DEVELOPMENT OF NaAIH4 AND CARBON-BASED MATERIALS FOR HYDROGEN STORAGE

Ms. Yindee Suttisawat

14 C 4

1.1

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2008

511981

Thesis Title:	Development of NaAlH ₄ and carbon-based materials for					
	hydrogen storage					
By:	Ms. Yindee Suttisawat					
Program:	Petrochemical Technology					
Thesis Advisors:	Assoc. Prof. Pramoch Rangsunvigit					
	Asst. Prof. Boonyarach Kitiyanan					
	Dr. Santi Kulprathipanja					

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantaya Janumit College Director

1 C 1

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Prof. Somchai Osuwan)

amoch Ry

(Assoc. Prof. Pramoch Rangsunvigit)

S-Inpath,

(Dr. Santi Kulprathipanja)

(Assoc. Frof. Vissanu Meeyoo)

B. Kitiyanan

(Asst. Prof. Boonyarach Kitiyanan)

(Assoc. Prof. Thirasak Rirksomboon)

ABSTRACT

4681002063: Petrochemical Technology Program
Yindee Suttisawat: Development of NaAlH₄ and carbon-based materials for hydrogen storage
Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, Asst. Prof.
Boonyarach Kitiyanan, and Dr. Santi Kulprathipanja, 114 pp.
Keywords: NaAlH₄/Hydrogen storage/Graphite/Carbon nanotubes

Hydrogen storage in a solid state material has been considered as a more suitable way for a fuel cell driven car as compared with compressed hydrogen and liquid hydrogen storage. Metal hydrides seem to be the promising materials to store hydrogen. However, their properties, such as the reversible hydrogen capacity, need to be developed to reach the hydrogen storage target. In this work, sodium aluminum hydride (NaAlH₄, 5.6 wt% H₂) was selected as a medium for hydrogen storage. The main purpose of this thesis was to develop the reversible hydrogen capacity of NaAlH₄. Firstly, transition metals (TiCl₃, ZrCl₄, HfCl₄, and VCl₃) were used as a dopant to improve the hydrogen desorption/absorption in NaAlH₄. Ball milling was used as a means to mix NaAlH₄ with the dopant. It was found that doping metal decreases the desorption temperature of NaAlH₄ and the reversible hydrogen capacity of doped NaAlH₄ is about 30-75% of their original hydrogen capacity. TiCl₃ exhibits the best effective dopant among the tested transition metals with the reversible hydrogen capacity of 3.85 wt%. The role of transition metals on the hydrogen absorption involves catalyzing the hydrogen dissociation in the desorbed hydride. Moreover, the formation of a by-product, NaCl, from TiCl₃ lowers the reversible hydrogen capacity of NaAlH₄. Therefore, other forms of the metal, Ti and TiO₂, were used as an additive. The result reveals that TiO₂ doped NaAlH₄ has the reversible hydrogen capacity as same as the one doped with TiCl₃ while the rate of hydrogen absorption of TiO₂ doped NaAlH₄ is higher than that of TiCl₃ doped NaAlH₄. This is due to the porosity of TiO₂ that facilitates the hydrogen diffusion in the desorbed sample. This result also indicates the segregation of the desorbed

hydride after the hydrogen desorption. Consequently, carbon materials (graphite, activated carbon, and carbon nanotubes) were co-doped in metal doped NaAlH₄ to prevent the segregation and to increase the hydrogen diffusion in the desorbed hydride. The hydrogen capacity of metal doped NaAlH₄ can be increased by co-doping with carbon materials. Graphite is the best co-dopant for TiCl₃ doped NaAlH₄ with hydrogen re-absorption capacity up to 4 wt%. Moreover, hydrogen storage capacity of carbon nanotubes deposited by Pd or V was measured to study their possibility in using as a medium for hydrogen storage.

.

• :

. .

.

