ผลของชนิดของไอออนลบและสารลดแรงตึงผิวร่วมต่อการสังเคราะห์อนุภาค ซิงค์ซัลไฟด์ขนาดนาโนเมตรในไมโครอิมัลชัน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-17-5093-5 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

I 22207144

EFFECTS OF TYPES OF ANIONS AND COSURFACTANTS ON ZnS NANOPARTICLES SYNTHESIS IN MICROEMULSION

Mr. Amornsak Chanagul

0.0

A Thesis Submitted in partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2005 ISBN 974-17-5093-5

Thesis Title	EFFECTS OF TYPES OF ANIONS AND
	COSURFACTANTS ON ZnS NANOPARTICLE
	SYNTHESIS IN MICROEMULSION
Ву	Mr. Amornsak Chanagul
Field of study	Chemical Engineering
Thesis Advisor	Associate Professor Tawatchai Charinpanitkul, D.Eng.
Thesis Co-advisor	Professor Wiwut Tanthapanichakoon, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

avonxu.......Dean of the Faculty of Engineering

(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

SnATh: / HChairman

(Associate Professor Suttichai Assabumrungrat, Ph.D.)

Character Thesis Advisor

(Associate Professor Tawatchai Charinpanitkul, D.Eng.)

Renorg Prehand Member

(Assistant Professor Seeroong Prichanont, Ph.D.)

Member

(Varong Pavarajarn, Ph.D)

⁽Professor Wiwut Tanthapanichakoon, Ph.D.)

อมรศักดิ์ ชนะกุล : ผลของชนิดของไอออนลบและสารลดแรงตึงผิวร่วมต่อการสังเคราะห์ อนุภาค ซิงค์ซัลไฟด์ขนาดนาโนเมตรในไมโครอิมัลชัน (EFFECTS OF TYPES OF ANIONS AND COSURFACTANTS ON ZnS NANOPARTICLE SYNTHESIS IN MICROEMULSION), อ. ที่ปรึกษา: รศ.คร. ธวัชชัย ชรินพาณิชกุล, อ.ที่ปรึกษาร่วม: ศ.คร. วิวัฒน์ ตัณฑะพานิชกุล, ISBN:974-17-5093-5

ปัจจุบันการสังเคราะห์อนุภาคของสารกึ่งตัวนำในหมู่ II-VI ระดับนาโนเมตรได้รับความนิยมกัน อย่างแพร่หลายเนื่องจากคุณสมบัติที่ดีเยี่ยมทั้งทางด้านการเป็นตัวเร่งปฏิกิริยา, อุปกรณ์ทางแสง, การใช้ งานทางอิเล็กทรอนิกส์ และอื่นๆอีกมากมาย การสังเคราะห์อนุภาคซิงค์ซัลไฟด์ระดับนาโนเมตรนั้น สามารถทำได้หลายวิธี ซึ่งการใช้เทคนิคของไมโครอิมัลชันก็เป็นอีกวิธีหนึ่ง ซึ่งมีความได้เปรียบวิธีอื่น คือ ใช้สารเคมีที่มีอันตรายน้อย ไม่ต้องทำการทดลองที่อุณหภูมิ หรือความดันสูง และเครื่องมือที่มี ราคาไม่สูงมากนัก

ในงานวิจัยนี้ได้ทำการศึกษาตัวแปรหลายตัวเพื่อหาสภาวะที่เหมาะสมในการสังเคราะห์อนุภาคซิงค์ ซัลไฟด์ระดับนาโนเมตรที่มีขนาดและรูปร่างใกล้เคียงกัน ทั้งอิทธิพลของสารลดแรงตึงผิวร่วม ไอออน ลบ ความเข้มข้นของสารตั้งต้น อัตราส่วนโมลของน้ำต่อสารลดแรงตึงผิว และอุณหภูมิ ซึ่งจากผลการ ทดลองพบว่า อนุภาคระดับซิงค์ซัลไฟด์ระดับนาโนเมตรรูปร่างที่น่าสนใจ เช่น ท่อนาโน หรือ นาโน แบบแท่ง ได้ โดยจำเป็นต้องใช้ความเข้มข้นของสารตั้งต้น และก่าอัตราส่วนโมลของน้ำต่อสารลดแรง ตึงผิวที่สูงพอ นอกจากนี้ยังพบว่าสารลดแรงตึงผิวร่วมที่มีโมเลกุลขนาดใหญ่สามารถช่วยให้เกิดอนุภาค ระดับนาโนเมตรรูปร่างเหล่านี้ได้มากยิ่งขึ้น

