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CHAPTER I

INTRODUCTION

Let N(n) be a Poisson random variable with parameter n, then we obtain that

P (N(n) = k) =
e−nnk

k!
for k = 0, 1, 2, . . . . An infinite urn model is defined as fol-

lows: N(n) ball are independently placed in an infinite set of urns and each ball has

probability pk > 0 of being assigned to the k th urn. We assume that pk ≥ pk+1

for all k and
∞∑

k=1

pk = 1. Let Zn be the number of occupied urns after n balls have

been thrown. So ZN(n) is the number of occupied urns after N(n) ball have been

thrown. Since the number of urns is infinite and the number of thrown is random, we

cannot apply the usual central limit theorem to Zn and ZN(n). In 1967, Karlin gave

the condition on (pk) for the convergence of
Zn − E(Zn)

bn

to N (0, 1) where N (0, 1) is

the standard normal random variable and b2
n ∼ V ar(Zn). In 1989, Dutko considered

in case of random thrown. Under the condition

lim
n→∞

V ar(ZN(n)) = ∞, (1.1)

he showed that

lim
n→∞

Fn(x) = Φ(x) (1.2)

where Fn is the distribution function of
ZN(n) − E(ZN(n))√

V ar(ZN(n))
and Φ is the standard nor-

mal distribution function. Examples of (pk) which satisfy (1.1) are pk =
C

klog k
and
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pk =
C

kr
where C is a normalizing constant and r > 1 (see [1], page 1257-1258). In

1972, Stein gave a new technique to find a bound in normal approximation. His tech-

nique relied instead on the elementary differential equation. In 2001, Chen and Shao

combined truncation with Stein’s method and by taking the concentration inequality

approach to find uniform and non-uniform bounds on Berry-Esseen theorem. In our

work, we use the technique in Chen and Shao to obtain bounds on the convergence

of (1.2).

Let Fn and Φ be the distribution function of
ZN(n) − E(ZN(n))√

V ar(ZN(n))
and N (0, 1) re-

spectively. The followings are our main results.

Theorem 1

sup
x∈R

|Fn(x)− Φ(x)| ≤ 6.655√
V ar(ZN(n))

.

Theorem 2 There exists an absolute constant C such that for every real number x,

|Fn(x)− Φ(x)| ≤ C

(1 + |x|)3
√

V ar(ZN(n))
.

Furthermore, under the condition (1.1) we have the bounds in Theorem 1 and Theo-

rem 2 tend to zero as n →∞.



CHAPTER II

PRELIMINARIES

In this chapter, we present some basic concepts and facts of probability theory

that are needed in this thesis. The proofs of the statements are omitted as they can

be found in [2] and [3].

2.1 Random Variables and Distribution functions

A probability space is a measure space (Ω,F , P ) for which P (Ω) = 1. The set

Ω will be refered as a sample space. The elements of F are called events. For any

event A, the value P (A) is called the probability of A.

A function X from the probability space (Ω,F , P ) to the set of complex numbers

C is said to be a complex-valued random variable if for every borel set B in C,

X−1[B] belongs to F . In case that X is real-valued, we say that it is a real-valued

random variable, or simply a random variable. We note that the composition

beetween a Borel function and a complex-valued random variable is also a complex-

valued random variable.

We will use the notation P (X ≤ x), P (X ≥ x) and P (|X| ≥ x) to denote

P ({ω|X(ω) ≤ x}), P ({ω|X(ω) ≥ x}) and P ({ω| |X|(ω) ≥ x}), respectively.

We define the expectation of a complex-valued random variable X to be
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∫
Ω

XdP ,

provided that the integral

∫
Ω

XdP exists. It will be denoted by E(X) or EX. The

expectation of a random variable X is known as the mean. The expectation of

(X − E(X))2 is known as the variance of X and is denoted by V ar(X).

Let {Fα|α ∈ Λ} be a family of σ-algebras. We say that {Fα|α ∈ Λ} is a family of

independent σ-algebras if for every finite subset {α1, α2, . . . , αn} of Λ

P (
n⋂

i=1

Aαi
) =

n∏
i=1

P (Aαi
)

for all Aαi
∈ Fαi

and all i = 1, 2, . . . , n.

We say that {Eα ∈ F|α ∈ Λ} is a family of independent events if

{σ({Eα})|α ∈ Λ} is a family of independent σ-algebras where

σ({Eα}) = {∅, Eα, EC
α , Ω}

and {Xα|α ∈ Λ} is a family of independent random variables if

{σ(Xα)|α ∈ Λ} is a family of independent σ-algebras where

σ(Xα) = {X−1
α (B)|B is a Borel set in R}.

Proposition 2.1. ([3], p.55) Let {Xα, α ∈ Λ} be a family of independent random

variables. For every α ∈ Λ, let gα be a Borel measurable function defined on R. Then

{gα(Xα), α ∈ Λ} is also a family of independent random variables.

Let X be a random variable. A function F : R → [0, 1] is defined by

F (x) = P (X ≤ x),
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for each real number x. F is called the distribution function of the random

variable X.

Let X be a random variable on a probability space (Ω,F , P ). X is said to be

a discrete random variable if the image of X is countable and X is called a

continuous random variable if F can be written in the form

F (x) =

∫ x

−∞
f(t)dt

for some nonnegative integrable function f on R and in this case, we say that f is

the probability function of X.

Now we will give some examples of random variable.

Example 2.2. IE is said to be an indicator random variable with respect to event

E if

IE(ω) =


1, if ω ∈ E;

0, if ω /∈ E.

We note that E(IE) = P (E).

Example 2.3. X is said to be Poisson random variable with parameter λ, written

as X ∼ Poi(λ), if its image is {0, 1, 2, . . .} and

P (X = k) =
e−λλk

k!
.

Example 2.4. We say that X is a normal random variable with parameter µ

and σ2, written as X ∼ N (µ, σ2), if its probability function is

f(x) =
1√

2πσ2
exp(− 1

2σ2
(x− µ)2).

Specifically, X is a standard normal random variable if X ∼ N (0, 1).
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Proposition 2.5 is the property of Φ where Φ is the distribution function ofN (0, 1).

Proposition 2.5. ([4], p.295-297 and [5], p.246) Let W be a random variable such

that E(W ) = 0 and V ar(W ) = 1. Then

|P (W ≤ x)− Φ(x)| ≤ 0.55

for all x ≥ 0.

The following are properties of expectation and variance which we need in our

work.

Proposition 2.6. ([2], p.59) Let (Xj) be a sequence of random variables from (Ω,F , P )

to [0,∞). Then E(
∞∑

j=1

Xj) =
∞∑

j=1

E(Xj).

Proposition 2.7. ([2], p.64) Let (Xj) be a sequence of random variables in L1(Ω, P )

such that
∞∑

j=1

E|Xj| < ∞. Then

E(
∞∑

j=1

Xj) =
∞∑

j=1

E(Xj).

Proposition 2.8. ([3], p.55) Let X1, X2 be two independent random variables. If

E|X1| < ∞ and E|X2| < ∞, then E|X1X2| < ∞, and E(X1X2) = EX1EX2.

Now we will give the definition condition expectation of a random variable.

