CHAPTER VIII CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The main purpose of this thesis was to develop the reversible hydrogen capacity of NaAlH₄. Firstly, effects of transition metals (TiCl₃, ZrCl₄, HfCl₄, and VCl₃) on the hydrogen desorption/re-absorption of NaAlH₄ were studied. It was found that doping transition metals can improve the hydrogen desorption of NaAlH₄ by lowering the hydrogen desorption temperature. The reversible hydrogen capacities of doped NAIH₄ are 1.5 - 3.85 wt% (H/M). The role of metal on the reversible reaction of the desorbed hydride involves catalyzing the hydrogen dissociation into Al bulk. In addition, doping metals lead to the decrease in the activation energy of hydrogen desorption of NaAlH₄ resulting in lower desorption temperature. TiCl₃ shows the best performance among the tested metals. However, the formation of a by-product, NaCl, from metal chloride causes a depletion of NaH in the system and leads to lower hydrogen capacity of NaAlH₄. Consequently, other forms of the metal, Ti and TiO₂, were used as an additive in NaAlH₄ in stead of TiCl₃. The hydrogen capacity of TiO₂ doped NaAlH₄ is about the same as that of TiCl₃ doped NaAlH₄. Unexpectedly, the rate of hydrogen absorption of TiO₂ doped NaAlH₄ is higher than that of TiCl₃ doped NaAlH₄. This may be because the porosity of TiO₂, which was doped in the matrix of hydride facilitating hydrogen diffusion into the desorbed sample by increasing the surface area of the hydride system. Moreover, it was found that there is a segregation of the desorbed sample after hydrogen desorption, especially Al. This also lowers the reversible hydrogen capacity. Carbon materials (graphite, activated carbon, and carbon nanotubes) were used as co-dopants in metal doped NaAlH₄ to prevent the segregation and to increase the hydrogen diffusion in the desorbed hydride. It was found that the co-dopants significantly affect the hydrogen desorption/re-absorption of the hydride. The hydrogen re-absorption capacity of metal doped NaAlH₄ added with the co-dopants increases 5-70% as compared with that without a co-dopant. Moreover, doping with a co-dopant also increases the rate of hydrogen re-absorption of NaAlH₄. Among the three tested carbon materials, graphite seems to be the best co-dopant for $TiCl_3$ doped NaAlH₄ with hydrogen re-absorption up to 4 wt% (H/M). The hydrogen capacity of all NaAlH₄ samples is shown in Figure 8.1.

In the case of hydrogen capacity of carbon nanotubes (CNTs) deposited by Pd or V, although the CNTs decorated with metal nanoparticles can uptake hydrogen higher than the purified CNTs (<0.01 wt%), their hydrogen adsorption capacity is quite low, 0.125 wt% and 0.1 wt% for the Pd-CNTs and V-CNTs, respectively.

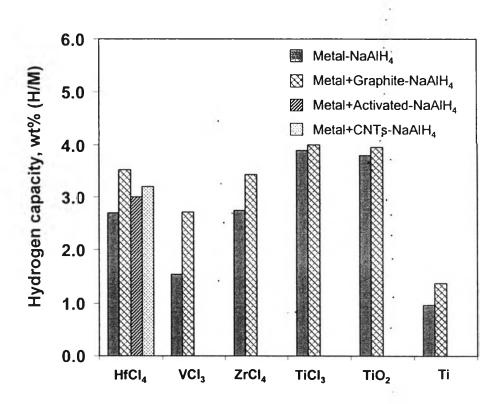


Figure 8.1 The hydrogen capacity of the NaAlH₄ samples.

Although the NaAlH₄ system probably does not have a sufficiently high hydrogen storage capacity for transportation (6 wt%), the valuable information can be gained from the detailed investigation of this system can be applied with other systems such as Mg(AlH₄)₂ 9.27 wt% and Ca(AlH₄)₂ 7.84 wt% (Orimo *et al.* 2007). The following list is a few things learned along the journey through this work.

1) Structure defect and destabilization

Mechanical ball milling can decrease the particle size of hydride and introduce a crystal lattice defect in the material. The destabilization of Al-H bond leads to the lower temperature of hydrogen desorption.

2) Action of catalyst

Transition metal, particularly Ti, catalyzes the decomposition of hydride and facilitates the dissociation of hydrogen into the desorbed system. Recently, other types of transition metal such as Sc and Ce have been introduced as the effective catalysts (Streukens *et al.*, 2006).

3) Increasing surface area

Adding carbon materials in a hydride system can increase the surface area of the system, which reduces the diffusion path way of hydrogen. This can improve the rate of hydrogen absorption of the hydride.

8.2 Recommendations

Based on what have been discovered in this study, the following recommendations are suggested:

1) Hydrogen mass transfer into the hydride is a main factor on the rate of hydrogen absorption. Therefore, the reduction of the particle size of NaAlH₄ and increasing of the metal catalyst dispersion on the hydride system should be conducted,

2) The purification of NaAlH₄ before using in the experiment should be carried out,

3) A number of cycle on the hydrogen desorption/absorption of NaAlH₄ should be increased, at least 50 cycles to investigate the stability of the hydride sample,

4) Investigate the effect of other metal types, such as Sc and Ce, and codopants on hydrogen desorption/absorption of NaAlH₄,

5) Up scaling the hydride system should be conducted.