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Chapter 1

Introduction

Simulating real materials has become increasingly more important in under-

standing a variety of modern topics in condensed matter and surface physics as

well as quantum chemistry. The increasing number of new highly sophisticated

experimental techniques, coupled with the development of an increasing variety of

new materials with new properties has driven the need for a more accurate the-

oretical understanding at the atomic scale. This has led to the increasing use of

ab initio1 (first-principle) study where the quantum mechanical behavior of elec-

trons is explicitly treated. The advantage of ab initio methods lies in the fact that

they can be carried out without knowing any experimental data of the system.

Nowadays, the advance in theoretical-computational techniques for a tractable

quantum mechanical treatment combined with the growing power of computers

allows the accurate simulation of materials and understanding of their behavior

at the atomic-scale. Also, using the computational approach enables the design

of new materials and the prediction of the properties which would be impossible

or impractical to obtain experimentally.

An important breakthrough in the ab initio calculations was the develop-

ment of density functional theory (DFT), which states that under certain con-

ditions all ground-state properties of matter are completely determined by the

charge density of the electrons. In principle, density functional theory permits the

accurate evaluation of the electronic part of the total energy and, consequently, af-

ter including the Coulomb interaction between the nuclei it enables the evaluation

of all structural properties.

1Ab initio is a Latin phrase that means “from the beginning”. It is usually referred to the

calculation of properties by solving Schrödinger equations directly.
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Nearly all physical properties are related to the total energies or to differ-

ences between the total energies. If the total energies can be calculated, any phys-

ical property related to the total energy can be determined computationally. For

instance, the equilibrium lattice constant of a crystal is the lattice constant that

minimizes the total energy. To predict the equilibrium lattice constant of a crystal,

a series of total-energy calculations are performed to determine the total energy

as a function of the lattice constant, and a smooth curve is constructed through

them. The theoretical value for the equilibrium lattice constant is determined at

the minimum of the curve. Another property derived from the total-energy calcu-

lations is the crystal stability. We can predict a preferred ground-state structure

by comparing the total energies between different structures. Total-energy tech-

niques have also been successfully used to predict bulk moduli, cohesive energies,

and phase-transitions due to pressure and temperature (for reviews see [1]).

The differences in energy among the crystal structures are often rather small;

thus high accuracy in the total-energy calculations is required. A successful ap-

proach is the implementation of the full-potential linearized augmented-plane-wave

(FLAPW) method [2, 3, 4], which allows one to treat the total energy to high ac-

curacy without resorting to frozen-core, pseudopotential, or other approximations.

The FLAPW method is considered as the most accurate all-electron method for

computation of electronic structures based on density functional theory. There

are several programs employing this method such as the WIEN code [5], FLAPW

(Freeman’s group), FLEUR (Blügel’s group), D. Singh’s code and others.

In this work, we aim to develop and implement an all-electron total-energy

calculation for microscopic study of electronic and structural properties of bulk

solids. The method is based on the local-density-functional theory with the

FLAPW approach. Although our formalism for evaluating the total energy is

similar in many respects to those [2, 4, 6, 7, 8, 9, 10], we have constructed our own

algorithm. As a correctness test of our method, we have applied it to the bulk

lithium (Li).

Lithium, a monovalent metal (1s22s1), is considered as a simple metal. Under

ordinary conditions of pressure and temperature, the motion of conduction elec-

trons is only weakly perturbed by interactions with the atomic cores. Although

its electronic structure is relatively simple, its structural properties still pose a
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significant challenge to both experiment and simulation. Li is known to undergo a

structural phase transformation from the bcc to 9R (a nine-layer hexagonal close-

packed structure, stacking ABCBCACAB) and fcc phases when cooled down to

77 K at ambient pressure [11]. Moreover, it transforms to several phases when

compressed [12, 13]. Because Li is very soft, the determination of its structural

properties requires very delicate experiment as well as simulation of high numerical

accuracy. The studies of Li are of fundamental interest, because they are expected

to be a theoretical model of hydrogen, and also may reveal new aspects and new

properties.

This thesis is organized as follows. In Chapter 2, we discuss an overview of

theoretical background for the method used in calculating the total energy of bulk

solids. The basics of density functional theory and the concepts of the FLAPW

method are briefly reviewed, and the procedures for the total-energy calculations

are explained. In Chapter 3, some of the details and practical aspects of our

implementation of the method are described. Chapter 4 contains the results of

our calculation of the total energies for bulk lithium. The results including static

structural properties, crystal stability and electronic structure are discussed and

compared with previous calculations and experiment. Finally, we summarize our

conclusions in Chapter 5. A flow chart of our algorithm is presented in Appendix

A, and the detail of Numerov’s method is given in Appendix B.



Chapter 2

Theoretical Discussion

A solid consists of a collection of atomic nuclei and electrons. These particles

interact with each other by the electromagnetic force. This is a quantum many-

body problem. It is possible, at least in principle, to determine theoretically all

the properties of a solid by solving the quantum-mechanical problem for that

solid state system. However, solving a many-body problem is a formidable task.

Approximations are required to simplify the problem. Because the nuclei are much

heavier and therefore much slower than the electrons, we can assume that the

electrons respond essentially instantaneously to the motions of the nuclei. Thus

the nuclei can be treated as they are still at fixed positions. This is known as the

Born-Oppenheimer approximation. After having applied this approximation, the

problem reduces to the dynamics of the electrons in some frozen configurations of

the nuclei. The Schrödinger equation of the system becomes

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN), (2.1)

and the Hamiltonian is given by

Ĥ ≡
∑

i

[
− h̄2

2m
∇2

i −
1

4πε0

∑
I

e2ZI

|ri −RI | +
1

8πε0

∑

j 6=i

e2

|ri − rj|
]
,

where the first term in the square bracket is the kinetic energy operator of the

electrons, the second is the electron-nucleus interaction and the third term is the

interaction among the electrons.

Even with this simplification, however, solving for a many-electron wave

function Ψ is still extremely difficult. Several methods exist to reduce Eq. (2.1)

to an approximate but feasible form. A historically very important one is the

Hartree-Fock method (HF), but it can be applied only to tiny systems. In order to
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deal with solids, another approach commonly used to describe complex electronic

systems is density functional theory (DFT).

2.1 Density Functional Theory

Density functional theory (DFT) is one of the most popular and successful quan-

tum mechanical approaches to matter. It is nowadays broadly applied to calculate

electronic properties of materials and molecules such as binding energy and band

structures. The success of DFT comes from two important theories which were

developed by Hohenberg-Kohn [14] and Kohn-Sham [15] in the mid-1960s. The

underlying idea is to focus on the density of the electrons rather than the many-

body wave functions, and hence all ground-state properties can be derived from

the electron density.

2.1.1 Hohenberg-Kohn theorems

Hohenberg and Kohn were able to show, for systems with a non-degenerate ground-

state, that:

- There exists a one-to-one mapping between the ground-state density n(r) of

a many-electron system and the external potential Vext. Consequently, the

ground-state energy E and all other ground-state properties of the system

are unique functionals of the electron density, i.e.

E ≡ E[n(r)]. (2.2)

- For a given external potential, the correct ground-state density n0 minimize

the energy functional E[n], and only the minimum value of E[n] is equal to

the ground-state total energy of the system:

Etot = E[n0] ≤ E[n]. (2.3)

The second part of theorem makes it possible to use the variational principle in

order to find the ground-state density. However, no explicit representation of E[n]

has been derived so far. But having found n0, all knowledge about the system is

found.
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2.1.2 Kohn-Sham equations

The equations of Kohn and Sham have turned DFT into a practical tool for the

numerical determination of the ground-state density. In the Kohn-Sham formula-

tion, the Hohenberg-Kohn energy functional E[n] is split into the following terms:

E[n] = Ts[n] + U [n] + Exc[n], (2.4)

where Ts is the kinetic energy of non-interacting electrons, U is the potential

energy which consists of the coulomb energy of the interaction of the electrons

and the interaction with an external potential (for a solid it is usually a coulomb

potential due to the nuclei), and the last term, Exc, contains the exchange and

correlation effects as well as a correction to the kinetic energy due to the interaction

of the electrons.

With the introduction of the functional Ts[n], then applying the variational

principle to the Eq. (2.4), this leads to a set of equations known as the Kohn-Sham

(KS) equations:

ĤKSψi(r) ≡
[
− h̄2

2m
∇2 + Veff(r)

]
ψi(r) = εiψi(r), (2.5)

with

Veff(r) = VC(r) + Vxc(r). (2.6)

These equations are similar to a non-interacting single-particle Schrödinger equa-

tion, where i labels each electron in the system. However, the potential has been

replaced by an effective potential Veff consisting of two contributions: the electro-

static Coulomb potential of the interaction of all charges in the system,

VC(r) =
e2

4πε0

∫
n(r′)
|r− r′|d

3r′ − 1

4πε0

∑
I

Ze2

|r−RI | , (2.7)

and the exchange-correlation potential which is given by the functional derivative

Vxc(r) =
δExc[n(r)]

δn(r)
. (2.8)

Moreover, the ground-state density of this system is easily obtained from

n(r) =
occ∑
i

|ψi(r)|2 , (2.9)
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where the single-particle wave function ψi(r)
1 are the solutions of the Kohn-Sham

equations and the summation takes over all occupied one-electrons states.

