CHAPTER IV

RESULTS

4.1 Expression level of alpha glucosidase (AG) in Apis florea

Honeybees from 3 different stages (egg, nurse bee, and forager bee) were sampled. Total RNA was isolated. The quality of total RNA was determined by (1) native agarose gel and (2) formaldehyde gel. The 18 S and 28 S rRNA bands were detected on 1.2% agarose gel (Fig. 4.1 A) while the 28S RNA band was visible on formaldehyde gel (Fig. 4.1 B).

Figure 4.1 Total RNA extracted from heads of A. florea at different stages on native agarose gel (A) and formaldehyde gel (B).
Lane 1 (A): total RNA of egg
Lane 2 (A): total RNA of nurse bee
Lane 3 (A): total RNA of forager bee
Lanes 1-2 (B): total RNA of forager bee

In order to determine the expression level of $A G$ by RT - PCR, 200 ng of RNA sample (egg, nurse bee, and forager bee) were used for 1 reaction. Primers were designed from the $A G$ cDNA sequence of A. mellifera as described in Materials and Methods. The primers for determination of expression are FW1/ R1 primers. Under
the optimum condition of RT-PCR, the expression profile of $A G$ was obtained (Fig. 4.2). The quantity of products was assayed due to intensity of the bands by Quanlity one software (Table 4.1). The result presented that the expression level of $A G$ in three stages (egg, nurse bee, forager bee) was different. There was no amplified product from egg RNA (Fig. 4.2, lanes $1-2$) and small amounts of amplified product from nurse bee RNA (Fig. 4.2, lanes 3-4). The highest amount of amplified products was obtained from forager bees (Fig. 4.2, lanes 5-6).

Figure 4.2 Expression profile of $A G$.
Lane M: $\quad 100 \mathrm{bp}$ ladder marker
Lanes 1-2: amplified products from egg RNA
Lanes 3-4: amplified products from nurse bee RNA
Lanes 5-6: amplified products from forager bee RNA
Lane 7: negative control

Table 4.1 Intensity of amplified product bands from Fig. 4.2.

Stage	Average volume intensity*mm ${ }^{2}$
Eggs	16.082
Nurse bees	386.633
Forager bees	760.589

As control experiments, primers specific to elongation factor gene $(E F)$ in A. cerana and $28 S$ RNA in A. mellifera were designed. Under the optimum condition, the products of $200 \mathrm{bp}(E F)$ and $350 \mathrm{bp}(28 S R N A)$ were obtained from all samples, respectively (Fig. 4.3).

Figure 4.3 Control experiment by using primers from $E F$ and $28 S R N A$ genes. Total RNA for all reactions were from forager bee.

Lane 1: negative control
Lanes 2-3: RT - PCR product by using $E F$ primers
Lanes 4-5: RT - PCR product by using $28 S$ RNA primers
Lane M: 100 bp ladder marker

4.2 The cDNA sequence

Total RNA of forager bee was amplified by 3 pairs of primers for RT - PCR. The sizes of RT - PCR product were 350 bp from FW1/ R1 primers (Fig. 4.4 A), 1,000 bp from FW1/ R2 primers (Fig. 4.4 B), and 850 bp from FW2/ R3 primers (Fig. 4.4 C). Three bands (200, 300, and about 380 bp; Fig. 4.4 D) were obtained from FW3/ R3 primers but only the 200 bp product was excised from the agarose gel, purified, and sequenced (Fig. 4.4 E).

Figure 4.4 RT - PCR product amplified by 3 different pairs of primers.
Lane M (all Figs.): $\quad 100 \mathrm{bp}$ ladder marker
Lanes 1-2 (A): the 350 bp product by FW1/ R1 primers
Lanes 1-2 (B): the 1,000 bp product by FW1/ R2 primers
Lane 1 (C): the 850 bp product by FW2/ R3 primers
Lanes 1 - 2 (D): the 200, 300, and about 380 bp products by FW3/ R3 primers
Lanes 1 - 2 (E): the excised and purified target band (200 bp)

The nucleotide sequences and deduced amino acid sequences of $A G$ were

aligned (Figs. 4.5 and 4.6) by using Clustal W.

AG.Af.nuc
AG. Am. nuc
AG. Dm.nuc
maltase.Cs.nuc

maltase.Am.nuc

ScrA. Le.nuc

AG.Af.nuc

AG.Am.nuc

AG.Dm.nuc
maltase.Cs.nuc
maltase.Am.nuc
Scra.Ls.nuc

AG.Am.nic

AG.Dm.nac
maltase.Cs.nuc
maltase.Am.nuc
ScrA.Ls.nuc

AG.AF. AM
AG.Am.
AG.Dm.
maltase.Cs.nuc
maltase.Am.nuc
ScrA.Ls.nuc

AG.Af.n:c
AG. Am. ${ }^{\text {C }}$
AG.Dm. ${ }^{\text {anc }}$
maltase.Cs.nuc
maltase.Am.nuc
Scra.Ls.nuc

AG.Af. nac
AG.Am. $\mathrm{nac}_{\text {c }}$
AG. Dm. n C
maltase.Cs.nuc
maltase.Am.nuc
Scra.Ls.

AG.AP. nic
AG. Am.nac
AG.Dm.nac
maltase.Cs.nuc
maltase.Am.nuc
ScrA. Le.nuc

AG.Dm.nuc
maltase.Cs.nuc
maltase.Am.nuc
Scra.Le.nuc

Ti CGACTTCTAGTTGGTAGCATGAAGGCGGTAATCGTGTTTTGCCTT-ATGGCATTGTCC 59 TTCGACTTCTAGTTGGTAGCATGAAGGCAGTAATCGTATTTTGCCTT-ATGGCATTGTCC 59 TTGTAGTGAAAATAGCTTTCATTTTGAGTGTGGGCCTAGTAGGCAT--ATTG----GCCC 54 TATAAAAGAAAAATGATTCCATTTAAAAAATTAACAATTTTACTATCAATTGCAT-GTTC 59 -------------------ATGAAGAGCCTCGTCGTGGTCGTACTT-------CTGCTC 33 GTTTAGTTTGGGCTTATCAAACGTTAGGTGCAGTCGGTATGGGGATTTTTGGCCTGGGTT 60

ATT-GTGGACGCAGCATGGAAGCCACTCCCTGAAA--ACTTGAAGGAGGACTTGATCTTS 116 ATT-GTGGACGCAGCATGGAAGCCGCTCCCTGAAA--ACTTGAAGGAGGACTTGATCGTG 116 ATA-AGCACCAGTCAAAGGAGCTGGATGCGAAATATAATTGGTGGCAGCACGAGGTCTTC 113 TGT-ATTGGCAGCACCTGAAGGTGCACGTGAAAAA-GATTGGTGGGAAATTGGAAACTTT 117 GCG-GTCGGCCTTG-GCGCCGGCCAAAACAACAAG-GGTTGGTGGAAGAACGCGATCTTC 90 ATTCAGCAATTGTCTTAACTGGCTTACATCAAAGCTTCCCGGCAATTGAAACGACACTTT 120

TATCAGGTTTACCCGA---GGAGCTTCAAGGATAGCAATGGAGATGGTATTGGTGATAT 172 TATCAGGTCTACCCGA---GAAGCTTCAAGGATAGCAATGGAGATGGTATTGGTGATAT 172 TATCAGATCTATCCGA---GATCCTTTCAGGACAGCAATGGTGATGGTATTGGTGATCT 169 TATCAAGTCTATCCAC———GAAGTTTCATGGATTCTGATGGCGATGGTGTTGGCGATTT 173 TATCAGGTATATCCCC----GCAGTTTCATGGATTCCAATAGTGATGGCATCGGGGATTT 146 TGGCAGATATTGCCAAAACTGGTGGATCGTTTATTTTTCCCGTTGCAGCGATGGCAAATA 180

CATAGGTATTAAAGAAAAATTGGATCAT-TTTCTCGAAATGGGCGTCGACATGTTTTGGT 231 CGAAGGTATTAAAGAAAAATTGGATCAT-TTTCTCGAAATGGGGGTCGACATGTTTTGGT 231 TCAAGGTATTACTTCTAGGCTACAGTAC-TTCAAGGATACGGGCATCACGTCCGTATGGT 228 GAAAGGAATTTCAGAAAAAGTCGGTTAT-TTAAAGGAAATCGGCATGGATGGTGTTTGG: 232 AAAAGGTATTAAGGATAAGCTTTCACAC-TTCATCGAATCTGGAATAACAGCGATATGGT 205 TTGCTCAAGGGGCTGCAACTTTCGCTGTATTCTTCGTTACTAAGAATAAACAACAAAAGT 240

