การปรับปรุงโครงสร้างจุลภาคและสมบัติทางกายภาพของไฮดรอกซีอะพาไทต์ที่มีรูพรุน โดยการเติมซิลิกาและแก้วเพื่อใช้เป็นวัสดุทดแทนกระดูก

นางสาวณัฐกานต์ โกษาจันทร์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีเซรามิก ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2550 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IMPROVEMENT OF MICROSTRUCTURAL AND PHYSICAL PROPERTIES OF POROUS HYDROXYAPATITE BY ADDING SILICA AND GLASS FOR USE AS A BONE REPLACEMENT MATERIAL

Miss Nudthakarn Kosachan

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Ceramic Technology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2007 Copyright of Chulalongkorn University

502159

Thesis Title	IMPROVEMENT OF MICROSTRUCTURAL AND PHYSICAL PROPERTIES
	OF POROUS HYDROXYAPATITE BY ADDIING SILICA AND GLASS FOR
	USE AS A BONE REPLACEMENT MATERIAL
Ву	Miss Nudthakarn Kosachan
Field of Study	Ceramic Technology
Thesis Advisor	Supatra Jinawath, Ph.D.
Thesis Co-advisor	Angkhana Jaroenworaluck, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of

the Requirements for the Master's Degree

S. Hannonghua Dean of The Faculty of Science

١

(Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

8 Chairman

(Associate Professor Saowaroj Chuayjuljit)

Supatra Thesis Advisor

(Associate Professor Supatra Jinawath, Ph.D.)

Argunane JAPENCERE Thesis Co-advisor

(Angkhana Jaroenworaluck, Ph.D.)

Disputa Pongleau Kashima Member

(Dujreutai Pongkao Kashima, D. Eng)

Pornegon Siyaridworakun Member

(Pornapa Sujaridworakun, D. Eng)

ณัฐกานต์ โกษาจันทร์. การปรับปรุงโครงสร้างจุลภาคและสมบัติทางกายภาพของไฮดรอก ซีอะพาไทต์ที่มีรูพรุนโดยการเติมซิลิกาและแก้วเพื่อใช้เป็นวัสดุทดแทน กระดูก.(Improvement of microstructural and physical properties of porous hydroxyapatite by adding silica and glass for use as a bone replacement material). อ. ที่ปรึกษา: รศ.ดร.สุพัตรา จินาวัฒน์, อ. ที่ปรึกษาร่วม: ดร.อังคณา เจริญวรลักษณ์,110 หน้า.

