

CHAPTER V EFFECT OF TITANIUM PRECUSSOR ON DEHYDRIDING/HYDRIDING OF SODIUM ALANATE

5.1 Abstract

TiCl₃ has been considered as the best catalyst for hydrogen desorption/reabsorption of NaAlH₄ in terms of kinetic enhancement. However, the formation of NaCl as a by-product leads to the incomplete hydrogen re-absorption of NaAlH₄. In this work, TiO₂ and metallic Ti were selected as catalysts for the reaction to avoid the formation of the by-product. It was found that TiO₂ doped NaAlH₄ exhibits the similar behavior as TiCl₃ doped NaAlH₄ with the reversible hydrogen capacity about 3.8 wt% (H/M). In addition, TiO₂ also improves the rate of hydrogen re-absorption in the desorbed sample. This is due to the porosity of TiO₂ facilitates the hydrogen diffusion in the desorbed sample. However, some TiO₂ is reduced by NaAlH₄ and produces sodium oxide and hydroxide as by-products. This may be a reason why the reversible hydrogen capacity of NaAlH₄ doped with TiO₂ is not different from that of TiCl₃ doped NaAlH₄. Unexpectedly, metallic Ti doped NaAlH₄ shows the inferior hydrogen desorption/re-absorption. Its hydrogen reversible capacity is around 1 wt% (H/M). The formation of TiH_x ($1 \le x \le 2$) was detected in the sample after hydrogen desorption/re-absorption. This may be attributed to the formation of TiH_x that decreases the activity of hydrogen dissociation in the desorbed sample.

5.2 Introduction

The storage of hydrogen in complex metal hydride has been the subject for extensive research for many years. However, no hydride system fulfills strict requirements with respect to safety, reversible hydrogen capacity, and kinetics for commercial vehicular applications [1-2]. Sodium alanate or sodium aluminium hydride (NaAlH₄) has shown promising properties for hydrogen storage after the discovery on its reversibility with the presence of a metal catalyst [3-11]. Thus, this complex metal hydride system has been considered as a model system for hydrogen

storage material development. Ti-based catalysts have been widely studied and reported to be the best in improving the hydrogen desorption/re-absorption of NaAlH₄, but so far the reversible hydrogen capacity cannot reach its original state. The maximum reversible hydrogen capacity is close to 4 wt% H₂ compared to 5.6 wt% H₂ achieved from the first desorption of NaAlH₄ [8]. Ti(BuO)₄ was first introduced as a catalyst in the hydrogen desorption/re-absorption of NaAlH₄ [3]. Contaminant gases like propane and butane were produced along with hydrogen from the decomposition of the alkoxide compound. Moreover, oxygen from the alkoxide catalyst also contaminated the surface of the hydride and lowered reversible hydrogen capacity [12]. To avoid the problem, Ti-based halide compounds such as TiCl₃ was used as a catalyst. Although TiCl₃ shows better performance than Ti(BuO)₄, the reversible hydrogen capacity is still not up to 5.6 wt% H₂. In our previous work, we studied the hydrogen desorption/re-absorption of NaAlH₄ doped with different transition metal chlorides [10-11]. TiCl₃ was found to be the best and the best catalyst among the tested four transition metal chlorides with the reversible hydrogen capacity about 3.5 wt% H₂ (3.85 wt% H₂ based on hydride weight). Doping TiCl₃ in the hydride system poses the formation of NaCl as a by-product, which consumes active Na in the hydride system and may be one of the reasons for the low reversible hydrogen capacity of NaAlH₄.

To further substantiate whether the formation of the by-product during the hydrogen desorption/re-absorption causes the decrease in the reversible hydrogen capacity, TiO₂ and metallic Ti were used as catalysts in the hydrogen desorption/re-absorption of NaAlH₄ compared with that using TiCl₃. Moreover, the isothermal hydrogen desorption of TiCl₃ doped NaAlH₄ was conducted and fitted to the Arrhenius equation to determine the pre-exponential rate constant and activation energy.

5.3 Experimental

5.3.1 Materials

NaAlH₄ (90% purity), Ti powder (99.98%, 325 mesh) were purchased from Aldrich Chemical. TiO₂ (P25) was ordered from Degüssa. TiCl₃ (Riedel-de . . 1

Haën) was obtained from vacuum drying of 12% TiCl₃ in hydrochloric acid (see detail of preparation in Chapter 3).

