ระบบขานวิทยกระ สามารถบานวิทยกระ

CHAPTER II

LITERATURE REVIEWS

In this section, special attention of related papers devoted directly to the effect of silicon to aluminium ratio of Ag-zsm-5 zeolite catalysts on silver cluster formation However, the other points are also mentioned so that all information can contribute and lead to some interesting subjects concerned in this thesis.

J.Texter *et al.*[5] examined Ultraviolet absorption of aqueous solutions of tosylate, sulfate, perchlorate and tetrafluoroborate salt of Ag⁺. The results of Ultraviolet absorption band at 225, 210 and 192 nm are attributed to isolate Ag⁺ ion in the solution.

A.Henglein *et al.* [6] studied Radiolytic reduction of Ag⁺ ions in aqueous solution by γ-rays of a Co source and reduction by sodium borohydride in the presence of polyphosphate. The result of Radiolytic reduction showed that when the time of reduction was below 9 minutes Ag⁺ ion in aqueous solutions were to converted to silver cluster (Ag²⁺₄ absorption band in the reduction was 275 nm) so after Radiolytic reduction time was longer than 9 min. rather suddenly two new bands at 300 and 330 appeared (the band at 330 and 330 nm were assigned to Ag₃ and Ag₅ cluster respectively). After 19 min. a band at 345 nm developed (the band at 345 nm was assigned to Ag₈ cluster)

The formation of silver cluster by Radiolytic was

$$Ag^{+} + eq^{-} \rightarrow Ag^{0} \tag{1}$$

$$Ag^0 + Ag^+ \rightarrow Ag^+_2 \tag{2}$$

5

The Ag⁺₂ ions dimerized

$$2 Ag^{+}_{2} \rightarrow Ag^{2+}_{2} \tag{3}$$

The absorption spectra of these species has also been observed at 360,310,275 nm assigned to Ag^0 , Ag_2^+ and Ag_4^{2+} respectively.

B.G. Ershov *et al.* [7] Examined Long-lived clusters by pulsing Radiolytic reduction of silver ions in AgClO₄ solution which contained 0.1 M 2-proparol. The result showed that the solution contained stronger cluster absorption bands at 295 and 325 nm. when between 1 to 10 pulses were applied. After the absorption of 20 pulses, these bands were no longer present in the spectrum but the plassmon band of larger metallic particles was present. This band was 370 nm. and then after 100 pulses the band at 380 nm appeared, this band was assigned to metallic silver nanoparticle. They reported that a cluster at 325 nm was precursor to the larger particle.

K.A. Bethke and H. Kung [1] studied a lean reduction of NO with C₃H₆ on 2 and 6 wt% Ag/Al₂O₃ catalysts. They reported that high conversions of No were obtained over 2 wt% Ag/Al₂O₃ and conversion of NO to N₂ was much lower than 6 wt% Ag/Al₂O₃. The difference in the behavior of two catalysts was attributed to the much higher Ag dispersion for 2 wt% Ag/Al₂O₃ than 6 wt% Ag/Al₂O₃, and the oxidation states of Ag were different under the reaction conditions. The 2 wt% Ag/Al₂O₃ was believed to contain silver in the +1 oxidation state under the reaction conditions (Ag⁺) while 6wt% Ag/Al₂O₃ catalyst contained Ag⁰ cluster. For the presence of Ag⁰ resulted in a high rate of C₃H₆ combustion while Ag⁺ in 2wt% Al₂O₃ resulted in a high conversions of NO to N₂.

Zhijang Li *et al.* [2] examined the promotion of Ag-ZSM-5 by cerium for selective catalytic reduction (SCR) of NO with methane in the presence of an excess of oxygen. Ce-Ag-ZSM-5 catalysts the CH₄SCR of NOx over the temperature range of 450-600 °c. The result showed that incorporation of a small amount (1-1.5 wt %) of cerium into Ag-ZSM-5 enhanced the activity and selectivity for SCR with CH₄. The UV-Vis result showed that Silver existed mainly as dispersed Ag⁺ ion in a low Ag-

content and conversion of NO to N_2 was much higher than high Ag-content, while nanoparticles of silver of ~ 10 nm size were found on the surface of high Ag-content. The dispersed Ag^+ state was more active for SCR reaction while silver particles more effective catalyzed the methane combustion reaction.