Let (Ω,F , P ) be a probability space and let D ⊆ F be a σ-algebra. Let PD be a

probability measure induced by P , that is, PD(E) = P (E) for all E ∈ D. Let X be a

random variable defined on (Ω,F , P ) such that E(X) exists. Then for every E ∈ D

we can define the indefinite integral

QX(E) =

∫
E

XdP =

∫
Ω

XIEdP.
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Clearly QX is a finite signed measure on D such that QX(E) = 0 for every E ∈ D

for which PD(E) = 0. Hence QX << PD, so that in view of the Radon-Nikodym

theorem there exists a D- measurable function defined on Ω, which we denote by

E(X|D), such that the relation

∫
E

E(X|D)dPD = QX(E) =

∫
E

XdP

holds for every E ∈ D. Here the function E(X|D) is determined uniquely with

respect to PD in the sense that, if there exists another D-measurable function g on Ω

satisfying

∫
E

gdPD = QX(E)

for every E ∈ D, then g = E(X|D) a.s. [PD]. The measurable function E(X|D) is

called the conditional expection of X with respect to D.

Let X and Y be random variables on a probability space (Ω,F , P ) such that

E(|X|) < ∞. E(X|σ(Y )) is called the conditional expectation of X with respect

to Y , where σ(Y ) = {Y −1(B)|B is a Borel set in R}. We denote E(X|σ(Y )) by

E(X|Y ) or EY (X).

The conditional probability P (A|D) of an event A ∈ F , given D, is defined by

P (A|D) = E(IA|D).

Proposition 2.9. ([3], p.365) Let X be a random variable on (Ω,F , P ) with E(X)

exists and let D ⊆ F be a σ-algebra and σ(X) and D are independent. Then

E(X|D) = E(X) a.s. [PD]
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2.2 An Infinite Urn Model

An infinite urn model is defined that n ball are independently placed in an infinite

set of urns and each ball has probability pk > 0 of being assigned to the k th urn.We

assume that pk ≥ pk+1 and
∞∑

k=1

pk = 1, we define the random variable Sn,k by

Sn,k = the number of balls in the k th urn after n throws.

We need to consider the case where the number of throws is not fixed in advance

but depends on the outcome of a random experiment. Specifically, suppose that

the number of balls thrown is a Poisson random variable with means n, denoted

by N(n), then we have

P (N(n) = r) =
e−nnr

r!
for all r = 0, 1, 2, . . . .

We define the random variable SN(n),k by

SN(n),k = the number of balls in the k th urn after N(n) throws.

The random variables (SN(n),k), k = 1, 2, . . . are mutually independent Poisson

random variables with respective mean (npk) (see [1], p.1259), so that

P (SN(n),k = r) =
e−npk(npk)

r

r!
for all r = 0, 1, 2, . . . .

We next define the random variable Zn by

Zn =
∞∑

k=1

I(Sn,k), where I(u) =


1, if u > 0,

0, if u = 0.
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Also, we define the random variable ZN(n) by

ZN(n) =
∞∑

k=1

I(SN(n),k).

The random variable Zn is the number of occupied urn after n balls have been thrown,

and the random variable ZN(n) is the number of occupied urn after N(n) balls have

been thrown. From Dutko[1] we know

(I(SN(n),k))k∈N is the sequence of independent random variables, (2.1)

E(I(SN(n),k)) = 1− e−npk ,

V ar(I(SN(n),k)) = e−npk − e−2npk ,

E(ZN(n)) =
∞∑

k=1

(1− e−npk),

V ar(ZN(n)) =
∞∑

k=1

(e−npk − e−2npk), (2.2)

E(ZN(n)) is finite

and V ar(ZN(n)) is finite. (2.3)

Let

Xn,k =
I(SN(n),k)− E(I(SN(n),k))√

V ar(ZN(n))
. (2.4)

Then

|Xn,k| ≤
1√

V ar(ZN(n))
, (2.5)

ZN(n) − E(ZN(n))√
V ar(ZN(n))

=
∞∑

k=1

Xn,k, (2.6)

E(
∞∑

k=1

Xn,k) = 0 and V ar(
∞∑

k=1

Xn,k) = 1.
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Proposition 2.10.

1.
∞∑

k=1

E|Xn,k|3 ≤
1√

V ar(ZN(n))
which is finite.

2. If lim
n→∞

V ar(ZN(n)) = ∞, then lim
n→∞

∞∑
k=1

E|Xn,k|3 = 0.

Proof.

1. We note that

I(SN(n),k) =


0 if SN(n),k = 0,

1 if SN(n),k > 0.

So P (I(SN(n),k) = 0) = P (SN(n),k = 0) = e−npk

and P (I(SN(n),k) = 1) = P (SN(n),k > 0) = 1− P (SN(n),k = 0) = 1− e−npk , i.e.,

I(SN(n),k) =


0 with the probability e−npk ,

1 with the probability 1− e−npk .

Thus

P
(
Xn,k =

e−npk − 1√
V ar(ZN(n))

)
= P (I(SN(n),k) = 0) = e−npk and

P
(
Xn,k =

e−npk√
V ar(ZN(n))

)
= P (I(SN(n),k) = 1) = 1− e−npk .

Hence,

E |Xn,k|3 =
∑

x∈Im Xn,k

|x|3P (Xn,k = x)

=
∣∣∣ e−npk − 1√

V ar(ZN(n))

∣∣∣3e−npk +
∣∣∣ e−npk√

V ar(ZN(n))

∣∣∣3(1− e−npk)
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=
(1− e−npk)3

(V ar(ZN(n)))
3
2

e−npk +
e−3npk

(V ar(ZN(n)))
3
2

(1− e−npk)

=
(1− 3e−npk + 3e−2npk − e−3npk)e−npk + e−3npk(1− e−npk)

(V ar(ZN(n)))
3
2

=
e−npk − 3e−2npk + 3e−3npk − e−4npk + e−3npk − e−4npk

(V ar(ZN(n)))
3
2

=
−2e−4npk + 4e−3npk − 3e−2npk + e−npk

(V ar(ZN(n)))
3
2

.

We observe that

−2e−4npk + 4e−3npk − 3e−2npk + e−npk

= −2e−4npk + 2e−3npk + 2e−3npk − 2e−2npk − e−2npk + e−npk

= 2e−2npk(e−npk − e−2npk)− 2e−npk(e−npk − e−2npk) + (e−npk − e−2npk),

then

∞∑
k=1

E|Xn,k|3 = An + Bn + Cn

where

An =

2
∞∑

k=1

e−2npk(e−npk − e−2npk)

(V ar(ZN(n)))
3
2

,

Bn =

−2
∞∑

k=1

e−npk(e−npk − e−2npk)

(V ar(ZN(n)))
3
2

and

Cn =

∞∑
k=1

(e−npk − e−2npk)

(V ar(ZN(n)))
3
2

.

By (2.2), (2.3) and An + Bn < 0,
∞∑

k=1

E|Xn,k|3 ≤
1√

V ar(ZN(n))
.

2. This follows from 1.
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2.3 Stein’s equation for standard normal distribution

function

In this section, we will introduce Stein’s method which is based on the differential

equation

f ′(ω)− ωf(ω) = h(ω)− E(h(Z)) (2.7)

where f : R → R is a continuous function, h : R → R is a test function and Z is

the standard normal random variable. The equation (2.7) is called Stein’s equation

for normal approximation. For any real number x, let h be an indicator function

defined by

hx(ω) =


1, if ω ≤ x,

0, if ω > x,

(2.8)

then Stein’s equation (2.7) has a unique solution fx : R → R defined by

fx(ω) =


√

2π e
1
2

ω2
Φ(ω)[1− Φ(x)], if ω ≤ x;

√
2π e

1
2

ω2
Φ(x)[1− Φ(ω)], if ω > x

(2.9)

(see [6], p.22).

