4.26), the integrand 
is evaluated as follow
Jj3 sinh n1 " ^ ^ {P~uï  d u  = f  (sinh น cosh Çl_Lน — coth füx/? sinh2 Ç}j_น)du

sinh2Q_L เร /sinh โไ_ilร cosh Çl±/3 /A
2ทิ1 COt ^  V 2คิ1 2 J

sinh2 Q±/ร — cosh2 fl± /3 /? coth ü±/3

1 +
2Qx
เร coth Q ±p (4.27)2

For the limit /3 —> oo, coth f2x/3 = 1. The first term on the right-hand side of Eq. 
(4.27) is smaller than the second one, then we ignore it. Also this is true in the 
z-axis. Now evaluate the last integrand of Eq. (4.26) using the limit above 

sinh Q,±p 1
sinh f2x (i8 — น) sinh น sinh น cosh น — sinh2 Q±น

4
^gfî_L“   g —f i j_ u )  ̂ gO_Lti _|_ g —n_Lu )    ^(>n±u   g —O x u )2

2
2   g—201 น

Then the last term of Eq. (4.26) is

(4.28)

rP
du- sinh r̂ x/? sinh โไz เ3f  ,  1 _  „  _  , 0Jo sinh ท1 แร — น) sinh น Y sinh Çlz (/? — น) sinh โl z น

[ p  2 ,3 /2  = J0 du{\ -  e-2nx«)(i -  e-2n2น) 1/2
(4.29)

We approximate this term by neglecting the exponential terms. Then
rPรJ 0 du sinh รไ J_/3 sinh โไ 2 เร

sinh £ไ1_แ3 — น) sinh Y sinh f l zแร — น) sinh = 23/2£ (4.30)

(ร-ร') s1 = พ  0 4 - t i l ) I พ /? ^ - ^  1 JVVU/K2' 3 ^ m n ,y /2

=  เรNh “ 1 
2Q I

ท 1
2

4 \  n z J 4 V
พ2 fi?: „  „ 1,0 /  m  \  !/2

+  TTC- -  ^  +  Naü 1ลJJ2 ( - ^ - )  4QZ 4 z \2 n h J (4.31)
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Now the approximated density matrix can be written as
( ร - ร ' ) ร ' \p(r', /?; r, 0 )  = p o ( r ' , / ? ; r , 0 ) e x p  j-

m fl N
JL

N/ 2

\2 n h sm h .(r ij_ /3 ) )  \ 2 n  h s in h (  f l z/3)
r NmCl±

ex̂  2/ïsinh(Qj_/?)
X exp

X exp ( —N h f i

\ ( x 2 +  X 2 +  y12 + y2) cosh(̂ j_/3) — 2xxr — 2yy '\ I

f 11, , / , / —fix น;! น;2 / m  \!/2
{ “ WR/? ( 2  + -  4 + 4a  + (a rt)

N a f l± ท 1J 22 ■ 2 f tx
Now we ready to evaluate the ground state energy and wavefunction. First we 
approximate the prefactor

m£l± N

2̂7rftsinh(f2 _l/3)
'm ils  

า\ h

'ไท f l

N

N

1 N

±
nh

g p - j_ (3  —  g — J  

'  g - n ± / 3  \  N

\  —  g — 2 f2 _ i_ /3  )
(4.32)

Again /3 —> ๐0 , then e-20-1-̂  = 0. This gives
mf2 NX mb! I พ

-NSl± p
\27r/îsinh(f2x/3) J \  nh J

Consequently the approximated density matrix is written as 
121 0 ^ ^  ( m Q ± \N ( m ttz \ N/2 f  NmVtzftr>0) -  ( ir t  j  (ๆrt J exp{

f  N m f l i  r,

(4.33)

X exp

X exp / —Nh/3 f  —77- + 7̂ -  +  ^r- +

We can see that the ground state energy is

Jil|J\ ~ 2fisinh(a/3)'๙ 2 + z2)COSh(a/j) -  2 z A )  
[(x'2 + X2 + y '2 + y2) cosh(fixP) — 2xx ' — 2yy'] I