Carla Costa *et al.*[8] examined the relation between activity and acidity in variety of ZSM-5 zeolite catalysts with different Si/Al ratio and different photonic content. The acid strength distribution was estimated using temperature program desorption (TPD) of ammonia by applying a digital deconvolution method to the curve. They reported that the most of catalysts had two main peaks of TPD, which show maximum in desorption rate around 450 and 630 K. As the Si/Al ratio increase the number of acid sites decrease and the area below TPD curve were decrease with increase Si/Al ratio.

Ken-ichi Shimizu *et al.* [9] studied selective catalytic reduction (SCR) of NO by n-hexane and n-octane on Ag/Al₂O₃ at the % loading of Ag was 0.6,2,3,5 wt %. The result showed that below 2 wt% of Ag loading, highly dispersed Ag⁺ ion were predominant Ag species, while at higher Ag loading above 2wt%, Ag_n cluster were predominant. The Ag⁺ ions were responsible for selective reduction for NO to N₂ while Ag_n cluster were responsible for hydrocarbon and N₂0 formation. The UV-Vis results showed that the spectrum of the 5 wt% Ag/Al₂O₃ had a broad shoulder around 280-350 nm was assigned to Ag_n clusters.

N.Bogdanchikova *et al.* [4] examined the role of SiO₂/Al₂O₃ molar ratio in the silver cluster stabilization inside mordenite pore. They reported that SiO₂/Al₂O₃ molar ratio regulated silver cluster stabilization by the mean of change of mordenite acid properties. The high concentration and high strength of Brönsted acid site favor the stabilization of silver in the form of clusters inside the pores. In contrast, a low concentration and low strength of Brönsted acid sites and high concentration of Lewis site inside the channels can hinder stabilization of silver clusters. In this case, large silver nanoparticles on the external surface of zeolite were formed.

N.Bogdanchikova et al. [10] studied the stability and the declining of silver clusters which have the absorption band at 320 and 285 nm in mordenite having different ratio of SiO₂/Al₂O₃ from 10 to 206. They found that the absence of both

band was the important thing which indicated the difference of silver species. The oxidation reaction would make the peak at 320 and 285 nm change to 310 and 240 nm into silver clusters whose the stability would depend on the ratio of SiO₂/Al₂O₃. The least life time of the cluster at 320 and 285 nm about 40 and 20 days respectively.

N.Bogdanchikova *et al.* [11] examined the silver phase on Ag/Al₂O₃ catalyst which affected the oxidizing nitric oxide to nitrogen dioxide by C_3H_6 . From the study , the conversions of NO to NO₂ by 1.2 wt% Ag/Al₂O₃ were lower than on 10wt% Ag/Al₂O₃. from UV-Vis result showed that both of 1.2 wt% and 10 wt% Ag/Al₂O₃ have major peak at 210, 230 and 350 nm, thus the peaks at 210 and 230 nm are attributed to Ag⁺ions , peaks at 290 and 350 nm are tentatively assigned to small Ag_n^{m+} cluster and the absorption at wave lengths > 390 is attributed to metallic silver particle but the signal associated with metallic silver particles in 1.2 wt% Ag/Al₂O₃ was significantly lower than 10 wt% Ag/Al₂O₃. The conversion of NO to No₂ showed that 10 wt% Ag/Al₂O₃ was more active than 1.2 wt% Ag/Al₂O₃.

V.S. Gurin *et al.* [12] reported that the factor affecting a self-assembling of silver and copper clusters during the reduction of ion exchanged forms of zeolite (mordenite, erionite, L, beta clinoptilolite, ZSM11,Y) in hydrogen. A matching of zeolite void can be easily stabilized in the zeolite with certain pore size in the range of 0.63-0.67 nm. Zeolites had void wider than 0.7 nm stabilize these clusters only for a low reduction temperature small pore (cross section area ≤ 0.63 does not stabilize Ag₈ clusters. From the results of UV-Vis showed that, silver-contained mordenite (280.285 and 318.323 nm), erionite (284-293 and 321-322 nm), zeolite beta (290 and splitted peak at 314 and 325 nm), L-zeolite (288-292 and 326 nm) and zeolite Y (single peak at 318-325 nm) can be assigned to Ag₈ clusters.

