
C hapter 5 
A pplications

5.1 The Ket State in the Schroedinger Picture
Many textbooks [41]-[44] follow the “d e r i v a t i o n ” of the Schroedinger equation 

in the interaction picture by beginning with the time dependent Schroedinger 
equation (TDSE). In the following we consider a Hamiltonian H such that it can 
be split into two parts.

H = H 0 + V(x, t ) (5.1)
where Ho does not contain time explicitly. The problem, which is V(x, f) =  0. is 
assumed to be solved in the sense that the energy eigen ket-s เท) and the energy 
eigenvalues รท defined by

H 0 เท) = รท เท) (5.2)
are completely known. More generally, we are interested in how an arbitrary ket 
state changes as time goes on. where the total Hamiltonian is the sum of Ho and 
V (x i). Suppose at t  =  0. the ket state of a physical system is given by

|ft) = y % ( 0 )  เท) . (5.3)
ท

We wish to find C n ( t )  for t  >  0 such that

Ia . t ) ร = y^c»(t)e~ft-,,f เท) (5.4)
ท

where the ket on the left side stands for the ket state in the Schroedinger picture 
of a physical system whose ket state at t  =  0 was found to be |ft).

We now derive the fundamental differential equation that characterizes the 
time evolution of the ket state | a .  t )  . Let US take the time derivation of | a .  t )  with
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the TDSE for the full H given by Eq.(5.1):

l h Ql  l<M)s = (Ho + V (x ,t)) |a ,f> ร 
ท( i ) ^ £ n t H )  = (Ho + V (x, t ) ) ( Y ^  c n ( t ) e ~ * £nt เท}

Y ( ' l h Q-t cn ( t ) ) e ~ * £ n t \n ) =  Y  V (x,f)cn(f)e_^ ' l t | ท). (5.5)

Multiplying both sides of Eq.(5.5) by ( r n I from the left, we obtain

i h ^ c m ( t )  =  Y ( m \ v  (x, t )  เท) cn ( t  ) e ~ lUmnt
ท

(5.6)

e n ) / h =  —U)n m . Explicitly,

c 1 Vn V i 2e ~ iull2t C11 d
l h d t c2 V2le - ' ^ ‘ v22 (:2 (5.7)

where Vmn =  ( m \  V (x .t) เท). This is the basic coupled differential equation that 
must be solved to obtain the probability of finding |m) as a function of time t. 

Eqs.(5.6) and (5.7) can be rewritten in a convenient form:

where
ih d i I1a’̂ / = v(x )̂ Ia - t )i

V /(x, t )  =  eft WotV(x, t ) e ~ * Hot

(5.8)

(5.9)
is observable in the interaction picture and

|a. t) 1 =  eftHo> |ct. t)5 =  Y , cท( t )  ln ) (5.10)
ท

is a ket state 111 the interaction picture. We thus see Eq.(5.8) as a Schroedinger- 
like equation with the total H replaced by V /(x. t ) .  Quite generally the time- 
dependent potential V /(xT) can cause transitions to states other than the initial 
state. The probability of finding |m) at time t if V /(x .f) is present is determined 
by evaluating |c:,„(f)|2.
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5.2 The Entangled Wave Function in Classical 
Limit

We begin by considering the composite system comprising ล system ร  and its 
environment e

R )  =  E V ( X ,  R ) (5.11)
i.e.

(H ,+ H s+ V £6.) tf(x, R ) = £M(x, R ) (5.12)
with the Hamiltonian H e for the environment, H s for the quantum system and V 56 
represents the interaction between ร and c. For convenience we assume a coordi­
nate representation for £ with standard form of H £=  K + V f where Vç= V f( R )  

is the potential energy which is a function of coordinates only, and K is the kinetic
energy which is written in mass scale coordinates R  =  (/?! R 2. 

over all degrees of freedom, i = 1.....k  :

K = = - — V22M  ^  d R 2r 2M  R '

R k ) as assume

(5.13)

We can use the basic state {tl>n ( x )  = (x'l ท)} which are eigenstates of H s and are 
a function of X  only.

