#### REFERENCES

- Arunya Sribusarakum. Chromatographic Determination of Active constitutions of <u>Centella asiatica (Linn.)</u> Urban In Thailand. Master's Thesis, Department of Science(pharmacy), Graduate School, Mahidol University,1997.
- Bettinetti G. et.al., Physical Characturization of Picotamide Monohydrate and Anhydrous Picotamide, J. Pharm. Sci. 88 (November 1999) : 1133 1139.
- Bonte F et al., Comparative activity of asiaticoside and madecassoside on type I and III collagen synthesis by cultured human fibroblasts, <u>Ann Pharm Fr</u>. 53 (1995) : 38 – 42 (abstract).
- Brinkhaus B. et al., Chemical, pharmacological and clinical profile of the East Asian madical plant *Centella asiatica*, <u>Phytomedicine</u> 7(June 2000): 427-448.
- Brittain H.G., Overview of Physical Characturization Methodology, In <u>Physical</u> <u>Characterization of Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1995, 2 – 35.
- Brittain H.G., J. Pharm. Biomed. Anal. 11 (1993) : 1063 Cite in Brittain H.G., Overview of Physical Characturization Methodology, In <u>Physical</u> <u>Characterization of Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1995, 2 – 35.
- Brittain H.G., Method for the characterization of polymorphs and solvate, In <u>Polymorphism of Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1999, 227 – 278.
- Brittain H.G. and Fiese E.F., Effect of Pharmaceutical Processing on Drug Polymophs and Solvates, In <u>Polymorphism of Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1999, 331-362

1

Bryan and Mark, <u>www.sfr.cas.psu.edu</u> (April,2006).

- Bugay D.E. and Williams A.C., Vibrational Spectroscopy, In <u>Physical</u> <u>Characterization of Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1995, 59 – 91.
- Bugay D.E., Magnetic Resonance Spectrometry, In <u>Physical Characterization of</u> <u>Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1995, 93-125.
- Byrn S.et al., Pharmaceutical solids : a strategic approach to regulatory considerations , <u>Pharm. Res.</u> 12 (1995) : 945 954.
- Byrn S.R., Pfeiffer R.R. and Stowell J.G., The X-Ray Powder Diffraction Method, In Solid-State Chemistry of Drugs 2<sup>nd</sup> ed., Indiana : SSCI,Inc.,1999, 59 – 67.
- Byrn S.R., Pfeiffer R.R. and Stowell J.G., Solubility and Dissolution Testing, In Solid-State Chemistry of Drugs 2<sup>nd</sup> ed., Indiana : SSCI, Inc., 1999, 91-101.
- Byrn S.R., Pfeiffer R.R. and Stowell J.G., Drugs as Molecular solids, In <u>Solid-State Chemistry of Drugs</u> 2<sup>nd</sup> ed., Indiana : SSCI,Inc., 1999, 259-301.
- Byrn S.R., Pfeiffer R.R. and Stowell J.G., Reaction Kinetics, In <u>Solid-State Chemistry</u> of Drugs 2<sup>nd</sup> ed., Indiana : SSCI,Inc., 1999, 443 – 460.
- Carstensen J.T., <u>Pharmaceutical preformulation</u>, Pensilvania: Technomic Publishing Company, Inc., 1998, 1 – 10.
- Chikaraishi Y. et al., Preparation of Piretanide Polymorphs and Their Physicochemical Properties and Dissolution Behaviors, <u>Chem. Pharm. Bull.</u> 42 (1994) : 1123 – 1128.