By (2.7)− (2.9) we get

f ′x(W )−Wfx(W ) = hx(W )− Φ(x)

which implies that

P (W ≤ x)− Φ(x) = Ef ′x(W )− EWfx(W ). (2.10)
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Hence we can find a bound of Ef ′x(W ) − EWfx(W ) instead of P (W ≤ x) − Φ(x).

To find a bound of Ef ′x(W ) − EWfx(W ), we need the following properties of the

solution fx of Stein’s equation (2.7).

For ω, s, t ∈ R,

f ′x(ω + s)− f ′x(ω + t) ≤



1, if ω + s ≤ x, ω + t > x;

(|ω|+
√

2π
4

)(|s|+ |t|), if s ≥ t;

0, elsewhere,

(2.11)

f ′x(ω + s)− f ′x(ω + t) ≥



−1, if ω + s > x, ω + t ≤ x;

−(|ω|+
√

2π
4

)(|s|+ |t|), if s < t;

0, elsewhere;

(2.12)

and

|f ′x(s)− f ′x(t)| ≤ 1 (2.13)

(see [5], p.246-247).



CHAPTER III

A UNIFORM BOUND ON

AN INFINITE URN MODEL

Let ZN(n) be defined as in section 2.2 of Chapter II. The purpose of this chap-

ter is to give a uniform bound in the approximation of the distribution function of

ZN(n) − E(ZN(n))√
V ar(ZN(n))

by Φ is stated in Theorem 3.5. To prove Theorem 3.5, we need the

following results.

Proposition 3.1. Let δ ∈ R+ and M : R2 → R be defined by

M(ω, t) = ωI(−ω ≤ t ≤ 0)− ωI(0 < t ≤ −ω),

then

∫ δ

−δ

M(ω, t)dt = |ω|min(δ, |ω|).

Proof.

Case 1 min(δ, |ω|) = δ.

If ω ≥ 0, then

∫ δ

−δ

M(ω, t)dt =

∫ δ

−δ

ωI(−ω ≤ t ≤ 0)− ωI(0 < t ≤ −ω)dt

=

∫ δ

−δ

ωI(−ω ≤ t ≤ 0)dt

=

∫ 0

−δ

ωdt

= |ω|δ
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= |ω|min(δ, |ω|).

If ω < 0, then

∫ δ

−δ

M(ω, t)dt =

∫ δ

−δ

ωI(−ω ≤ t ≤ 0)− ωI(0 < t ≤ −ω)dt

=

∫ δ

−δ

−ωI(0 < t ≤ −ω)dt

=

∫ δ

0

−ωdt

= |ω|δ

= |ω|min(δ, |ω|).

Case 2 min(δ, |ω|) = |ω|.

If ω ≥ 0, then

∫ δ

−δ

M(ω, t)dt =

∫ δ

−δ

ωI(−ω ≤ t ≤ 0)− ωI(0 < t ≤ −ω)dt

=

∫ δ

−δ

ωI(−ω ≤ t ≤ 0)dt

=

∫ 0

−ω

ωdt

= |ω||ω|

= |ω|min(δ, |ω|).

If ω < 0, then

∫ δ

−δ

M(ω, t)dt =

∫ δ

−δ

ωI(−ω ≤ t ≤ 0)− ωI(0 < t ≤ −ω)dt

=

∫ δ

−δ

−ωI(0 < t ≤ −ω)dt

=

∫ −ω

0

−ωdt
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= (−ω)(−ω)

= |ω||ω|

= |ω|min(δ, |ω|).

Then the proof is completed.

Proposition 3.2. Let (ai) be a sequence of real numbers such that the both series
∞∑
i=1

ai and
∞∑
i=1

a2
i are finite. Then

(
∞∑
i=1

ai)
2 =

∞∑
i=1

a2
i +

∞∑
i=1

ai

∞∑
j=1
j 6=i

aj.

Proof. We note that for each i ∈ N

ai

∞∑
j=1
j 6=i

aj = ai(
∞∑

j=1

aj − ai) = ai

∞∑
j=1

aj − a2
i .

Since
∞∑
i=1

ai and
∞∑
i=1

a2
i are finite, we have

∞∑
i=1

ai

∞∑
j=1
j 6=i

aj =
∞∑
i=1

(ai

∞∑
j=1

aj − a2
i )

=
∞∑
i=1

ai

∞∑
j=1

aj −
∞∑
i=1

a2
i

= (
∞∑
i=1

ai)
2 −

∞∑
i=1

a2
i .

Hence

(
∞∑

j=1

ai)
2 =

∞∑
i=1

a2
i +

∞∑
i=1

ai

∞∑
j=1
j 6=i

aj.
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Proposition 3.3. Let Xn,k be defined in (2.4) and δ > 0. Then we have

V ar
( ∞∑

j=1

|Xn,j|min(δ, |Xn,j|
)

=
∞∑

j=1

V ar
(
|Xn,j|min(δ, |Xn,j|

)
.

Proof. By (2.1), (2.4) and Proposition 2.1, (|Xn,j|min(δ, |Xn,j|))j∈N is the sequence

of independent random variables. Now we will show that
∞∑

j=1

|Xn,j|min(δ, |Xn,j|),
∞∑

j=1

(|Xn,j|min(δ, |Xn,j|))2,
∞∑

j=1

E|Xn,j|min(δ, |Xn,j|),

and
∞∑

j=1

(E|Xn,j|min(δ, |Xn,j|))2 are finite. It is clear that for every k ∈ N,

∞∑
j=1

|I(SN(n),j)|k is finite

and, by the fact that 1− e−npj ≤ npj,

∞∑
j=1

(1− e−npj)k ≤
∞∑

j=1

(1− e−npj) ≤
∞∑

j=1

npj = n.

From this facts and (2.3), it follows that

∞∑
j=1

|Xn,j| =
∞∑

j=1

∣∣I(SN(n),j)− (1− e−npj)√
V ar(ZN(n))

∣∣
≤ 1√

V ar(ZN(n))
{
∞∑

j=1

|I(SN(n),j)|+
∞∑

j=1

(1− e−npj)}

< ∞

and

∞∑
j=1

|Xn,j|2 =
∞∑

j=1

∣∣I(SN(n),j)− (1− e−npj)√
V ar(ZN(n))

∣∣2
≤ 1

V ar(ZN(n))
{
∞∑

j=1

|I(SN(n),j)|2 +
∞∑

j=1

(1− e−npj)2}

< ∞.
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Hence

∞∑
j=1

|Xn,j|min(δ, |Xn,j|) ≤ δ

∞∑
j=1

|Xn,j| and

∞∑
j=1

(|Xn,j|min(δ, |Xn,j|))2 ≤ δ2

∞∑
j=1

|Xn,j|2 are finite.

Observe that

E|Xn,j| =
∑

x∈Im Xn,j

|x|P (Xn,j = x)

=
∣∣∣ e−npj − 1√

V ar(ZN(n))

∣∣∣e−npj +
∣∣∣ e−npj√

V ar(ZN(n))

∣∣∣(1− e−npj)

=
(1− e−npj)e−npj + (1− e−npj)e−npj√

V ar(ZN(n))

=
2(e−npj − e−2npj)√

V ar(ZN(n))
,

hence, by (2.2),

∞∑
j=1

E|Xn,j| = 2
√

V ar(ZN(n)) (3.1)

which implies

∞∑
j=1

E|Xn,j|min(δ, |Xn,j|) ≤ δ

∞∑
j=1

E|Xn,j| = 2δ
√

V ar(ZN(n)) < ∞

and

∞∑
j=1

(E|Xn,j|min(δ, |Xn,j|))2 ≤ δ2

∞∑
j=1

(E|Xn,j|)2

=
4δ2

V ar(ZN(n))

∞∑
j=1

(e−npj − e−2npj)2

≤ 4δ2

V ar(ZN(n))

∞∑
j=1

(e−npj − e−2npj)
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= 4δ2

< ∞.