To find the ground-state density, the second Hohenberg-Kohn theorem is

no longer needed. One can calculate the density of an interacting (many-body)

system in a potential by solving the equations of a non-interacting (single-body)

system in an effective potential.

Since the effective potential Veff depends on the density n(r), which in turn

depends on ψi, which in turn depend on Veff and so on. This means that the KS

equation must be solved iteratively. At the beginning, some starting density n(0)

is guessed (it can be constructed by a superposition of atomic densities), and the

potential V (1) is constructed with it. Then the Eq. (2.5) can be written down,

and the eigenvalue is solved. This gives a set of ψ(1) from which a density n(1)

can be derived by using Eq. (2.9). Now n(1) is used to construct a new better

potential V (2), which will yield a n(2), etc. This procedure will be continued until

the density converges to a density n(f), i.e., the self-consistency is achieved.

construct potential

and solve KS equations

n
(0)

n
( i)

n
( i +1 )

n
( f )

Figure 2.1: Schematic of the system for producing self-consistency

2.1.3 Local density approximation

The Kohn-Sham scheme described in the previous section is exact (apart from the

preceding Born-Oppenheimer approximation), if the exchange correlation func-

tional Exc[n] is known. Unfortunately, no exact functional of Exc has been found

yet. Thus, some approximations of Exc must be used. The simplest method of

1Beware that the single-particle wave functions ψi(r) are not the wave functions of electrons!

They describe mathematical quasi-particles, without a direct physical meaning. Only the overall

density of these quasi-particles is guaranteed to be equal to the true electon density.
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describing the exchange-correlation energy of an electronic system is called the

local density approximation (LDA).

In the LDA, the exchange-correlation energy is constructed by assuming

that the exchange-correlation energy per electron at some position r is equal to

the known exchange-correlation energy per electron of a homogeneous electron gas

with the same density at the position r. Thus, the approximate functional Exc

can be written as

Exc[n(r)] =

∫
n(r)εxc(n(r))d3r, (2.10)

and
δExc[n(r)]

δn(r)
=

∂[n(r) εxc(n(r))]

∂n(r)
, (2.11)

with

εxc(n(r)) ≡ εhomo
xc [n(r)]. (2.12)

It is important to note that εxc is not a functional, but a function of n(r) at a

particular point of space. This local definition makes the KS equation easy to

be solved. There exist many expressions for εxc based on various methods. The

expression used in this work is proposed by Hedin-Lundqvist [16], that is

εxc(r) = −3

2

(
3n(r)

π

)1/3

− 0.045

[(
1 +

rs

21

)3

ln(1 +
21

rs

) +
rs

2 · 21
−

( rs

21

)2

− 1

3

]
,

(2.13)

where rs is defined as the radius of the sphere whose volume corresponds to the

average volume per electron:
4π

3
r3
s = n−1 . (2.14)

The LDA is widely used and very successful. It performs well for systems

with a slowly varying density. But rather surprisingly, it even works reasonably

well in systems which the electron density is rapidly varying. It is possible to

improve the correction of the exchange-correlation energy due to nearby inho-

mogeneities in the electron density. One obvious way is to make the exchange-

correlation energy depend not only on the local value of the density, but on the

extent to the gradient of the density. This form of approximation is therefore

called the generalized gradient approximation (GGA). Recently, more sophisti-

cated treatments of high correlated systems have been developed such as LDA+U.

However, they are beyond the scope of our work.
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2.2 Solutions of the single-particle Kohn-Sham

equations

Consider the problem of finding the solution of the Kohn-Sham equations, the set

of Eqs. (2.5) are solved to obtain the eigenvalues εi and corresponding eigenstates

ψi for each of the electrons in the system. Instead of solving differential equations

such as Eq. (2.5) directly, it is possible to determine the ground-state without

the explicit solution of the Kohn-Sham equations. One way is to represent the

solution in terms of the expansion of some known functions which are called basis

sets and then try to find the coefficients in this expansion.

In the case of solids, the number of the equations is infinite, and each wave

function must be calculated over the entire space of the solids. However, if the

system is a perfect crystal, Bloch’s theorem can be used to reduce the domain of

the problem to one unit cell, and it transforms the problem into k-space in which

the number of calculated states can be finite. (This will be discussed in Section

3.4.1.) Thus, for solids, it is almost the case that expanding the wave function ψ

in a set of basis functions which satisfy Bloch’s condition.

The wave functions are now labelled with band index ν and wave vector k

and written as linear combination of defined basis functions φG as

ψν(k, r) =
∑
G

cν
G(k) φG(k, r), (2.15)

where cν
G(k) are (as yet unknown) the expansion coefficients. The sum of basis

functions is performed over reciprocal lattice vectors G. In principle, the number

of G in the summation is infinite, but in practice it must be truncated to a finite

value. Such a limited basis set will never be able to describe ψν(k, r) exactly.

However, if the number of the included basis functions is large enough, this can

generate a function close to ψν(k, r).

Given a basis set, the Kohn-Sham eigenvalues and eigenstates can be de-

termined by the Rayleigh-Ritz variational method. This leads to a generalized
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eigenvalue problem:



. . . . . . . . .
... HGG′ − ενSGG′

...

. . . . . . . . .







cν
1
...

cν
N


 =




0
...

0


 , for each k, (2.16)

where the matrix elements of the Hamiltonian HGG′ and the overlap matrix SGG′

are given as

HGG′(k) =

∫
φ∗G(k, r) ĤKS φG′(k, r) d3r, (2.17)

and

SGG′(k) =

∫
φ∗G(k, r) φG′(k, r) d3r. (2.18)

The size of the square matrix H and S is equal to the number of basis functions,

N , which is determined by the choice of a cutoff parameter Gmax. That is, all

reciprocal lattice vectors taken into the basis set are smaller than this cutoff, i.e.,

‖G‖ ≤ Gmax. Diagonalization will yield N eigenvalues, εν , and N sets of coeffi-

cients, cν , that characterize each of the N eigenfunctions, ψν . Note that the matrix

is a function of the wave vector k. The discrete set of εν(k) and corresponding

ψν(k) that we have found in one diagonalization will be the eigenvalues and eigen-

functions for a particular state k but for a different index ν. Therefore, Eq. (2.16)

has to be calculated independently for each of point k in the first Brillioun zone.

An optimal choice of the basis set is one in which the number of basis func-

tions needed to express the desired solutions is as small as possible. This ensures

that the size of matrix to be solved is small; also, it helps to save the computing

time. If the functions of the basis set are very similar to ψ, one needs only a

few of them to accurately describe the wave functions. Such a basis set is called

efficient. However, it must not bias too much to the solutions. The art of com-

putational solid state physics is to construct sophisticated basis functions which

provide a good approximation to the true solution. Each such basis generates its

own specific technical demands, hence each has its own name of method.

2.3 The FLAPW method

This section describes the full-potential linearized augmented-plane-wave (FLAPW)

method that we have used to solve the Kohn-Sham equations for a general charge
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density and potential. The subject is arranged in order of complication.

2.3.1 PW

A natural basis set for calculating the single-particle wave functions in a periodic

solid is the plane wave (PW) basis set. The use of this basis set has several ad-

vantages: it makes most algebraic manipulations very simple, and the fast Fourier

transform algorithm can be adopted. However, since the electron wave functions

oscillate rapidly near the core, a large number of plane waves are needed to ac-

curately describe the wave functions in the core region. This makes plane waves

very inefficient.

In order to overcome this problem one can employ a pseudopotential, which

eliminates these rapid oscillations, due to the core electrons, by replacing the

potential with a weaker (pseudo)potential that yields smooth tails of the wave

functions in the core region. As a result, fewer plane waves are needed. The pseu-

dopotential plane wave method is widely successful implementation because the

valence electrons are much greater significant to physical properties than the core

electrons, but it is poorly suited for the system involving with the core electrons

or the wave functions near the nucleus such as transition metals and first-row

elements. Another way to solve this problem is to use atomic-like functions to

describe the wave functions near the core, as done in the augmented-plane-wave

method [17].

2.3.2 APW

The augmented-plane-wave (APW) has been introduced by Slater [18] as a basis

set for solving the one electron equations, which correspond to the Kohn-Sham

equations within DFT. The APW method is based on an approximate model of

the potential in a specific crystal. At regions near each nucleus, the potential is

expected to be rather spherical symmetric and in regions between the nuclei it is

expected to be relatively flat. The actual potential will be approximated to have

a muffin-tin form, which means that within a unit cell the potential is assumed

to be spherically symmetric inside a non-overlapping sphere around each nucleus,
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(a)

Rα

I

MT

rα

r

r'

(b)

Figure 2.2: (a) The muffin-tin potential, plotted along a line of ions. (b) Division

of a unit cell in muffin-tin regions and the interstitial region.

the so-called muffin-tin (MT) sphere, and set to be constant in the remaining

interstitial (I) region, (see Fig. 2.2). In view of the choice of the potential, an

APW basis function used in the expansion of the single-particle wave functions in

a unit cell is defined as:

φG(k, r) =





1√
Ω

ei(k+G)·r : r ∈ I
∑

`m

Aα
`m uα

` (r′, E) Y`m(r̂′) : r ∈ MTα ,
(2.19)

where the symbols k and G keep their usual meaning. Ω is the volume of the

unit cell, α indexes the different spheres in the unit cell, and r′ = r − rα is the

position inside the spheres given with respect to the center of each sphere. Strictly
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speaking, the APW basis consists of a plane wave in space outside the sphere and

a linear combination of radial functions u` times spherical harmonics Y`m, with

which the plane wave is augmented, inside the muffin-tin sphere α of radius Rα.

uα
` (r′, E) is the regular solution of the radial Schrödinger equation for the energy

E and also the spherical part of the potential inside sphere α. It is constructed

by integrating the equation
[
− h̄2

2m

∂2

∂r′2
+

h̄2

2m

`(` + 1)

r′2
+ V (r′)− E

]
r′u` = 0. (2.20)

The coefficients A`m are a function of k + G and determined by requiring that

the function inside the sphere matches (in value) with the plane wave at the

boundary of muffin-tin spheres. Notice that an APW is a continuous function,

but there is a discontinuity in its slope at the surface of the sphere. Here
∑

`m

means
∑∞

`=0

∑`
m=−` . In practice we will have to truncate this sum to some value

`max.
2 The number of `-values to be included in the summation is arbitrary at this

point, but we shall certainly want to include all the lower values (` = 0, 1, 2, 3) in

order to represent any s, p, d or f character in the wave functions.