5.3.2 Hydrogen desorption/absorption

. .

.

NaAlH₄, metallic Ti, and TiO₂ were used as received. The hydride sample was prepared by adding NaAlH₄ with 4 mol% metallic Ti, TiO₂, or TiCl₃ using a centrifugal ball mill (Retsch ball mill model S100, stainless steel vial size 250 ml, 1: 200 the mass ratio of sample and milling ball) for 20 min with a speed of 300 rpm. All sample preparation and the milling process were conducted under nitrogen atmosphere.

Hydrogen desorption/absorption on samples was measured by thermovolumetric method (Sievert's apparatus) as shown in Figure 4.1. Immediately after mixing, approximately 1 g of a sample was transferred into the high pressure stainless steel reactor in the glove box. Then, the reactor was fixed with the Sievert's apparatus. The K-type thermocouple was placed inside the reactor to measure the temperature connected with a PID temperature controller and furnace. The pressure transducer (Cole Parmer, model 68073-68074) was used to measure the pressure change resulting from hydrogen desorption from the sample. For hydrogen desorption, the samples were heated from room temperature to 280°C with a heating rate of 3°C min⁻¹. For the absorption experiments, hydrogen (99.9995%) was used to pressurize the high pressure vessel at 120°C and 10 MPa for 10 h. Once the pressure reading was constant over a period of time, the data was used to calculate the amount of hydrogen absorbed on the sample. An amount of the released hydrogen shown in the results (H/M) was calculated with respect to the amount of NaAlH₄ in the sample. The same procedure was repeated to investigate their reversibility.

To determine the pre-exponential factor of frequency factor, A, and activation energy, Ea, from the Arrhenius equation (Eq. (5.1)), the hydrogen desorptions were performed at a constant temperature 80, 90, 105, 115, and 135°C for TiCl₃ doped NaAlH₄; and 180, 190, 200, and 210°C for TiCl₃ doped Na₃AlH₆.

Sample characterization was also performed using a Rigaku x-ray diffractometer at room temperature over a range of diffraction angles from 28-80 with CuK-alpha radiation (40 kV, 30 mA). The oxidation state of TiO₂ was detected

1000

by electron spin resonance (ESR) spectrometer (JEO model JES-RE2X, frequency 88-96 GHz). And the surface area of the samples were determined by nitrogen adsorption/desorption at 77K (Micrometrics Tristar Surface analyzer) with Brunauer-Emmet-Teller (BET) analysis.

$$k = A \exp\left(\frac{-Ea}{RT}\right) \tag{5.1}$$

5.4 Results and Discussion

5.4.1 Hydrogen desorption/absorption on doped NaAlH4

Figure 5.1 shows the temperature program desorption in the 1st cycle of NaAlH₄ doped with 4 mol% metallic Ti (Ti-NaAlH₄), NaAlH₄ doped with 4 mol% TiO₂ (TiO₂-NaAlH₄), and NaAlH₄ doped with 4 mol% TiCl₃ (TiCl₃-NaAlH₄). Surprisingly, it can be clearly observed that the hydrogen desorption behavior of TiCl₃-NaAlH₄ is quite similar with that of TiO₂-NaAlH₄ by starting to decompose at 110°C while the hydrogen desorption of Ti-NaAlH₄ occurs at significantly higher temperature, 160°C. Figure 5.2 displays the reversibility of TiO₂-NaAlH₄. The subsequent hydrogen desorption behavior reproduces that of the 1st desorption except the reversible hydrogen capacity is lower, 3.8 wt% (H/M). In contrast, the subsequent hydrogen desorption of Ti-NaAlH₄ shifts to higher temperature, 200°C, while the reversible hydrogen re-absorption is around 1 wt% (H/M), Figure 5.3. From the sharp increase of subsequent desorption profiles, it indicates that only the 2^{nd} step of the reaction re-absorbs hydrogen (Eq. (5.2)). Thus, this answers why the subsequent hydrogen desorption takes place at higher temperature than that of the first desorption cycle. In addition, almost no significant changes in the amount of the desorbed hydrogen in the subsequent cycles even after 7 cycles for TiO₂-NaAlH₄ and Ti-NaAlH₄. This result is in good agreement with the sample doped with TiCl₃ as shown in Figure 4.4.