TATCCCCTATTTATCCAAGCCCTATGGTCGATTTTGGTTACGACATTTCCAATTACACC 291 TATCCCCTATTTATCCAAGCCCTATGGTCGATTTTGGTTACGACATTTCGAATTACACCO 291 TGAGTCCCATTTATGAGTCACCAATGGTAGACTTTGGATACGATATATCTAACTATACAA 288 TTTCACCGATTTTTGATTCACCTATGGCAGATTTTGGTTATGACATTTCAAATTTCACCA 292 TATCACCAATTAATCGAAGㄷCCTATGGTAGATTTTGGATACGATATATCTGACTTTAAA 265 CATTAACGACTTCTGCTGGGATTTCTGC-GATGTTGGGAATTACTGAACCAGCATTATTT 299

ACGTTCATCCCATATTTGGCACCATATCAGATTTAGATGACCTAGTCAGTGCTGCACATJ 351 ACGTTCATCCCATATTTGGCACCATATCAGACTTAGATAATCTAGTCAGTGCTGCACATS 351 ATATACAGCCGGAATATGGCACCCTTGAGGACTTTGACGCCTTGATAGCCAAGGCCAAT 3 348 AAGTCTTCCCTCAATTCGGAGACTTGTCTTCAATTGATGAACTTGTAGCGGAATTCAATA 352 ATGTAGATCCAATATTTGG:ACTATAAAAGATCTTGAAGATCTCACTGCAGAAGCGAAGA 325 GGGG. \ATTTAAAATTGAAGTTTC--CATTCTTTATTGGTTTAATTGCATCAGGAATCT 357
rivAAAGGACTGA--AGATAATCTTGGATTTCGTTCCGAATCATACATCTGATCAACACAA 409 AGAAAGGATTGA--AGATAATCTTGGATTTCGTCCCGAATCATACATCTGATCAACACGA 409 AACTGGGCGTGA--AAGTTATTTTGGACTTTGTTCCCAATCACAGCTCAAATAAGCATC工 406 AAAAAGATATGA--AACTCATTCTGGACTTTGTTCCAAATCATACAAGTGACCAATGTGA 410 AACAGAATTTAA--AGGTTATTCTAGATCTTGTCCCTAATCATACTTCTGATCAACATAA 383 CATCGTTTATTATTGGTTTATTACATGTTTTATCAGTATCAATGGGACCTGCAGGAATTA 417 CTGG-TTC--ATAAAGTCAGTAGCCCGA-GAGCCAGG-----------------GTACGAGGA 448 GTGG-TTC--AAAAAATCAATTCAGCGT-GATCCTGA---------------GTACAATGA 452 ATGG-TTCCAAATGAGTATAAATAATACTAATAATAATAATAC--TAATAAATATAAAGA 440 TTGGGTTTATTGCGATTGCACCTAAGAGCATCCCTAGTTTTATGATGGGAGCTATTATTA 477

Figure 4.5 (continued)

AG.Af.nuc
AG. Am.nuc AG. Dm.nuc maltase.Cs.nuc maltase.Am.nuc Scra. Le .nuc

AG.Af.nuc
AG.Am.nuc
AG.Dm.nuc maltase.Cs.nuc maltase.Am.nuc
Scra.Le.nuc

AG. Af.nuc
AG. Am. nuc
AG.Dm. nuc
maltase.Cs.nuc
maltase. Am.nuc
ScrA.Ls.nuc

AG. Af. nuc
AG. Am.nuc
AG.Dm.nuc
maltase.Ce.nuc
maltase.Am.nuc
ScrA.Le.nuc

AG.Af. nuc
AG. Am. nuc
AG.Dm.nuc maltase.Cs.nuc -altase.Am. nuc ScIA.Ls.nuc

AG.Af.nuc
AG.Am.nuc
AG.Dm.nuc
maltase. Cs.nuc
maltase. Am. nuc
Scra.Le.nuc

AG.Af.nuc
AG.Am. nuc
AG.Dm.nuc maltase.Cs.nuc maltase.Am.nuc Scra.Ls.nuc

AG. Af.nuc
AG. Am.nuc
AG.Dm.nuc
maltase. Cs.nuc
maltase.Am.nuc Scra. Ls.nuc

AG.Af.nuc
AG. Am.nuc
AG.Dm.nuo
maltase.Cs.nuc
maltase.Am.nuc ScrA.Le.nuc

CT』TTATATTTGGC---ATCCAGGAAAAAT------TGTAAAT---GGTAAACGTGTTCC 499 CThTTACATTTGGC---ATCCAGGAAAAAT------TGTAAAT---GGCAAACGTGTTCC 499 TT=CTATGTGTGGG---AGGATGGTATTCT---CCTGGAGAAC---GGAACTCGTGTGCC 499 TTACTATATTTGGC---ATCCGGGTAAGCCAAATCCTGATGGT---GGTCGAAATTTACC 506 TTATTACATATGGGTTGATCCTGTCAAAGACGATAAAGGAAATCCAATTAAAGACAAATA 500 GT-TCGTAATTGCCTTTGTGGGGACATACTTATACGGTAAAAAGGCAATGAAGACAACTG 537

ACCAAATAATTGGGTAGGCGTATTTGGTGGATCAGCTTGGTCATGGCGGGAAGAACGACA 559 ACCAACTAATTGGGTAGGCGTGTTTGGTGGATCAGCTTGGTCGTGGCGGGAAGAACGACA 559 GCCCAACAATTGGCTGTCGGTGTTCTCCGGATCCGCTTGGATGTGGAACGATGAGAGGCA 559 CCCAACTAATTGGGTAAGTGCCTTCAGAAGTAGTGCCTGGGAATGGAACGAAGAACGTGG 566 TCCTAATAATTGGCTTAGTGTATTCAATGGTACAGGATGGACTTTCCACGAGGGTAGGAA 560 AAGAAGAAATAATCAATGAAGCACCAGCTACCCCAGA-AGTAGTGGAGAGATTACAAGAT 596

GGCATATTATCTGCACCAATTTGCACCAGAACAACCAGATTTAAATTACTA--TAATCCA 617 GGCATATTATCTGCATCAATTTGCACCAGAACAACCAGATCTAAATTACTA--TAATCCA 617 GCZ-GTACTATCTCAGGCAGTTCACTTATGGACAACCCGATTTGAACTACCG--AAATCCC 617 CGł.ATATTATTTACATCAATTTTTGGCACAACAACCCGATTTGAATTACCG--CAATCCA 624 ACFATTTTATTTCCATCAATTTTATAAGCAACAACCAGACTTGAACTACAG--AAACTCG 618 GA\&AAGATTAGTGCACCAGTTACCGGACGAATTGTTGACTTAGCATCAGTACCTGATCCA 656

GCT---GTACTGGATGAAATGC-AAAACGTTCTTAGATTCTGGTTGAA-GAGAGGACTTG 672
GTI---GTACTGGATGATATGC-AAAATGTTCTCAGATTCTGGCTGAG-AAGGGGATTTG 672
GCC---GTGATTAAGGCCATGG-ATGATGTGATGCTCTTCTGGCTAAA-CAAGGGTATTG 672
AAz.---GTGGTTGAAACAATGA-AAAACGTTTTAAGATTCTGGCTTAG-CAAAGGTATCA 679
GAT---GTGAGAGAAGAGATGA-AGAATATAATGAAATTTTGGTTGGA-TAAAGGAATCG 673 GTI TTTGCAAGTGAAGCAATGGGAAAAGGCATTGCGATTATGCCAACTTCTCAGGATGTA 716

ATC GTTTCAGA-GTAGATGCTCTECCTTAC--ATTTGCGAAGATATGCGAT-TCTTAGAC 728 ATCGTTTCAGA-GTAGATGCTCTGCCTTAC--ATTTGCGAAGACATGCGAT-TCTTAGAC 728 CCC-GCTTCCGC-ATCGATGC--CATTATATATATTTACGAGGATGCTCAAC-TGAGGGAT 728 ATEGATTCAGA-ATTGATGCGGTACCATATTTGTTTGAAGTGGGACCAGATGCGAATGGA 738 ATEGATTCCGC-ATAGATGCTGTACCACATTTATTCGAAAGCGCTAACATATCGTTAGAT 732 CTIGCACCAGTTACCGGTGTGATAACAATTGCGGCTAATACTGGTCACGCA-TACGGGAT 775

* * * ***

GAF CCCCTATCAGG---TGAAACAAATG---ATCCC-AACAA---AACTGAG---TACAC 775 GAF CCTCTATCAGG---TGAAACAAATG---ATCCC-AATAA---AACCGAG---TACAC 775 GACCCTCCGAGTGGCACT---ACCGATG---ATCCA-AATAATGAGGCC------TACTT 775 AATTATCCAGATGAAATTGAAACCCATGCATGCTCA-GATCCTTTATCTCAATGTTACTT 797 GAF.CCACCTTTGGG---TAAAAATCTCA---ACTTA-AGTCTCCACGCT------TCTTT 779 AAFATCGGATGATGGTGCAGAAGTGCTA---ATTCATATTGGTTTAGATACAGTTAATTT 832 *