บทคัดย่อ

ยินดี สุทธิสวาท : การพัฒนาการคาย และการดูดซับไฮโดรเจนในโซเดียมอะลูมิเนียม ไฮดรายและวัสดุที่มีการ์บอนเป็นองก์ประกอบ (Development of NaAlH₄ and carbon-based materials for hydrogen storage) อ. ที่ปรึกษา : รศ. ดร. ปราโมช รังสรรค์วิจิตร ผศ. ดร. บุนยรัชต์ กิติยานันท์ และ ดร. สันติ กุลประทีปัญญา 114 หน้า

การกักเก็บไฮโครเจนในของแข็งได้รับการจัดว่าเป็นวิธีที่เหมาะสมในการใช้กักเก็บ ไฮโครเจนสำหรับใช้เป็นเชื้อเพลิงให้กับยานยนด์ที่ขับเคลื่อนโดยเครื่องยนต์เซลล์เซื้อเพลิง โซเคียมอะลูมิเนียมไฮครายเป็นสารที่มีคุณสมบัติโคคเค่นเหมาะที่จะนำไปพัฒนาใช้เป็นวัสคุใน การกักเก็บไฮโครเจนเนื่องจากมีความสามารถในการกักเก็บไฮโครเจนได้สูง แต่วัสคุชนิดนี้ยังมี ข้อด้อย อาทิเช่น ความสามารถในการกักเก็บไฮโครเจนแบบผันกลับได้ต่ำ อัตราการกายไฮโครเจน ช้า งานวิจัยนี้มุ่งศึกษา และพัฒาความสามารถในการกักเก็บไฮโครเจนของโซเดียมอะลูมิเนียม ไฮคราย โดยในส่วนแรกศึกษาผลการใช้สารประกอบโลหะหนัก (ไทเทเนียมไตรคลอไรด์ เซอโคร เตตระเนียมคลอไรด์ ฮามเนียมเตตระคลอไรด์ วานาเคียมไตรคลอไรด์) เพื่อกระตุ้นความสามารถ ในการคาย และดูคซึมไฮโครเจนของโซเดียมอะลูมิเนียมไฮคราย ในการศึกษา สารประกอบโลหะ หนักบดผสมกับโซเดียมอะลูมิเนียมไฮครายโดยเครื่องบดแบบแรงเหวี่ยงจากผลการทคลองพบว่า

การเติมสารประกอบโลหะหนักช่วยลดอุณหภูมิในการคายไฮโครเจนของโซเดียมอะลูมิเนียม
 ไฮคราย โดยอุณหภูมิที่เริ่มเกิดการคายไฮโครเจนอยู่ที่ประมาณ 80-150 องสาเซลเซียส และ
 กวามสามารถในการกักเก็บไฮโครเจนของโซเดียมอะลูมิเนียมไฮครายที่ผสมกับสารประกอบ
 โลหะอยู่ที่ประมาณ 30-75 เปอร์เซนด์ของความสามารถในการกักเก็บไฮโครเจนเริ่มต้น โดย
 สารประกอบโลหะหนักที่มีประสิทธิภาพมากที่สุดคือ ไทเทเนียมไตรคลอไรด์ โดยพบว่าโซเดียม
 อะลูมิเนียมไฮครายที่ผสมกับไทเทเนียมไตรคลอไรด์สามารถกักเก็บไฮโครเจนได้มากถึง 3.85
 เปอร์เซนต์โดยน้ำหนักไฮโครเจนต่อน้ำหนักไฮคราย จากการทคลองสรุปได้ว่า บทบาทของ
 สารประกอบโลหะหนักที่มีค่อการดูดซึมไฮโครเจนของโซเดียอะลูมิเนียมไฮครายได้แก่ การเข้าไป
 เร่งการแตกตัวของก๊าซไฮโครเจน

อย่างไรก็ตามปัญหาที่พบจากการเติมสารประกอบโลหะหนักคลอไรด์คือการเกิดเกลือโซเดียม คลอไรด์ ทำให้ความสามารถในการกักเก็บไฮโครเจนของโซเดียมอะลูมิเนียมไฮครายลดลง ดังนั้น จึงได้เลือกใช้โลหะไทเทเนียม และไทเทเนียมไดออกไซด์เป็นสารกระตุ้นเพื่อหลีกเลี่ยงการเกิด ผลิตภัณฑ์ที่ไม่ต้องการ จากผลการทดลองพบว่า ปริมาณการกักเก็บไฮโครเจนของโซเดียม อะลูมิเนียมไฮครายที่ผสมด้วยไทเทเนียมไดออกไซด์เท่ากับของโซเดียมอะลูมิเนียมไฮครายที่ผสม ด้วยไทเทเนียมไตรคลอไรด์ แต่สิ่งที่น่าสนใจคือพบว่าอัตราการดูดซึมไฮโครเจนของโซเดียม อะลูมิเนียมไฮครายที่ผสมด้วยไทเทเนียมไดออกไซด์มีก่าเพิ่มขึ้น ซึ่งน่าจะเป็นผลจากโกรงสร้าง ของไทเทเนียมไดออกไซด์ที่มีความพรุนผสมอยู่ในชั้นของโซเดียมอะลูมิเนียมไฮครายทำให้การ แพร่ผ่านของไฮโครเจนเข้าสู่ชั้นของโซเดียมอะลูมิเนียมไฮครายได้ง่าย และสะควกขึ้น ผลการ