1

- Chikaraishi Y., Otsuka M. and Matsuda Y., Preparation of Amorphous and Polymorph Piretanide and Their Physicochemical Properties and Solubilities, <u>Chem. Pharm. Bull.</u> 44 (1996) : 1614 – 1617.
- Diraj Singh et at., Solid- state characterization of Chlordiazepoxide polymorphs, J. Pharm Sci. 87 (May 1998): 655 – 662.
- Dong Z. et al., Neotame Anhydrate Polymorphs II : Quantitation and Relative Physical stability, <u>Pharm. Res</u>. 19 (2002) : 1259 1264.
- Fiese E.F. and Hagen T.A., Preformulation, In <u>The theory and pactrice of industrial</u> <u>pharmacy</u>, 3<sup>rd</sup> ed., eds. L. Lachman, H.A.Lieberman and J.L.Boylan(PA: Lea & Febiger, 1987), 171 – 196.
- Goto S., Kim N., and Hirakawa Y., Preformulation studies on drugs, In <u>Encyclopedia</u> of pharmaceutical technology, eds. J. Swarbrick and J.C. Boylan NY: Marcel Dekker, 1995, 421 – 442.
- Grant D.J.W., Theory and origin of polymophism, In <u>Polymorphism of</u> <u>Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1999, 1 – 33.
- Griesser U.J., Burger A. and Mereiter K., The Polymorphic Drug substances of the European Pharmacopoeia. Part 9. Physicochemical Properties and Crystal Structure of Acetazolamide Crystal Forms J. Pharm. Sci. 86 (March 1997) : 352 – 358.
- Guillory J.K., Generation of Polymorphs, hydratea, Solvates, and Amorphous Solids, In <u>Polymorphism of Pharmaceutial Solids</u>. ed. Brittain H.G. NY:Marcel Dekker, 1999, 183 – 226.
- Guo Y., Byrn S.R., and Zografi G., Physical Characteristics and Chemical Degradation of Amorphous Quinapril Hydrochloride, <u>J. Pharm. Sci</u>. 89 (January 2000): 128-143.

- Haleblian J. and McCrone W., Pharmaceutical Applications of Polymorphism, J. Pharm. Sci. 58 (August 1969) : 911 – 929.
- Haleblian J.K., Characturization of habits and crystalline modification of solids and their pharmaceutical applications, <u>J. Pharm. Sci.</u> 64 (August 1975) : 1269 1288.
- Hancock B.C. and Zografi G., Characteristics and significance of amorphous state in pharmaceutical system, <u>J. Pharm. Sci.</u> 86 (1997) : 1 12.
- Hartshorne N.H. and Stuart A., <u>Practical Optical Crystallography</u>, (NY: American Elsevier, 1964), 1 46. cited in Haleblian J.K., Characturization of habits and crystalline modification of solids and their pharmaceutical applications, <u>J.</u> <u>Pharm. Sci.</u> 64 (August 1975) : 1269 1288.
- Henwood S.Q. et al., Characterization of the Solubility and Dissolution Properties of Several New Rifampicin Polymorphs, Solvates, and Hydrates, <u>Drug Dev. Ind.</u> <u>Pharm.</u> 27 (2001) : 1017-1030.
- Jozwaiakowski M.J. et al., Solubility Behavior of Lamivudine Crystal Forms in Recrystallization Solvents, J. Pharm. Sci. 85 (February 1996) : 193 199.
- Kimura K., Hirayama F. and Uekama K., Characterization of Tolbutamide Polymorphs(Burger's Forms II and IV)and Polymorphic Transition Behavior, J. Pharm. Sci. 88 (Apirl 1999) : 385 – 390.
- Leung S.S. et al., Solid-state Characterization of Two Polymorphs of Aspartame Hemihydrate, J. Pharm. Sci. 87 (Apirl 1998) : 501- 507.
- Liggins R.T., Hunter W.L. and Burt H.M., Solid-State Characterization of Paclitaxel, J. Pharm. Sci. 86 (December 1997) : 1458 – 1463.