งานวิจัยนี้เป็นการปรับปรุงไฮดรอกซีอะพาไทต์ที่มีรูพรุนให้มีความแข็งแรงสำหรับใช้เป็นวัสดุ ทดแทนกระดูก โดยทำการศึกษาเพื่อปรับปรุงโครงสร้างทางจุลภาคและคุณสมบัติเชิงกลของวัสดุไฮดรอก ซีอะพาไทต์ที่ให้มีความหนาแน่นสูงในขณะเดียวกันก็ยังคงไว้ของโครงสร้างที่มีความเป็นรูพรุนสำหรับ ้คุณสมบัติทางด้านความเข้ากันได้ทางชีวภาพหรือไบโอแอคทีฟ โดยในการศึกษานี้ได้ทำการเปรียบเทียบ ผลของการเปลี่ยนแปลงคุณสมบัติของไฮดรอกซีอะพาไทด์ที่ไม่ได้มีการเติมและที่เติมผงซิลิกาและแก้ว หลอมในอัตราส่วนตั้งแต่ 0.5 ถึง 20 เปอร์เซ็นต์(โดยน้ำหนัก) ที่ผ่านการเผาผนึกที่ 1150 และ 1300 องศา เซลเซียส ทำการขึ้นรูปวัสดุโดยวิธีการใช้แรงอัดที่ความดันสูงและวิธีการใช้วัสดุโฟมพอลิเมอร์เป็นวัสดุ ต้นแบบที่ทำให้เกิดโครงสร้างที่เป็นรูพรุน วัสดุที่ได้จากการขึ้นรูปและผ่านการเผาผนึกได้ถูกตรวจสอบ โครงสร้างทางจุลภาคโดยการใช้กล้องจุลทรรศน์แบบส่องกราดและเอกซ์เรย์ดิฟแฟรกโตรมิเตอร์ การ เปลี่ยนแปลงหมู่ฟังก์ชันทางเคมีได้ใช้วิธีฟลูเรียร์ทรานฟอร์มอินฟาเรดสเปกโตรสโคปีในการตรวจสอบ และทำการวัดคุณสมบัติเชิงกลคือวัด ความแข็งแรงเชิงกด และความแข็ง สำหรับคุณสมบัติการเข้ากันได้ ทางชีวภาพนั้นทำการทดสอบโดยการนำวัสดุตัวอย่างไปแช่ในสารละลายเอสบีเอฟที่ระยะเวลาต่าง ๆ กัน จากการศึกษาพบว่าวัสดุไฮดรอกซีอะพาไทต์ที่ขึ้นรูปด้วยการอัดจะมีอัตราการเปลี่ยนเฟล ้จากไฮดรอกซีอะพาไทต์เป็นไตรแคลเซียมฟอสเฟตเพิ่มมากขึ้นเมื่อเพิ่มอุณหภูมิและปริมาณของสารเติม แต่งมีผลต่อการเปลี่ยนแปลงคุณสมบัติทางเชิงกลและไบโอแอคทีฟ การขึ้นรูปไฮดรอกซีอะพาไทต์ที่มีรู พรุนโดยใช้วิธีโฟมพอลิเมอร์และเผาผนึกที่ 1300 องศาเซลเซียสจะทำให้ได้ตัวอย่างที่มีขนาดของรูพรุน ระหว่าง 100 ถึง 420 ไมครอนและมีลักษณะเป็นรูพรุนที่มีความต่อเนื่องเหมาะกับการนำไปใช้เป็นวัสดุ ทดแทนกระดูก การเติมแก้วหลอม 0.5 ถึง 20 เปอร์เซ็นต์โดยน้ำหนักในไฮดรอกซีอะพาไทต์ที่มีรูพรุนทำ ให้ปริมาณของรูพรุนลดลงจาก 85 เป็น 78 เปอร์เซ็นต์ช่วยให้ความแข็งแรงเพิ่มขึ้นจาก 0.67เป็น 11 เมกะ ปาสคาล จากผลการศึกษานี้แสดงให้เห็นว่าไฮดรอกซีอะพาไทต์ที่มีรูพรุนที่มีการเติมแก้วหลอมมีสมบัติที่ ้เหมาะสมในการนำไปใช้เป็นวัสดุทดแทนกระดูกสำหรับการนำไปประยุกต์ใช้งานทางด้านการแพทย์

4872276623 : CERAMIC TECHNOLOGY MAJOR

KEY WORD: HYDROXYAPATITE (HA) / TRICALCIUM PHOSPHATE (TCP)/ SILICA (SiO₂) / GLASS

NUDTHAKARN KOSACHAN: IMPROVEMENT OF MICROSTRUCTURAL AND PHYSICAL PROPERTIES OF POROUS HYDROXYAPATITE BY ADDING SILICA AND GLASS FOR USE AS A BONE REPLACEMENT MATERIAL.THESIS ADVISOR: ASSOC.PROF.SUPATRA JINAWATH, Ph.D., THESIS CO-ADVISOR: ANGKHANA JAROENWORALUCK, Ph.D., 110 pp.