$$3NaH + Al + \frac{3}{2}H_2 \iff Na_3AlH_6$$
 (5.2)

Figure 5.4 is the comparison of the hydrogen desorption in the 7th desorption of a) TiO_2 -NaAlH₄, b) $TiCl_3$ -NaAlH₄, and c) Ti-NaAlH₄. Again, it clearly shows that the behavior of hydrogen desorption of TiO_2 -NaAlH₄ is almost identical to that of $TiCl_3$ -NaAlH₄. This reveals that TiO_2 exhibits the same effect as $TiCl_3$ in catalyzing the hydrogen desorption/re-absorption of NaAlH₄.

The comparison of the hydrogen re-absorption as shown in Figure 5.5 shows that TiO_2 -NaAlH₄ has the highest hydrogen re-absorption rate among the tested samples. The magnitude of the initial rate of hydrogen re-absorption of TiO_2 -NaAlH₄ (0.18 wt% (H/M) min⁻¹) is higher than that of $TiCl_3$ -NaAlH₄ (0.07 wt% (H/M) min⁻¹). TiO_2 -NaAlH₄ takes 5 h to reach the highest hydrogen re-absorption while $TiCl_3$ -NaAlH₄ needs 6 h to do so. In the case of Ti-NaAlH₄, its hydrogen re-absorption cannot reach as high even after 10 h. This result is in good agreement with the low hydrogen capacity in the subsequent cycles of Ti-NaAlH₄. The inferior hydrogen re-absorption rate of $TiCl_3$ -NaAlH₄ compared with TiO_2 -NaAlH₄ may be because the porous structure of TiO_2 increases the void in the hydride sample and prevent the agglomeration of the desorbed sample. This assists in increasing the surface area of the bulk hydride system.

To support this hypothesis, the BET surface area analysis was conducted with the desorbed samples of TiO_2 -NaAlH₄ and $TiCl_3$ -NaAlH₄. The surface area of the desorbed sample doped with TiO_2 is 147.65 m² g⁻¹ while that of the desorbed sample doped with $TiCl_3$ is 56.76 m² g⁻¹. Thus, it can be deduced that not only does TiO_2 improve the hydrogen reversibility of NaAlH₄, its porosity and high surface area also increase the surface area of the hydride sample, which facilitates the hydrogen diffusion in the desorbed sample. This leads to better hydrogen re-absorption of the TiO_2 -NaAlH₄ sample than that of the $TiCl_3$ -NaAlH₄

5.4.2 X-ray diffractions of doped NaAlH₄

In addition to the question on how TiO_2 catalyzes the reversible reaction of NaAlH₄, the TiO_2 -NaAlH₄ sample was characterized by the XRD technique as shown in Figure 5.6. After milling, the XRD result reveals only the pattern of NaAlH₄ while after complete hydrogen desorption, the products contain Al and NaH together with NaOH and Na₂O. The reabsorbed sample consists of NaAlH₄, Al, and a small amount of Na₃AlH₆ together with Na₂O. The formation of oxide compound in the system indicates that some TiO₂ is reduced by NaAlH₄ to produce oxygen and form NaOH and Na₂O in the hydride system. No evidence of Ti-compound was detected by XRD. To confirm the reduction of TiO₂ by NaAlH₄, the TiO₂-NaAlH₄ sample was analyzed by ESR spectrometer. From the ESR spectrum shown in Figure 5.7, the signal of Ti³⁺ reveals that some TiO₂ was reduced from Ti⁴⁺ as Ti³⁺. This evidence implies that there are the defect sites on the surface of TiO₂, which acts as the active sites for hydrogen dissociation into the desorbed sample [13]. However, the produced oxide compound also decreases the reversible hydrogen capacity of the hydride system.

Figure 5.8 shows the XRD patterns of the Ti-NaAlH₄ sample. After milling, peaks of NaAlH₄ with small peaks of metallic Ti can be observed. Then, metallic Ti becomes TiH_x (1 < x < 2) after hydrogen desorption/re-absorption. Moreover, no evidence of NaAlH₄ peaks in the sample after hydrogen re-absorption, only peaks of Na₃ÅlH₆, Al, and TiH_x can be observed. This result is in good agreement with the subsequent hydrogen desorption behavior of Ti-NaAlH₄ (Figure 5.3(b)). The formation of TiH_x corresponds to the drop in the activity of Ti in catalyzing the hydrogen dissociation leading to the lower hydrogen re-absorption.