- Lowes M.J. et al., Physicochemical Properties and X-ray Structural Studies of the Trigonal Polymorph of Carbamazepine, <u>J. Pharm. Sci.</u> 76 (September 1987) : 744 – 752.
- McCauley J.A. and Brittain H.G., Thermal Methods of Analysis, In <u>Physical</u> <u>Characterization of Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1995, 224 – 251.
- Moffat A.C., Thin-layer chromatography, In <u>Clarke's isolation and identification of</u> <u>drugs</u> 2<sup>nd</sup> ed. Moffat A.C. London : Pharmaceutical Press, 1986 , 160 – 177.
- Newman A.W. and Brittain H.G., Particle Morphology: Optical and Electron Microscopies, In <u>Physical Characterization of Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1995, 128 – 155.
- Nichols G. and Frampton C.S., Physicochemical Characterization of the Orthorhombic Polymorph of Paracetamol Crystallized from Solution, <u>J.</u> <u>Pharm. Sci.</u> 87 (June 1998) : 684 – 693.
- Oberholtzer E.R. and Brenner G.S., Cefoxitin Sodium: Solution and Solid-State Chemical Stability Studies, J. Pharm. Sci. 68 (July 1979) : 863 – 866.
- Padmaja R. et al., Braine shrimp lethality bioassay of selected Indian medicinal plants, <u>Fitoterapia</u> 73 (2002) : 508 510.
- Pasharin Siriaroonrat, <u>Solid\_state\_characterization\_of N(2-Propylpentanoyl)Urea</u>. Master's Thesis, Department of Pharmaceutical sciences, Graduate School, Chulalongkorn University,2000.
- Phadnis N.V. and Suryanarayanan R., Polymorphism in Anhydrous Theophylline-Implications on the Dissolution Rate of Theophylline Tablets, <u>J. Pharm. Sci.</u> 86 (November 1997): 1256-1263.

2

- Pramongkit K. <u>Active constituents of Centella asiatica (Linn.) Urban In Thailand</u>. Master's Thesis, Department of Science(pharmacy), Graduate School, Mahidol University,1995.
- Qi S, Xie J and Li T, Effects of Asiaticoside on hypertrophic scars in a nude mice model, <u>Zhonghua Shao Shang Za Zhi</u> 16 (Feb 2000) : 53 56 (abstract).
- Rush WR, Nurray GR and Graham DJ., The comparative stready-state bioavailability of the active ingredients of Medecassol, <u>Eur J drug Metab Pharmacokinet</u>. 18(Oct-Dec 1993) : 323 326 (abstract).
- Sang-Sup Jew, Ok-Nam Bae and Jin-Ho Chung, Anti-inflammatory effects of Asiaticoside on inducible Nitric Oxide synthase and Cyclooxygenase-2 in RAW 264.7 cell line, <u>J. Toxicol. Pub. Health</u> 19 (2003) : 33 – 37 (abstract).
- Schinzer W.C. et al., Characterization and Interconversion of Polymorphs of Premafloxacin, a New Quinolone Antibiotic, <u>J. Pharm. Sci.</u> 91 (April 2002) :1426-1431.
- Sherma J., Basic Techniques, Material, and Appratus, In <u>Handbook of Thin-layer</u> <u>Chromatography</u>. Ed. Sherma J. and Fried B. NY : Marcel dekker, inc, 1991, 3 – 37.
- Shim P.J. et al., Asiaticoside mimetics as wound healing agent, <u>Bioorganic &</u> <u>Medicinal Chemistry Letters</u> 6 (1996) : 2937 – 2940.
- Shukla A. et al., In vitro and in vivo wound healing activity activity of asiaticoside isolated form *Centella asiatica*, Journal of ethnopharmacology 65 (1999) : 1-11.