Unfortunately, the APW basis will not offer enough variational freedom, if

the nonlinear energy parameter E used in setting up the radial solutions is set to

an arbitrary value. It turns out that in order to describe ψν(k) accurately with the

APW basis set, one has to set E equal to the energy eigenvalue (or band energy)

εν(k) of that state. But this is exactly what we are searching for. This makes

the APW basis functions energy dependent. The matrix representations in such a

basis set will, of course, also be energy dependent.

This energy dependence causes two significant computational difficulties.

First, it leads to a non-linear eigenvalue problem, which a lot of computations are

demanded for solving it. The way to find the eigenvalues is to find the energies

that correspond to a zero of the determinant |H−ES|. This makes it necessary to

plot these determinants (see Fig. 2.3). This procedure consumes a lot of computer

power and makes the method quite slow. The second is that the APW secular

equation exhibits singularities whenever a node of the radial solution falls on a

MT sphere boundary, i.e., u`(Rα, E) = 0. These difficulties limit the use of the

APW method.
2Typically, `max = 8 is sufficient for most simple systems with cubic symmetry.
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form:

φG(k, r) =





1√
Ω

ei(k+G)·r : r ∈ I
∑

`m

[
Aα

`muα
` (r′, E0) + Bα

`mu̇α
` (r′, E0)

]
Y`m(r̂′) : r ∈ MTα ,

(2.22)

where u̇` , which appears in the LAPW but not the APW, denotes the energy

derivative of u` . The coefficient A`m and B`m are determined by requiring that

the function in the sphere matches the plane wave both in value and in slope at

the sphere boundary.

As with the original APW basis, the radial function u`(r
′, E0) is obtained

by numerical integrating Eq. (2.20), while u̇`(r
′, E0) is obtained from

[
− h̄2

2m

∂2

∂r′2
+

h̄2

2m

`(` + 1)

r′2
+ V (r′)− E0

]
r′u̇` = r′u`. (2.23)

The above equation is derived by taking the energy derivative of Eq. (2.20) directly.

It will be useful to require the radial solutions to be normalized inside the MT

sphere: ∫ Rα

0

u2
` r2dr = 1. (2.24)

By differentiating this normalization condition with respect to the energy, we

see immediately that u̇` and u` are orthogonal. However, u̇` is not in general

normalized inside the MT sphere.

In contrast to the APW formalism, the energy parameter is now kept fixed

to a linearization energy, E0, and the LAPW basis functions are flexible enough

to represent all eigenfunctions in an energy range around this linearization energy.

However, the radial function itself has an error of order (E0− ενk)
2, and there will

be an error of order (E0−ενk)
4 in the energy eigenvalue. It is therefore beneficial to

choose E0 near the center of the interested bands. Note that the method permits

different choices of the energy parameter for different angular momenta, `. Thus,

instead of choosing a single universal E0, one could choose a set of E` for each

`-character of bands. For example, E` =0 will be set to be roughly in the middle of

s-band, E` =1 in the middle of p-band, and similarly for every physically important

` (s-, p-, d- and f -bands, i.e. up to ` = 3). For higher `, a fixed value could be

applied.
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In the LAPW method the energy dependent has been removed, so it is

an easy task to find all eigenvalues by simply diagonalizing the secular matrix

just once. The cost of the energy-independent LAPW basis set is an increased

number of basis functions. Recently, an new alternative way of linearizing, namely

APW+lo [22, 23], has been proposed, which still has the same size as in the APW

method. It is beyond scope of our work. Another advantage of the LAPW method

is that it can be extended to include the entire potential, the so-called non-muffin-

tin potential, with a little difficulty.

2.3.4 The full-potential

In the APW and LAPW method, the muffin-tin approximation is applied to the

potential used in the Hamiltonian. The LAPW method, however, enables us to

correct the potential by including the non-muffin-tin effects. This can be done by

writing the potential in the form:

V (r) =





∑
G

VG eiG·r : r ∈ I

∑

`m

V`m(r′) Y`m(r̂′) : r ∈ MT.
(2.25)

That is, the potential in the interstitial region is expressed as a Fourier series, and

the potential inside the MT spheres is expanded in terms of spherical harmonics.

(The muffin-tin approximation corresponds to retaining only the ` = m = 0

component inside the spheres and only G = 0 component outside.) This form

of potential is completely general; thus no shape approximation is introduced

and therefore such an approach is called a full-potential treatment. Likewise, the

electron density (and also the charge density) is represented in the same way as

the potential:

n(r) =





∑
G

nG eiG·r : r ∈ I

∑

`m

n`m(r′) Y`m(r̂′) : r ∈ MT.
(2.26)

The Coulomb potential is determined from the charge density via Poisson’s

equation. With this representation of the density and the potential, one technique

called the pseudocharge method is usually used for obtaining the solution of the
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Poisson’s equation. The detail of solving Poisson’s equation without the shape

approximation for arbitrarily charge distribution is described in Section 3.6.1.

2.4 The total energy

The structural properties of solids are studied primarily through comparisons of

total energies between different crystal structures, volumes and atomic positions.

This requires calculations of the total energy as a function of the arrangement of

atoms. In these calculations, the nuclei are considered to be at rest at lattice sites;

hence, this corresponds to the temperature at 0 K. Nevertheless, the quantum

mechanics of vibrations demands that the ground state can never have the atoms

completely at rest. This is the so-called zero point motions. However, for many

properties the effects of lattice dynamics are less significant, and the neglect of

dynamics can be justified as a reasonable compromise.

Within the density functional framework, the total energy of a solid for a

particular configuration of the ions is given by

Etot = Ts + Uee + Une + Exc + Unn. (2.27)

As discussed in Section 2.1.2 we express the total energy of the electrons as a

sum of the kinetic energy of the non-interacting electrons, the potential energy

due to the Coulomb interaction of the electron-electron, Uee, and the electron-

nuclear, Une, and the exchange-correlation energy, Exc. In addition, the Coulomb

interactions of the atomic nuclei, Unn, the so-called Madelung energy, has to be

taken into account. The kinetic energy per unit cell can be calculated reliably by

making explicit use of the Khon-Sham equations; then a simple expression of the

kinetic energy term is

Ts =
∑

νk

∫
ψ∗νk

(
− h̄2

2m
∇2

)
ψνk d3r

=
∑

νk

ενk −
∫

Ω

Veff(r) n(r) d3r, (2.28)

where ενk and n(r) are the energy eigenvalues and the electron density obtained

from the solutions of the KS equations with the summation running over all the
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occupied states. The interaction energy between all charges in the system is

summarized as the potential energy U :

U =
e2

8πε0

[∫ ∫
n(r)n(r′)
|r− r′| d3r d3r′ − 2

∑
I

ZI

∫
n(r)

|r−RI | d
3r +

∑

I 6=J

e2ZIZJ

|RI −RJ |

]
,

(2.29)

where
∑

I is over the nuclei. Since the Coulomb potential at r is given by Eq. (2.7),

the potential energy per unit cell becomes

U =
1

2

[ ∫

Ω

n(r) VC(r) d3r −
∑

α

ZαVM(rα)

]
, (2.30)

where the sum on α runs over the nuclei at rα in the unit cell. We have defined a

generalized Madelung potential VM(rα) as

VM(rα) =
e2

4πε0

( ∫
n(r)

|r− rα| d
3r −

∑

I 6=α

ZI

|RI − rα|

)
, (2.31)

i.e., the Coulomb potential at rα due to all charges in the crystal except for

the nucleus at this site. The exchange-correlation energy is given directly by its

definition in the local density approximation as in Eq. (2.10). By collecting all

terms, the total energy per unit cell can be rewritten as

Etot =
∑

νk

ενk − 1

2

∑
α

ZαVM(rα)

−
∫

Ω

n(r)
[ 1

2
VC(r) + Vxc(r) − εxc(r)

]
d3r. (2.32)

The above equation will hold exactly the total energy only for the self-consistent

electron density. During the iterations on the way to self-consistency, this result

represents only an approximation to the total energy.

The major problem in evaluating the total-energy expression involves the

necessity of numerical cancellation of the very large (positive) kinetic and large

(negative) potential energy contributions. As is well known, there will be an error

when a subtraction between large numbers is performed. This subtraction error

causes the numerical instability to the value of the total energies. A successful

solution for this problem has been presented by Weinert, Wimmer and Freeman [4].