TCICAAGATCTACACTCACGATAT-CCCAGAAACCTACAATGTAGTT--------------- 821
TCICAAGATCTACACTCACGATAT-CCCAGAAACCTACAATGTAGTT-----------------821
GAECCACATCTATACCAGAAATCA-GCCTGAGGATTACGGTCTACTT-CAGC----ATTG 829
GTF TCACGATTACACTCAAAACAG-GCCTGAAACTTTTGAAATGGTCACGGA----ATGG 852
AAF TCACACTTTAACGAAAGATCA-ACCCGAGACTTACGAATTGGTAAAAGA----AT-G 833
AAFTGGTATAGGTTTTGAAAAGATTGTCCAACAGGGACAACATGTTAGCGAAGGCGATTT 892
--CGCAAATTTAGAGATGTGTTAGACGAATTCCCG-----CAACCAAAACACATGCTTA- 873
--CGCAAATTTAGAGATGTGTTAGACGAATTCCCG-----CAACCAAAACACATGCTTA- 873 GCCGCAACTTCTGGATAATTATACAGCTAACCACGATGGGCCATTGAGGATAATGATGA- 888 AGF GCGACTTTGGAGGAATT-TAAACAAAAGAATGGAGGACCAACAAGAGTTTTAATGG- 910 GCCAGATTTTGTGGACAACTATGCAGAAGAAAATAAGCGGGATGAAATAGTACTTTTGA- 892 ATIAGGTCATTTTGATATTGATAAGATTAAACAAGCCGGGCTAACACCGCTAACAATGAC 952
--TCGAGGCATACACGAA----TTTGTCCATGACGATGAAATATTACGAT----------- 917
--ICGAGGCATACACGAA----TTTATCGATGACGATGAAATATTACGAT------------ 917
--CCGAGGGTTATGCTTC----GGTGTCGCAACTAATGGAATACTATGAA-GATTCGAAT 941
--IAGAAGCTTATGCTCC----ATTAACAAAAGTAATTCAAATTTATGGTCAAAATGGAC 964
--CAGAGGCGTATTCTTC----TTTAGAGAACACTCTCAAATATTACGAA-.........--- 936
TATTGTGACGAATACAGCGGGATATGCACAAGTTGATCCGCTTTTAACAGTCGACAAGGC 1012

Figure 4.5 (continued)
AG．Af．nuc
AG．Am．nuc
AG．Dm．nuc
maltase．Cs．nuc
maltase．Am．nuo
ScrA．Ls．nuc

AG．Af．nuc
AG．Am．nuc
AG．Dm．
maltase．Cs．nuc
maltase．Am．nuc ScrA．Ls ．ruc

AG．Af．nuc
AG．Am．nuc
AG．Dm．nuc
maltase．Cs．nuc maltase．Am．nuc ScrA．Le．ruc

AG．AE．nue
AG．Am．nuc
AG．Dm．nuc
maltsse．Cs．nuc
maltase．Am．nuc ScrA．Ls．muc

AG．Af．nuc
AG．Am．nuc
AG．Dm．nuc
maltase．Cs．nuc maltase．Am．nuc ScrA．Ls．nuc

AG．Af．nuc
AG．Am．nuc
AG．Dm．nuc
maltase．Cs．nuc
maltase．Am．nuc ScrA．Is．muc

AG．AE．nuc
AG．Am．nuc
AG．Dm．nuc
maltase．Cs．nuc
maltase．Am．nuc BcrA．Ls．muc

AG．Af．nuc
AG．Am．nuc
AG．Dm．nuc
maltase．Cs．nuc
maltase．Am．nuc 3crA．Le．muc

AG．Af．nuc
AG．Am．nuc
AG．Dm．nuc
maltase．Cs．nuc
maltase．Am．nuc ScrA．Ls．muc
－－－－－－TACGGAGCAGATTTTCCCTTCAATTTTGCATTCATCAAGA－－ACGTCTCTAG．jA 9E －．．．－－TACGGAGCAGATTTTCCCTTCAATTTTGCATTCATCAAGA－－ATGTTTCTAGデ 9e9 GGTGTACAGGGCCCCCAGTTTCCCTTCAACTTTGACTTCATCACCG－－AACTGAATGCこA 999 AGC－TAAATGGAGCTCA\＆ATTCCATTTAATTTCGAGTTCTTGAATA－－ATTTGGGAGCこG 1®1 －－－－－－GTTGGTTCAAATGTTCCCTTCAATTTTAAATTTATAACAG－－ATGCAAATTCヨT 9ع8 TGC－TATGCAAGGCGAAGAAATTATTCAATTACACGCTAAAAAGGATTAAGGGGTAGTTA 1C7：

$$
\pm
$$

ATTCAAATTCATCAGACTTCAAAA－－－AATTGGTCGATAATTGGATGACGTACATGCCA：1C26 ATTCAAATTCATCAGACTTCAAAA－－－AATTGGTCGATAATTGGATGACGTACATGCCA：1C26 ATTCGACAGCTGCGGACTTTGTCT－－－TCTATATCTCCAGGTGGCTCATCTATATGCCA：1C56 TAAGTAATGCTCGTGATTTCAAAG－－－ACGTAATTGACAATTATCTCAGCACAATCCCA：1C7B CTTCCACGCCAGAACAATTTAAAG－－－TAATTATAGACAATTGGATAAAAGGAACGCCCC 1C45 CATGCAAACTAACTGGTGGCAAAATGCAGTATTTTATCAAGTCTATCCAAGAAGT－TTT： 1 I 30

CAANTGGTATTCCTAACTGGGTGCCCGGAAACCANGACCNATTGAGATNGGTGTCGAGAT 108 CAAGTGGTATTCCTAACTGGGTGCCCGGAAATCACGATCAATTGAGATTGGTGTCGAGAT 1085 ATGGTCATGTGGCCAACTGGGTGATGGGAAATCACGACAATCCTCGAGTGGCATCACGAT 111 AAजGAGCAACACCAAATTGGGTTCAAGGAAATCACGATCAACATCGATCAGCATCACG．2こ 1133 AAAATAATGTTCCAAATTGGGTGATGGGAAACCATGATCGAGTTCGTGTCGGTACACGTT 1105 AAふATAGTAATGGAGATGGAATTGGTGATATTCAAGGTATTATTCAAAGATTAGATTAC＝ 1190

TTFGAGAAGAGAAGGGCCGTATGATCACCACGATGTCGCTTTTGC－－－TGCCAGGTGTTT 1143 TTラGAGAGGAGAAGGCCCGTATGATCACCACGATGTCGCTTTTGC－－－TGCCAGGTGTTS 1143 TCFGTGAGAAATCTGTGGACGCCATGAATATGCTGCTGATGACAT－－－TGCCAGGAAT＝G 1173 TCЗGTCCACAAAAAGCTGATGCAGTTAATATGTTACTTCAAGTTC－－－TTCCCGGAGCmG 1195 ATこCTGGTAGGGCGGATCACATGATAA－－－TGTTGGAGATGATTT－－－TGCCTGGAGTCG 1153 TAラCTGATCTGGGTGTAAATGCAATTTGGCTATCACCAGTTTATCAATCCCCTAATGTMG 1200

＊＊

CCJTGAATTATTACGGTGATGA－－AATTGGTA－－TGTC－－－GGATACTTATATCTCGTGG 1195 CCJTGAATTACTACGGTGATGA－－AATTGGTA－－TGTC－－－GGATACTTATATCTCGTGG 1195 GTATTACTTATAATGGCGAGGA－－GTTGGGCA－－TGACTGACTACAGGGACATCAGCTGG 1ص2 CAラTCACTTATTATGGTGAAGA－－ACTTGCAA－－TG－－－GAAGACGTTTTCGTTCCATGG 1乞̆
 ATAATGGCTATGATATTTCAGATTATCAGGCAATTAATCCGGAATATGGTTCTATGGTGS 1三1つ

G－AGGACACGCAGGATCCACAGGGATGCGGTGCCGGTAAAGAAAACTATCAAACAAT－らT 1で G－AGGATACGCAGGATCCGCAGGGATGCGGCGCCGGTAAAGAAAACTATCAAACGAT－GT 1元： A－3CGATACGGTGGATCAGCCCGCTTGTGAGGCTGGAATCGACAACTACAAGACGAT－こT 12ß T－こTCGTACTGTCGATCCACAAGCATGTACAACAGATCCAAATATTTTCCATGCCAA－6T 1305 G－ATAACACT－ACGATATATAAATATGATGTAC－－－－－GTGATGGTTGTCGTACACC－AT $124 j$ ATATGGAGCAGTTAATTGAAGCGGCGAAGATTCGTAAGATTAAAATTGTTATGGACTTAG 1370