- Sohn Y.T. and Kim S.Y., Effect of Crystal Form on in Vivo Topical Anti-Inflammatory Activity of Corticosteroids, <u>Arch Pharm Res</u>. 25 (2002) : 556-559.
- Sun C. and Grant D.J.W., Influence of Crystal Structure on the Tableting Properties of Sulfamerazine Polymorphs, <u>Pharm. Res</u>. 18 (2001) : 274-280.
- Sun C. and Grant D.J.W., Influence of Crystal Shape on the Tableting Performance of L-Lysine Monohydrochloride Dihydrate, <u>J. Pharm. Sci</u>. 90(May 2001) : 569 – 579.
- Sung T.V. et al., Triterpenoids and their glycosides from the bar of *Schefflera* octophylla, Phytochemistry 31 (1992): 227 231.
- Suryanarayanan R., X-ray powder diffractometry, In <u>Physical Chacterization of</u> <u>Pharmaceutial Solids</u>. ed. Brittain H.G. NY: Marcel Dekker, 1995, 187-222..
- Tros de Iladuya M.C. et al., Polymorphism of Sulindac: Isolation and Characterization of a New Polymorph and Three New Solvates, J. Pharm. Sci. 86 (February 1997) : 248 – 251.
- Zhang G.Z.et al., Crystallization and Transitions of Sulfamerine Polymorphs, J. <u>Pharm. Sci.</u> 91 (April 2002) : 1089 – 1100.
- Zhang G.G.Z. et al., Phase transformation considerations during process development and manufacture of solid oral dosage forms, <u>Advanced Drug Delivery</u> <u>Reviews</u>. 56 (2004) : 371-390.



**APPENDICES** 

#### **APPENDIX** A

#### TLC plate of Asiaticoside and Rf value



Figure 63 TLC plate for identification asiaticoside (From left  $\rightarrow$  right, Plate No.1 asiaticoside, madecassic acid, asiatic acid, recrystallized product from methyl alcohol, recrystallized product from ethyl alcohol, recrystallized product from n-proyl alcohol : Plate No.2 asiaticoside, madecassic acid, asiatic acid, recrystallized product from 1-butyl alcohol, recrystallized product from 2-butyl alcohol : Plate No.3 asiaticoside , madecassic acid , asiatic acid , recrystallized product from 2-butyl alcohol : Plate No.3 asiaticoside , madecassic acid , asiatic acid, recrystallized product from acetone, recrystallized product from methyl alcohol/water and asiaticoside)

The Rf values were calculated from following equation and the data were presented in Table 5

R<sub>f</sub> value = <u>Distance moved by the solute</u> Distance moved by mobile-phase front

| Substance                                     | Distance moved | Distance moved by      | R <sub>f</sub> value |
|-----------------------------------------------|----------------|------------------------|----------------------|
|                                               | by solute(cm)  | mobile phase front(cm) |                      |
| Asiaticoside                                  | 2.9            | 7.0                    | 0.41                 |
| Madecassic acid                               | 5.2            | 7.0                    | 0.74                 |
| Asiatic acid                                  | 5.6            | 7.0                    | 0.80                 |
| product from methyl alcohol                   | 2.9            | 7.0                    | 0.41                 |
| product from ethyl alcohol                    | 2.9            | 7.0                    | 0.41                 |
| product from n-proyl alcohol                  | 2.9            | 7.0                    | 0.41                 |
| product from isopropyl alcohol                | 2.9            | 7.0                    | 0.41                 |
| product from 1-butyl alcohol                  | 2.9            | 7.0                    | 0.41                 |
| product from 2-butyl alcohol                  | 2.9            | 7.0                    | 0.41                 |
| product from acetone                          | 2.8            | 7.0                    | 0.40                 |
| product from methyl alcohol<br>/ acetonitrile | 2.9            | 7.0                    | 0.41                 |
| product from methyl alcohol<br>/ water        | 2.8            | 7.0                    | 0.40                 |

Table 7 The  $R_f$  values of asiaticoside , madecassic acid , asiatic acid, recrystallized asiaticoside from various solvents

## **APPENDIX B**

#### Standard curve of asiaticoside

| Conc.   | Peak area |         | Average | SD        |          |
|---------|-----------|---------|---------|-----------|----------|
| (mg/ml) |           |         |         | Peak area |          |
| 0.2728  | 897336    | 886731  | 888435  | 890834    | 5694.99  |
| 0.5456  | 1777697   | 1777576 | 1771162 | 1775478   | 3738.54  |
| 0.8184  | 2606344   | 2617222 | 2634946 | 2619503   | 14434.77 |
| 1.0912  | 3458048   | 3466018 | 3485206 | 3469757   | 13959.81 |
| 1.3640  | 4363728   | 4345095 | 4330447 | 4346423   | 16680.22 |