The key feature is the explicit algebraic cancellation of the Coulomb singularities
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in the kinetic and potential energy terms by using the new form of generalized

Madelung potential. We have implemented their formalism in our total-energy

calculations, which leads to good numerical stability of our results.



Chapter 3

Calculation Details

3.1 Determination of A`m and B`m coefficients

Within the LAPW method the electron wave functions are expanded differently in

two types of regions, plane waves in the interstitial region and a linear combination

of spherical solutions in the muffin-tin. The arbitrary expansion coefficients A`m

and B`m will be specified from the requirement that the basis functions and their

derivatives are continuous across the sphere boundaries. This is accomplished by

matching the functions inside and outside the sphere of each basis both in value

and in derivative at the MT sphere boundary.

Consider the form of plane wave solutions in the vicinity of the αth sphere.

In the local coordinate frame this can be written as

ei(k+G)·r = ei(k+G)·(rα+r′) = ei(k+G)·rα ei(k+G)·r′ . (3.1)

(For one sphere in the unit cell we can take rα = 0.) By using the Rayleigh

expansion, a plane wave can be expanded in spherical harmonics as

eik·r = 4π
∑

`m

i`j`(kr) Y ∗
`m(k̂)Y`m(r̂). (3.2)

Thus Eq. (3.1) becomes

eikG·r = 4π eikG·rα
∑

`m

i`j`(kGr′) Y ∗
`m(k̂G)Y`m(r̂′), (3.3)

where

kG ≡ k + G, (3.4)
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and j`(x) is the spherical Bessel function of order `. Evaluating (3.3) at the surface

of the αth sphere and equating value and slope to the functions inside the sphere,

this leads to the 2× 2 linear equations:

AL u`(Rα) + BL u̇`(Rα) = λ j`(kGRα), (3.5a)

AL u′`(Rα) + BL u̇′`(Rα) = λ j ′̀(kGRα), (3.5b)

with

λ = eikG·rα
4π√
Ω

i` Y ∗
L (k̂G), (3.6)

where the prime denotes the derivative with respect to r′, and L is the abbreviation

of `m. Solving these equations for AL and BL yields

Aα
L(kG) = λR2

αaα
` , (3.7a)

aα
` = [ j ′̀(kGRα)u̇`(Rα)− j`(kGRα)u̇′`(Rα) ] , (3.7b)

Bα
L(kG) = λR2

αbα
` , (3.7c)

bα
` = [ j`(kGRα)u′`(Rα)− j ′̀(kGRα)u`(Rα) ] , (3.7d)

where we have used the relation

[ u′`(Rα)u̇`(Rα)− u`(Rα)u̇′`(Rα) ] =
1

R2
, (3.8)

to write the dominator of the solutions as 1/R2.

3.2 The radial solutions

The radial functions u`(r) are solutions of the radial Schrödinger equation in the

spherically averaged crystal potential with the linearization energy E`, while the

u̇`(r) are the derivatives with respect to E`. They are determined by numerically

integrating the radial Schrödinger equation in Eq. (3.9).

Before proceeding the calculations it is extremely advantageous to apply an

appropriate system of units to the problem. We have employed the atomic units in

our calculations. That means, the unit of energy is the Rydberg energy, me4/2h̄2,

and the unit of length is the Bohr radius, h̄2/me2. In this system of units one can

verify that

h̄ = 1, m =
1

2
, e2 = 2.
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Now we can obtain the radial solutions u`(r) by solving the equation

− 1

r2

∂

∂r
r2∂u`

∂r
+

(
`(` + 1)

r2
+ V (r)

)
u` = E` u`. (3.9)

The only boundary condition which must be imposed at this stage is that the

radial solutions is regular at the origin without specifying the boundary condition

at another end. For numerical integration of Eq. (3.9) it is convenient to change

the independent variable r into logarithmic scale, i.e.,

x = ln(r),

because it smoothly expands the radial scale near the origin where the wave func-

tion generally varies rapidly. If we simultaneously introduce the dependent func-

tion

W =
√

r u,

then the radial equation (3.9) becomes

W ′′(x) = γ W (x), (3.10)

with

γ = e2x(V − E`) + (` +
1

2
)2. (3.11)

This form of the differential equation has the advantages that no first derivative

is present and that ` = 0 does not require any special treatment. In order to

find the solutions of the Eq. (3.10), we have used the Numerov method [24]. In

this method, numerical integrating is performed on a grid, outwardly from some

starting point x0 to the xN corresponding to the sphere radius. By specifying

some initial values, the method can predict the values at the preceding grid points

and hence gives us the solutions.

It is necessary to have the first two values of W from which the integration

starts. Since the origin of the radial coordinate (r = 0) corresponds to that

x → −∞, in such a limit we have

e2x(V − E`) ¿ (` +
1

2
)2. (3.12)

Consequently, the first term in Eq. (3.11) can be neglected. Thus for r close to

zero, the differential equation (3.10) becomes

W ′′ = (` +
1

2
)2 W, (3.13)
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which has the solutions

W (x) = W (x0) e±(` + 1
2
)(x− x0). (3.14)

The boundary condition that W is regular at the origin of radial coordinate elim-

inates the solution with the negative sign, and x0 is chosen as some large negative

number (e.g. −10) such that (3.12) is satisfied. Eq. (3.14) can be used to calculate

the value of W (x1) based on the value of W (x0), and then the Numerov method

can do the rest. Note that W (x0) can be set to any arbitrary value because we can

have the true (absolute) values of W later by using the normalization condition.

For the radial solutions u̇`(r) they are determined from the equation

− 1

r2

∂

∂r
r2∂u̇`

∂r
+

(
`(` + 1)

r2
+ V (r)

)
u̇` = E` u̇` + u`. (3.15)

Transforming to the independent variable x = ln(r) again and putting Ẇ =
√

r u̇,

this becomes

Ẇ ′′(x) = γ Ẇ (x)− e2xW (x), (3.16)

which is an inhomogeneous differential equation. In the same way, Eq. (3.16)

can be solved by using the Numerov method. The solution we get will be the

particular solution, called Wp, while the homogeneous solution is exactly the same

as the solution of Eq. (3.10). So the general solution of the Eq. (3.16) is

Ẇ = cW + Wp, (3.17)

where the constant c can be obtained from the orthogonal condition of u and u̇.

3.3 Construction of the Hamiltonian matrix

The Hamiltonian matrix elements and the overlap matrix elements are given by

Eqs. (2.17) and (2.18) respectively. In the following we will describe the way to

evaluate them within the FLAPW method. Again, the calculations are performed

in Rydberg atomic units.

Due to the different character of the basis functions in the different regions,

the Hamiltonian and the overlap matrix will be constructed separately in the MT
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and interstitial regions. Therefore, the volume integrations which are over the

portion of the unit cell are divided into the interstitial part and the MT sphere

part: ∫

Ω

=⇒
∫

I

+

∫

MT

.

The contribution of the interstitial part is given by

H I
GG′ =

1

Ω

∫

I

e−i(k+G)·r (−∇2 + V (r)
)

ei(k+G′)·rd3r

=
1

Ω
‖k + G′‖2

∫

I

e−i(G−G′)·rd3r +
1

Ω

∫

I

V (r) e−i(G−G′)·rd3r.

(3.18)

In practice, the integrations over the interstitial region are not straightforward to

calculate because of the complicated structure of the interstitial region. An easy

way to evaluate this is to extend the integral throughout the entire unit cell and

subtract the contribution which results from the region inside the spheres. Let us

now consider the integral of the form as in the first term of Eq. (3.18):

ΘG ≡ 1

Ω

∫

I

e−iG·rd3r

=
1

Ω

∫

Ω

e−iG·rd3r − 1

Ω

∑
α

∫

MTα

e−iG·rd3r.
(3.19)

The first term of (3.19) is simply the Dirac delta function (see Appendix D in

Aschroft and Mermin, Solid State Physics). For the second term, using the local

coordinates we have

1

Ω

∑
α

∫

MTα

e−iG·rd3r =
2π

Ω

∑
α

e−iG·rα

∫ Rα

0

r′2dr′
∫ π

0

sin θdθ e−iGr′ cos θ. (3.20)

Thus

ΘG = δG,0 −
∑

α

e−iG·rα
4πR3

α

Ω

j1(GRα)

GRα

, (3.21)

where j1 is the spherical Bessel function of order one. If we represent the potential

in the interstitial region as in (2.25), we then have

1

Ω

∫

I

V (r) e−i(G−G′)·rd3r =
∑

G′′
VG′′

1

Ω

∫

I

e−i(G−G′−G′′)·rd3r

=
∑

G′′
VG′′Θ(G−G′−G′′).

(3.22)
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Summarizing up to this point, the interstitial contributions to the Hamiltonian

and the overlap matrix have the following form:

H I
GG′ = ‖k + G′‖2

Θ(G−G′) +
∑

G′′
VG′′Θ(G−G′−G′′), (3.23)

and

SI
GG′ = Θ(G−G′). (3.24)

Note that
∑

G′VG′Θ(G−G′) is a discrete convolution. To compute this, we

used the fast Fourier transform (FFT) technique, because it is more efficient than

computing it directly. A step-by-step of computing the convolution by using the

FFT is shown in the figure below.