H s^ n(x) =  e n ipn ( x ) (5.14)
for expanding the total wave function as

^(.c. R  ) = y ^ K n ( R ) y n ( x ) .  (5.15)
ท

In Eq.(5.15) it is in form of “entangled wave function’1 for the total system 
described bv the Hamiltonian H. It is different from the entangled wave function 
in the Born-Oppenhimer approximation (BOA) [45] which was used in Briggs and 
Rost [46] to derive the time dependent Schroedinger equation (TDSE). We can 
define the environment wave function K „ ( R )  as

ท,,(/?) = /  dxv*„{.i:)^{x. R ) .  (5.16)
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It means that K „ ( R )  is a probability for finding the quantum system in a state 
0n(x). We can see that this probability is a function of the environment variable 
R .

Substitution of the expansion Eq.(5.15) into Eq.(5.11) and projection of a 
state m { x)  onto Eq.(5.12) leads to the coupled time dependent Schroedinger 
equation (TISE) for the environment wave function

—♦ 2

? /  dxti}m ( x ) [H f+ H j+ V j8] Kn( R  )Ipn (X ) =  E n m ( R )  

For convenience we write the state Ipm ( x )  in the ket-bra notation

{m\ { H r + H s+ V  eร) Kn( R )  เท) =  E k w{ R )

(5.17)

or
H  sKm (/?.) +  ร1ทKm ( R  ) + 2̂ (m l ln ) Kn( R  ) = £ k " i  ( R ) -

ท
We assume that K „ ( R )  can be written as

Km( R )  =  e ^ ^ c ' J R ) .

(5.18)

(5.19)

(5.20)

Substituting Eq.(5.20) into Eq.(5.19) and multiplying both sides by we
obtain

V R W (  R )  • V r c ' J R )  +  ] T  ( r n \  v , s เท) 4 ( 7 ? )  +  ร m c ' J R )

+ ±  ( v «i f (7?))2 + v , ( R )  -  E  4 (7 ? )+  - ^ s / i c ' j R )  -  ^ 1 c'j r ) v 2 rw ( r :

(5.21)
This is exact and the is full quantum equation for the environment wave function 
which is mixed bv the •'back-coupling" from the system.

Let น.ร consider an approximation. This approximation was used by Aharonov 
and Bohm [26] for considering the nature of time in quantum mechanics by using
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the variable determining the time of measurement. It was placed on the quantum- 
mechanical side of the “cut” defined in Chapter 2. The approximation is to assume 
the great mass M  of the environment and the environment energy to be large com­
pared with the quantum system energy (so that the environment wave function 
is narrow enough in R  — s p a c e  and it will move in an essentially classical way). 
So we can suppose that we can determine an orbit R  =  R ( t )  of the environment 
motion by assuming พ  ( R  ) to satisfy

2^7 ( v flW (7?))2 + Ve( R )  - E  =  0. (5.22)

We recognize Eq.(5.22) to be the H a m i l t o n  — J a c o b i  e q u a t i o n  in classical mechan­
ics [47]. Eq.(5.22) implies that พ  ( R )  is H a m i l t o n ' s  c h a r a c t e r i s t i c  f u n c t i o n  for 
environment system. The momentum in classical Hamilton-Jacobi theory is given 
by

V r W { R , )  =  ~p =  M d R
~dt (5.23)

In this approximation, if M  is large then the last term on the left-hand side of 
Eq.(5.21) may be neglected, i.e.

i h = 0. (5.24)

So Eq.(5.21) becomes

- § v R พ  ( R )  - V r c ' J R )  + ^  H  v „  เท) c'n ( R )  + e mc'm ( R )  =  0 (5.25)

We may simplify Eq.(5.24) by replacing R  bv a new parameter t. defined through 
a trajectory R. ( t )

t = ' M d R ,
~ p T

I =  1.....k (5.26)

(Pi  =  is the momentum in the i direction) that the new parameter t means to be 
" t i m e "  and the partial differential with respect to t is determined by

d t d t (5.27)
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Since the R  are reduced to the classical variables R ( t ) ,  Eq.(5.25), dm ( R ( t ) )  =  

c'm( t ), can be rewritten as

i h d t c 'm ^  =  s  H  V es ln) C’T )  + (5.28)
If we assume c'm ( t )  =  cm ( t ) e ~ K Emt then Eq.(5.28) becomes

i h ^ c m { t)  =  ^  (m| V £S เท) cn{ t ) e ~ iUmnt (5.29)
ท

where üJmr1 = ( e m -  £n ) / h  =  —UJท, 1,. We thus see Eq.(5.29) the same as Eq.(5.6) 
in Sec.5.1 which is the differential equation for the ket state in the interaction 
picture.