ทคลองนี้ยังบ่งบอกถึงการหลอมแล้วเกาะรวมตัวกันของสารประกอบไฮครายหลังจากการคาย ไฮโครเจน ซึ่งเป็นอีกหนึ่งสาเหตุที่ทำให้อัตราการดูดซึมไฮโครเจนช้า และปริมาณการกักเก็บ ไฮโครเจนลคลง เพื่อแก้ปัญหาการรวมตัวจึงได้ผสมสารประกอบไฮครายที่มีสารประกอบโลหะ หนักกับวัสดุการ์บอน (กราไฟต์ ถ่านกัมมันต์ ท่อนาโนการ์บอน) ควบคู่กัน จากผลการทคลอง พบว่า วัสดุการ์บอนสามารถเพิ่มทั้งปริมาณการเก็บไฮโครเจน และอัตราการดูดซึมไฮโครเจนของ โซเดียมอะลูมิเนียมไฮครายที่ผสมด้วยสารประกอบโลหะ โดยพบว่ากราไฟต์เป็นตัวเติมควบคู่ที่ดี ที่สุด และโซเดียมอะลูมิเนียมไฮครายที่เติมด้วยไทเทเนียมไตรคลอไรค์ควบคู่กับกราไฟด์มี ความสามารถกักเก็บไฮโครเจนได้ถึง 4 เปอร์เซ็นต์โดยน้ำหนักไฮโครเจนต่อน้ำหนักไฮคราย นอกจากนี้ในงานวิจัยยังได้ศึกษาความสามารถในการกักเก็บไฮโครเจนของท่อนาการ์บอนที่มี โลหะพาลาเดียม หรือ โลหะวานาเดียมอยู่บนพื้นผิว เพื่อที่จะศึกษาความเป็นไปได้ในการใช้วัสดุ ชนิดนี้เป็นวัสดุกักเก็บไฮโครเจน

.

ACKNOWLEDGEMENTS

I would like to acknowledge the organization and the generous and assistance of the following individuals in completing this research project:

First of all, I would like to gratefully acknowledge the scholarship and financial support to my Ph.D. program from the Reverse Brain Drain project (RBD) and the National Excellence Center for Petroleum, Petrochemical, and Advanced Materials. The support has unlighted my life with many fruitful experiences more than just the degree.

I would like to thank to the person who offered me the best opportunity ever, Dr. Santi Kulprathipanja. He brought my vision to be global, and taught me not only the way to do research but also the way to live. I also wish to forward my thanks to his wife, Ms. Apinya Kulprathipanja, who has always been a good supporter and encourages me when I was in Cape Town.

Special gratitude is expressed to Assoc. Prof. Pramoch Rangsunvigit and Asst. Prof. Boonyarach Kitiyanan who are the kind supervisors, providing me lots of opportunities to think and do work, and always suggesting me with their valuable advises. I especially extend my appreciation to Prof. Somchai Osuwan, Assoc. Prof. Thirasak Rirksomboon and Assoc. Prof. Visanu Meeyoo for their kindness being as a chair committee.

I also would like to thank Prof. Vladimir Linkov who gave me a chance to do a research at SAIMC, University of Western Cape, SA. In addition, I would like to special thank Dr. Patrick, Dr. Michael, Dr. Alex, Dr. Jishan, Dr. Ray, Mr. Andrian and all staff who always helped and suggested me when I was working there, Mr. Guntars who was a kind housemate always taking care me like I were his daughter, Ms. Barbara who facilitated any official processes for my working there. And I would to express my thanks to all my SA friends who were kind to me and assisted my laboratory work. Special thanks are exhibited to all of my teachers for all knowledge and useful skills they have established to me, The Petroleum and Petrochemical College, Chulalongkorn University for the great opportunity to continue my Ph.D., and also my PPC friends. Finally, I would like to express my deep grateful to my family for their supports, take care, love and understandings.