D.L. Kovalenko *et al.* [13] studied Silver nanoparticles and cluster produced within the conventional so-gel process with tetraethyl orthosilicate hydrolysis by reduced with hydrogen at different temperatures (150,300 and 500 °c). The result of their study concluded that the increase of Ag concentration results in the formation of larger silver nanoparticles and the silver cluster can be produced only at low temperature of processing in hydrogen. At temperatures more than 150 °c the higher

amount silver is incorporated in the porous silica matrix and the larger nanoparticles are formed.

V.S. Gurin *et al.* [14] studied an ion-exchangeable zeolite (mordenite) used to control the formation of nanoparticle and clusters within the solid matrix by the hydrogen reduction of metal ions (Ag⁺, Cu²⁺ and Ni²⁺). The result showed that Sio₂/Al₂O₃ molar ratio (15-206) in mordenite appears to be an efficient tool to manage the reducibility of the metal ions. For Ag-mordenite reduced at 200 °c. Intensity of these maxima and their shape depends strongly on MR value but their position of the short wavelength part is almost the same for different MR. The principal peaks are at 280-285 nm and 318-323 nm. In contrast,, in the range of wavelengths 370-450nm,the broad absorption band appears to be dependent from MR remarkably. The most pronounced maxima in the UV range are inherent to the medium valves of MR. while The long-wavelength path develops more for the lowest and highest MR (15 and 206). These UV maxima were assigned to the silver clusters (Ag₈) and the absorption band at above 370 nm was assigned to silver nanoparticles (with sizes in range 1-5 nm)

Shigeo Satokawa *et al.* [15] studied the effect of H₂ on the selective reduction of NO by light hydrocarbon over Ag/ Al₂O₃ catalyst. The results showed that NO reduction activity at the low temperature region was increased by adding H₂ should act as a promoter of NO reduction by hydrocarbon over Ag/ Al₂O₃. The enhancing effect by H₂ over silver-based catalysts has been explained on the basis of reversible redox behavior between silver cations and silver metal particles in Ag/ Al₂O₃. Therefore, the activity of hydrocarbon oxidation by adding H₂ is speculated to be caused by redox behavior of silver species on alumina surface.

Kazuhito Sato *et al.* [16] examined the addition of small amount of rhodium enhanced the activity of Ag/ Al₂O₃ catalyst for the selective reduction of NO with decane at low temperatures. The Rh-promoted Ag/ Al₂O₃ showed its high performance even in the presence of low concentrations of SO₂. The result of UV-Vis spectroscopy indicated that the silver species were Ag⁺ion (216-238 nm), Ag_n $^{8+}$ (238-272 nm) m Ag_{n1}(275-326 nm), Ag_{n2} (330-385 nm). The major silver species on Rh-promoted Ag/ Al₂O₃ were Ag_n $^{8+}$ clusters which would be responsible for the high

activity of NO reduction while Ag_{n1} , Ag_{n2} would be responsible for decane combustion.

M.A.Ali *et al.* [17] studied about synthesis, characterization and catalytic activity of ZSM-5 zeolite having variable silicon-to-aluminum ratios they prepared ZSM-5 with different Si/Al ratio in the range 15-100 by a rapid crystallization method. They concluded that the acids of catalysts were deceased with increased Si/Al ratio.

Junji Shibata et al. [3] studied about Ag cluster as active species for selective catalytic reduction for NO by propane in the presence of hydrogen over Ag-MFI. SCR activity over Ag-MFI was significantly enhanced by addition of H₂ below 673K. Upon the removal of H₂ from reaction gases, NO reduction activity decreased to the same conversion before the addition of H₂ indicating that the promotion effect of H₂ on NO reduction activity was reversible. The UV-Vis spectroscopy was used to identify the active structure of Ag species during the C₃H₈-SCR. Ag⁺ion (adsorption bands at 210,232 nm) was mainly in the existence during the C₃H₈-SCR in the absence t of H₂ while Ag_n^{δ+} clusters (2≤n≤4) (adsorption bands 260,285 nm), together with Ag⁺ion, were formed in the presence of H₂. NO reduction rate and band intensity due to $Ag_n^{\ \delta^+}$ cluster increased with an increase in H_2 concentration. On the other hand, the formation of metallic Ag_m cluster (3≤m≤5)(adsorption bands 250,312 nm) and Ag metal (350-380nm) increased the contribution of nonselective hydrocarbon combustion. From the results, it is indicated that a moderately agglomerated $\ Ag_n^{\ \delta^+}$ cluster is a high active species for SCR by C₃H₈ in the presence of H₂ and that the role of H₂ is the reduction of Ag⁺ion to Ag_n + cluster. Ag species is markedly influenced by concentrations of gaseous components not only H₂ but also NO and C₃H₈. In addition, the type of Ag species was reversibly changed among $Ag^{\dagger}ion$, $Ag_{n}^{}$ cluster and metallic Ag_m clusters together with Ag metal, depending on the reaction atmosphere which suggests that gaseous component control the balance among Ag species on the catalyst.