By Proposition 3.2, we obtain

V ar(
∞∑

j=1

|Xn,j|min(δ, |Xn,j|))

= E(
∞∑

j=1

|Xn,j|min(δ, |Xn,j|))2 − (
∞∑

j=1

E|Xn,j|min(δ, |Xn,j|))2

= E

∞∑
i=1

(|Xn,i|min(δ, |Xn,i|))2

+ E
∞∑
i=1

|Xn,i|min(δ, |Xn,i|)
∞∑

j=1
j 6=i

|Xn,j|min(δ, |Xn,j|)

−
∞∑
i=1

(E|Xn,i|min(δ, |Xn,i|))2

−
∞∑
i=1

E|Xn,i|min(δ, |Xn,i|)
∞∑

j=1
j 6=i

E|Xn,j|min(δ, |Xn,j|)

=
∞∑

j=1

E(|Xn,j|min(δ, |Xn,j|))2 −
∞∑

j=1

(E|Xn,j|min(δ, |Xn,j|))2

=
∞∑

j=1

(E(|Xn,j|min(δ, |Xn,j|))2 − (E|Xn,j|min(δ, |Xn,j|))2

=
∞∑

j=1

V ar(|Xn,j|min(δ, |Xn,j|)).

In what following, we let

W :=
∞∑

j=1

Xn,j and β :=
∞∑

j=1

E|Xn,j|3.

By (2.6), we see that

W =
ZN(n) − E(ZN(n))√

V ar(ZN(n))
.
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Proposition 3.4. (concentration inequality for a uniform bound) Let a < b and for

each k ∈ N, let W (k) = W −Xn,k. If β < 0.14, then

P (a ≤ W (k) ≤ b) ≤ 1.5(b− a) + 4.21β,

Proof. Let f : R → R be defined by

f(t) =



−1
2
(b− a)− β

2
, if t < a− β

2
;

t− 1
2
(b + a), if a− β

2
≤ t ≤ b + β

2
;

1
2
(b− a) + β

2
, if t > b + β

2

and let M : R2 → R be defined by

M(ω, t) = ωI(−ω ≤ t ≤ 0)− ωI(0 < t ≤ −ω).

By (3.1),

∞∑
j=1
j 6=k

E|Xn,jf(W (k))| ≤ 1

2
(b− a + β)

∞∑
j=1

E|Xn,j|

= (b− a + β)
√

V ar(ZN(n))

< ∞.

Hence it follows from Proposition 2.7 that

E
∞∑

j=1
j 6=k

Xn,jf(W (k)) =
∞∑

j=1
j 6=k

EXn,jf(W (k)). (3.2)

Since Xn,j and W (k) −Xn,j are independent for all j 6= k, EXn,k = 0 for all k and
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M(ω, t) ≥ 0, we have

EW (k)f(W (k))

=
∞∑

j=1
j 6=k

E{Xn,jf(W (k))} (from (3.2))

=
∞∑

j=1
j 6=k

E{Xn,jf(W (k))} − E{Xn,jf(W (k) −Xn,j)},

(because Xn,j, W (k) −Xn,j are independent and EXn,j = 0)

=
∞∑

j=1
j 6=k

E{Xn,j[f(W (k))− f(W (k) −Xn,j)]}

=
∞∑

j=1
j 6=k

E{Xn,j

∫ 0

−Xn,j

f ′(W (k) + t)dt}

=
∞∑

j=1
j 6=k

E{
∫ ∞

−∞
f ′(W (k) + t)Xn,j[I(−Xn,j ≤ t ≤ 0)− I(0 < t ≤ −Xn,j)]dt}

=
∞∑

j=1
j 6=k

E{
∫ ∞

−∞
f ′(W (k) + t)M(Xn,j, t)dt} (3.3)

≥
∞∑

j=1
j 6=k

E

∫
|t|≤β

2

M(Xn,j, t)dt

≥
∞∑

j=1
j 6=k

E{I(a ≤ W (k) ≤ b)

∫
|t|≤β

2

M(Xn,j, t)dt}

= E{I(a ≤ W (k) ≤ b)
∞∑

j=1
j 6=k

|Xn,j|min(
β

2
, |Xn,j|)} (by Proposition 3.1)

= E{I(a ≤ W (k) ≤ b)S} − P (a ≤ W (k) ≤ b)E|Xn,k|min(
β

2
, |Xn,k|)

≥ E{I(a ≤ W (k)≤ b)SI(S ≥0.38)}−P (a ≤ W (k)≤ b)E|Xn,k|min(
β

2
, |Xn,k|)

≥ 0.38E{I(a ≤ W (k) ≤ b)(1− I(S < 0.38)}

− P (a ≤ W (k) ≤ b)E|Xn,k|min(
β

2
, |Xn,k|)



22

= 0.38E{I(a ≤ W (k) ≤ b)} − 0.38E{I(a ≤ W (k) ≤ b)I(S < 0.38)}

− P (a ≤ W (k) ≤ b)E|Xn,k|min(
β

2
, |Xn,k|)

≥ 0.38P (a ≤ W (k) ≤ b)− 0.38P (S < 0.38)

− P (a ≤ W (k) ≤ b)E|Xn,k|min(
β

2
, |Xn,k|)

≥ 0.34P (a ≤ W (k) ≤ b)− 0.38P (S < 0.38), (3.4)

where S =
∞∑

j=1

|Xn,j|min(
β

2
, |Xn,j|) and the last inequality follows from the fact that

E|Xn,j|min(
β

2
, |Xn,j|) ≤

β

2
E|Xn,j| ≤

β

2
[E|Xn,j|3]

1
3 ≤ β

4
3

2
≤ 0.04.

By the fact that

min(a, b) ≥ b− b2

4a
(3.5)

for positive number a and b (see [5], p.238), we obtain that

E(S) =
∞∑

j=1

E|Xn,j|min(
β

2
, |Xn,j|) ≥

∞∑
j=1

EX2
n,j −

1

2β

∞∑
j=1

E|Xn,j|3 = 0.5.

From this fact and the fact that

V ar(S) = V ar

∞∑
j=1

|Xn,j|min(
β

2
, |Xn,j|)

=
∞∑

j=1

V ar(|Xn,j|min(
β

2
, |Xn,j|) (by Proposition 3.3)

=
∞∑

j=1

{E(|Xn,j|min(
β

2
, |Xn,j|))2 − (E|Xn,j|min(

β

2
, |Xn,j|))2}

≤
∞∑

j=1

E(|Xn,j|min(
β

2
, |Xn,j|))2

≤ β2

4

∞∑
j=1

EX2
n,j

=
β2

4
,
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we have

P (S < 0.38) = P (ES − S > ES − 0.38)

≤ P (ES − S ≥ 0.12)

≤ V ar(S)

(0.12)2
(by Chebyshev’s inequality)

≤ β2

4(0.12)2

≤ 2.45β, (3.6)

where we have used the fact that
β

2
< 0.07 in the last inequality.