TABLE OF CONTENTS

V111

PAGE

	i	
	iii	

Title Page		
Abstract (in English)		

Abstract (in Thai)		v
Acknowledgements		vii
Table of Contents	<u>.</u>	viii
List of Tables		xii
List of Figures	· :	xiii

۰.

CHAPTER

PTER				
I	INT	RODUCTION	1	
	•			
II	ĻIT	ERATURE SURVEY	3	
	2.1	Hydrogen storage and its target	3	
		2.1.1 Compressed hydrogen gas	4	
		2.1.2 Liquid hydrogen storage (LH ₂)	4	
		2.1.3 Solid stage hydrogen storage	4	
		2.1.3.1 Nanostructured materials	4	
		2.1.3.2 Metal hydrides	5	
	2.2	Metal hydrides	5	
		2.2.1 Transition metal hydrides	5	
		2.2.2 Light weight metal hydrides	7	
	2.3	Sodium aluminum hydride or sodium alanate (NaAlH ₄)		
	2.4	Carbon nanotubes and their hydrogen storage capacity	13	
	FXF	PERIMENTAL	16	
	<u>ел</u>	Extine condecenting (she surface in Nis All)	10	
	5.1	Hydrogen desorption/absorption in NaAIH ₄	16	

3.1.1 Materials 16

 \mathbf{V}

		3.1.2	Sample preparation	16				
		3.1.3	Experimental set up	17				
		3.1.4	Hydrogen desorption/absorption	17				
		3.1.5	X-ray diffraction	20				
	3.2	Synthe	esis of Pd or V deposited MWNTs and					
		their	hydrogen storage capacity	20				
		3.2.1	Materials	20				
		3.2.2	CNT synthesis and treatment	21				
		3.2.3	Metal deposition on CNTs	21				
		3.2.4	Hydrogen storage experiment	21				
		3.2.5	Sample characterization	22				
IV	EFFECT OF Ti, Zr, Hf AND V ON HYDROGEN							
	DES	SORPT	ION/DESORPTON OF NaAIH4	24				
	4.1	Abstra	act	24				
	4.2	Introd	uction	24				
	4.3	Exper	imental	26				
		4.3.1	Materials	26				
		4.3.2	Hydrogen desorption/absorption	26				
	4.4	Result	ts and Discussion	27				
		4.4.1	Hydrogen desorption/absorption on doped NaAl	H ₄ 27				
		4.4.2	X-ray diffraction	28				
	4.5	Concl	usions	32				
	4.6	Ackno	owledgements	32				
	4.7	Refere	ences	32				
V	EFF	ГЕСТ О	OF TITANIUM PRECUSSOR ON					
	DEI	IYDRI	DING/HYDRIDING OF SODIUM ALANATE	48				
	5.1	Abstra	act	48				

5.2	Introduction				
5.3	Exper	imental		49	
	5.3.1	Materials		49	
	5.3.2	Hydrogen desorption/absor	ption	50	
5.4	Result	s and Discussion		51	
	5.4.1	Hydrogen desorption/absor	ption on doped NaAlH ₄	51	
	5.4.2	X-ray diffraction of doped	NaAlH ₄	52	
	5.4.3	Arrhenius analysis of TCl ₃ .	NaAlH₄	53	
5.5	Concl	usions		54	
5.6	Acknowledgements			55	
5.7	References			55	

 $\dot{c}_{1} = \dot{c}_{1}$

VI	EFFECT OF CO-DOPANTS ON HYDROGEN
	DESORPTOIN/ABSORPTION OF METAL DOPED

NaA	1H ₄	68
6.1	Abstract	68
6.2	Introduction	68
6.3	Experimental	69
	6.3.1 Materials	69
	6.3.2 Hydrogen desorption/absorption	70
6.4	Results and Discussion	71
6.5	Conclusions	74
6.6	Acknowledgements	75
6.7	References	75

VII	SYN	SYNTHESIS OF Pd OR V DEPOSITED MWNTS AND			
	TH	EIR HYDROGEN STORAGE CAPACITY	88		
	7.1	Abstract	88		
	7.2	Introduction	88		