CGAGAGATCCCGCGAG－－－－AACGCCATTCCAATGGGACGACTCACTTTCTGCTGGA＝T 139 CGAGAGATCCCGCGAG－－－－－AACGCCATTCCAATGGGACGACTCAGTTTCTGCTGGA：T 13 CTAGAGATCCTGAGCG－－－－－AACTCCCATGCAATGGAGTAGTGATGTGAATGCAGGATT 1342 CAこGTGATCCCGCAAG－－－－－AACACCCATGATTTGGACTTCACAAAAAAACGCAGGA＝T 1361 TCこAA－－－－－TGGGAT－－－－－AACTCCATTAATGCAGGCTTTAGTAA－AATCGCTGAAMA 1205 TT ITTAATCATACAAGTGACCAACATCCATGGTTTTTAGAAGCACGAAAATCAAAAGATA 1436 ＊＊＊＊＊

TTこC－－－－TCAAGCTCTAATACGTGGCTTCGTGTCAATGAAAATTACAAGAC－－－TGTCA 1352 TTこC－－－－TCAAGCTCTAATACCTGGCTTCGTGTCAACGAAAATTACAAGAC－－－TGTCA 136三 CTこC－－－－TCCGCCGATCGCACTTGGTTGCCTGTCAATCCGAATTATAAGGA－－－ACTMA 1395 TTこA－－－－AGTTCAAATTACACATGGCTTCCAACTGGACCAGATTATCGCAA－－－AAANA 1410 TTTG－－－－CTTGAAAAGAAT－－－TGGCTACCTGTTCATACATCGTACAAAAGTGGACTÄA 1343 ATこCGTATCGTGATTTTTATATTTGGCGAGACCCTGCAACCGATGGTAGTGTTCCGAAG 149

AT～TAGCTGCTGAAA－－AGAAGGACAA－－－GAACTCGTTCTTCAATATGTACAAGAAA M T 147 AT：TAGCTGCTGAAA－－AGAAGGACAA－－－GAACTCGTTCTTCAATATGTTCAAGAAATT 1 147 ATこTTCGGAATCAGC－－AGCAGGCGAG－－－GCGAAGTCATTACAAGATCTATCAGTCCCT 1450 AT ITTGAAGTGCAGC－－GTAGTCAGAG－－－AGGCAGTCACTTGAATATCTTTAAAAAGTT 146 ATTTGGAGCAAGAGA－－AAAAAGATAG－－－TATTTCTCATTATCATCTTTATACCAACm 14J3 ATTTACAAAGTAATTTTAAAGGATCAGCTTGGGCGTTTGATGCGGTTACTGGGCAATA＂：1550 ＊＊＊

Figure 4.5 （continued）

AG. Af.nuc
AG.Am.nuc
AG.Dm.nuc
maltase.Cs.nuc
maltase.Am.nuc ScrA.Ls.nuc
AG.Af.nuc
AG.Am.nuc
AG.Dm.nuc
maltase.Cs.nuc
maltase.Am.nuc
Scra.Ls.nuc

AG.Af.nuc
AG. Am.nuc
AG. Dm. nuc
maltase.Cs.nuc
maltase. An. nuc
Scra.Le. nuc

AG.Af.nuc
AG.Am.nuc
AG. Din. nuc
maltase.Cs.nuc
maltase. An. nuc
Scra.Le.nuc

AG. Af. nuc
AG. Ans. nuc
AG. Dm. nuc
maltase. Cs.nuc
maltase.Am.nuc
scra.ls.nuc

Ag.Af.nuc
AG. Am.nuc
AG.Dm. nuc
maltase.Cs.nuc
maltase. An. nuc
scrA.Le.nuc

AG.Af.nuc
AG.Am.nuc
AG. Din. nuc
maltase.Cs.nuc
maltase.An. nuc
ScrA.Le.nuc

CGCGTTGCT-------GAAAAAATCGCCATATTTTTAAAGAGGCCAATTTAAGTACGAGGA 1470 TGCGTCGCT-------GAAAAATCGCCATACTTTAAAGAGGCCAATTTAAATACGAGGF. 1470 TCTGAAGCT-------CAGACAACTGCCAGTTCTGAAGAACGGATCCTTTGTTCCAGAAG 1503 GACTCAACT-------TCGTAAGCAAGACATTTTGATGTATGGCACTTATGATAGTTACT 1522 GACCGCTTT-------AAGAAAGAGAGATGTGTTGAAAAAAGGAAACTTTACTATAGAAF. 1456 ATTTACATTTTTATGCGAAAGAACAACCGGATTTAAATTGGCAAAATCCTAAAGTTAGAG 1610

TGCTGAACGACAATGTTTTCGCNTTCTCTAGG-GAAACCGAAGACAATGGATCTCTTTAC 1529 TGCTGAACGACAATGTTTTCGCATTCTCTAGG-GAAACCGAAGATAATGGATCTCTTTAC 1529 TGGTTAATCGCAGGGTCTTCGCTTTCAAGCGA-GAACTGAAGAACGAGCACACTCTGCTG 1562 TGGCAAATGATGACGTTTTGGTGATTAAACGT-GAAATTGAGAATAATCGAACTTTTGATI 1581 TTTTAAACAAAACTGTTCTGGCTGTCGTGCGACAAAGCGAAGAAGAAGCGGTATCTCTTT 1516 AAGCTGTCTACCAGATGATGACTTGGTGGCTT-CAAAAAGGGATTGGTGGTTTTAGGATG 1669 **

GTAATAATGAACTTCTCGAA---CGAGGAACAAATCGTGGATTTGAAAGCGTTTG----- 1581
GCAATATTGAACTTCTCGAA---CGAGGAACAAATCGTGGATTTGAAAGCGTTCA----- 1581 ACCATTGTGAACGTGAGCAACCGCACTGAACTGGTTGACATCGCGGACTTTA-------- 1614 GCTGTCCTTAACTTGGGT---TTCACTGAACAAGTCGTCAATTTGAATTTAAATGACCGA 1638
----TGATCAACTTCTCTAAAAATAATACTATCGTGGATATATCAAAGTTGGT------- 1565
GACGTTATTGATTTGATAGG--GAAGGAACCTGACCGCAAAATTAAGGAAAACGGACCGC 1727
----ATC-----ACGTGCCGAAGA-GATTGAATATGTTTTACAACAATTTTAACTC---- 1627
----ATA-----ACGTGCCGAAAA-AATTGAATATGTTTTACAACAATTTTAACTC---- 1627
---TAGA-----ACAGCCCA-ATC-GATTGAGTGTCCTTGTGGCGGGAGTGGACTCGCAA 1664 GATTGGA-----AAGTTCCAGAGA-GAATGGAAGTTGCAACAGCTTCAGTTAACGCAGGA 1692 -----GA-----ACAAAAGAAATA-ATGCTAAAATTTACACAAGCAGCGTAAACTCCAA- 1613 AATTACATGCGTATCTTCAAGAGATGAACGCAAGGGTACTTTCACAGTATGATGTAGTAA 1787
----TGATATAAAATCCATCTCCAACAACGAGAAAATAAA-AGTTCCTGCTTTAAGATTT 1682 ----TGATATAAAGTCCATCTCCAACAATGAACAAGTAAA-AGTTTCTGCTTTAGGATTT 1682 CACCGGGTGGGGGATCGACTTAAGGCCGAGACAATTGAATTGGCGCCCAACGAGGGATTA 1724 ATGTTCGAGAGACAACCCGTTGTGACAAGTGAAGTCTACGTATCAGCTGGCGTTGGAGTT 1752 --TTTGACAGTAAATCAAACTGTAAATCCAGTGGCTATCAATATTCCTGGAGATACATCT 1671 CGGTTGGAGAGACAT-GGGGGGCAACACCCGAAATTGGCCAGATG--TACAGTAATCCTP 1844

NTAATCTTAATCTCTCA--AGATGCTAAATTTGAAAACATTTAATTTCTTCTTGAACATG 1740 TTCATCTTAATTTCTCA--AGATGCTAAATTTGGAAACTTTTAATTTCTTCCTGAATATG 1740
 GTT-CTCGATTATCAAGTAGGGCGTCAAATTCCCGAACCAAGAGGTGACGATCCAGGACT 1811 ATAATTGTAGATTCATC---CACTTCAGGCGCTACTATAGTCAATTATTCAATCATGAT- 1727 ATCGCCACGAACTATCGATGATCTTTCAATTTGAACAAATTAATTTAGATAAACAATCAG 1904 *

TCTATTCTTTGAAGCGGCGA--------------------------1760

ATACGAATAAGAAATATTCC----------------------181
TTTCTTATCCGCAGTGTTCATATCTTTTTTCCAACGG----- 1764
GGATGACTCGCTGGGATTTA\&AACCACTTATTCCAGCAGAGT 1946

Figure 4.5 The multiple alignment of zucleotide sequences of $A G$ in A. florea with other organisms. Common residues are ndicated by asterisks below the sequences.
AG．Af．nuc
AG．Am．nuc
AG．Dm．nuc
maltasa Ca．
maltage Am
Sorals．nu
Clugtal Co