Table 8 Concentration and Peak Area data for calibration curve of asiaticoside



Figure 64 Calibration curve of Asiaticoside from HPLC analysis

| - |        |                      |        |               | Average |        |
|---|--------|----------------------|--------|---------------|---------|--------|
|   | Time   | Concentration(mg/ml) |        | Concentration | SD      |        |
|   | (mins) | 1                    | 2      | 3             | (mg/ml) |        |
| - | 5      | 0.4284               | 0.4020 | 0.4196        | 0.4167  | 0.0134 |
|   | 10     | 0.4738               | 0.4237 | 0.4504        | 0.4493  | 0.0251 |
|   | 15     | 0.4861               | 0.4416 | 0.4578        | 0.4619  | 0.0225 |
|   | 20     | 0.4879               | 0.4452 | 0.4567        | 0.4633  | 0.0221 |
|   | 25     | 0.4520               | 0.4457 | 0.4560        | 0.4513  | 0.0051 |
|   | 40     | 0.4576               | 0.4437 | 0.4863        | 0.4625  | 0.0217 |
|   | 60     | 0.4898               | 0.4605 | 0.4651        | 0.4718  | 0.0158 |
|   | 90     | 0.4744               | 0.4668 | 0.4663        | 0.4692  | 0.0045 |
|   | 120    | 0.4700               | 0.4655 | 0.4683        | 0.4679  | 0.0023 |
|   | 180    | 0.4634               | 0.4681 | 0.4662        | 0.4659  | 0.0024 |
|   | 240    | 0.4719               | 0.4638 | 0.4653        | 0.4668  | 0.0045 |
|   | 300    | 0.4766               | 0.4599 | 0.4687        | 0.4684  | 0.0084 |
|   | 360    | 0.4476               | 0.4548 | 0.4608        | 0.4544  | 0.0066 |
|   | 480    | 0.4387               | 0.4430 | 0.4470        | 0.4429  | 0.0042 |
|   | 600    | 0.4374               | 0.4390 | 0.4415        | 0.4393  | 0.0021 |
|   |        |                      |        |               |         |        |

Table 9 Solubility data of Asiaticoside I in water  $37 \pm 2$  °C

| <br>     | <u> </u> | •                   |        | Average       |        |
|----------|----------|---------------------|--------|---------------|--------|
| Time     | Conce    | oncentration(mg/ml) |        | Concentration | SD     |
| (minc)   | 1        | ייים<br>רוב<br>רוב  | 2      | (ming)        | 50     |
| (111115) | 1        | 2                   | 5      | (111115)      |        |
| 5        | 0.5391   | 0.5136              | 0.5348 | 0.5292        | 0.0137 |
| 10       | 0.5862   | 0.5472              | 0.5429 | 0.5588        | 0.0238 |
| 15       | 0.5486   | 0.5535              | 0.5689 | 0.5570        | 0.0106 |
| 20       | 0.5517   | 0.5548              | 0.5738 | 0.5601        | 0.0120 |
| 25       | 0.5531   | 0.5535              | 0.5619 | 0.5561        | 0.0050 |
| 40       | 0.5332   | 0.5486              | 0.5412 | 0.5410        | 0.0077 |
| 60       | 0.5198   | 0.5435              | 0.5563 | 0.5399        | 0.0185 |
| 90       | 0.4924   | 0.5274              | 0.4987 | 0.5062        | 0.0187 |
| 120      | 0.5048   | 0.5151              | 0.4737 | 0.4978        | 0.0215 |
| 180      | 0.4990   | 0.4727              | 0.4902 | 0.4873        | 0.0134 |
| 240      | 0.4774   | 0.4419              | 0.4853 | 0.4682        | 0.0231 |
| 300      | 0.4656   | 0.4804              | 0.4814 | 0.4758        | 0.0088 |
| 360      | 0.4791   | 0.4796              | 0.4634 | 0.4741        | 0.0093 |
| 480      | 0.4507   | 0.4741              | 0.4653 | 0.4634        | 0.0118 |
| 600      | 0.4453   | 0.4582              | 0.4679 | 0.4572        | 0.0113 |
|          |          |                     |        |               |        |