	7.3	Exper	imental				90
		7.3.1	CNT synth	esis and trea	atment		90
		7.3.2	Metal depo	sition on Cl	NTs		90
		7.3.3	Hydrogen s	storage capa	city		91
	7.4	Result	s and Discus	ssion			92
	7.5	Concl	usions				95
	7.6	Ackno	wledgement	ts		2	95
	7.8	Refere	ences			·:	96
VIII	CONCLUSIONS AND RECOMMENDATIONS					105	
	8.1	Concl	usions			÷.	105
	8.2	Recon	nendations			5	107
	RE	FEREN	ICES			* 	108
	CURRICULUM VITAE					113	
						÷	

LIST OF TABLES

TABLE

.2

PAGE

CHAPTER II

2.1	U.S. DOE hydrogen storage system targets (Satyapal et al., 200	7)	3
2.2	Examples of intermetallic compound and their properties		÷
	(Sandrock and Thomas, 2001)		6
2.3	Hydrolysis reaction of light weight metal hydrides		
	(Schüth et al., 2004)	*:	8
2.4	Examples of intermetallic compound and their properties		
	(Sandrock and Thomas, 2001)		8
	CHAPTER III	ų i	
3.1	Compressibility factor at different temperature ranges		
	(Perry <i>et al.</i> , 1995)		20
	CHAPTER V	•	
5.1	Experimentally derived parameter for the Arrhenius equation,		
	rate = $k \exp(-Ea/RT)$	÷	67

CHAPTER VII

7.1	Specific surface area and hydrogen adsorption capacity of	
	treated CNTs and deposited CNTs	104

LIST OF FIGURES

FIGURE

CHAPTER II

	2.1	Schematic model of metal structure with h	ydrogen		
		atom in the interstices between the metal at	toms and hydrogen		
		molecules at the surface (www.bnl.gov/est	/erd/hydrogenStorage)	7	
	2.2	Experimental data for hydrogen storage ca	pacity in		
		carbon nanotubes versus publication year	for different methods,		۰,
		pressure and temperature regimes (Hirsche	r <i>et al.</i> , 2003)	14	
			1.1		
	4	CHAPTER III		3	÷
272	. 3.1	Sample preparation of each experimental p	part:	:	*
		a) effect of different transition metals,			
		b) effect of different Ti-precursors,	1		•
		and c) effect of carbon materials on the hy-	drogen		1
		desorption/absorption in NaAlH ₄		18	
	3.2	Schematic diagram of the experimental set	-up for hydrogen		1
		desorption/absorption of NaAlH ₄ systems		19	
	3.2	Schematic diagram of the experimental set	-up for hydrogen		
		desoprtion/adsorption of MWNTs systems		23	

CHAPTER IV

4.1	Schematic diagram of experimental set-up	34
4.2	Correlation between temperature and hydrogen capacity,	
	during the 1 st hydrogen desorption on NaAlH ₄ :	
	a) undoped NaAlH4 b) 4%ZrCl4- NaAlH4 c) VCl3-NaAlH4,	
	d) 4%TiCl ₃ -NaAlH ₄ , and e) 4%HfCl ₄ -NaAlH ₄	35