Θ(G)

V (G)

Θ(r)

V (r)

V (r)Θ(r) V Θ(G)

-

-

HHHHHj

©©©©©*
-

FFT

FFT

FFT−1

1. Obtain Θ(G) from Eq. (3.21) and V (G) from the coefficients of the

Fourier expansion of the potential

2. Use the FFT algorithm to compute the three dimensional discrete

Fourier transform of Θ and of V

3. Multiply the two transforms together component by component

4. Use the FFT algorithm to take the inverse discrete Fourier transform

of the products and obtain the discrete convolution,

V Θ(G) =
∑

G′
VG′Θ(G−G′)

Figure 3.1: Computation procedure for the FFT convolution

Next, we find the Hamiltonian and the overlap matrix elements from the

interiors of the muffin-tin spheres. In this case we split up the Hamiltonian into
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two parts:

ĤMT = Ĥ0 + V̂ ns, (3.25)

where Ĥ0 is the Hamiltonian inside the sphere which contains only the spherically

symmetric potential, and V̂ ns is the non-spherical correction. To begin with the

spherical part; we find that

H0
GG′ =

∑
α

∫

MT

[ ∑
L

(Aα
Luα

` + Bα
Lu̇α

` )YL

]∗
Ĥ0

[ ∑

L′
(Aα

L′u
α
` ′ + Bα

L′u̇
α
` ′)YL′

]
d3r

=
∑

α

∑

LL′

∫ Rα

0

dr′r′2(Aα
Luα

` + Bα
Lu̇α

` )∗ĥ` ′ (A
α
L′u

α
` ′ + Bα

L′u̇
α
` ′) δLL′

=
∑

α

∑
L

(
Aα

L
∗Aα

L〈uα
` |ĥ`|uα

` 〉 + Aα
L
∗Bα

L〈uα
` |ĥ`|u̇α

` 〉+

Bα
L
∗Aα

L〈u̇α
` |ĥ`|uα

` 〉 + Bα
L
∗Bα

L〈u̇α
` |ĥ`|u̇α

` 〉
)
,

(3.26)

where

〈uα
` |ĥ`|uα

` 〉 =

∫ Rα

0

dr′r′2uα
`
∗(r′) ĥ` uα

` (r′), (3.27)

with similar expressions for the other combinations of u` and u̇` , and ĥ` is the

radial part of the Schrödinger equation, in which the potential has only ` = 0 term.

Since the radial solutions u` and u̇` already satisfy the Eqs. (3.9) and (3.15), with

the use of the normalization condition, we obtain

H0
GG′ =

∑
α

∑
L

(Aα
L
∗Aα

L E` + Bα
L
∗Bα

L E` N` + Aα
L
∗Bα

L)

=
∑

α

ei(G′−G)·rα
4πR4

α

Ω

∑

`

(2` + 1)P`(k̂G ·k̂G′)×
[
a`(kG)a`(kG′)E` + b`(kG)b`(kG′)E`N` + a`(kG)b`(kG′)

]
. (3.28)

Similarly, the overlap matrix is given by

SMT
GG′ =

∑
α

ei(G′−G)·rα
4πR4

α

Ω

∑

`

(2` + 1)P`(k̂G ·k̂G′)×
[
a`(kG)a`(kG′) + b`(kG)b`(kG′)N`

]
. (3.29)

In arriving at these results the addition theorem [25] has been used to obtain the

Legendre polynomial P` in place of the sum on spherical harmonics.
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The remaining non-spherical part of the potential is calculated as follows:

V ns
GG′ =

∑
α

∫

MT

[ ∑
L

(Aα
Luα

` + Bα
Lu̇α

` )YL

]∗ ∑

L′′ 6=0

V α
L′′YL′′

[ ∑

L′
(Aα

L′u
α
` ′ + Bα

L′u̇
α
` ′)YL′

]
d3r

=
∑

α

∑

L L′L′′

[
Aα

L
∗Aα

L′〈uα
` |V α

L′′ |uα
` ′〉 + Aα

L
∗Bα

L′〈uα
` |V α

L′′ |u̇α
` ′〉 +

Bα
L
∗Aα

L′〈u̇α
` |V α

L′′|uα
` ′〉 + Bα

L
∗Bα

L′〈u̇α
` |V α

L′′ |u̇α
` ′〉

]G(L,L′, L′′), (3.30)

where G is the integral of three spherical harmonics [26] called Gaunt coefficient,

i.e.

G(L,L′, L′′) =

∫
Y ∗

L (r̂)YL′(r̂)YL′′(r̂) dr̂, (3.31)

and it can be written in terms of Clebsh-Gordan coefficients [27]. The selection

rules implied in G greatly reduce the number of nonzero terms (e.g. for cubic

crystals where V`m is nonzero only for ` = 4, 6, 8, etc.) in the sum and as well

as the cost of computational time. However, it still takes a lot of time (about

75% of overall calculation time) to evaluate this non-spherical part. Because the

non-spherical correction is quite small for high symmetry systems, we will neglect

this term.

3.4 Brillouin zone integration

For a periodic system, the wave vector k appears in the wave function by virtue of

Bloch’s theorem. Wave functions ψν(k) and energy eigenvalues εν(k), therefore,

depend on a band index ν and the wave vector k belonging to the first Brillouin

zone. Both the Hamiltonian and the overlap matrix have to be calculated at each

of these k. Many quantities of the crystal, such as the electron density, the total

energy, etc. are calculated by summing the matrix elements

Xν(k) = 〈ψν(k)|X |ψν(k)〉 (3.32)

over all occupied states as

〈X〉 =
occ∑

νk

Xν(k). (3.33)

Such calculations often in principle require a knowledge of the value of the function

at each k point in the Brillouin zone.
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3.4.1 k-point sampling

Electronic states are allowed only at a set of discrete k points determined by the

boundary conditions applied to the bulk solid. The density of allowed k points is

proportional to the volume of the solid. There are, in principle, an infinite number

of k points at which the wave functions must be calculated. Moreover, since the

set of k is dense, the summations of the occupied states k can be changed to the

integration over the first Brillouin zone. Thus

〈X〉 =
1

VBZ

∫

BZ

∑
ν

Xν(k) d3k. (3.34)

However, the wave functions at k points that are very close together will

be almost identical. Hence it is possible to replace the wave functions over a

region of k space by the wave functions at a single k point. In this sense the

electronic states at only a finite number of k points are required in calculation

of Eq. (3.34). For example, the matrix elements and the wave functions can be

computed only for a k-mesh in the zone, while the other values are recovered

by interpolation. The most common techniques to perform the integration over

the Brillouin zone efficiently and accurately are the special point method and the

tetrahedron method. These methods aim at obtaining sufficient accuracy in the

calculations with restriction to a few number of k points.

In addition, because the first Brillouin zone is invariant under point group

operations, it makes sense to divide the Brillouin zone into regions, called irre-

ducible zones, that can be repeated under point group operations to fill out the

complete Brillouin zone. Since each irreducible zone is a copy of all the oth-

ers and has identical energy surfaces, it is only necessary to compute the energy

eigenvalues for those k lying in such a zone.

3.4.2 The tetrahedron method

To perform Brillouin zone integration we used the improved tetrahedron method

[28]. By using this method, one can easily obtain an accurate approximation

for the electron density, the total energy and other quantities depending on the

Brillouin zone integration.



29

In the tetrahedron scheme, the irreducible part is divided into equally vol-

umed tetrahedra whose corners are at the nodes of regular mesh of points filled

up exactly the irreducible volume. Eigenvalues and matrix elements are obtained

for the k points at the corners of the tetrahedra. Finally, the integration is ap-

proximated as a weighted sum over irreducible k-points kj

〈X〉 =
∑
j,ν

Xν(kj) wνj, (3.35)

where the weights wνj are independent of the matrix elements Xν(k) and are

calculated only once for a given set of energy bands with the tetrahedron method.

The integration weights are derived by integrating each tetrahedron analytically

after linearly interpolating energy εν(k) inside the tetrahedron with energies at

the four corners. The details are given in the reference [28]. The magnitude of any

error of the total energy due to inadequacy of the k-point sampling can always be

reduced by using a denser set of k points. The computed total energy will converge

as the density of k points increase, and the error due to the k-point sampling then

approaches to zero. In practice, there will be an examination for the best k-point

sampling, that is dense enough to provide a sufficient accurate results but not too

large to waste the computational time.

Moreover, the tetrahedron method can be used to calculate the density of

states and hence determine the Fermi level.

3.5 Construction of the electron density

In this section we will discuss the determination of the total electron density from

the eigenfunctions. After the wave functions are determined from the diagonal-

ization, the electron density is obtained by the usual expression, i.e. the absolute

squared of the normalized wave function. To get the total electron density, the

densities for all the states below the Fermi level are integrated. If we use the

Brillouin zone integration method, the total electron density will be calculated as

n(r) = 2
∑
νj

|ψν(kj, r)|2 wνj. (3.36)
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Because we are dealing with a non-magnetic case, a factor “2” is added to account

for the spin degeneracy.