Beyer and Jacob [18] reported the reduction of Ag⁺ion to (Ag₂⁺) m by H₂ as follow.

$$H_2 \longrightarrow 2 H$$

$$H + Ag^+ \longrightarrow [Ag^0H^+]$$

$$[Ag^0H^+] + Ag^+ \longrightarrow Ag_2^+ + H^+$$

Ag species in MFI zeolite are balanced as described during SCR by C_3H_8 as follow.

V.S. Gurin *et al.*[19] examined the silver and copper nanostructures within the erionite regular lattice. 14wt%Ag-erionite was reduced with H₂ at the temperature about 100,200,300,400 and 500 °c. The UV-Vis spectroscopy showed that for the reduction temperatures 100-300 °c were presented peaks at 293,322,447 and 683 nm which assigned to Ag₈ cluster. For the reduction temperature 400, 500 °c peaks at 447 and 683 nm were disappeared. The new peak at 380 and 410 nm were developed. They concluded that the silver reduced species associated with the above peaks at 447, 689 nm are transformed to silver nanoparticles between 400 and 500 °c.

Junji Shibata *et al.* [20] studied the structure of active Ag clusters in the Ag zeolites for SCR of NO by propane in the presence of Hydrogen. Ag-MFI (Si/Al 22) and Ag loading about 1.7, 3.0 and 3.5 wt% were used to compare with H₂-TPR. The H₂-TPR result showed that H₂-TPR were two H₂ consumption peak, the first peak appeared at temperature range from 373 to 573 K. The temperature of the second peak was shifted to a lower temperature with an as increase in Ag content. They concluded that All Ag⁺ions(210,235 nm) are reduced to Ag_{2p}^{p+} cluster first peak and the Ag_{2p}^{p+} cluster are reduced to Ag metal particles at the second peak. And then 3.5 wt% Ag-MFI Si/Al 22 were pretreated in 0.5% H₂ at 573 K for 0.5h and treated in 10% O₂ at

for 1 h.The UV-Vis result of this section showed that 3.5 wt% Ag –MFI after a H_2 reduction at 573 K where most of Ag species should be present as the Ag_4^{2+} clusters (peak range 280-345 nm). It was confirmed by Ag K-edge XANES spectra. The amount of the clusters increases with an increase of Ag loading. The conversion of NO to N_2 over Ag-MFI is improved by an addition of 0.5% H_2 . Its result showed that the present of Ag_4^{2+} clusters after adding 0.5% H_2 in the condition of SCR-C₃H₈ are increased the NO conversions. They concluded that the Ag_4^{2+} clusters in Ag-MFI catalysts are responsible for the selective reduction of NO by C_3H_8 .

Junji Shibata *et al.* [21] studied the influence of zeolite support on the activity enhancement by the addition of hydrogen for SCR of NO by propane over Ag-zeolites. The various of Ag containing zeolites (MOR, MFI, BEA and Y) were used to study for SCR- C₃H₈ by the addition of 0.5% H₂ below 673 K. The results showed that NO conversion was increased on Ag-MFI and Ag-BEA while it was not on Ag-MOR and Ag-Y. The C₃H₈-SCR activity was enhanced by the addition of H₂ became large with an increase in Si/Al ratio of MFI. The UV-Vis spectroscopic study exhibited that the state of Ag species differed by zeolite types. From comparison between the C₃H₈-SCR activity and UV-Vis spectra. It was confirmed that Ag_n^{δ+} (2≤n≤4)(adsorption band at 260, 285 nm) is highly active species for the NO reduction independently on zeolite types except Ag-Y. The balance of Ag species that governed the C₃H₈-SCR activity was shifted to more cationic Ag side with an increase of Si/Al ratio and in order of acid strength (MOR.MFI>BEA). It is suggested that oxidative dispersion of agglomerated Ag species by the increase acid amount and acid strength.