Table 10 Solubility data of asiaticoside II in water  $37 \pm 2$  °C

### **APPENDIX C**

#### Method validation for assay asiaticoside

### Linearity study

Table 11 Concentration and Peak Area data for calibration curve of asiaticoside (between days)

| Conc.   | Av      | SD      |         |          |
|---------|---------|---------|---------|----------|
| (mg/ml) | l day   | 2 days  | 3 days  | -        |
| 0.2728  | 890834  | 878187  | 887462  | 6549.08  |
| 0.5456  | 1775478 | 1762574 | 1812499 | 25915.16 |
| 0.8184  | 2619503 | 2600661 | 2672194 | 37077.24 |
| 1.0912  | 3469757 | 3465614 | 3542449 | 43214.40 |
| 1.3640  | 4346423 | 4317277 | 4407452 | 46017.31 |



Figure 65 Linearity curve of asiaticoside (between day) Equation for 1 day :  $Y = 3 \times 10^{6}X + 38762$ ,  $r^{2} = 0.9999$ Equation for 2 days:  $Y = 3 \times 10^{6}X + 30497$ ,  $r^{2} = 0.9999$ Equation for 3 days:  $Y = 3 \times 10^{6}X + 33432$ ,  $r^{2} = 0.9999$ 

# Precision study

| Injection No. | Peak area |
|---------------|-----------|
| 1             | 3458048   |
| 2             | 3466018   |
| 3             | 3485206   |
| 4             | 3478781   |
| 5             | 3480676   |
| average       | 3473746   |
| %RSD          | 0.33      |

Table 12 Peak area of asiaticoside standard solution concentration 1.0 mg/ml

#### **APPENDIX D**

# XRPD patterns of asiaticoside I and asiatocoside II and Incompatability testing at 18 weeks

This XRPD patterns using Joel X-ray diffractometer (JDX-3530) at 30 mA and 40 kV with CuK $\propto$  radiation. The samples were scanned with the diffraction angle increasing from 5° to 50°, 20, with a step size of 5° and count time of 1 minute.

Sample preparation

The samples were mounts onto the glass slide by vasaline, and then pressed the samples until it was a smooth surface by using other slide.



Figure 66 XRPD pattern of asiaticoside I after stored in 40° C and 62%RH at 18 weeks



Figure 67 XRPD pattern of asiaticoside I after stored in 50° C, 55-65%RH at 18 weeks



Figure 68 XRPD pattern of asiaticoside I after stored in 60° C, 55-65%RH at 18 weeks



Figure 69 XRPD pattern of asiaticoside I after stored in 42%RH , 40°C at 18 weeks



Figure 70 XRPD pattern of asiaticoside I after stored in 75%RH, 40°C at 18 weeks



Figure 71 XRPD pattern of asiaticoside II after stored in 40° C and 62%RH at 18 weeks



Figure 72 XRPD pattern of asiaticoside II after stored in  $50^{\circ}$  C , 55-65%RH at 18 weeks



Figure 73 XRPD pattern of asiaticoside II after stored in 60° C, 55-65%RH at 18 weeks



Figure 74 XRPD pattern of asiaticoside II after stored in 42%RH, 40°C at 18 weeks



Figure 75 XRPD pattern of asiaticoside II after stored in75%RH, 40°C at 18 weeks



Figure 76 XRPD pattern of mixture of asiaticoside I and lactose after stored in 40° C and 75%RH at 18 weeks