AG．Af．nuc AG．Am．nuc AG．Dm．nuc maltase Cs． maltase Am． ScrA．Ls．nu Clustal Co

AG．Af．nuc AG．Am．nuc AG．Dm．nuc maltase Cs ． maltase Am． ScrA．Ls．nu Clustal Co

AG．Af．nue
AG．Am．nuc
AG．Dm．nuc maltase Cs． maltase Am． ScrA．Ls．nu Cluatal Co

AG．Af．nuc
AG．Am．nuc
AG．Din．nuc maltase Cs． maltase Am． Scra．Ls．nu Clustal Co

－－－MKAVIVF CLMALSIVDA AWKPLPEN－－－－LKEDLILY QVYPRSFKDS NGDGIGDIIG IKEKLDHFLE
 MVVVKIAFIL SVGLVGILAH KHQSKELEAK YNWWQHEVFY QIYPRSFQDS NGDGIGDLQG ITSRLQYFKD MIPFKKLTIL LSIACSVLAA PEGAREKI－－－－WWEIGNFY QVYPRSEMDS DGDGVGDLKG ISEKVGYLKE －－－MKSLVVV VLLLAVGLGA GQN－－NKE－－－－WWKNAIFY QVYPRSEMDS NSDGIGDLKG IKDKLSHFIE －－－－FVPLIP ALTAGGLLMA INNVLTGQG－－－LFGAQSIV QMFP－－－－．－．．．－－－－QWKG FAEIVNMMSS

MGVDMFWLSP IYPSPMVDFG YDISNYTLTH PIFGTISDLD DLVSAAHEKG LKIILDFVPN HTSDQHKWFQ MGVDMFWLSP IYPSPMVDFG YDISNYTCWH PIFGTISDLD NLVSAAHEKG LKIILDFVPN HTSDQHEWFQ TGITSVWLSP IYESPMVDFG YDISNYTNEQ PEYGTLEDFD ALIAKANELG VKVILDFVPN HSSNKHPWFI IGMDGVWLSP IFDSPMADFG YDISNFTKFF PQFGDLSSID ELVAEFNKKD MKLILDFVPN HTSDQCEWFK SGITAIWLSP INRSPMVDFG YDISDEKLTD PIFGTIKDLE DLTAEAKKQN LKVILDLVPN HTSDQHKWFQ APETELP－－－－－－－－－ILIA FSATKRFGUN PYLGAAAGMM LVMPNLVN－G YGVAESIATG HMT－－－YWHV

LSLK－－－－－N VEPYNNYYIW HPG－KIVNGK R－－－VPPNNW VGVFGGSAWS WREERQAYYL HOFAPEOPDI LSLK－－－－－N IEPYNNYYIW HPG－KIVNGK R－－－VPPTNW VGVFGGSAWS WREERQAYYL HQFAPEQPDL KSVA－．－－R EPGYEDFYVW EDGILLENGT R－－－VPPNNW LSVFSGSAWM WNDERQQYYL RQFTYGQPDL KSIQ－－－－－R DPEYNDYYIW HPGKPNPDGG RN－－LPPTNW VSAFRSSAWE WNEERGEYYL HQFLAQQPDL MSINNTNNNN TNKYKDYYIW VDPVKDDKGN PIKDKYPNNW LSVFNGTGWT FHEGRKQFYF HQFYKQQPDL FGLN－－－－IA QAGYQGQVIP VIGVAFILAN LE－－KFEHKH LNDAVDFTET PMLSIIITGF LTFTLVGPAL ．：＊：：

NYYNPAVLDE NQNVLREWLK RGLDGFRVJA LPYICED－－－MRFLDEPL SGETNDPNKT EYTLKIYTHD NYYNPVVLDD MQNVLRFWLR RGFDGFRVIA LPYICED－－－－MRFLDEPL SGETNDPNKT EYTLKIYTHD NYRNPAVIKA MDDVMLFWLN KGIAGFRI－IA IIYIYED－－－－AQLRDEPP SGTTDDPNNE AYLSHIYTRN NYRNPKVVET MKNVLRFWLS KGINGFRIDA VPYLFEVGPD ANGNYPDEIE THACSDPLSQ CYLYHDYTQN NYRNSDVREE NKNIMKFWLD KGIDGFRI工A VPHLFES－－－－ANISLDEPP LGKNLNLSLH ASLNHTLTKD RIVSNGVTDS LVWAYQTLGA VGMGIFGLSY SAIVLTG… ．．．．LHQSFP AIETTLLADI AKTGGSFIFP

IPETYNVVRK FRDVLDEFPQ－－．－PKH＊L IEAYTNLSMT MKYYD－＿．．．YGADFPFNFA FIKNVSRNSN IPETYNVVRK FRDVLDEFPQ－－－－PKHLL IEAYTNLSMT MKYYD－－－－－YGADFPFNFA FIKNVSRDSN QPEDYGLLQH WRQLLDNYTA NHDGPLRI－M TEGYASVSQL MEYYEDSNGV QGPQFPENFD FITELNANST RPETFEMVTE WRATLEEFKQ KNGGPTRV－M VEAYAPLTKV IQIYGQNGQL NGAQIPFNFE FLNNLGAVSN QPETYELVKE WRDFVDNYPE ENKRDEIV－L TEAYSSLENT LKYYE－－－－－VGSNVPFNFK FITDANSSST VAAMANIAQG AATEAVFEVT KN－－－KQQ－S LTTSAGISAM LGITEP－－AL FGVNLKLKFP FFIGLIASGI

AG．Af．nuc
AG．Am．nuc AG．D．n．nc maltase Ca． maltase Am ScrA．Ls．nu Clustal Co

SSDFKKLVDN WMTYMPPXGI PNWVPGNXIX LRXVSRFGEE KGRMITTMSL LLPGVSVNYY GDEIGMSDT－ SSDFKKLVDN WMTYMPPSGI PNWVPGNHこQ LRLVSRFGEE KARMITTMSL LLPGVAVNYY GDEIGMSDT－ AADFVFYISR WLIYMPHGHV ANWVMGNHZN PRVASRFGEK SVDAMNMLLM TLPGIGITYN GEELGMTDYR ARLFKDVIDN YLSTIPEGAT PNWVQGNH＝Q HRSASRLGPQ KADAVNMLLQ VLPGAAVTYY GEELAMEDV－ PEQFKVIIDN WIKGTPQNNV PNWVMGNH二R VRVGTRY－PG RADHMIMLEM ILPGVAVTYY GEEIGMVDN－ SSFIIGLLHV LSVSMGPAGI IGFIAIAP×S IP—————－SFMMGAIISF VIAFVGTYLY GKKAMKTTEE

YISWEDTQDP QGCGAGKENY QTMSRDPA＝T PFQWDDSLSA GFSSSSN－－－－TWLRVNEN YKT－VNLAAE YISWEDTQDP QGCGAGKENY QTMSRDPA＝T PFQWDDSVSA GFSSSSN－－－－－TWLRVNEN YKT－VNLAAE DISWSDTVDQ PACEAGIDNY KTISRDPETT PMQWSSDVNA GFSSADR－－－－－TWLPVNPN YKE－LNLRNQ FVPWSRTVDP QACTTDPNIE HAKSRDPA＝T PMIWTSQKNA GFSSSNY－－－－－TWLPTGPD YRK－NNVEVQ －－－－－－－－－－－－TTY KYDVRDGC־T PFQWDNSINA GFSKIAENLL EKNWLPVHTS YKSGLNLEQE EIINEAPATP EVVERLQDEK ISAPVTG－－R IVDLASVPDP VFASEAMG－－－－KGIAIMPT SQDVLAPVTG
 KKDKNSFFNM YKKFALLKKS PYFKEANLST RMLNDNVFAF SRETEDNGSL YVIMNFSNEE QIVDLKAFDH KKDKNSFENM FKKFASLKKS PYFKEANLITT RMLNDNVFAF SRETEDNGSL YAILNFSNEE QIVDLKAFNN QQARRSHYKI YQSLLKLRQL PVLKNGSFjP EVVNRRVFAF KRELKNEHTL LTIVNVSNRT ELVDIADFIE RSQRGSHLNI FKKLTQLRKQ DILMYGTYJS YLANDDVLVI KREIENNRTL IAVLNLGFTE QVVNLNLNDR KKDSISHYHL YTNLTALRKR DVLKKGNFTI EILNKTVLAV VRQSEEE－AV SLLINFSKNN TIVDISKLVN VITIAANTGH AYGIKSDDGA EVLIHIGL工T VNLNGIGFEK IVQQGQHVSE GDLLGHFDID KIKQAGLTPL
AG．Af．nuc
AG．Am．nuc AG．Dm．nuc maltase Cs． maltase Am ScrA．Ls．nu Cluatal Co
AG．Af．nuc
AG．Am．nuc AG．Dm．nuc maltase Ca． maltase Am ScrA．Ls．nu Cluatal Co $: \quad: \quad: \quad: \quad: \quad: \quad: \quad$ ：$\quad: \quad$ ：


```
AG.Am.nuc
AG.Dm.nuc
```



```
Cluetal Co
```

Figure 4.6 The multiple alignment of amino acid sequences deduced from the cDNA sequences of AG in A. florea with other organisms. Common residues are indicated by asterisks below the sequences.