5.4.3 Arrhenius analysis of TiCl₃-NaAlH₄

Correlation between time and amount of released hydrogen at constant temperature is shown in Figure 5.9 for the decomposition of NaAlH₄ to Na₃AlH₆ and Al; and in Figure 5.10 for the decomposition of Na₃AlH₆ to NaH and Al. From the result, the higher desorption temperature, the higher the hydrogen desorption rate. That observation is the same for both 1^{st} and 2^{nd} step desorption. The maximum reversible capacity in the 1^{st} step of reaction is around 2.6 wt% (H/M). The hydrogen desorption take places at temperature of 135°C to reach the highest capacity in the 1^{st} step within 20 min. In the case of the 2^{nd} decomposition, the release of hydrogen takes lower than 20 min at the desorption temperature higher than 190°C to reach the maximum hydrogen capacity of 1.2 wt% (H/M).

Figure 5.11 shows the Arrhenius plot of NaAlH₄ [7] and 4 mol% TiCl₃ doped NaAlH₄. From the slope and interception of the plot, calculated Ea and A are displayed in Table 5.1. It was found that doping TiCl₃ significantly decreases the activation energy of both steps of the hydrogen desorption of NaAlH₄. In the 1st desorption, the Ea value of NaAlH₄ clearly decreases from 118 kJ mol⁻¹H₂ to 75 kJ mol⁻¹H₂ (TiCl₃-NaAlH₄). In the case of the 2nd decomposition, the Ea value also decreases from 120.7 kJ mol⁻¹H₂ for pristine NaAlH₄ to 101 kJ mol⁻¹H₂ for TiCl₃-NaAlH₄. This indicates that doping TiCl₃ would help the decomposition of Al-H bond in the [AlH₄]⁻¹ and [AlH₆]⁻³ by lowering the activation energy in the hydrogen desorption. The frequency factors of both steps of the hydrogen desorption of TiCl₃-NaAlH₄ are lower than that of NaAlH₄.

5.5 Conclusion

The hydrogen desorption/re-absorption of NaAlH₄ doped with TiO₂ or metallic Ti was performed. It was found that TiO₂ doped NaAlH₄ exhibits the similar behavior as TiCl₃ doped NaAlH₄ with the reversible hydrogen capacity about 3.8 wt% (H/M). In addition, TiO₂ also improves the rate of hydrogen re-absorption in the desorbed sample compared with that using TiCl₃. This is due to the porosity of TiO₂ facilitating the hydrogen diffusion in the desorbed sample. However, some TiO₂ is reduced by NaAlH₄ and produces by-products, which are NaOH and Na₂O. This may be one reason why the reversible hydrogen capacity of NaAlH₄ doped with TiO₂ is not different with that of TiCl₃ doped NaAlH₄. In the case of Ti doped NaAlH₄, only the hydrogen capacity of 1 wt% (H/M). It reveals that metallic Ti became as TiH_x (1 < x < 2) in the sample after hydrogen desorption/re-absorption. This may indicate that the formation of TiH_x decreases the activity in hydrogen dissociation in the desorbed sample.

5.6 Acknowledgements

This work was supported by the National Science and Technology Development Agency (Reverse Brain Drain Project); the Petroleum and Petrochemical College (PPC), the Research Unit for Petrochemical and Environment Catalysts, the Ratchadapisek Somphot Endowment, and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University; and UOP LLC.

5.7 References

[1] Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G. The U.S. department of energy's national hydrogen storage. project: progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 2007:120;246-256.

1

[2] Schüth F, Bogdanović B, Felderhoff M. Light metal hydrides and complex hydrides for hydrogen storage. Chem. Comm. 2004:2249-2258.

[3] Bogdanović B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 1997;253-254:1-9.

[4] Zidan A, Takara S, Hee A, Jensen CM. Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride. J. Alloys Compd. 1999;285:119-122.

[5] Jensen M, Zidan R, Mariels N, Hee A, Hagen C. Advance titanium doping of sodium aluminum hydride: segue to a pratical hydrogen storage material? Int. J. Hydrogen Energy 1999;24:461-465.