1 -  -r # 1  +  %  +  A .  +  N a W l ' 2)  )V 2 2fi± 4 40z \2 n h J  J s
2ftsinh(f2jL/3)

'แ

(4.34

E  =  « เ ^ + ^  + T  + 4fi
น ;2 / m  \  ! / 2

+ \2 n h ) N a f l±ท1/ 2 j . (4.35)



59

This is exactly the same as Baym’s work Eq. (3.44) which derive from the mean 
field Gross-Pitaevskii equation (see Appendix D). Minimizing the energy with 
respect to โ we get the relation

f2± = ^  (4.36)

where
A = 1 +( 1 + < s M £ f )

1/2

and

‘ - F ? ) '
Now Eq. (4.35) is arranged to be 

E { n z) = N h ' จ . z <4WJ.A +  - ^ +  z4 4QZ

Minimizing the ground state energy with respect to จ 2, we get
1/2

A  \327T3n J

(4.37)

(4.38)

Solving Qz for each N , we can determine fixiez and E  (see Appendix E). In 
order to compare with the work of Dalfovo and Stringari, we use the same scaling 
factors such that

E  = hu j±E i,

r  = a_i_ri (4.39)

where ax = U z /ïn  — 220 Hz, the asymmetry parameter of the trap is
A = £jz/c*;x> and a = 100ao, where a0 is the Bohr radius. The ground state energy 
are then shown in Table 4.1.
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N E i /N (£ ./" )„ i„ ( E i / N ) h„ ( E J N ) m
100 391.488 1277.31 2.66 1.05 1.38 0.223
200 338.276 1210.59 2.87 0.96 1.52 0.376
500 258.375 1088.83 3.34 0.82 1.84 0.681
1000 201.549 975.417 3.92 0.70 2.21 1.00
2000 153.723 849.439 4.76 0.59 2.74 1.43
5000 105.863 676.050 6.40 0.45 3.75 2.20
10000 79.6350 550.615 8.19 0.36 4.84 2.98
15000 67.4479 482.923 9.51 0.31 5.64 3.55
20000 59.9710 438.161 10.6 0.28 6.30 4.01

Table 4.1: The ground state energies are evaluated from Eq. (4.35). Energy are in units of 
hw_L in accord with [49].

The ground state wavefunction is determined from the coordinate-dependent 
term in the trial propagator. This is similar to the Rayleigh-Ritz variation method 
in term of trial wavefunction. We then derive the expression for the condensation
wavefunction as 

4o (r'K (r) = 'm Ç lx \  N (  mQ.z \  N^ N m f lexp ±

[( J 2 +12 +  y '2 + y2) cosh(fix/?) -  L r ' -  ly y '}  }  
f  Nm Q ,2

X exp 2hsinh(tyz/?) [(z,2 + z2)cosh(fl2/?) — 2zz ']J  . (4.40)

In the limit p  —> oo
1 ก nd cosh(Ç}± p ) _

sm h (n ± P) =  an sinh(flj_/?) = ’ (4.41)

then

$o(r') =  n * « )
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In the scaled units mentioned previously the ground state wavefunction then be

M r ) = (4.43)

the single-particle ground state wavefunction is plotted and displayed in Figure
4.1.

z.

Figure 4.1: The ground state wavefunctions are obtained from Eq. (4.42). Dis
tances are in units of ax in accord with [49]. Each line corresponds to N  = 
100,200,500,1000,2000,5000,104, 1.5 X 104, in descending order of central density.

From Eq. (3.5), the width of the condensate cloud is corresponding to the 
width of the Gaussian wavefunction. From the Figure 4.1 we see that the radius of 
the cloud in x  — y plane is larger than the z direction. This is due to the trapping
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is weaker in the X  — y  plane. The anisotropy provides the evidence for Bose 
condensate. Because if it was not condensed the distribution should be identical 
due to the equipartition theorem. The increasing in N  means the strength of 
interaction is increased. This causes the condensate cloud to expand. So the 
interaction plays an important role in the phenomena. Without interaction the 
condensate cloud is not affected by the different kind of atomic gas and by the 
increasing of N . Our result is similar to the work of Dalfovo and Stringari [49]. 
This fact confirms that the variational path integral is also applicable to BEC 
problem.
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