The cDNA sequence was blasted and aligned with $A G$ in A. mellifera. The result of blast showed 95% identity. Furthermore, the cDNA sequence was multiple aligned with sequences of $A G$ in A. mellifera (D79208), maltase 1 in A. mellifera (XM 393379), AG, α - amylase, and transporter activity in Drosophila melanogaster CG14934-PA (NM 135678), sucrose - specific enzyme II of the PTS (ScrA) and dextran glucosidase (dexB) genes in Lactobacillus sakei (AF401046), and Culicoides sonorensis clone CsMAL1 maltase (AY603565). The similarity between sequences was presented in table 4.2.

Table 4.2 Similarity of the $A G$ sequence in A. florea ($1,739 \mathrm{bp}$) and that in other organisms.

Organisms	Length (bp)	Score
AG in A. mellifera	1,760	95
maltase 1 in A. mellifera	1,764	38
AG in Drosophila melanogaster	1,751	46
ScrA in Lactobacillus sakei	1,946	19
maltase in Culicoides sonorensis	1,831	41

A preliminary phylogenetic tree from deduced amino acid of $A G$ among these organisms was reconstructed using UPGMA and neighbor-joining (NJ) methods as implemented in the program PAUP* version 4.0b (Phylogenetic Analysis Using Parsimony methods*). To investigate support for nodes estimated in the trees, bootstrap analysis was undertaken in PAUP (heuristic search). The bootstrap analysis with 50% deletion was used as indications of branch support for individual clades. The bootstrap values was calculated by using 1,000 replicates. The dexB in Lactobacillus sakei sequence was selected as an outgroup in NJ and bootstrap methods. A phylogenetic tree from UPGMA method (Fig. 4.7) was indicated distance between $A G$ of A. florea among that in other organisms. Furthermore, a phylogenetic tree from NJ method (Fig. 4.8) was represented three major clades. Clade I was comprised of the $A G$ of A. florea and A. mellifera. Clade II was comprised of the $A G$ in Drosophila melanogaster and maltase in Culicoides sonorensis. Clade III was comprised of maltose 1 in A. mellifera.

Figure 4.7 A phylogenetic tree of deduced amino acid sequence $\mathrm{o}^{\square} A G$ in A. florea among other organisms by UPGMA method. A number on each branch indicate differential.

Figure 4.8 A phylogenetic tree of deduced amino acid sequence of $A G$ in A. florea among that in other organisms by NJ method. The upper numbers on each branch indicate the differential between genes. The lower numbers (in bold type) were the full heuristic bootstrap percentages of 1,000 replicates.

4.3 Major protein pattern of crude extract

Protein of head (12 heads) and honey crop (20 honey crops) of forager bet was extracted by buffer insect saline. Crude protein was separated by SDS - PAGE Different bands of major protein (50 kDa from head and 15 kDa from honey crop) were observed as in Figure 4.9.

Figure 4.9 Pattern of major proteins in crude of head and honey crop.
Lane M: broad range protein MW markers
Lanes 1-2: crude protein of head (1 mg protein)
Lanes 3-4: crude protein of head (0.5 mg protein)
Lanes 5-6: crude protein of honey crop (1 mg protein)

4.4 Ammonium sulfate precipitation

Various concentrations of ammonium sulfate (AS) were added into crude protein. Due to Fig. 4.10, the highest specific activity ($1 \mathrm{u} / \mathrm{mg}$) was obtained fron crude without AS precipitation. High specific activity ($0.7 \mathrm{u} / \mathrm{mg}$) was also from precipitation of $80-95 \%$ AS. The lowest specific activity ($0.2 \mathrm{u} / \mathrm{mg}$) was appearei from precipitation in 40-50\% AS. Due to SDS - PAGE, different patterns of prctei. was observed in each lane. Common band of 100 kDa was observed in all lanes (Fig. 4.11).

Figure 4.10 Specific activity of crude precipitation by various concentrations of ammonium sulfate.

Figure 4.11 Protein profile of precipitate from various concentrations of ammonis sulfate (AS). Protein ($20 \mu \mathrm{~g}$) of all precipitates were electrophoresed by SLS polyacrylamide gel and CBB stained.

Lane 1: precipitate by $0 \% \mathrm{AS}$
Lane 2: precipitate by $0-30 \% \mathrm{AS}$
Lane 3: precipitate by $30-40 \%$ AS
Lane 4: precipitate by $40-50 \%$ AS
Lane 5: precipitate by $50-60 \%$ AS
Lane 6: precipitate by $60-70 \%$ AS
Lane 7: precipitate by $70-80 \%$ AS
Lane 8: precipitate by $80-90 \%$ AS
Lane M: broad range protein MW markers

4.5 AG purification

4.5.1 Crude protein with ammonium sulfate precipitation

4.5.1.1 Anion exchange (DEAE - cellulose)

Crude protein with AS precipitation was injected to DEAE - cellubse equilibrated by 30 mM sodium phosphate buffer (pH 6.3). The colunn was developed by a linear gradient of $0-1.0 \mathrm{M} \mathrm{NaCl}$. SDS - PAGE shown in lanes $1-4$ in Figure 4.15 (B). The AG activity was eluted within unbound (fraction\# 6-8) and bound peaks (fraction\# $22-24$) as in Figure 4.12. Positive fractions were pooled and desalted by dialysis with 30 mM sodium phosphate buffer (pH 6.3).

Figure 4.12 AG on DEAE - cellulose. Crude protein, 300 mg ; column, $1.6 \times 13 \mathrm{cmr}$ equilibrium, 30 mM sodium phosphate buffer (pH 6.3); elution, $0-1 \mathrm{M} \mathrm{Na己L}$ flow rate, $60 \mathrm{ml} / \mathrm{h}$; fraction size, $10 \mathrm{ml} ; \longrightarrow$ OD at $280 \mathrm{~nm} ;-0-$, AG activisy: , molarity of NaCl .

4.5.1.2 Gel filtration (Superdex 200)

The dialyzed sample of bound peak from DEAE - cellulose was app ied to a gel filtration column on Superdex 200 equilibrated by 30 mM sodium phasphate buffer containing 100 mM NaCl (Fig. 4.13). Low AG activity (less than 1 Lrl) o bound peak sample (fraction\# 14) was calculated. SDS - PAGE was shown in lane 1 in Figure $4.15(\mathrm{~A})$.

Figure 4.13 AG on a gel filtration (Superdex 200) column. Bound peak sample of DEAE - cellulose, 10 mg protein; column, $1.6 \times 51 \mathrm{~cm}$; equilibrium and elution, 30 mM sodium phosphate buffer containing $100 \mathrm{mM} \mathrm{NaCl}(\mathrm{pH} 6.3)$; flow rate, $3(\mathrm{ml} \mathrm{h}$: fraction size, $10 \mathrm{ml} ;-, \mathrm{OD}$ at $280 \mathrm{~nm} ;-0-$, AG activity.

The dialyzed sample of unbound peak from DEAE - cellulose was applied to a gel filtration column on Superdex 200 with the same condition. High AG activity $(4 \mathrm{u} / \mathrm{ml})$ was obtained as in Figure 4.14. SDS - PAGE was showr in lane 5 in Figu e 4.15 (B).

Figure 4.14 AG on a gel filtration (Superdex 200) column. Unbound peak sample of DEAE - cellulose, 18 mg protein; column, $1.6 \times 38 \mathrm{~cm}$; equilibrium and elution, 30 mM sodium phosphate buffer containing $100 \mathrm{mM} \mathrm{NaCl}(\mathrm{pH} 6.3)$; flow rate, $30 \mathrm{ml} / \mathrm{h}$; fraction size, $10 \mathrm{ml} ; \longrightarrow, O D$ at $280 \mathrm{~nm} ; \multimap$, AG activity.

Fraction (from Superdex 200) containing highest $A-G$ ac-ivity were concentrated and desalted by centrifugal filter (MWCO $10,000 \mathrm{Di}$). The retentive solution was separated by SDS - PAGE as in Figure 4.15. Bands of Af. (55 kDa), Af2 $(52 \mathrm{kDa})$, and Af3 $(73 \mathrm{kDa})$ were excised from the gel for MALDI - TOF MS.