By this way, the total wave function, Eq.(5.15) becomes

จ ( x , t )  =  <b(x, ~R{t) )  = e«H/w^ c n(t)e-^"t^n(x). (5.30)
ท

e i w พ  means a phase factor, depending on t  o n l y .  It does not affect on the 
expectation value of the system. We can neglect this phase factor. So we can 
write the state wave function for the quantum system in the Schroedinger picture
as

V ( x . t )  =  ^ c n(f)e- «£"^n(:r). (5.31)
ท

Now we obtain the state wave function in the Schroedinger picture Eq.(5.31) and 
the fundamental differential equation for characterizing the time evolution of the 
quantum system Eq.(5.29) without the time-dependent potential V(x. f) from the 
TISE by investigating environment system in the classical limit of a definite orbit. 
R ( t ) .

5.3 The Jaynes-Cum m ings M odel [50]
111 this section we consider the specific example of the Jaynes-Cummings 

model [48] in more detail. The Jaynes-Cummings model is a two-level atom which
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is coupled to ล laser field consisting of only one quantized mode. The total Hamil­
tonian is written as

Here Q is the field amplitude operator with the eigenvalues (ฐ, gr is the electric- 
dipole matrix element, the energy of a single photon mode is hu). h u 0 is the energy 
of the atomic transition, and a x , a : are (2x2 ) Pauli matrices. In case of the two- 
level atom one requires two states 1+) and |—) corresponding to the atom in the 
upper or lower state of doublet (see Fig 5.1).

Figure 5.1: The two-level atom has two states 1+) (the upper state) and |—) (lower
state).

The total state of the system can be written in the form analogous to 
Eq.(5.15).

H J C  = H5+ H f + V fs

with

Hs = - h w 0a z 1 \ F S  =  'ร/2 h u g  Q a  1 . (5.32)

T = K + ( (ฐ) 1+) -I- K - ( Q )  |—)
or ( k + ( Q )  =  k ( Q ) c '+ ( Q )  and K_((ฐ) ะ= k { Q ) c ' _ { Q ) )

# =  k(Q) K (Q )I+ >  +  c'_ (Q )|-)]. (5.33)
Eq.(5.33) is in the form of the entangled state which has been studied frequently 
ill laser-atom interactions. We substitute Eq.(5.33) into the TISE (H — E)T = 0
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with the Hamiltonian H given in Eq.(5.32) and project 1+) and |- )  onto this 
equation. After projecting 1+) and |—) onto the TISE (H -  £ ’)'!' = 0 we get

c+m ~ tJ2 0Q i +wH}! -  E)k(Q) -  T *w>

+ + \ /2 h u g  q  \  k ( Q ) c_ ( Q )  = t>2 ~ K { Q ) - ^ - r J Q )  (5.34)
and

c - ( Q ) ( - f  ™ + ^ Q2 -  E MQ )  -  Ç K( Q ) ^ C . ( Q )

+(- 2 ^ 0  + e )  k(Q)c+(Q) = li2— n(Q)-^~c-lQ). (5.35)
Next, we assume that the wave function k {Q )  describing the field with an energy 
close to the total energy E  can be determined in the form of the eigenvalue equation
as

( - y  ̂ 2  +  ^ 2 -  E X Q )  =  (5-36)

For these large (classical) energies, we may replace the true wave function k ( Q )  

by its WKB expression as

/c (Q )~ e x p { | J P ( Q ) d Q I (5.37)

and find in the leading classical order the usual wave vector

1 ^g> = *p(Q)
k { Q )  ÔQ  h (5.38)

with the classical momentum at position Q  determined from energy conservation.