การเติมไอออนลบเช่น คลอไรค์และโบรไมค์ ลงไปในไมโครอิมัลชันจะสามารถช่วยให้เกิดอนุภาค ระดับนาโนเมตรที่มีรูปร่างแบบแท่งและเข็มได้มากขึ้น โดยเฉพาะเมื่อใช้บิวทานอลซึ่งมีขนาคโมเลกุล เล็กกว่าเป็นสารลดแรงตึงผิวร่วม นอกจากนี้การเปลี่ยนแปลงอุณหภูมิของการเกิดปฏิกิริยายังมีผล-กระทบต่อขนาดและรูปร่างของอนุภาค และเกิดอนุภาคระดับนาโนเมตรที่มีรูปร่างที่น่าสนใจ เช่น ท่อ นาโน และ เส้นใยนาโนที่ขนาดเส้นผ่านศูนย์กลางที่เล็กมากๆได้ เป็นต้น

ภาควิชา	.วิศวกรรมเคมี	ลายมือชื่อนิสิต ยุมเก่าด์ ป็น กา
สาขาวิชา	.วิศวกรรมเคมี	.ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2548	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4670594621 : MAJOR CHEMICAL ENGINEERING KEY WORD: ZnS/MICROEMULSION/NANOPARTICLE

AMORNSAK CHANAGUL: EFFECTS OF TYPES OF ANIONS AND COSURFACTANTS ON ZnS NANOPARTICLE SYNTHESIS IN MICROEMULSION, THESIS ADVISOR: ASSOC. PROF. TAWATCHAI CHARINPANITKUL, D.Eng., THESIS CO-ADVISOR: PROF. WIWUT TANTHAPANICHAKOON, Ph.D., ISBN: 974-17-5093-5

Now, much attention has been paid to synthesis of group II-VI semiconductor materials due to their excellent properties in catalysis, optical and magnetic functionality, and so on. There are many methodologies available for synthesizing ZnS nanocrystals, however, water-in-oil (w/o) microemulsions technique is one of the most recognized one due to its several advantages, for instance, soft chemistry, demanding no extreme pressure or temperature control, easy to handle, and requiring no special or expensive equipment.

In this research, the effects of types of cosurfactants, the molar ratio of water to surfactant, reactant, types of anions and temperature are investigated. From the experimental results, it could be clearly shown that the size and the morphology of the ZnS nanoparticles are dependent upon these parameters. With relatively high reactant concentration and w_0 , some certain amount of ZnS nanorod and nanotubes could be successfully synthesized. Moreover, microemulsion with larger molecule of cosurfactant could provide higher possibility to synthesize these morphologies of the nanoparticles.

When adding anions such as Cl⁻ or Br⁻ into the microemulsion, the higher population of ZnS nanorods and nanoneedles were obtained, especially when employing n-butanol as a cosurfactant. Moreover, the reaction temperature can greatly effect on the morphology and size of the resulting nanoparticles. The interesting morphologies of ZnS nanoparticles were obtained such as nanotubes and nanowires with very small diameter.

ACKNOWLEDGEMENTS

I am very grateful to my advisor, Assoc. Prof. Tawatchai Charinpanitkul, Department of Chemical Engineering, Chulalongkorn University, for his indispensable advice, and his encouragement to continue the course of this work. I am also grateful to my co-advisor, Prof. Wiwut Tanthapanichakoon and Assoc. Prof. Sutthichai Assabumrungrut, Assistant Professor Seeroong Prichanont and Dr. Varong Pavarajarn for their stimulative commentsand participation as the committee.