Observe that

|EW (k)f( W (k))| ≤ 1

2
(b− a + β)E|W (k)| ≤ 1

2
(b− a + β).

Hence, by (3.4) and (3.6),

P (a ≤ W (k) ≤ b) ≤ 1

0.34
{1

2
(b− a + β) + 0.931β}

=
1

0.68
(b− a) +

1.431

0.34
β

≤ 1.5(b− a) + 4.21β.

Next, we will prove the main result of this chapter.

Theorem 3.5. Let Fn and Φ be the distribution function of
ZN(n) − E(ZN(n))√

V ar(ZN(n))
and

N (0, 1), respectively. Then

sup
x∈R

|Fn(x)− Φ(x)| ≤ 6.655√
V ar(ZN(n))

.

Moreover, under the additional condition that lim
n→∞

V ar(ZN(n)) = ∞, the bound tends

to zero.
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Proof. We devide the proof into 2 cases.

Case 1 x ≥ 0.

By Proposition 2.10(1) we know that β ≤ 1√
V ar(ZN(n))

. If β > 0.14, then

0.9317 < 6.655β ≤ 6.655√
V ar(ZN(n))

. (3.7)

From (3.7) and Proposition 2.5,

|Fn(x)− Φ(x)| ≤ 6.655√
V ar(ZN(n))

.

Next, we assume that β ≤ 0.14. For each k ∈ N, let

Kk(t) = E{Xn,k[I(0 ≤ t ≤ Xn,k)− I(Xn,k ≤ t < 0)]}.

Observe that

∞∑
k=1

∫ ∞

−∞
Kk(t)dt =

∞∑
k=1

EX2
n,k = 1. (3.8)

Let f be a real-valued, bounded, continuous and piecewise differentiable function

defined on the real line. Then

EWf(W )

=
∞∑

k=1

EXn,kf(W )

=
∞∑

k=1

E{Xn,kf(W (k) + Xn,k)−Xn,kf(W (k))} (EXn,kf(W (k)) = 0)

=
∞∑

k=1

EXn,k

∫ Xn,k

0

f ′(W (k) + t)dt

=
∞∑

k=1

E

∫ ∞

−∞
f ′(W (k) + t)Xn,k{I(0 ≤ t ≤ Xn,k)− I(Xn,k ≤ t < 0)}dt
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=
∞∑

k=1

E

∫ ∞

−∞
f ′(W (k) + t)E{Xn,k[I(0 ≤ t ≤ Xn,k)− I(Xn,k ≤ t < 0)]}dt

=
∞∑

k=1

E

∫ ∞

−∞
f ′(W (k) + t)Kk(t)dt. (3.9)

Let f in (3.9) be the unique bound solution fx of the Stein equation (2.7) for hx which

is defined by (2.8). Then, by (2.10), (3.8) and (3.9),

Fn(x)− Φ(x)

= Ef ′x(W )− EWfx(W )

=
∞∑

k=1

E

∫ ∞

−∞
f ′x(W )Kk(t)dt−

∞∑
k=1

E

∫ ∞

−∞
f ′x( W (k) + t)Kk(t)dt

=
∞∑

k=1

E{
∫ ∞

−∞
[ f ′x( W (k) + Xn,k)− f ′x( W (k) + t)]Kk(t)dt}. (3.10)

By (3.10) and (2.11), we have

Fn(x)− Φ(x) ≤ R1 + R2,

where

R1 =
∞∑

k=1

E

∫
W (k)+t>x

W (k)+Xn,k≤x

Kk(t)dt and

R2 =
∞∑

k=1

E

∫
Xn,k≥t

(| W (k)|+ 0.63)(|Xn,k|+ |t|)Kk(t)dt.

We observe that if W (k) + t > x and W (k) + Xn,k ≤ x, then

x− t < W (k) ≤ x−Xn,k and t > Xn,k. Then

R1 ≤
∞∑

k=1

E

∫
t>Xn,k

I(x− t < W (k) ≤ x−Xn,k)Kk(t)dt

=
∞∑

k=1

E

∫
R

I(t > Xn,k)I(x− t < W (k) ≤ x−Xn,k)Kk(t)dt

=
∞∑

k=1

∫
R

EEXn,kI(t > Xn,k)I(x− t < W (k) ≤ x−Xn,k)Kk(t)dt
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=
∞∑

k=1

∫
R

EI(t > Xn,k)Kk(t)E
Xn,kI(x− t < W (k) ≤ x−Xn,k)dt

=
∞∑

k=1

E

∫
t>Xn,k

Kk(t)E
Xn,kI(x− t < W (k) ≤ x−Xn,k)dt

=
∞∑

k=1

E

∫
t>Xn,k

P (x− t < W (k) < x−Xn,k|Xn,k)Kk(t)dt. (3.11)

By (3.11) and Proposition 3.4, we have

R1 ≤
∞∑

k=1

E

∫
t>Xn,k

{1.5(|t|+ |Xn,k|) + 4.21β}Kk(t)dt

≤ 1.5
∞∑

k=1

E

∫
t>Xn,k

(|t|+ |Xn,k|)Kk(t)dt + 4.21β. (3.12)

Since W (k) and Xn,k are independent, we have

R2 =
∞∑

k=1

E(| W (k)|+ 0.63)E

∫
Xn,k≥t

(|Xn,k|+ |t|)Kk(t)dt

≤ 1.63
∞∑

k=1

E

∫
Xn,k≥t

(|Xn,k|+ |t|)Kk(t)dt. (3.13)

By (3.12) and (3.13), we get

R1 + R2 ≤ 1.63
∞∑

k=1

E

∫ ∞

−∞
(|Xn,k|+ |t|)Kk(t)dt + 4.21β.

Since

∫ ∞

−∞
Kk(t)dt = EX2

n,k and

∫ ∞

−∞
|t|Kk(t)dt =

1

2
E|Xn,k|3, we have

Fn(x)− Φ(x) ≤ 1.63
∞∑

k=1

(E|Xn,k|EX2
n,k +

1

2
E|Xn,k|3) + 4.21β

≤ 1.63
∞∑

k=1

E|Xn,k|3 + 0.815
∞∑

k=1

E|Xn,k|3 + 4.21β

= 2.445
∞∑

k=1

E|Xn,k|3 + 4.21β

≤ 6.655β.
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Similarly, we use (2.12) to get,

Fn(x)− Φ(x) ≥ −6.655β.

Then

|Fn(x)− Φ(x)| ≤ 43.7β ≤ 6.655√
V ar(ZN(n))

.

Case 2 x < 0.

Since P (W ≤ x) = P (
∞⋂

n=1

{W < x +
1

n
}) = lim

n→∞
P (W < x +

1

n
),

P (−W < −x) = P (
∞⋃

n=1

{−W ≤ −x− 1

n
}) = lim

n→∞
P (−W ≤ −x− 1

n
) and

Φ(x) = lim
n→∞

Φ(x +
1

n
), we have

|P (W ≤ x)− Φ(x)| = | lim
n→∞

[P (W < x +
1

n
)− Φ(x +

1

n
)]|

= | lim
n→∞

[{1− Φ(x +
1

n
)} − {1− P (W < x +

1

n
)}]|

= | lim
n→∞

[Φ(−x− 1

n
)− P (W ≥ x +

1

n
)]|

= | lim
n→∞

[Φ(−x− 1

n
)− P (−W ≤ −x− 1

n
)]|

= |Φ(−x)− P (−W < −x)|

≤ |P (−W ≤ −x)− Φ(−x)|

≤ 6.655√
V ar(ZN(n))

(by case 1).