In the interstitial region the wave functions are represented in the form

ψν(k, r) =
1√
Ω

∑
G

cν
G(k)ei(k+G)·r. (3.37)

Starting from Eq. (3.36) the electron density in the interstitial region is given by:

n(r) =
2

Ω

∑
νj

wνj

∑

GG′
cν
G

∗(kj)c
ν
G′(kj) ei(G′−G)·r. (3.38)

The electron density in the interstitial region is also expanded into a Fourier series,

and the Fourier coefficients of expansion are

nG′′ =
1

Ω

∫

Ω

n(r) e−iG′′·r d3r

=
2

Ω

∑
νj

wνj

∑

GG′
c∗GcG′

1

Ω

∫

Ω

ei(G′−G−G′′)·r d3r

=
2

Ω

∑
νj

wνj

∑

GG′
c∗GcG′ δG′−G,G′′ . (3.39)

Now consider the k-dependent density (i.e. inner summation in equation above)

nG′′(k) ≡
∑

GG′

(
cν
G(k)

)∗
cν
G′(k) δG′−G,G′′

=
∑
G

(
cν
G(k)

)∗
cν
G+G′′(k), (3.40)

which is a discrete correlation in momentum space. For each coefficient a sum over

G has to be performed. However, we can calculate it more efficiently by using the

FFT. First, we take the Fourier transform of cν
G(k) to real space and square them

on a real space mesh, then all bands are summed up, and finally we perform the

inverse Fourier transform yielding the results of Eq. (3.40)

In the αth MT sphere the wave function can be written as

ψν(k, r) =
∑

L

[
ÃL,ν(k)u`(r

′) + B̃L,ν(k)u̇`(r
′)
]
YL(r̂′), (3.41)

where we have defined the band dependent coefficients Ã and B̃ as

ÃL,ν(k) =
∑
G

cν
G(k) AL(kG), B̃L,ν(k) =

∑
G

cν
G(k) BL(kG). (3.42)
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Substituting Eq. (3.41) into (3.36) yields the electron density in the muffin-tin

sphere as

n(r) = 2
∑
νj

wνj

∑
L

[
ÃLu` + B̃Lu̇`

]∗
Y ∗

L

∑

L′

[
ÃL′u` ′ + B̃L′u̇` ′

]
YL′ . (3.43)

If we multiply (3.43) with
∫

dr̂′ Y ∗
L′′ and use the property that the Gaunt coeffi-

cients are real, we have an expansion of the electron density within a MT sphere

in terms of spherical harmonics, with the radial electron density functions as

nL′′(r) =
∑
νj

wνj

∑

L L′

[
Ã∗

LÃL′ u`u` ′ + Ã∗
LB̃L′ u`u̇` ′

+ B̃∗
LÃL′ u̇`u` ′ + B̃∗

LB̃L′ u̇`u̇` ′
]G(L′, L, L′′).

(3.44)

3.5.1 Generating the density for the next iteration

According to the Hohenberg-Kohn theorem, the goal is to minimize the energy

functional with respect to the electron density. Within the Kohn-Sham approach

this minimization is performed implicitly, by the determination of a self-consistent

electron density n(r). As discussed in the Section 2.1.2, given a density nin, the KS

equations are constructed and solved, and an output density nout is calculated from

the resulting wave functions. This new obtained density will be the input for the

next iteration in the self-consistency cycle. However, it may lead to instabilities

in the iterative self-consistent process. In order to improve the convergence, some

mixing between input and output density is required.

The simplest mixing scheme is straight mixing. That is,

ni+1
in = (1− β)ni

in + β ni
out, (3.45)

where the superscript refers to the iteration index and β is the mixing parameter.

For sufficient small β (∼ 0.1) the iteration converges and is very stable.

3.6 Computation of the potential

After we have obtained the total electron density, the next step is to generate the

effective potential in Eq. (2.5) due to the charge distribution ρ(r) that relates to
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the electron density by

ρ(r) = −e n(r).

We will separate the potential into the Coulomb potential and exchange-correlation

potential because calculation of each potential is quite different. In addition, we

approximate the starting potential for the first round of iteration by the spherical

symmetric atomic potential plus contributions from neighboring atoms [29].

3.6.1 The Coulomb potential: pseudocharge method

The Coulomb potential, which consists the potential due to all electrons called

Hartree potential, has to be determined from the charge density via Poisson’s

equation:

∇2V (r) = −4πρ(r). (3.46)

It is easier to solve Poisson’s equation for an infinite periodic system in Fourier

space, such that the solution is simply

V (G) = −4πρ(G)

G2
. (3.47)

The G = 0 component is arbitrarily set to zero by the condition of charge neu-

trality. In general, the Fourier expansion of the charge density will be slowly

converged because of the large oscillations near the nuclei, whereas the interstitial

charge density is fairly smooth. We therefore represent the charge density inside

the sphere by a considerably smoother function. Fortunately, Weinert [3] has de-

veloped a method for solving Poisson’s equation, especially for the charge density

represented as in Eq. (2.26).

The pseudocharge method is a very elegant technique to obtain the Coulomb

potential in the FLAPW method. The underlying idea is to divide the solution of

Poisson’s equation into two steps: (1) obtain the potential in the interstitial region

and then (2) solve the boundary value problem inside the muffin-tin spheres.

The potential in the interstitial region is dependent on the charge density

outside and inside the MT sphere. However, the potential in this region due

to a charge distribution within the sphere can be determined completely by its

multipole moments, without the actual form of the charge density. The same
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potential outside the sphere could be obtained from the mutipole expansion of the

charge density (including the nucleus) inside the MT sphere. This arbitrariness

gives us the freedom to replace the real charge density by a pseudocharge density,

i.e.,

ρ(r) → ρ̃(r) = ρI(r)Θ(r ∈ I) +
∑

α

ρ̃α(r)Θ(r ∈ MTα), (3.48)

where Θ(r) is the unit step function, with the requirement that the pseudocharge

density in the spheres have the same multipole moments as the original charge.

This pseudocharge density will give the correct interstitial potential, but not the

correct potential in the spheres. Because ρ̃(r) is constructed to have a more rapidly

convergent Fourier expansion than the original ρ(r), Poisson’s equation can now

be solved using Eq. (3.47). Thus

VI(G) = −4πρ̃(G)

G2
. (3.49)

Since the potential in the interstitial region including at the muffin-tin sphere

boundary is already known, the potential inside the muffin-tin spheres is just a

boundary value problem, which can be solved by means of a standard Green’s

function technique (e.g. [30]):

V α
MT(r) =

∫

MTα

ρα(r′)G(r, r′) d3r′ − R2
α

4π

∮

MTα

VI(R
′
α)

∂G

∂n′
dr̂′ , (3.50)

where G(r, r′) is the Green’s function for Dirichlet boundary conditions and ∂G
∂n′ is

its normal derivative on the sphere boundary. The first integral includes the true

charge density and is over the volume while the second integral is over the surface

of the muffin-tin sphere. By using the representation of the charge density inside

the sphere and calculating the spherical harmonic components of VI on the sphere,

we obtain the radial functions of the expansion of Coulomb potential within the

sphere:

VMT, L(r) = 4πi`
∑
G

VI(G)j`(GR)Y ∗
L (Ĝ)

( r

R

)̀

+
4π

2` + 1

[
1

r` + 1

∫ r

0

ρL(r
′) r′`+2

dr′ − Z√
4π

[
1

r
− 1

R

]
δ`,0

− r`

R2`+1

∫ R

0

ρL(r
′)r′`+2

dr′ + r`

∫ R

r

ρL(r
′) r′1−`

dr′
]
,

(3.51)

where we have dropped the muffin-tin superscript α for clarity.
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3.6.2 The exchange-correlation potential

The exchange-correlation potential in our calculations is based on the local density

approximation. According to the Hedin-Lundqvist formula [16], the exchange-

correlation potential is given by

Vxc(r) = −2

(
1 + 0.0368 rs ln(1 +

21

rs

)

)(
3 n(r)

π

)1/3

, (3.52)

where rs is defined in Eq. (2.14). In this case, the exchange-correlation potential

Vxc(r) is a function that depends locally and non-linearly on the density at a given

position r. This means that Vxc must be calculated in real space. Moreover, the

charge density is represented differently in the interstitial region and the muffin-tin

regions. As a result, the potential in each region will be treated independently.

Note that the exchange-correlation energy, εxc, is calculated in the same way in

both regions.

Because the components of the interstitial charge density and of the inter-

stitial potential are stored in reciprocal space, the FFT is used to transform the

density into real space mesh. Then the exchange-correlation potential is evalu-

ated on the mesh, i.e. grid point by grid point. Finally, the inverse transform is

performed yielding the coefficients of Fourier expansion of Vxc which hold for the

interstitial region.

In the muffin-tin spheres, the charge density is expanded into radial functions

and spherical harmonics. The radial functions are stored on a discrete radial mesh;

thus the transform to real space affects only the angular part. The charge density

will be synthesized from spherical harmonics on a set of angular points r̂i =

(θi, φi). The exchange-correlation potential is again evaluated on real space mesh.

Thereafter, the result Vxc(r) is expanded back in terms of spherical harmonics. The

r-dependent coefficients of spherical harmonic expansion can be obtained from

Vxc,L(r) =

∫ 2π

0

∫ π

0

Vxc(r, θ, φ) Y ∗
L (θ, φ) sin θ dθ dφ. (3.53)

The angular integration above can be computed exactly via a Gauss-Legendre

quadrature. The angular points r̂i, on which the functions Vxc(r, r̂) and YL(r̂) will

be evaluated, are specified by the integration method. In our calculation 98 points

on an angular mesh are used, so the quadrature is exact for all YL that ` ≤ 7.
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3.7 The linearization energy parameters

3.7.1 Determination of the optimal energy parameters

In order to minimize the linearization error, the energy parameters should be

chosen as close to band energies as possible. However, the band energies εν(k)

depend on k whereas the energy parameters E` are constants, and the radial

functions contribute to the eigenfunctions of different band with different energies.