I would like to thank to Dr. Joydeep Dutta, Dr. Uracha Rungsardthong and Dr. Gamolwan Tumcharern for their advice, useful suggestion and kindness.

This research project is partially supported by TRF-RTA (Prof. Wiwut Tanthapanichakoon), University-Industrial Collaborative Research Project of CU and Thailand Graduate Institute of Science and Technology (TGIST).

I would like to thank the Department of Pathology, Faculty of Medicine, Siriraj Hospital for TEM analysis. I would like to thank the officers from National Nanotechnology Center for their suggestion, kindness and information on DLS analysis.

My Thanks also extend to all members of the Particle Technology and Material Processing Laboratory for their warm collaborations and kindness during my thesis work.

Finally it is my great wish to express my cordial and deep thanks to my parents for their love and encouragement.

CONTENTS

ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
NOMENCLATURE	xvii

CHAPTER

I INTRODUCTION	1
1.1 Background	1
1.2 Objective	3
1.3 Scopes of research	3
1.4 Procedure of research	4
1.5 Expected benefits	4
II LITERATURE REVIEWS	. 5
2.1 Synthesizing nanoparticles in microemulsion	5
2.2 Synthesizing ZnS nanoparticles by using other liquid phase technique	12
2.3 Phase behavior of microemulsion that relate in this thesis	12
III FUNDAMENTALS	15
3.1 Surfactant	15

viii

3.2 Microemulsion System	16
3.3 Nature of microemulsion droplet	16
3.4 The Reactant exchange in microemulsion	18
3.5 Preparation of nanoparticles in micromulsion	19
3.6 Crystal structure of Zinc Sulfide(ZnS)	21
IV EXPERIMENTS AND ANALYTICAL TECNIQUES	22
4.1 Experimental procedure	22
4.1.1 Effect of cosurfactants	23
4.1.2 Effect of anions	25
4.1.3 Effect of temperature	25
4.2 Analytical technique	26
4.2.1 Scanning electron microscopy (SEM)	26
4.2.2 Transmission electron microscopy (TEM)	27
4.2.3 X-ray diffraction (XRD)	28
4.2.4 Dynamic Light Scattering (DLS)	29
V RESULTS AND DISCUSSION	30
5.1 Effect of types of cosurfactants	30
5.1.1 n-hexanol	32
5.1.2 n-pentanol	34
5.1.3 n-butanol	35
5.2 Effect of reactant concentration	36
5.2.1 n-hexanol	36
5.2.2 n-pentanol	37
5.2.3 n-butanol	38

5.3 Effect of types of anions	42
5.3.1 Effect of Cl ⁻	44
5.3.2 Effect of Br ⁻	49
5.4 Effect of temperature	56
5.5 Particle size distribution by DLS	61
VI CONCLUSION AND RECOMMENDATION	69
6.1 Conclusions	69
6.1.1 Effect of types of cosurfactants	69
6.1.2 Effect of types of anions	70
6.1.3 Effect of temperature	70
6.2 Recommendation	71
REFERENCES	72
APPENDIX	76
APPENDIX A Publications of the research	77
VITA	84

ix

LIST OF TABLES

Table 2.1	Phase Behavior of the TX-100 Ternary System, C _{TX-100} =0.60 m	13
Table 2.2	Phase Behavior of the TX-100 Quarternary System, $C_{TX-100}=0.60$ m,	
	C _{hex} /C _{TX-100}	13
Table 5.1	Typical examples of average size of ZnS nanoparticles from	
	DLS analysis	66