[6] Bogdanović B, Brand RA, Marjanovic A, Schwickardi M, Tolle J. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J. Alloys Compd. 2000;302:36-58.

[7] Sandrock G, Gross K, Thomas G. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J. Alloys Compd. 2002;399:299-308.

[8] Gross KJ, Majzoub EH, Spangler SW. The effects of titanium precursors on hydriding properties of alanates. J. Alloys Compd. 2003;356-357:423-428.

[9] Anton DL. Hydrogen desorption kinetics in transition metal modified NaAlH₄. J.Alloys Compd. 2003;356-357:400-404.

[10] Suttisawat Y, Jannatisin V, Rangsunvigit P, Kitiyanan B, Muangsin N, Kulprathipanja S. Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH₄ and LiAlH₄. Int. J. Hydrogen Energy 2007;32:1277-1285.

[11] Suttisawat Y, Jannatisin V, Rangsunvigit P, Kitiyanan B, Muangsin N, Kulprathipanja S. Understanding the effect of TiO₂, VCl₃, and HfCl₄ on hydrogen desorption/absorption of NaAlH₄. J. Power Sources 2007;163:997-1002.

[12] Sandrock G, Gross K, Thomas G, Jensen C, Meeker D, Takara S. Engineering consideration in the use of catalyzed sodium alanates for hydrogen storage. J. Alloys Compd. 2002, 330-332, 696-701.

[13] Barkhordarian G, Klassen T, Bormann R. Catalytic mechanism of transitionmetal compound on Mg hydrogen sorption reaction. J. Phys. Chem. B, 2006, 110, 11020-11024.

. . .

Figure 5.1 Correlation between temperature and hydrogen capacity, during the 1st hydrogen desorption on: a) TiO₂-NaAlH₄ b) TiCl₃-NaAlH₄, and c) Ti-NaAlH₄.

Figure 5.2 Correlation between temperature and hydrogen released during hydrogen desorption from NaAlH₄ doped with 4 mol% TiO_2 a) 1st desorption and b) subsequent desorptions.

Figure 5.3 Correlation between temperature and hydrogen released during hydrogen desorption from NaAlH₄ doped with 4 mol% matallic Ti a) 1^{st} desorption and b) subsequent desorptions.

Figure 5.4 Comparison of the hydrogen desorption in the 7th desorption of a) TiO_2 -NaAlH₄ b) $TiCl_3$ -NaAlH₄, and c) Ti-NaAlH₄.

Figure 5.5 Hydrogen re-absorption rate of a) TiO₂-NaAlH₄, b) TiCl₃-NaAlH₄, and c) Ti-NaAlH₄.

Figure 5.6 XRD patterns of 4 mol% TiO_2 -NaAlH₄: a) after milling, b) after the hydrogen desorption, and after hydrogen re-absorption.

Figure 5.7 ESR patterns of a) as-received TiO_2 and b) TiO_2 -NaAlH₄ after milling.

Figure 5.8 XRD patterns of 4 mol% Ti-NaAlH₄: a) after milling, b) after the hydrogen desorption, and after hydrogen re-absorption.

Figure 5.9 The isothermal hydrogen desorption of $TiCl_3$ -NaAlH₄ in the 1st step decomposition at a) 80°C, b) 90°C, c) 105°C, d) 115°C, and e) 135°C.

Figure 5.10 The isothermal hydrogen desorption of $TiCl_3$ -NaAlH₄ in the 2nd step decomposition at a) 180°C, b) 190°C, c) 200°C, and d) 210°C.

Figure 5.11 Arrhenius plot for NaAlH₄ and Na₃AlH₆ decomposition for NaAlH₄ [7] and 4 mol% TiCl₃ doped NaAlH₄.

 Table 5.1 Experimentally derived parameter for the Arrhenius equation,

Sample	Activation energy, Ea kJ mol ⁻¹ H ₂		Frequency factor, A wt% $H_2 h^{-1}$	
	NaAlH ₄	Na ₃ AlH ₆	NaAlH ₄	Na ₃ AlH ₆
undoped NaAlH ₄ [7]	118.1	120.7	1.98×10^{13}	1.43×10^{13}
4%TiCl ₃ -NaAlH ₄	74.63	101.01	1.12×10^{10}	1.02×10^{12}

 $k = A \exp(-Ea/RT)$