Therefore, deviations between εν(k) and E` have to be accepted.

In the first round of calculation, E` can be set roughly to the middle of those

band by using the empirical Wigner-Seitz rule [31]. The rule is that the energies

of such bands range between the values of E` for which ∂u`(r
′, E`) / ∂r′|r′=Rα = 0

and u`(Rα, E`) = 0. Thus one can find the change of sign in value and slope of

the radial functions at the sphere boundary and then take the arithmetic mean as

the value of E`.

For the later round of calculations, an optimal choice of E` can be obtained

from the requirement that energy parameters minimize

∑
ν

∫

BZ

(εν(k)− E`)
2 nν,`(k) d3k, (3.54)

which is the quadratic error weighted with the amount of charge that contributes

to the `-character charge in each band, nν,`(k). A k-dependent `-like charge is

given by

nν,`(k) =
∑̀

m=−`

|ÃL,ν(k)|2 + |B̃L,ν(k)|2N`. (3.55)

Setting the derivative of (3.54) with respect to E` equal to zero yields the optimal

energy parameters:

E` =

∑
νj εν(kj) nν,`(kj) wνj∑

νj nν,`(kj) wνj

, (3.56)

where the Brillouin zone integrations has been transformed into weight sums over

occupied states.
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3.7.2 Multiple energy windows

In many cases it is desirable to distinguish three types of electronic states, namely

core, semi-core and valence states. For instance, Fe has core (1s,2s,2p), semi-core

(3s,3p) and valence (3d,4s) states. The core states are those whose the electrons

are tightly bound to the nucleus and of course contained entirely in the MT sphere.

They lie deeply below the Fermi energy, e.g., 1s orbital of Fe which has an energy

about −514 Ry. Such an electron in the core state will behave almost exactly as

if it were in a free atom, and it does not participate directly in chemical bonding

with other atoms. The valence states are the highest occupied states and always

have some significant amount of the electron density outside the MT sphere. These

valence states are treated by the LAPW method while the core states are treated

in an atomic fashion. The semi-core states, however, are high lying core states

with an energy of a few Ry less than that for the valence states, e.g., the 3p states

of Fe are 4.3 Ry below the Fermi level. The electrons in the semi-core states are

not completely confined inside the MT sphere and thus need special attention.

A problem arises in the semi-core states which have the same `-value as

the valence states. The linearization energy parameter E` must be chosen close

to the band energy of interest because the LAPW basis is a good one only for

eigenvalues near E`. Accordingly, if we are interested in the semi-core and valence

states which have the same `-character simultaneously, we can have only one

correct band within a single set of energy parameters. For example, the 3s and

4s states in Fe, if we choose the energy parameter E(`=0) close to 4s, the valence

(4s) band will be treated correctly while the semi-core (3s) band will be poorly

described. On the other hand, if we set E(`=0) for accurate results in the semi-core

band, we will have poor results in the valence band. So far, the solutions for this

problem are either adding another type of basis functions called a local orbital

(LO) [32] or using a second set of energy parameters in separate energy window

referred to as multiple windows.

In a multiple window FLAPW calculation a second set of basis functions

which have exactly the same form as in Eq. (2.22) but with different energy pa-

rameters is used. One is for the valence states, and the other is for the semi-core

states. If the overlap between two windows is neglected, this leads to the solution



37

of two independent eigenvalue problems per self-consistent iteration. We used this

method for treatment of the semi-core states (1s orbital for Li) in our calculation.



Chapter 4

Results and Discussion

We have applied the formalism described in the preceding chapters to cal-

culate the total energy of solid lithium (Li). The calculations have been carried

out for various crystal structures and various lattice constants, and the results

have been used for determining the crystal stability of Li and the phase transfor-

mation due to pressure. In this chapter we present the results of the calculated

total-energies, some related quantities derived form the total energies and the

calculated electronic structures.

4.1 Convergence test of the total energy

Because of the high degree of numerical accuracy required in the total-energy

calculations, we must control the numerical parameters to obtain sensible results.

Apart from errors due to the local density approximation and neglecting of the

lattice vibrations, the numerical errors can be reduced by using more terms in

truncations and finer discretizations. In this section we focus on an analysis of the

effects of k-point sampling (or k-mesh) and the number of LAPW basis functions

to the accuracy of the calculated total-energies. Large size of the basis set and

the k-mesh can provide a good result; however, it might also be wasting lots of

computational time. Therefore, we find an optimum choice of the k-mesh and the

basis set size by considering the total-energy convergence as a function of these

parameters. It is very important to perform this convergence test before doing the

real calculations.

Initially, we can take a small but sufficient basis set size and calculate the

total energy as a function of the size of the k-mesh. An example of the results for



39

number of k-points

0 50 100 150 200

T
ot

al
 E

ne
rg

y 
(R

y)

-14.792

-14.790

-14.788

-14.786

-14.784

-14.782

Figure 4.1: An example of total energy as a function of the k-mesh size for the

bcc Li with lattice constant a = 6.63 a.u.

bcc Li is illustrated in Fig. 4.1, which shows that 204 k-points are enough for the

total energy that is accurate up to about 0.5 mRy or better. In our calculations,

we use 204, 240, 175 and 120 k-points in the irreducible Brillouin zone for the bcc,

fcc, hcp and sc structures, respectively.

Having determined a good k-mesh, we then change the basis set size. The

number of LAPW basis functions are determined by the cutoff parameter Gmax.

However, a better quantity to control the size of basis set here is the dimensionless

product RminGmax between the smallest muffin-tin radius in the unit cell, Rmin,

and the magnitude of the largest reciprocal vector, Gmax. This can be understood

as follows. If the muffin-tin radius is increased, the interstitial region, in which the

wave functions are described by plane waves, is decreased. As a result, less plane

waves are needed and Gmax can be reduced. In the same way, if the muffin-tin

radius is decreased, more plane waves are needed and the value of Gmax increases.

The dependence of the total energy of bcc Li on RminGmax is shown in Fig. 4.2.

It shows that the total energy converges to better than 0.5 mRy for RminGmax

larger than 9, which corresponds to 79 basis functions. Our calculations has been

carried out with an average basis set size of about 70 LAPWs.
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Figure 4.2: A typical total energy as a function of RminGmax for the bcc Li with

lattice constant a = 6.63 a.u. (204 k points).

4.2 Static structural properties

The static structural properties such as lattice constant and bulk modulus can be

obtained from the calculated total-energies as a function of volume for the observed

crystal structure. We have calculated the total energies of the bcc structure of

Li for six different atomic volumes around the expected equilibrium volume (or

around the volume corresponding to the minimum of total-energy curve). The

values of the calculated total energies are then least-squares-fitted to Murnaghan’s

equation of states [33],

Etot(V ) =
B0V

B′
0

[
(V0/V )B′0

B′
0 − 1

+ 1

]
+ const , (4.1)

where B0 and B′
0 are the bulk modulus and its pressure derivative at the equi-

librium volume V0. This equation of states has been examined and found to be

quite accurate for crystals under moderate compression [34]. The minimum total-

energy, the equilibrium lattice constant and the bulk modulus are readily deduced

from the fitted parameters in the equation of states. The total energies per atom

as a function of the atomic volume and the fitted curve are shown in Fig. 4.3.

The least-squares fit to the Murnaghan’s equation of states has a root-mean-

square (rms) error of about 10−5 Ry/atom. By deriving from the fit, the equilib-
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Figure 4.3: The calculated total-energy versus the atomic volume of the bcc Li.

rium atomic volume (V0) and the bulk modulus (B0) for bcc Li are founded to be

130.9 a.u.3 and 14.7 GPa, respectively, and the calculated value of B′
0 is 3.067.

The uncertainty of the extracted value of V0 from the fitting is only 1.5%, and the

calculated value of B0 has a deviation of about 10%. We compare the calculated

lattice constants and the bulk moduli with the results from the CASTEP program

package [35] (using ab initio pseudopotential method) and the experimental re-

sults in Table 4.1. In general, the agreement between our calculated results and

Table 4.1: Comparison between the present calculated lattice constant and the

bulk modulus with the results from CASTEP calculation and experiment.

Lattice constant (a.u.) Bulk modulus (GPa)

Present calculation 6.40 14.7

CASTEP 6.54 13.3

Experiment∗ [36] 6.50 14.5

∗After the effects of finite-temperature and zero-point are removed.
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the other results is quite good. The present values for both the equilibrium lattice

constant and the bulk modulus agree well with those obtained from CASTEP and

from the experiment. The discrepancies between our calculation and the experi-

ment (CASTEP) are about 3% (2%) for the lattice constant, and 1.4% (11%) for

the bulk modulus. We note that the experimental results exclude the zero-point

and the finite-temperature effects [36], so they can be directly compared to the

results of the ab initio ground-state calculations with frozen ions.

4.3 Crystal stability

By considering the total energy, the relative stability of different phases can be

determined. We calculated the total energies of Li at six different lattice constants

for four crystal structures, i.e., sc, bcc, fcc and hcp phases1. These data are then

least-squares-fitted to the Murnaghan equation of states. The fitted total-energy

curves for the four phases of Li are shown in Fig. 4.4. The minimum total-energy

per atom (Emin), the relative total-energy difference 4Emin (≡ Emin −Efcc
min), and

the corresponding atomic volume (Vmin) for each phase of Li are given in Table 4.2.