LIST OF FIGURES

xi

Figure 2.1	The possible formation process of different CuS nanostructures	7
Figure 2.2	The possible mechanism of formation of CdS a) nanospheres,	11
	b) hanoshuttles, c) hanowites, and u) hanotubes	11
Figure 3.1	Preparation nanoparticles in microemulsion	20
Figure 3.2	Crystal structure of Zinc sulfide	21
Figure 4.1	Synthesizing ZnS nanoparticles in microemulsion	24
Figure 4.2	The sample picture of two microemulsions in this experiment	24
Figure 4.3	Scanning Electron Microscope (JEOL JSM 5410)	26
Figure 4.4	Transmission Electron Microscopy (JEOL JEM-1230)	27
Figure 4.5	X-ray diffraction (JEOL JDX-8030) used in this thesis	28
Figure 4.6	Dynamic light scattering (ZETA SIZER Nano-ZS)	29
Figure 5.1	SEM images of ZnS nanoparticles synthesized in ternary W/O	
	microemulsion with $w_0=5.5$ and reactant concentration of 0.1 mol/dm ³ .	
	No cosurfactant is added	31
Figure 5.2	The EDX spectrum of typical ZnS nanoparticle samples obtained from	
	w/o microemulsion	31
Figure 5.3	The XRD pattern of ZnS nanoparticles synthesized in quaternary	
	w/o microemulsion	32
Figure 5.4	TEM images of ZnS nanoparticles synthesized in microemulsions	
	with n-hexanol as a cosurfactant at : a) $w_0=7$, b) $w_0=11$, and c) $w_0=15$.	33

Figure 5.5	TEM images of ZnS nanoparticles synthesized in microemulsion	
	with n-pentanol as a cosurfactant at: a) $w_0=7$, b) $w_0=11$, and c) $w_0=15$.	34
Figure 5.6	TEM images of ZnS nanoparticles prepared in microemulsion	
	with n-butanol as a cosufactant : a) $w_0=11$, and b) $w_0=15$	35
Figure 5.7	TEM images of ZnS nanoparticles prepared in microemulsion	
	with n- hexanol as a cosurfactant and reactant concentration =	
	0.05 mol/dm^3 : a) w _o =11, and b) w _o =20	36
Figure 5.8	TEM images of ZnS nanoparticles synthesized in microemulsion	
	with n-pentanol as a cosurfactant and reactant concentration =	
	0.05 mol/dm^3 : a) w _o =11, b) w _o =15, and c), d) w _o =20	37
Figure 5.9	TEM images of ZnS nanoparticles synthesized in microemulsion	
	with n-butanol as a cosurfactant and reactant concentration =	
	0.05 mol/dm^3 : a) w _o =7, b) w _o =15, and c) w _o =20	38
Figure 5.10	The possible mechanism of ZnS nanotubes synthesized by using	
	w/o microemulsion technique	40
Figure 5.11	The possible mechanism of agglomerations of ZnS nanoparticles	
	at high w_o	41
Figure 5.12	The XRD pattern of ZnS nanoparticles synthesized in microemulsion	
	with Cl ⁻ as an anion	42
Figure 5.13	The XRD pattern of ZnS nanoparticles synthesized in microemulsion	
	with Br ⁻ as an anion	43

Figure 5.14	TEM image of ZnS nanoparticles synthesized in quaternary	
	w/o microemulsion with n-hexanol as a cosurfactant and Cl as	
	an anion at $w_0 = 11$	44
Figure 5.15	TEM image of ZnS nanoparticles prepared in quaternary	
	w/o microemulsion with n-hexanol as a cosurfactant, Cl and as	
	anion: $w_0=15 a$) and $w_0=20 b$)	45
Figure 5.16	TEM images of ZnS nanoparticles synthesized in microemulsion	
	with n-pentanol as a cosurfactant and Cl^{-} as an anion : $w_0=l l a$),	
	and $w_0=15$ b)	46
Figure 5.17	TEM image of ZnS nanoparticles synthesized in quarternary	
	w/o microemulsion with n-butanol as cosurfactant and Cl as	
	an anion: $w_0=7$ a) and $w_0=11$ b)	47
Figure 5.18	TEM images of ZnS nanoparticles synthesized in quaternary	
	w/o microemulsion with n-butanol as a cosurfactant and Cl ⁻ as	
	an anion at $w_0 = 15$	48
Figure 5.19	ZnS nanoparticles prepared in quarternary microemulsion with	
	n-hexanol as a cosurfactant and Br ⁻ as an anion: a) $w_0=11$, b) $w_0=15$,	
	and c) w _o =20	49
Figure 5.20	ZnS nanoparticles synthesized in microemulsion with n-pentanol	
	as a cosurfactant and Br as an anion: a) $w_0=11$ and b) $w_0=15$	50
Figure 5.21	ZnS nanorods with some agglomeration of nanoneedles were found	
	when using n-butanol as a cosurfactant and Br $$ as an anion at $w_0 = 15$	51
Figure 5.22	Agglomerations of ZnS nanowires were found when using n-butanol	