Figure 4.15 CBB staining of SDS - PAGE
Lane 1 (A): concentrated sample ($40 \mu \mathrm{~g}$) from fraction\# 14 of Supendex 200 (from bound DEAE cellulose) (Fig. 4.13)
Lane 1 (B): unbound sample (3 mg from DEAE cellulose (fraction 6) (Fig. 4.12)
Lane 2 (B): unbound sample (3 mg ; from DEAE cellulose (fraction $\#$ 7) (Fig. 4.12)
Lane 3 (B): unbound sample (3 mg) from DEAE cellulose (fraction $\#$ 8) (Fig. 4.12)
Lane 4 (B): pooled unbound sample (3 mg) from DEAE cellulose before Superdex 200
Lane 5 (B): highest activity fraction (0.3 mg) from Superdex 200 (feaction\# 12) from unbound DEAE cellulose) (Fig. 4.14)
Lane 6 (B): concentrated sample (3.6 mg) from lane 5
Lane M1: broad range protein MW marker
Lane M2: low molecular weight marker

4.5.1.3 Gel filtration (Sephadex G-150)

The dialyzed unbound peak sample (Fig. 4.12) was chromatographed on a Sephadex G - 150 column equilibrated by 30 mM sodium phosphate buffer containing 100 mM NaCl . Due to Figure 4.16, activity was found in fraction\# $40-46$. The highest fraction contails activity $3.7 \mathrm{w} / \mathrm{ml}$. Protein in fractions containing activity was separated by SDS - PAGE to determine the purity of purification (Fig. 4.17). Only one band (50 kDa) was visible.

(1)

Figure 4.16 AG on a gel filtration (Sephadex G-150) column. Unbound peak sample of DEAE - cellulose, 10 mg prctein; column, $1.5 \times 87 \mathrm{~cm}$; equilibrium and elution, 30 mM sodium phosphate buffer containing $100 \mathrm{M} \mathrm{NaCl}(\mathrm{pH} 6.3)$; flow rate, $15 \mathrm{ml} / \mathrm{h}$; fraction size, 3 ml ; - , protein concentration (Bradford's assay); \rightarrow, AG activity.

Figure 4.17 SDS - PAGE of high activity fractions from Sephadex G-150. Lanes $1-7$ contained fraction\# $40-46(100-\mathrm{g})$, respectively.

4.5.1.4 Cation exchange (CM - cellulose)

Due to the chromatograptry on DEAE - cellulose, the protein was not bound on the column. The unbound sample (Fig. 4.13) was dialyzed by 100 mM sodium acetate buffer (pH 5.8) ard 20 mM sodium acetate $(\mathrm{pH} 4.7$; overnight, respectively. The dialyzed sample was chromatographed on a CM - celluiose columa equilibrated by 20 mM sodium acetate buffer and eluted by $0-1 \mathrm{M} \mathrm{NaCl}$. Almost same activity was found in all fractions although protein was eluted from the column (Fig. 4.18). In each fraction, the anownt of protein was low (less than 100 mAu by OD 280).

Figure 4.18 AG on CM - cellulose. Unbound peak sample of DEAE - cellulose, 100 mg protein; column, $1.6 \times 13 \mathrm{~cm}$, equilibrium, 20 mM sodium ace ate buffer (pH 4.7); elution, $0-1 \mathrm{M} \mathrm{NaCl}$; flow rate, $60 \mathrm{ml} / \mathrm{h}$; fraction size, 10 ml ;
\simeq OD at $280 \mathrm{~nm} ;-\mathrm{O}$, AG activity; , molarity of NaC

Furthermore, crude protein was injected onto CM - cellulcse equilibrated by 20 mM sodium acetate buffer (pH 4.7). The column was developed by a linear gradient of $0-1 \mathrm{M} \mathrm{NaCl}$. The AG activity was eluted at second unbcunc peak (Fig. 4.19). The obtained activity was low (less than 1 u).

Figure 4.19 AG on CM - cellulose. Crude protein, 300 mg ; column, $1.6 \times 13 \mathrm{~cm}$; equilibrium, 20 mM sodium acetate buffer (pH 4.7); elution, $0-1 \mathrm{M} \mathrm{NaCl}$; flow rate, $60 \mathrm{ml} / \mathrm{h}$; fraction size, $10 \mathrm{ml} ;-$ OD at $280 \mathrm{~nm} ;-\mathrm{O}$, AG activity; , molarity of NaCl .

4.5.2 Crude protein without ammonium sulfate precipitation

4.5.2.1 Anion exchange (DEAE - cellulose)

In order to avoid the loss of AG activity before chromatography (data from Fig. 4.10), crude protein without being precipitated with ammonium sulfate was applied directly on a DEAE - cellulose under the same condition. The high protein was obtained in unbound (fraction\#2-7) and bound (fraction\# 28 - 32) peaks. High AG activity was assayed from the unbound peak. SDS - PAGE was shown in lanes 3 - 4 in Figure 4.21.

Figure 4.20 Unprecipitated AG on DEAE - cellulose. Crude protein without precipitation with ammonium persulfate, 250 mg ; column, $1.6 \times 13 \mathrm{~cm}$; equilibrium, 30 mM sodium phosphate buffer (pH 6.3); elution, $0-1 \mathrm{M} \mathrm{NaCl}$; flow rate, $60 \mathrm{ml} / \mathrm{h}$; fraction size, $10 \mathrm{ml} ;-$, OD at $280 \mathrm{~nm} ;-0-$, AG activity;
......... , molarity of NaCl .

From all procedures of AG purification, it can be summarized in Table 4.3. Specific activity of AS precipitate was lower than crude. Specific activity after DEAE - cellulose was the lowest but it was not greatly different from AJ precipitate. AG activity in both bound and unbound peaks from DEAE - cellulose was assayed. The bound peak was separated on Superdex 200 while the unbounc peak was separated on Superdex 200, Sephadex G - 150, and CM - cellulose. After second times of purification by gel filtration, specific activity was higher.

Table 4.3 Summary of purification procedures of AG.

Procedure	Total protein $(\mathbf{m g})$	Total activity (\mathbf{u})	Specific activity $(\mathbf{u} / \mathbf{m g})$	Yield $\mathbf{(\%)}$	Purification fold
Crude	4,065	$1,228.5$	0.302	100	1
Ammonium sulfate (95\% saturation)	1,075	195.2	0.182	15.89	0.603
DEAE - cellulose					
- 95\% AS					

Protein in fractions containing highest AG activity of DEAE - cellulose and Sephadex G-150 was separated by SDS - PAGE and CBB stain (Fig. 4.21 A). A major band of 100 kDa and minor bands of 35 and 50 kDa were observed in lane 1 but a major band $(35 \mathrm{kDa})$ and a minor band $(50 \mathrm{kDa})$ were observed in lane 3. This may indicate that AS precipitation affects high MW protein.

Protein was denatured and renatured. Many bands of protein were observed on SDS polyacrylamide gel (Fig. 4.21 A) but only one positive band was visible in lanes $2-3$ of activity gel (Fig. 4.21 B). No AG activity at all in lanes 1 and 4 (Fig. 4.21 B) although lots of protein were detected in Figure 4.21 A .

Figure 4.21 CBB staining (A) and activity staining (B) of fractions containing highest activity from DEAE - cellulose and Sephadex G-150.

Lane 1: unbound fraction with $\mathrm{AS}(3 \mathrm{mg})$ on DEAE (Fig. 4.12)
Lane 2: unbound fraction (1 mg) on Sephadex G-150 (Fig. 4.16)
Lane 3: unbound fraction without AS 11 mg) on DEAE (Fig. 4.20)
Lane 4: bound fraction without AS (1 mg) on DEAE (Fig. 4.20)
Lane M: broad range protein MW marker

Three bands on SDS polyacrytamide gel (Fig. 4.15) wert excised. Arrows indicate locations of 3 bands, Af1, Af2. and Af3. Due to the R_{f} value and \log MWiof protein marker, MW of Af1, Af2, and Af3 were calculared to be 55,52 , and 73 kDe , respectively (Fig. 4.23). The bands of Af1 and Af2 were selected because they were always found from any chromatographr. The Af3 band was excised because its MW (about 73 kDa) was highest MW in SDS - PAGE. The MW of positive band was 93 kDa (Figs. 4.21 and 4.22). Molecular weight of purified AGI, AGII, and AGIII in A. miellifera were 98, 76, 68 kDa , respectively (Takewaki et al., 19 m 0 and Nishimoto et. al., 2001). Those bands were later digested by trypsim and analysed for peptide by ivaldi - TOF MS at Bioscivice unit, Thacilaiins.

Figure 4.22 Relationship between R_{f} value and \log MW of troad range protein MW marker. MW of AG from Fig. 4.21 was estimated.

Figure 4.23 Relationship between R_{f} value and \log MW of low MW marker. MW of Af1, Af2, and Af3 from Fig. 4.15 was calculated. The -MW standard marker contains phosphorylase $\mathrm{b}(97 \mathrm{kDa}$), buvine seram albumir (66 kDz), ovalbumin (45 kDa), carbonic anhydrase (30 kDc), trypsin inhibitor (${ }^{2} 0.1 \mathrm{kDa}$) anc alpha lactalbumin (14.4 kDa).