Therefore,

sup
x∈R

|Fn(x)− Φ(x)| ≤ 6.655√
V ar(ZN(n))

.



CHAPTER IV

A NON-UNIFORM BOUND ON

AN INFINITE URN MODEL

In this chapter, we give a non-uniform bound in normal approximation of

ZN(n) − E(ZN(n))√
V ar(ZN(n))

which is stated in Theorem 4.4. To prove Theorem 4.4, we need

the following results.

Throughout this chapter, C stands for an absolute constant with possibly different

values in different places.

Proposition 4.1. (Rosenthal inequality, [7], p.59) Let p ≥ 2 and let X1, X2, . . . , Xn

be independent random variables such that EXi = 0, E|Xi|p < ∞. Then there exists

C(p) such that

E|
n∑

i=1

Xi|p ≤ C(p){
n∑

i=1

E|Xi|p + (
n∑

i=1

EX2
i )

p
2}

where C(p) is a positive constant depending only on p.

In the following, we let

W :=
∞∑

k=1

Xn,k, β :=
∞∑

k=1

E|Xn,k|3 and δa :=
β

(1 + a)3
for a ≥ 0.

By (2.6), we have

W =
ZN(n) − E(ZN(n))√

V ar(ZN(n))
.
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Proposition 4.2. (concentration inequality for non-uniform bound) For any 0 ≤ a <

b < ∞, we have

P (a ≤ W (k) ≤ b) ≤ C{ b− a

(1 + a)3
+ δa}

where C is a positive constant.

Proof. We devide the proof into 2 cases

Case 1 (1 + a)β ≥ 1

64
. (4.1)

By the Rosenthal inequality, we have

E(W (k))4 = E(
∞∑

j=1
j 6=k

Xn,j)
4

=

∫
Ω

lim
m→∞

(
m∑

j=1
j 6=k

Xn,j)
4dP

= lim
m→∞

∫
Ω

(
m∑

j=1
j 6=k

Xn,j)
4dP

= lim
m→∞

E(
m∑

j=1
j 6=k

Xn,j)
4

≤ lim
m→∞

C{
m∑

j=1
j 6=k

E|Xn,j|4 + (
m∑

j=1
j 6=k

EX2
n,j)

2}

= C{
∞∑

j=1
j 6=k

E|Xn,j|4 + (
∞∑

j=1
j 6=k

EX2
n,j)

2} (4.2)

≤ C{
∞∑

j=1
j 6=k

E|Xn,j|4 + 1}. (4.3)

and hence

P (a ≤ W (k) ≤ b) ≤ P (W (k) ≥ a)
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= P (a + 1 ≤ W (k) + 1)

≤ E
|1 + W (k)|4

(1 + a)4

≤ 8 + 8E|W (k)|4

(1 + a)4

≤ 8

(1 + a)4
+

C

(1 + a)4
{
∞∑

j=1
j 6=k

E|Xn,j|4 + 1} (by (4.3))

≤ C

(1 + a)4
+

C

(1 + a)4

1√
V ar(ZN(n))

∞∑
j=1

E|Xn,j|3 (by (2.5))

≤ C

(1 + a)4
+

Cβ

(1 + a)3
√

V ar(ZN(n))

≤ Cβ

(1 + a)3
+

Cβ

(1 + a)3
√

V ar(ZN(n))
(by (4.1))

=
Cβ

(1 + a)3
(4.4)

Case 2 (1 + a)β <
1

64
. (4.5)

Let κ = 16β, f : R → R be defined by

f(x) =



0 for x < a− κ,

(1 + x + κ)3(x− a + κ) for a− κ ≤ x ≤ b + κ,

(1 + x + κ)3(b− a + 2κ) for x > b + κ,

and M : R2 → R be defined by

M(ω, t) = ωI(−ω ≤ t ≤ 0)− ωI(0 < t ≤ −ω).

Note that f is a non-decreasing function satisfying

f ′(x) ≥


(1 + a)3 for a− κ < x < b + κ,

0 otherwise.

(4.6)
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and

κ <
1

4(1 + a)
. (4.7)

E{W (k)f(W (k))}

=
∞∑

j=1
j 6=k

E{
∫ ∞

−∞
f ′(W (k) + t)M(Xn,j, t)dt}

(using the same argument of (3.3))

≥
∞∑

j=1
j 6=k

(1 + a)3E{I(a ≤ W (k) ≤ b)

∫
|t|≤κ

M(Xn,j, t)dt} (by (4.6))

= (1 + a)3E{I(a ≤ W (k) ≤ b)
∞∑

j=1
j 6=k

|Xn,j|min(κ, |Xn,j|)}

= (1 + a)3E{I(a ≤ W (k) ≤ b)
∞∑

j=1
j 6=k

ηj}

≥ 0.5(1 + a)3{P (a ≤ W (k) ≤ b)− P (U ≤ 0.5)} (4.8)

where ηj = |Xn,j|min(κ, |Xn,j|), U =
∞∑

j=1
j 6=k

ηj and we have use the fact that

for a < b, y ≥ 0 and c > 0,

I(a ≤ ω ≤ b)y ≥ c[I(a ≤ ω ≤ b)− (1− y

c
)I(y ≤ c))]

in the last inequality (see [5], p.238). By (3.5) and the fact that

EX2
n,k ≤ (E|Xn,k|3)

2
3 ≤ (

∞∑
k=1

E|Xn,k|3)
2
3 = β

3
2 ≤ 1

16
,

we have

EU = E
∞∑

j=1
j 6=k

|Xn,j|min(κ, |Xn,j|)
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≥ E

∞∑
j=1
j 6=k

(X2
n,j −

|Xn,j|3

4κ
)

= E

∞∑
j=1

X2
n,j − EX2

n,k − E

∞∑
j=1
j 6=k

|Xn,j|3

4κ

≥ 1− 1

16
− β

4κ

> 0.75.

Using the same argument in (4.2),

P (U ≤ 0.5)

≤ P (EU − U ≥ 0.75− 0.5)

≤ E|U − EU |4

(0.25)4

=

E|
∞∑

j=1
j 6=k

{|Xn,j|min(κ, |Xn,j|)− E|Xn,j|min(κ, |Xn,j|)}|4

(0.25)4

≤ C
{ ∞∑

j=1
j 6=k

E{|Xn,j|min(κ, |Xn,j|)− E|Xn,j|min(κ, |Xn,j|)}4

+
( ∞∑

j=1
j 6=k

E{|Xn,j|min(κ, |Xn,j|)− E|Xn,j|min(κ, |Xn,j|)}2
)2

}

≤ C
{ ∞∑

j=1
j 6=k

E{|Xn,j|min(κ, |Xn,j|)}4 +
( ∞∑

j=1
j 6=k

E{|Xn,j|min(κ, |Xn,j|)}2
)2

}

≤ C{κ4

∞∑
j=1

EX4
n,j + κ4}

≤ C{κ4 1√
V ar(ZN(n))

∞∑
j=1

E|Xn,j|3 + κ4} (by (2.5))

≤ Cβ

44(1 + a)4
√

V ar(ZN(n))
+ Cκ3κ (by (4.7))
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≤ Cβ

(1 + a)3
√

V ar(ZN(n))
+

Cβ

(1 + a)3
(by (4.7) and κ = 16β)

=
Cβ

(1 + a)3
.