	as a cosurfactant and Br as anion at $w_0=20$	52
Figure 5.23	ZnS nanoshuttles prepared in microemulsion when using n-butanol	
	as a cosurfactant and Br as an anion at $w_0=15$ or 20	53
Figure 5.24	The shape of ZnS nanorods synthesized in microemulsion with	
	n-butanol as a cosurfactant an Br^{-} as an anion at $w_0=15$ or 20	54
Figure 5.25	The possible mechanism of formation of : a) ZnS nanoshuttles	
	and b) ZnS nanorods	55
Figure 5.26	TEM images of ZnS nanowires synthesized in microemulsion	
	with n-hexanol as a cosurfactant and aged at temperature of 10 $^{\circ}$ C.	
	: $w_0=15 a$), $w_0=20 b$) and c)	56
Figure 5.27	TEM images of ZnS nanoparticles synthesized in microemulsion	
	with n-pentanol as cosurfactant and aged at 10 $^{\circ}$ C: w _o =11 a),	
	and $w_0=15 \text{ b}$)	57
Figure 5.28	TEM images of ZnS nanoparticles synthesized in microemulsion	
	with n-hexanol as cosurfactant and the reaction occurred at 60 $^{\rm o}{\rm C}$	
	: $w_0=11 a$), and $w_0=15 b$)	58
Figure 5.29	TEM images of ZnS nanotubes synthesized in microemulsion	
	with n-butanol as cosurfactant, $w_0 = 11$ and the reaction occurred	
	at 60 °C	59
Figure 5.30	TEM images of ZnS nanowires synthesized in microemulsion	
	with n- butanol as cosurfactant, $w_0=15$ and the reaction	
	temperature = 60 °C	60

Figure 5.31	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-hexanol as a cosurfactant and Cl ⁻ as an	
	anion at w _o = 15	61
Figure 5.32	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-butanol as a cosurfactant and Cl^2 as an	
	anion at w _o = 15	62
Figure 5.33	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n- hexanol as a cosurfactant and Br as an	
	anion at $w_0 = 11$	62
Figure 5.34	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-hexanol as a cosurfactant and Br as an	
	anion at w _o = 15	63
Figure 5.35	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-pentanol as a cosurfactant and Br^{-} as an	
	anion at $w_0 = 11$	63
Figure 5.36	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-pentanol as a cosurfactant and Br as	
	an anion at $w_0 = 15$	64
Figure 5.37	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-pentanol as a cosurfactant and Br ⁻ as	
	an anion at $w_0 = 20$	64

Figure 5.38	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-butanol as a cosurfactant and Br as an	
	anion at $w_0 = 11$	65
Figure 5.39	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-butanol as a cosurfactant and Br as an	
	anion at $w_0 = 15$	65
Figure 5.40	Particle size distribution of ZnS nanoparticles synthesized in	
	microemulsion with n-butanol as a cosurfactant and Br as an	
	anion at $w_0 = 20$	66
Figure 5.41	Effect of w_o on the average size of resulting nanoparticles	
	synthesized in microemulsion with Br ⁻ as an anion	67

xvi

NOMENCLATURES

SEM	Scanning Electron Microscope
TEM	Transmission Electron Microscope
XRD	X-ray diffraction
DLS	Dynamic Light Scattering
EDX	Energy Dispersive X-ray
$C_{cosurfactant}$	Concentration of cosurfactant
C _{TX-100}	Concentration of Triton X-100
C _{hex}	Concentration of cyclohexane
Wo	The molar ratio of water to surfactant