Figure 77 XRPD pattern of mixture of asiaticoside I and pregellatinized starch after stored in 40° C and 75%RH at 18 weeks



Figure 78 XRPD pattern of mixture of asiaticoside I and dibasic calcium phosphate after stored in 40° C and 75%RH at 18 weeks



Figure 79 XRPD pattern of mixture of asiaticoside I and talcum after stored in 40° C and 75%RH at 18 weeks



Figure 80 XRPD pattern of mixture of asiaticoside I and magnesium stearate after stored in 40° C and 75%RH at 18 weeks



Figure 81 XRPD pattern of mixture of asiaticoside I and silicon dioxide after stored in 40° C and 75%RH at 18 weeks



Figure 82 XRPD pattern of mixture of asiaticoside II and lactose after stored in 40° C and 75%RH at 18 weeks



Figure 83 XRPD pattern of mixture of asiaticoside II and pregelatinized starch after stored in 40° C and 75%RH at 18 weeks



Figure 84 XRPD pattern of mixture of asiaticoside II and dibasic calcium phosphate after stored in 40° C and 75%RH at 18 weeks



Figure 85 XRPD pattern of mixture of asiaticoside II and talcum after stored in  $40^{\circ}$  C and 75%RH at 18 weeks



Figure 86 XRPD pattern of mixture of asiaticoside II and magnesium stearate after stored in 40° C and 75%RH at 18 weeks



Figure 87 XRPD pattern of mixture of asiatiocoside II and silicon dioxide after stored in 40° C and 75%RH at 18 weeks

# **APPENDIX E**

## Karl Fischer Titration

# Table 13 Titer of Karl Fischer reagent

| Weight of water (g) | Volume of Karl Fischer | Titer (mg/ml) |
|---------------------|------------------------|---------------|
|                     | reagent (ml)           |               |
| 0.0215              | 4.1300                 | 5.206         |
| 0.0211              | 4.0620                 | 5.194         |
| 0.0200              | 4.0000                 | 5.000         |
|                     | average                | 5.133         |
|                     | SD                     | 0.12          |

### **APPENDIX F**



TGA thermogram of asiaticoside I and asiaticoside II

Figure 88 TGA thermogram if asiaticoside I at scanning rate 5°C/min, from 25 - 300°C



Figure 89 TGA thermogram if asiaticoside II at scanning rate 5°C/min, from 25 - 300°C

### **APPENDIX G**

## DSC thermogram of Incompability studies



Figure 90 DSC thermogram of asiaticoside I and spray dried lactose mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 91 DSC thermogram of asiaticoside II and spray dried lactose mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 92 DSC thermogram of asiaticoside I and pregellatinized starch mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 93 DSC thermogram of asiaticoside II and pregelatinized starch mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 94 DSC thermogram of asiaticoside I and dibasic calcium phosphate mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 95 DSC thermogram of asiaticoside II and dibasic calcium phosphate mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 96 DSC thermogram of asiaticoside I and talcum mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 97 DSC thermogram of asiaticoside II and talcum mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 98 DSC thermogram of asiaticoside I and magnesium stearate mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 99 DSC thermogram of asiaticoside II and magnesium stearate mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 100 DSC thermogram of asiaticoside I and silicon dioxide mixture at scanning rate 5°C/min, from 25 - 300°C



Figure 101 DSC thermogram of asiaticoside II and silicon dioxide mixture at scanning rate 5°C/min, from 25 - 300°C

Miss Supawadee surangkul was born in January 26, 1977 in Nakormratchasima, Thailand, She guaduated Bachelor degree of Science in Pharmacy from the Faculty of Pharmaceutical sciences, Khon Kaen University, Thailand in 1999. After graduated, she works in Department of Medical Science, Ministry of Public Health. In 2002, she entred the Master's Degree program in department of Manufacturing pharmacy at Chulalongkorn University.