4.6 MALDI - TOF peptide mass mapping

Whole body of honeybee was partial purified by 1) various chromatographies; anion exchange (DEAE cellulose), gel permeation (Superdex 200) and 2) by ultrafiltration with centrifugal filter MWCO $10,000 \mathrm{Da}$. Ther, the obtained protein was separated by SDS - PAGE. The protein complement of partiel purified AG was sequenced for peptide by matrix assisted laser desorption ionization/time of flight (MALDI - TOF) mass spectrometer.

The peptide mass was searched in SwissProt database in Mascot program (www.matrixscience.com). Peptide matching for sample mass spectra was based on an accuracy of $\pm 1 \mathrm{Da}$. The MALDI - TOF mass spectrum of Af3 showed six peptide masses, $1163.543 \mathrm{~m} / \mathrm{z}, 1313.55 \mathrm{~m} / \mathrm{z}, 1719.779 \mathrm{~m} / \mathrm{z}, 1,756.725 \mathrm{~m} / \mathrm{z}, 1977.753 \mathrm{~m} / \mathrm{z}$, and $2111.86 \mathrm{~m} / \mathrm{z},[\mathrm{M}+\mathrm{H}]^{+}$which were matched to those of AG in A. mellifera (Q17058). The score is 70 which is accepted to be significant ($\mathrm{p}<0.05$) since it is greater than 67. According to Figure 4.24, the matched peptide is 12% coverage with AG in A. mellifera (based on the M_{r} of 65.5 kDa).

```
            MKAVIVFCLM ALSIVDAAWK PLPENLKEDL IVYQVYPRSE RDSNGDGIGD 50
    5 1 \text { IEGIKEKLDH FLEMGVDMFW LSPIYPSPMV DFGYDISNYT DVHPIFGmIS 100}
101 DLDNLVSAAH EKGLKIILDF VPNHTSDQHE WFQLSLKNIE PYNNYYIWHP 150
151 GKIVNGKRVP PTNWVGVFGG SAWSWREERQ AYYLHQFAPE QPDLNYYNPV 200
2 0 1 ~ V L D D M Q N V L R ~ F W L R R G F D G F ~ R V D A L P Y I C E ~ D M R F L D E P L S ~ G E T N D P N E T E ~ 2 5 0 ~
2 5 1 ~ Y T L K I Y T H D I ~ P E T Y N V V R K F ~ R D V L D E F P Q P ~ K H M L I E A Y T N ~ L S M T M K Y I D Y ~ 3 0 0 ~
3 0 1 ~ G A D E P F N E A F ~ I K N V S R D S N S ~ S D F K K L V D N W ~ M T Y M P P S G I P ~ N W V P G N H D Q L ~ 3 5 0 ~
3 5 1 ~ R L V S R F G E E K ~ A R M I T T M S L L ~ L P G V A V N Y Y G ~ D E I G M S D T Y I ~ S W E D T Q D P Q G ~ 4 0 0 ~
401 C\subseteqAGKENYQT MSRDPARTPF QWDDSVSAGE SSSSNTWLRV NENYKTVELA 450
451 AEKKDKNSFF NMFKKFASLK KSPYFKEANL NTRMTNDNVF AFSRETELNG 500
5 0 1 ~ S L Y A I L N F S N ~ E E Q I V D L K A F ~ N N V P K K L N M F ~ Y N N F N S D I K S ~ I S N N E Q V F V S ~ 5 5 0 ~
551 ALGFFILISQ DAKFGNF
```

Figure 4.24 The amino acid sequence of AG in A. mellifera (Q17958). Matched peptides are shown in bold letter.

4.7 Comparison of amino acid sequence between deduced amino acid sequence from cDNA and amino acid from MALDI - TOF MS

Comparing amino acid sequence between deduced amino acid sequence from cDNA and from MALDI - TOF MS, most of residues of amino acid are the same except one residue at the position of 32. It is Leucine (L) in deduced amino acid sequence from cDNA but it is Valine (V) from MALDI - TOF MS. However the 2 amino acids have close MW. MW of Valine is 117 Da while Leucine is 131 Da .

```
1 MKAVIVFCLM ALSIVDAAWK PLPENLKEDL ILYQVYPRSF KDSNGDGIGD 50
            EDL IVYQVYPRSE K
    1 \text { IEGIKEKLDH FLEMGVDMEW LSPIYPSPMV DFGYDISNYT DVHPIFGTIS 100}
101 DLDNLVSAAH EKGLKIILDF VPNHTSDQHE WFQLSLKNIE PYNNYYIWHP 150
151 GKIVNGKRVP PTNWVGVFGG SAWSWREERQ AYYLHQFAPE QPDLNYYNPV 200
201 VLDDMQNVLR FWLRRGFDGF RVDALPYICE DMRFLDEPLS GETNDPNKTE 250
251 YTLKIYTHDI PETYNVVRKF RDVLDEFPQP KHMLIEAYTN LSMTMKYYDY 300
    IYTHDI PETYNVVR IYDY
    GADFPENFAF IKNVSRDSNS SDFKKLVDNW MTYMPPSGIP NWVPGNHDQL }35
    GADFPFNEAF IK
351 RLVSRFGEEK ARMITTMSLL/LPGVAVNYYG DEIGMSDTYI SWEDTQDPQG }400\mathrm{ mmod
4 0 1 ~ C G A G K E N Y Q T ~ M S R D P A R T P F ~ Q W D D S V S A G F ~ S S S S N T W L R V ~ N E N Y K T V N L A ~ 4 5 0 ~
451 AEKKDKNSFF NMFKKFASLK KSPYFKEANL NTRMLNDNVF AFSRETEDNG 500
    NSFF NMFKK
    EANL NTRMLNDNVF AFSR
5 0 1 ~ S L Y A I L N F S N ~ E E Q I V D L K A F ~ N N V P K K L N M F ~ Y N N F N S D I K S ~ I S N N E Q V K V S ~ 5 5 0 ~
5 5 1 ~ A L G F F I L I S Q ~ D A K F G N F
```

Figure 4.25 Comparison of amino acid sequences between deduced amino acid sequence from cDNA (upper line) and amino acid sequence from MALDI - TOF MS (lower line). The different amino acid was showed by underline letter.

4.8 Two - dimensional electrophoresis

Crude protein precipitated by 95% ammonium sulfate was desalted and separated on $2-\mathrm{D}$ electrophoresis. Most MW of protein was low in the range of $14.4-45 \mathrm{kDa}$ as in Figure 4.26. The distinguished spots were detected in range of $\mathrm{pH} 3-8.5$. Owing to result of MALDI - TOF, MW of AG is about 73 kDa . Affirmatively, the assumed AG protein is marked in circle with the expected MW of about 73 kDa at pH 5.5 .

Figure 4.26. Two - D electrophoresis of crude protein (2 mg). Lane M containod low MW marker.

4.9 Optimum conditions for AG

A fraction containing activity peak from Superdex 200 (Fig. 4.14) was selected to study optimum conditions for AG activity. The optimum parameters (pH, temperature, selective concentration of substrate, and incubation time) were measurod as mentioned in Materials and Methods. Three replications were performed. The average value was calculated and used to plot a graph.

The obtained optimum pH of partial purified AG was 5 (Fig. 4.27). The optimum temperature was $55^{\circ} \mathrm{C}$ (Fig. 4.28). The selective concentration of substrate was 80 mM (Fig. 4.29) and the optimum incubation time was 40 min (Fig. 4.30).

4.9.1 Optimum pH

Figure 4.27 The optimum pH of partial purified AG in A. florea. Briton - Robinson buffer at various pHs ranging between $3.0-7.5$ was used. The optimum pH was 5.0.

4.9.2 Optimum temperature

Figure 4.28 The optimum temperature of partial purified AG of A. florea. The reaction mixture in acetate buffer (pH 5.0) containing 0.1 M sucrose was incubated at various temperatures ranging among $25,30,35,40,45,50,55,60,65,70$, and $80^{\circ} \mathrm{C}$ for 10 min . The optimum temperature was $55^{\circ} \mathrm{C}$.

4.9.3 Selective concentration of substrate for partial purified AG

Figure 4.29 The optimun sucrose concentration of partial purified AG in 4. florea. The reaction mixture was incubated with sucrose at various concentrations of 10,20 , $30,40,50,60,70,80,90$, and 100 mM , respectively. The optimum concertration of sucrose was 80 mM .

4.9.4 Optimum incubation time of partial purified AG

Figure 4.30 The optimun incubation time of partial purified AG in A. florea. The reaction mixture was incubated at $55^{\circ} \mathrm{C}$ for $10,20,30,40,60$, and 90 min , respectively. The optimum incubation time was 40 min .