Combining this with (4.8), we have

P (a ≤ W (k) ≤ b)

≤ P (U ≤ 0.5) +
2E{W (k)f(W (k))}

(1 + a)3

≤ Cβ

(1 + a)3
+

2E{W (k)f(W (k))}
(1 + a)3

≤ C(1 + a)−3{β + (b− a + 2κ)E|W (k)(1 + W (k) + κ)3|}

≤ C(1 + a)−3{β + (b− a + κ)E|W (k)((1 + κ)3 + |W (k)|3)|}

≤ C(1 + a)−3{β + (b− a + κ)E|W (k)(1 + κ)3 + (W (k))4|}

≤ C(1 + a)−3{β + (b− a + κ)(E|W (k)|+ E(W (k))4)}

≤ C(1 + a)−3{β + (b− a + κ)(E|W (k)|+ C(
∞∑

j=1
j 6=k

E|Xn,j|4 + 1))} (by (4.3))

≤ C(1 + a)−3
{

β + (b− a + κ)(E|W (k)|

+ C(
1√

V ar(ZN(n))

∞∑
j=1

E|Xn,j|3 + 1))
}

(by (2.5))

≤ C(1 + a)−3{β + b− a + κ} (by (4.5) and E|W (k)| ≤ 1)

≤ C(1 + a)−3{β + b− a} (κ = 16β). (4.9)

Hence, by (4.4) and (4.9), the concentration inequality is proved.

Proposition 4.3. ([5], p.248, 250) Let g(ω) = (wfx(ω))
′
. Then the followings hold.

1. f
′

x(ω + s)− f
′

x(ω + t) ≤
∫ s

t

g(ω + u)du + I(x−max(s, t) < ω ≤ x−min(s, t)).
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2. For x ≥ 4 and |u| ≤ 1 +
x

4
, we have

E(g(W (k)) + u) ≤ C((1 + x)−3 + xδx
4
),

where fx is given by (2.9).

We are now ready to prove the main result of this chapter.

Theorem 4.4. There exists an absolute constant C such that for every real number

x,

|Fn(x)− Φ(x)| ≤ C

(1 + |x|)3
√

V ar(ZN(n))
.

Moreover, under the additional condition that lim
n→∞

V ar(ZN(n)) = ∞, the bound tends

to zero.

Proof. By the same arguments on Theorem 3.5, it suffice to prove the theorem in case

of x ≥ 0.

Case 1. 0 ≤ x ≤ 4.

Note that (1 + |x|)3 ≤ 125 so 1 ≤ 125

(1 + |x|)3
. By Theorem 3.5,

|Fn(x)− Φ(x)| ≤ 6.655√
V ar(ZN(n))

· 125

(1 + x)3
≤ C

(1 + x)3
√

V ar(ZN(n))
.

Case 2. x ≥ 4.

For ω > 0, we note from [6] on page 23 that

1− Φ(ω) ≤ e−
1
2
ω2

√
2πω

.

Let f : R → R be defined by

f(ω) =
e−

1
2
ω2

√
2πω

(1 + ω)4
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then

f
′
(ω) = − 1√

2πω2
e−

1
2
ω2

(1 + ω)3(ω − 1)(ω2 + 2ω − 1) < 0

for all ω ≥ 4. It follows that for each ω ≥ 4,

e−
1
2
ω2

√
2πω

(1 + ω)4 = f(ω) ≤ f(4) =
156.25e−8

√
2π

and hence

1− Φ(x) ≤ e−
1
2
x2

√
2πx

≤ C

(1 + x)4
.

If (1 + x)β ≥ 1

64
, then, by the same arguments of (4.4), we have

P (W ≥ x) ≤ Cβ

(1 + x)3

which implies

|Fn(x)− Φ(x)| ≤ P (W ≥ x) + 1− Φ(x)

≤ Cβ

(1 + x)3
+

C

(1 + x)4

≤ Cβ

(1 + x)3
+

Cβ

(1 + x)3
(because

1

(1 + x)4
≤ 64β

(1 + x)3
)

≤ C

(1 + x)3
√

V ar(ZN(n))
(by Proposition 2.10(1)).

Assume that

(1 + x)β <
1

64
. (4.10)

By noting that

δx
4

=
(1 + x)3

(1 + x
4
)3

δx ≤ Cδx ≤
C

(1 + |x|)3
√

V ar(ZN(n))
for all x ≥ 4,
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it suffice to show that

|Fn(x)− Φ(x)| ≤ Cδx
4
. (4.11)

Let

Xn,k, x
4

= Xn,kI(|Xn,k| ≤ 1 +
x

4
)

and

Kk, x
4
(t) = E{Xn,k, x

4
[I(0 ≤ t ≤ Xn,k, x

4
)− I(Xn,k, x

4
≤ t < 0)]}

Note that |Xn,k, x
4
| ≤ |Xn,k| and

∫
|t|>1+x

4

Kk, x
4
(t)dt = 0.

Let fx be the unique solution of the Stein’s equation for hx which given by (2.8) and

(2.9). Using the same arguments as for (3.10), we have

Fn(x)− Φ(x)

=
∞∑

k=1

E
{

I(|Xn,k| ≤ 1 +
x

4
)

∫
|t|≤1+x

4

[f ′x(W
(k) + Xn,k)− f ′x(W

(k) + t)]Kk, x
4
(t)dt

}
+

∞∑
k=1

E
{

I(|Xn,k| > 1 +
x

4
)

∫
|t|≤1+x

4

[f ′x(W
(k) + Xn,k)− f ′x(W

(k) + t)]Kk, x
4
(t)dt

}
:= R1 + R2.

Then

|R1|

≤
∞∑

k=1

∣∣∣E{
I(|Xn,k| ≤ 1 +

x

4
)

×
∫
|t|≤1+x

4

[
f

′

x(W
(k) + Xn,k)− f

′

x(W
(k) + t)

]
Kk, x

4
(t)dt

}∣∣∣
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≤
∞∑

k=1

∣∣∣E{
I(|Xn,k| ≤ 1 +

x

4
)

∫
|t|≤1+x

4

[ ∫ Xn,k

t

g(W (k) + u)du

+ I
(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)

]
Kk, x

4
(t)dt

}∣∣∣
(by Proposition 4.3(1))

≤
∞∑

k=1

∣∣∣E{
I(|Xn,k| ≤ 1 +

x

4
)

∫
|t|≤1+x

4

Kk, x
4
(t)

∫ Xn,k

t

g(W (k) + u)dudt
}∣∣∣

+
∞∑

k=1

∣∣∣E{
I(|Xn,k| ≤ 1 +

x

4
)

×
∫
|t|≤1+x

4

Kk, x
4
(t)I

(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)

)
dt

}∣∣∣
≤

∞∑
k=1

∣∣∣E{
I(|Xn,k| ≤ 1 +

x

4
)

∫
|t|≤1+x

4

Kk, x
4
(t)

∫ Xn,k

t

g(W (k) + u)dudt
}∣∣∣

+
∞∑

k=1

E
{

I(|Xn,k| ≤ 1 +
x

4
)

×
∫
|t|≤1+x

4

Kk, x
4
(t)I

(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)

)
dt

}
=

∞∑
k=1

∣∣∣ ∫
|t|≤1+x

4

∫
R

E
{

Kk, x
4
(t)I(t ≤ u ≤ Xn,k)I(|Xn,k| ≤ 1 +

x

4
)g(W (k) + u)