Note that for the hcp structure, the c/a ratio was fixed to the ideal close-packed

value of 1.633.

Table 4.2: Shows the volumes at the minimum energies (Vmin), the minimum

energies (Emin) and 4Emin for the sc, bcc, fcc and hcp structures of Li.

sc bcc fcc hcp

Vmin (a.u.3) 131.9825 130.5001 130.0037 130.9999

Emin (Ry) -14.7830 -14.7918 -14.7920 -14.7919

4Emin (mRy) 11.7 0.2 0 0.1

From these calculations of the total energies of the four phases, we find that

the differences of the minimum energies of the fcc-bcc and the fcc-hcp are quite

1Most crystal structures for metals are bcc, fcc and hcp.
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Figure 4.4: Total-energy curves of the three phases of Li as a function of the

atomic volume. The dotted curve is for the bcc phase, dash curve for the hcp

phase, and solid curve for the fcc phase.

small, and less than the size of error in the total energy. Therefore, the comparison

of the total energies among these phases to predict the preferred crystal structure

cannot be reliable. However, the total energies of the fcc phase are less than the

total energies of other phases at all considered volumes. This make us to believe

that the total-energy curve of the fcc phase should be lowest in energy, and thus

the fcc phase is possibly the most stable phase among the four phases of Li. This

is in agreement with the previous calculations [37, 38, 39, 40, 41] which reported

that the fcc is the stable phase. In addition, the difference in energy between the

fcc and hcp phases of ours is considerably large when compare to the similarity of

the fcc and hcp structures.

Lithium may undergo a structural phase transformation if pressure is ap-

plied. Prior studies suggested that the bcc structure is stable at high pressure.

However, there is no fcc-bcc transition in our results. We find that the total ener-

gies of the fcc structure become relatively lower than that of the bcc structure for

all volumes we considered. That is, the fcc phase holds the stability for pressures

up to about 10 GPa. This is consistent with results of Meyer-ter-Vehn [42] that

Li transforms from the fcc structure to the bcc structure at the pressure of 400

GPa, which is much higher pressure than that considered in this work.
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4.4 Electronic structure and charge density

In this section, we present the results of the electronic structure calculations for

the fcc phase of Li at the equilibrium volume and at a compressed volume. The

calculated band structures and the density of states are shown in Fig. 4.5, and they

were obtained by solving self-consistently the Kohn-Sham equations. Although the

one-electron eigenvalues obtained from density functional theory have no rigorous

physical interpretations, the band structures near the Fermi level are believed to

correlate well with electronic excitation energies in metals. Our results are similar

to that from other ab initio calculations [37, 39].

The band structures shown in Fig. 4.5 correspond to the band structures

of the fcc Li at zero pressure (dotted line) and also at the pressure of 10 GPa

(solid line). The lowest band is 2s band, and the next three bands are 2p bands.

The Fermi level is determined by calculating the integrated density of states (or

number of states2 as a function of energy) [28]. The occupied part of the band

structures is parabolic with the minimum energy at the Γ point. This is like the

free-electron case. Under pressures up to 10 GPa, the shape of the band structure

remains unchanged. However, all of the bands are broaden by pressures, and the

p band is broaden more rapidly than the s band. The 1s band is narrow and lies

deeply below the valence-band. (It is not plotted in the Figure.) At zero pressure,

it is 0.003 Ry wide, and the difference between the lowest of 2s band and the top

of 1s band is 3 Ry. The 1s band, however, moves closer to the 2s band as the

pressure increases. The separation between 1s and 2s band decreases to 1.24 Ry

at 10 GPa. In addition, pressures lead to raising up in Fermi level. (In the Figure,

the energies of both band structures are shifted to have the Fermi levels at zero.)

The Fermi energy becomes 0.086 Ry higher than that for the zero pressure.

In order to visualize the chemical bonding directly, we present the result of

the valence charge density for the fcc Li at zero pressure in Fig. 4.6. The contour

plot is shown for a cross-section in the (001) plane, and we have plotted the

(valence) charge density along the line between two atoms in the [100] direction.

Notice that most of the charge density is spherical symmetric around the regions

near the atomic sites and some small charge density is flat in the interstitial region.

2The number of occupied states is equal to the number of electrons.
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This characteristic of the charge distribution indicates the metallic bonding. The

plot in Fig. 4.6(b) shows the similar results of the charge density under pressure

of 10 GPa, compared to the zero-pressure density.
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Figure 4.5: The band structures and the density of states of the fcc Li. The band
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the Fermi level is zero. The dotted line is the result at the equilibrium volume

(lattice constant = 8.041 a.u.) while the solid line is at 0.69 times the equilibrium

volume.
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of the fcc phase of Li at the zero pressure. (b) The Plot of the charge density in

the [100] direction. The solid line is for zero pressure whereas the dash line is for

10 GPa.



Chapter 5

Conclusions

In summary, we have developed and implemented an accurate total-energy

method based on the local-density-functional theory and the full-potential lin-

earized augmented-plane-wave method. In order to check the accuracy of our

algorithm, we have performed calculations of the total energy to determine the

structural properties of solid lithium. Our calculated results are generally in agree-

ment with previous calculations and experiments.

The total energies calculated here do not include thermal effects, i.e. zero-

point energy, and exchange-correlation effects are treated under the local density

approximation. All numerical approximation are controlled in effort to achieve the

high accurate results. We have demonstrated the convergence of the total energy

with respect to the computational parameters by using different basis set sizes and

different k-mesh sizes. The test done with a larger number of basis functions and

k-point sampling leads us to believe that the overall accuracy of the total energies

are better than 0.5 mRy.

In our application to Li, the results of the equilibrium lattice constant and

the bulk modulus agree very well with the results from CASTEP calculation and

experiments. Moreover, we predict that at T = 0 K the fcc structure is more

stable than the sc, bcc and hcp structures. This is consistent with the previous

calculations. However, we are suspicious about the large energy difference between

the fcc and hcp structures, compared to the similarity of both structures. This

may be due to use of non-optimal value of c/a ratio. Although we can conclude

the zero-pressure phase stability, we cannot resolve the pressure-induced phase

transition. Our calculation holds for pressures up to 10 GPa while the phase

transition to the bcc structure is predicted to be at higher pressures.
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Although the DFT-FLAPW approach can be used to provide a reliable struc-

tural information, our ab initio simulations cannot be used to perform structural

optimization directly. We must select a certain set of crystal structures. Some of

the structures, however, will have extra parameters, e.g. c/a ratios, which must be

optimized. Therefore, we can only determine statically which structure is stable

among those structures included in the set. In that way one can never be sure to

find the true ground state structure.

Not only the structural properties, we can determine also the electronic

properties. The results of the band structure and the charge density are consistent

with other data. These results show that Li becomes free-electron like, and it

changes slightly under the moderate pressure.

In the future, we intend to continue to refine and improve the efficiency

and reliability of our algorithm as time and opportunity permit. Furthermore,

the DFT-FLAPW calculations is universal applicable, many materials problems

can be studied through this method. We, therefore, aim to extend our code to

many applications, for example, to study the properties of other elements as well

as surfaces or molecules.
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Appendix B

Numerov method

Numerov’s method is an efficient algorithm for numerically integrating a

second-order differential equation of the form

d2y

dx2
= F (x)y + G(x), (B.1)

where F (x) and G(x) are functions with values either known or calculable. This

equation appears in many areas of physics (e.g. 1D Schrödinger equation and

motion of an undamped forced harmonic oscillator). The important property of

this equation is that it contains no first derivative term and the RHS is linear in

the dependant variable.

In order to obtain a finite-difference form of Eq. (B.1), the continuous space

x is replaced by a uniform grid point, xn, with a separation of ∆x. Now, consider

a Taylor series expansion of y(x) about a point xn,

yn±1 = yn ± ∆x y′n +
(∆x)

2

2

y′′n ±
(∆x)

6

3

y′′′n +
(∆x)

24

4

y(4)
n ± . . . (B.2)

where yn ≡ y(xn) is the value of y at xn and yn±1 = y(xn ± ∆x). Adding the

Taylor formulae for yn+1 and yn−1 up to fourth order, one finds

yn+1 + yn−1 = 2yn + (∆x)2y′′n +
(∆x)

12

4

y(4)
n + O[(∆x)6]. (B.3)

Differentiating Eq. (B.3) twice and neglecting the last term,

y′′n+1 + y′′n−1 = 2y′′n + (∆x)2y(4)
n , (B.4)

and substituting the fourth derivative y
(4)
n from this into Eq. (B.3) yields

yn+1 + yn−1 = 2yn + (∆x)2y′′n +
(∆x)

12

4

[y′′n+1 + y′′n−1 − 2y′′n] + O[(∆x)6]. (B.5)
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Inserting for y′′n, y′′n±1 from the original equation Eq. (B.1), one arrives at Numerov’s

formula:

yn+1 =

[(
2 +

10(∆x)2

12
Fn

)
yn −

(
2 +

(∆x)2

12
Fn−1

)
yn−1

+
(∆x)2

12
(Gn+1 + 10Gn + Gn−1)

]/(
1− (∆x)2

12
Fn+1

)
.

(B.6)

Note that this formula has an error of O[(∆x)6].

To start Numerov’s algorithm, values for y0 and y1 are needed. Then

y2, y3, . . . can be generated from Eq. (B.6).
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