FIGURE

4.3	Correlation between temperature and hydrogen released	
	during the 1^{st} hydrogen desorption on NaAlH ₄ doped 4 mol% VCl ₃	
	by a) stainless steel ball milling, and b) agate ball milling for 20 min	36
4.4	Correlation between temperature and hydrogen released	
	during hydrogen desorption on NaAlH ₄ doped with 4 mol% TiCl ₃ :	
	a) first desorption and b) subsequent desorptions	37
4.5	Correlation between temperature and hydrogen released during	
	hydrogen desorption on NaAlH ₄ doped with 4 mol% $ZrCl_4$: a) first	
	desorption and b) subsequent desorptions	38
4.6	Correlation between temperature and hydrogen released during	
	hydrogen desorption on NaAlH4 doped with 4 mol% HfCl4: a) first	
an tra	desorption and b) subsequent desorptions	39
4.7	Correlation between temperature and hydrogen released during	
	hydrogen desorption on NaAlH ₄ doped with 4 mol% VCl ₃ :	
	a) first desorption and b) subsequent desorptions	40
4.8	The hydrogen re-absorption rate in the 3 rd cycle of	
	a) 4%TiCl ₃ -NaAlH ₄ , b) 4%ZrCl4-NaAlH4, c) 4%HfCl ₄ -NaAlH ₄ ,	
	and d) VCl ₃ -NaAlH ₄	41
4.9	XRD patterns of milled NaAlH ₄ by: a) agate ball milling	
	and b) stainless steel ball milling	42
4.10	XRD patterns of a) fresh NaAlH₄ after milling,	
	b) desorbed NaAlH ₄ at 220°C, and c) desorbed NaAlH ₄ at 280°C	43
4.11	XRD patterns of a) undoped NaAlH ₄ , b) TiCl ₃ -NaAlH ₄ ,	
	c) $ZrCl_4$ -NaAlH ₄ , d) HfCl ₄ -NaAlH ₄ , and e) VCl ₃ -NaAlH ₄	
	after milling process	44
4.12	XRD patterns of a) TiCl ₃ -NaAlH ₄ , b) ZrCl ₄ -NaAlH ₄ ,	
	c) HfCl ₄ -NaAlH ₄ , and d) VCl ₃ -NaAlH ₄ after hydrogen desorption	45
4.13	XRD patterns of a) TiCl ₃ -NaAlH ₄ , b) ZrCl ₄ -NaAlH ₄ ,	
	c) HfCl ₄ -NaAlH ₄ , and d) VCl ₃ -NaAlH ₄ after hydrogen	

PAGE

	re-absorption	46
4.14	XRD patterns of a) desorbed 10%HfCl ₄ -NaAlH ₄	
	and b) the precipitate from THF solution	47

CHAPTER V

5.1	Correlation between temperature and hydrogen capacity,	
	during the 1 st hydrogen desorption on: a) TiO ₂ -NaAlH ₄	
	b) TiCl ₃ -NaAlH ₄ , and c) Ti-NaAlH ₄	57
5.2	Correlation between temperature and hydrogen released	
	during hydrogen desorption from NaAlH ₄ doped with 4 mol% $\rm TiO_2$	
	a) 1 st desorption and b) subsequent desorptions	58
5.3.	Correlation between temperature and hydrogen released	
	during hydrogen desorption from NaAlH ₄ doped with 4 mol%	•
	matallic Ti a) 1 st desorption and b) subsequent desorptions	.59
5.4	Comparison of the hydrogen desorption in the 7 th desorption of	
	a) TiO_2 -NaAlH ₄ b) $TiCl_3$ -NaAlH ₄ , and c) Ti -NaAlH ₄	. 60
5.5	Hydrogen re-absorption rate of a) TiO ₂ -NaAlH ₄ , b) TiCl ₃ -NaAlH ₄ ,	
	and c) Ti-NaAlH ₄	61
5.6	XRD patterns of 4 mol% TiO ₂ -NaAlH ₄ : a) after milling,	
	b) after the hydrogen desorption, and after hydrogen re-absorption	62
5.7	ESR patterns of a) as-received TiO_2 and b) TiO_2 -NaAlH ₄	
	after milling	63
5.8	XRD patterns of 4 mol% Ti-NaAlH ₄ : a) after milling,	
	b) after the hydrogen desorption, and after hydrogen re-absorption	64
5.9	The isothermal hydrogen desorption of TiCl ₃ -NaAlH ₄	
	in the 1 st step decomposition at a) 80°C, b) 90°C, c) 105°C,	
	d) 115°C, and e) 135°C	65
5.10	The isothermal hydrogen desorption of TiCl ₃ -NaAlH ₄	
	in the 2 nd step decomposition at a) 180°C, b) 190°C, c) 200°C,	

PAGE

...