}
dudt

∣∣∣
+

∞∑
k=1

∫
|t|≤1+x

4

E
{

I(|Xn,k| ≤ 1 +
x

4
)

×Kk, x
4
(t)I

(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)

)}
dt

=
∞∑

k=1

∣∣∣ ∫
|t|≤1+x

4

∫
R
EEXn,k

{
Kk, x

4
(t)I(t≤u≤Xn,k)I(|Xn,k|≤1 +

x

4
)g(W (k)+u)

}
dudt

∣∣∣
+

∞∑
k=1

∫
|t|≤1+x

4

EEXn,k

{
I(|Xn,k| ≤ 1 +

x

4
)

×Kk, x
4
(t)I

(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)

)}
dt

=
∞∑

k=1

∣∣∣ ∫
|t|≤1+x

4

∫
R
E

{
Kk, x

4
(t)I(t≤u≤Xn,k)I(|Xn,k|≤1 +

x

4
)EXn,kg(W (k) + u)

}
dudt

∣∣∣
+

∞∑
k=1

∫
|t|≤1+x

4

E
{

I(|Xn,k| ≤ 1 +
x

4
)

×Kk, x
4
(t)EXn,kI

(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)

)}
dt
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=
∞∑

k=1

∣∣∣E{
I(|Xn,k| ≤ 1 +

x

4

∫
|t|≤1+x

4

∫
R

Kk, x
4
(t)I(t ≤ u ≤ Xn,k)Eg(W (k) + u)dudt

}∣∣∣
+

∞∑
k=1

E
{

I(|Xn,k| ≤ 1 +
x

4
)

∫
|t|≤1+x

4

Kk, x
4
(t)

× EXn,kI
(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)

)
dt

}
=

∞∑
k=1

∣∣∣E{
I(|Xn,k| ≤ 1 +

x

4
)

∫
|t|≤1+x

4

Kk, x
4
(t)

∫ Xn,k

t

Eg(W (k) + u)dudt
}∣∣∣

+
∞∑

k=1

E
{

I(|Xn,k| ≤ 1 +
x

4
)

×
∫
|t|≤1+x

4

P
(
x−max(t,Xn,k) ≤ W (k) ≤ x−min(t,Xn,k)|Xn,k

)
Kk, x

4
(t)dt

}
:= R11 + R12. (4.12)

By Proposition 4.3(2), we have

R11

≤ C
∞∑

k=1

∣∣∣E{I(|Xn,k| ≤ 1 +
x

4
)

∫
|t|≤1+x

4

Kk, x
4
(t)

∫ Xn,k

t

((1 + x)−3 + xδx
4
)dudt}

∣∣∣
≤ C((1 + x)−3 + xδx

4
)
∞∑

k=1

∣∣∣E{∫
|t|≤1+x

4

Kk, x
4
(t)

∫ Xn,k

t

dudt}
∣∣∣

≤ C((1 + x)−3 + xδx
4
)
∞∑

k=1

E
∣∣∣ ∫

|t|≤1+x
4

Kk, x
4
(t)(Xn,k − t)dt

∣∣∣
≤ C((1 + x)−3 + xδx

4
)
∞∑

k=1

E

∫
|t|≤1+x

4

Kk, x
4
(t)|Xn,k|+ Kk, x

4
(t)|t|dt

= C((1 + x)−3 + xδx
4
)
{ ∞∑

k=1

E

∫
|t|≤1+x

4

Kk, x
4
(t)|Xn,k|dt

+
∞∑

k=1

E

∫
|t|≤1+x

4

Kk, x
4
(t)|t|dt

}
= C((1 + x)−3 + xδx

4
)
{ ∞∑

k=1

E(|Xn,k|EX
2

n,k, x
4
) +

1

2

∞∑
k=1

E|Xn,k, x
4
|3

}
≤ C((1 + x)−3 + xδx

4
)
{ ∞∑

k=1

E(|Xn,k|EX2
n,k) +

1

2

∞∑
k=1

E|Xn,k|3
}
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≤ C((1 + x)−3 + xδx
4
)
{ ∞∑

k=1

E|Xn,k|3 +
1

2

∞∑
k=1

E|Xn,k|3
}

= C((1 + x)−3 + xδx
4
)
∞∑

k=1

E|Xn,k|3 (4.13)

= C(
β

(1 + x)3
+

xβ2

(1 + x
4
)3

)

≤ C(
β

(1 + x
4
)3

+
xβ2

(1 + x
4
)3

)

≤ C(
β

(1 + x
4
)3

) (by (4.10), we get 1 + xβ <
65

64
)

≤ Cδx
4
. (4.14)

By Proposition 4.2, δx is decreasing in x and the fact that

x−max(t,Xn,k) ≥ x− (1 +
x

4
) for |t| ≤ 1 +

x

4
and |Xn,k| ≤ 1 +

x

4
,

we have

R12

≤
∞∑

k=1

E{
∫
|t|≤1+x

4

P
(
x−max(t,Xn,k) ≤

W (k) ≤ x−min(t,Xn,k)
)
Kk, x

4
(t)dt}

≤ C
∞∑

k=1

E{
∫
|t|≤1+x

4

[δx−max(t,Xn,k)+

(1 + x−max(t,Xn,k))
−3(|t|+ |Xn,k|)]Kk, x

4
(t)dt}

≤ C

∞∑
k=1

E{
∫
|t|≤1+x

4

[δx
4

+ (1 + x)−3(|t|+ |Xn,k|)]Kk, x
4
(t)dt}

= C
{ ∞∑

k=1

E{
∫
|t|≤1+x

4

δx
4
Kk, x

4
(t)dt}

+ (1 + x)−3

∞∑
k=1

E{
∫
|t|≤1+x

4

(|t|+ |Xn,k|))Kk, x
4
(t)dt}

}
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≤ C
{

δx
4

+ (1 + x)−3

∞∑
k=1

E{
∫
|t|≤1+x

4

(|t|+ |Xn,k|))Kk, x
4
(t)dt}

}
≤ C

{
δx

4
+ (1 + x)−3

∞∑
k=1

E|Xn,k|3
}

(using the same argument of (4.13))

≤ Cδx
4

(because δx ≤ δx
4
). (4.15)

Next, by (2.13),

|R2| ≤
∞∑

k=1

E
{

I(|Xn,k| > 1 +
x

4
)

∫
|t|≤1+x

4

Kk, x
4
(t)dt

}
≤

∞∑
k=1

E
{

I(|Xn,k| > 1 +
x

4
)
}

(

∫
|t|≤1+x

4

Kk, x
4
(t)dt ≤ 1)

=
∞∑

k=1

P (I(|Xn,k| > 1 +
x

4
)

≤

∞∑
k=1

E|Xn,k|3

(1 + x
4
)3

= δx
4
. (4.16)

By (4.11), (4.12) and (4.14)-(4.16), we have

|Fn(x)− Φ(x)| ≤ C

(1 + |x|)3
√

V ar(ZN(n))
.





42

VITA

Name : Mr. Soontorn Boonta

Degree : B.Sc. (Mathematics) (2nd Class Degree Honours), 2002,

Khon Kaen University, Thailand.


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	Chapter II Preliminries
	2.1 Random Variables and Distribution functions
	2.2 An Infinite Urn Model
	2.3 Stein’s equation for standard normal distribution function

	Chapter III A Uniform Bound on  An Infinite Urn Model
	Chapter IV A Non-Uniform Bound on An infinite Urn Model
	References
	Vita