P ( Q )  =  s / 2 { E - J K F I 2 )  . (5.39)

So we can replace Q  by a new parameter t . defined through a trajectory Q { t )

t = /• <IQ
J no)
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and determined by

k- ^

Clearly, P ( Q )  from Eq.(5.39) is the velocity Q , as determined from the classical 
equation of motion:

Q  — p  and p  — - uj2Q  1 (5.41)
with solution Q ( t )  =  Q o c o s ( u j t ) ,  so that the parameter t  is just classical time.

Thus, using Eqs.(5.34)-(5.40), we get

where [C]

( -
h 2 d 2 
ไโ d Q 2

c'+ ( Q ) 
c ' J Q )

+ - h w 0) a : +  \ Z ‘2 h w g  Qo&x'j [C] =  ift— [C] (5-42)

The parameter t is introduced in T(x, Q(t . ))  =  t y ( x . t )

and Eq.(5.42) is found in the form

~ วิ.ๅฯพi  j \c \ + + \ j 2 h u j g  Q o x  [C].
<3 J

(5.43)

We estimate the order of magnitude. First, h d / d t  is of the order of the en­
ergy of the quantum system E s — (H.s+V ). i.e.. small compared to E .  Second. 
(Q / Q  ) d / d t  and (1 / Q  ) d 2/ d t 2 can be estimated by using Q  = p  % \J~Ë and Q  

~  นj Q  for the harmonic oscillator as
/  a 2 Q ( t ) d \  hu> 

\ T 0  * / “  ' T
and

V q * 2 /
E 2J E . (5.44)

So the additional derivative term (Q / Q  ) d / d t  and (1 j Q  ) d 2/ d t 2 of Eq.(5.43) are 
of the order E s ( E s + küj) / E .  In the limit of large ("classical” amount of) energy 
E .  the additional derivative are smaller by a factor of the order h u j / E  ~  1 เท .  

where ท is the number of photons in the held mode. The latter is a tiny number 
for a classical held. Therefore Eq.(5.43) can be reduced to

[C] = Q/Wocr- + ร/วิ.hwg Q {t)ax ĵ [C] (5.45)
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If we change [C] = c'+ ( t ) c + ( t ) e ~  ริ

. ๙- พ . c - ( t ) e *  2 ^ 0< Eq.(5.45) becomes

c + ( t ) = \ j 2 h u g 0 Q e t ‘l,UJot c.+{t)
c_(t) Q e - ร ิ 0 _ c_(t)

This is exactly the TDSE obtained by assuming at the outset a classical field with 
amplitude Q ( t )  driving the two-level atom whose state vector is expanded in the
interaction picture and the ket state is expanded in the unperturbed basis

|T(£)) = c+(i)e~s 1+) +  c . ( i ) e n M,‘ | - ) . (5.46)

We have shown that the ket state in the Schroedinger picture at time t 
can be derived by starting from the entangled wave function for the composite 
system which satisfies the full quantum mechanical TISE. Eq.(5.11). By begin­
ning with the entangled wave function in Eq.(5.14). which is different from the 
entangled wave function in the Born-Oppenhimer approximation, we consider the 
environment in the classical limit. This determines the trajectory R ( t )  for clas­
sical motion from the H a m i l t o n  — J a c o b i  e q u a t i o n .  The full quantum equation 
for the environment wave function becomes Eq.(5.'29) by replacing the quantum 
variable R by the classical variable R ( t ) .  Eq.(5.29) is the differential equation 
for cm ( t ) .  We obtain the wave function of the quantum system in the interaction 
picture. In this way. the entangled wave function reduces to the wave function of 
the quantum system in the Schroedinger picture at time t.

T(.x\ R )  =  Kn(R.)ij.'7, (x )  ->  y ^ c „ ( t ) e ~ ริ6''1น-,,(x ) .
ท  ท

The environment wave functions have characterized the time evolution of the 
system n „ ( R )  —> c n( t ) e ~ ริ6'', which satisfy Eq.(5.29). The time independent in­
teraction between the system ร  and its environment £ changes to play the role of 
the time dependent perturbation for the quantum system.
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