5.11

and d) 210°C	66
Arrhenius plot for NaAlH ₄ and Na ₃ AlH ₆ decomposition	
for NaAlH ₄ [7] and 4 mol% TiCl ₃ doped NaAlH ₄	67

CHAPTER VI

6.1	Correlation between temperature and hydrogen released		
	during the 1 st hydrogen desorption of doped NaAlH ₄ : a) 4 mol% HfC	l ₄ ,	
	b) 4 mol% HfCl ₄ + 10 wt% graphite, c) 4 mol% HfCl ₄ +		
	10 wt% activated carbon, and d) 4 mol% HfCl ₄ + 10 wt% CNTs	78	
6.2	The hydrogen re-absorption rate in the 3 rd cycle of doped NaAlH ₄ :		
	a) 4 mol% HfCl ₄ , b) 4 mol% HfCl ₄ + 10 wt% CNTs,		
	c) 4 mol% HfCl ₄ + 10 wt% activated carbon, and		
	d) 4 mol% HfCl ₄ + 10 wt% graphite	79	
6.3	Correlation between temperature and hydrogen released compared		
	between the 1 st desorption and the subsequent desorptions		
	of doped NaAlH ₄ : a) 4 mol% HfCl ₄ , b) 4 mol% HfCl ₄ + 10 wt%		
	graphite, c) 4 mol% HfCl ₄ +10 wt% activated carbon, and		
	d) 4 mol% HfCl ₄ + 10 wt% CNTs	80	
6.4	XRD patterns of a) HfCl ₄ -NaAlH ₄ , b) HfCl ₄ + G-NaAlH ₄ ,		
	c) $HfCl_4 + AC-NaAlH_4$, and d) $HfCl_4 + CNTs-NaAlH_4$		
	after the hydrogen desorption	81	
6.5	XRD patterns of a) 4 mol% HfCl ₄ -NaAlH ₄ , b) HfCl ₄ + G-NaAlH ₄ ,		
	c) $HfCl_4 + AC-NaAlH_4$, and d) $HfCl_4 + CNTs-NaAlH_4$		
	after hydrogen re-absorption	82	
6.6	Correlation between temperature and hydrogen released during		
	the 1^{st} desorption of doped NaAlH ₄ between: a) 4 mol% VCl ₃ and		
	b) 4 mol% VCl ₃ + 10 wt% graphite, and in the 7 th desorption:		
	c) 4 mol% VCl ₃ and d) 4 mol% VCl ₃ + 10 wt% graphite	83	
6.7	Correlation between temperature and hydrogen released during		

FIGURE

	the 1 st desorption of doped NaAlH ₄ between: a) 4 mol% Ti and	
	b) 4 mol% Ti + 10 wt% graphite, and in the 7 th desorption:	
	c) 4 mol% Ti and d) 4 mol% Ti + 10 wt% graphite	84
6.8	Correlation between temperature and hydrogen released during	
	the 1^{st} desorption of doped NaAlH ₄ between: a) 4 mol% TiO ₂ and	
	b) 4 mol% TiO ₂ + 10 wt% graphite, and in the 7^{th} desorption:	
	c) 4 mol% TiO ₂ and d) 4 mol% TiO ₂ + 10 wt% graphite	85
6.9	Correlation between temperature and hydrogen released during	
	the 1^{st} desorption of doped NaAlH ₄ between: a) 4 mol% TiCl ₃ and	
	b) 4 mol% TiCl ₃ + 10 wt% graphite, and in the 7 th desorption:	
	c) 4 mol% TiCl ₃ and d) 4 mol% TiCl ₃ + 10 wt% graphite	86
6.10	Hydrogen capacity calculated on the basis of the total weight of	
	4 mol% metal-NaAlH ₄ (light block) and 4 mol% metal-NaAlH ₄	
	co-doped with graphite (dark block)	87

CHAPTER VII

7.1	Schematic diagram of apparatus for CNT synthesis	98
7.2	Schematic diagram of Seivert's apparatus	98
7.3	TEM images of CNTs a) raw CNTs and b) CNTs after treatment	99
7.4	TGA analyses of CNTs a) raw CNTs, b) after HCl purification,	
	and c) after HNO3 treatment	100
7.5	TEM images of Pd nanoparticles supported on CNTs	
	a) at magnification of 100k and b) at magnification of 300k	101
7.6	TEM images of V nanoparticles supported on CNTs	
	a) at magnification of 200k and b) at magnification of 300k.	102
7.7	XRD patterns of a) raw CNTs, b) purified CNTs, c) Pd-CNTs,	
	And d) V-CNTs	103
7.8	Area ratio of D and G band peaks for purified CNTs, Pd-CNTs,	
	and V-CNTs	103

...

1.2

FIGURE

PAGE

CHAPTER V

8.1	The hydrogen capacity of the NaAlH ₄ samples	106
-----	---	-----