The aim of this study was to improve strength of porous hydroxyapatite (HA) for use as a bone replacement material. Microstructural and physical properties were also studied and evaluated. Methods of processing the HA ceramic to high density yet retaining the large open pores required for biocompatibility were investigated. Uniaxial pressing, to fabricate standard pellets and the polymer foam technique, were employed to produce the desired structures. Fabrication of porous HA with and without additives using these methods was also undertaken for comparison. Silica (SiO₂) and commercially available glass frit were used as additives. The silica powder and glass frit were added to the HA powder in the range of 0.5 to 20 wt% to fabricate the final ceramic structures. Sintering was done at 1150°C and 1300°C for 4 h. XRD and SEM analysis were used to characterize the sintered HA samples. FT-IR analysis was used for chemical functional analysis. Compressive strength and hardness measured the mechanical properties. The sintered HA samples were immersed in simulated body fluid (SBF) for various periods of time to determine bioactivity. For uniaxially pressed HA, the transformation of HA to TCP occurred at the higher sintering temperature and the amount of additive was related to mechanical strength and bioactivity. For HA doped with the silica or glass frit, < 5.0wt%, faster precipitation of new layers of Ca-P was noted. HA fabricated from the polymeric foam method, after sintering at 1300°C, had a pore size in the range 100-420 µm with interconnected pores suitable for bone ingrowth. HA with glass from 0.5 to 20.0wt% had a slightly decreased porosity from 85 to 78%, and the compressive strength varied between 0.67 to 11 MPa. This study indicates that porous HA with glass additive can be used as a bone replacement material in medical applications due to its combination of attractive properties.

 Department......Material Science......Student's signature.

 Field of study....Ceramic Technology.....Advisor's signature.

 Supatron

 Academic year..2007......Co-advisor's signature.

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere thanks to my advisor, Assoc. Prof. Dr. Supatra Jinawath, who kindly gives me every benefit of her advice and discussion. I would like to extend my gratitude to my co-advisor, Dr. Angkhana Jaroenworaluck of the National Metal and Materials Technology Center (MTEC), for her guidance, suggestions and discussions. I have learnt a lot of things from her support throughout this work. Moreover, I would like to thank Prof. Dr.Ron Stevens of University of Bath, UK, for his useful comments and discussion in this thesis and scientific papers published in international conference proceedings and journals.

MTEC is greatly acknowledged for its support throughout my work. This thesis is a part of research project financially supported by MTEC under funding no. MT-B-49-BMD-07-117-I. I also gratefully appreciated the financial support of the Thailand Graduate Institute of Science and Technology (TGIST) for financial support. I would like to thank all of MTEC technical staff for their help in teaching me how to use equipments for the experimental investigation.

Finally, I would like to express the special thanks to my parents for giving me life, love, encouragement and support for everything. Thanks to my brother and my sister for taking their time and patience to listen to all my problems, complaints and frustrations.

CONTENTS

	Page
ABTRACT (THAI)	iv
ABSTRACT (ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
CHAPTER INTRODUCTION	1
CHAPTER II LITERATURE REVIEW	4
2.1 Bone Structure	4
2.2 Biomaterials and Bone Replacements	7
2.3 Calcium Phosphate Based Bioceramics	12
2.4 Preparation Methods of Porous Hydroxyapatite for Bone	
Replacement Applications	22
2.4.1 Conversion of Marine Coral and Natural Bone Skeleton	
by Hydrothermal Processes	24
2.4.2 Formation of Porous Structure using Pore Forming	
Volatile Particles	25
2.4.3 Ceramic Foaming Technique	27
2.4.4 Polymeric Sponge Method	28
2.5 Development of Porous Hydroxyapatite for Bone Replacement	
Applications by Polymeric Sponge Method	30
2.5.1 Improve Mechanical Strength	30
2.5.2 Biological Improvement of Porous HA using Ions Substitute.	32
CHAPTER III EXPERIMENTAL PROCEDURES	35
3.1 Starting Material	35
3.2 Preparation of Porous Hydroxyapatite for Bone	
Replacement Applications	37

	Page
3.2.1 Preparation of Porous HA with and without Additive	
by Uniaxial Pressing Method	37
3.2.2 Preparation of Porous HA with and without Additives	
by Polymeric Sponge Method	39
3.3 Characterizations	41
3.3.1 Particle Size Distribution Analysis by Mastersizer-S	41
3.3.2 Phase Identification	41
3.3.3 Microstructural Analysis	41
3.3.4 Chemical Composition Analysis	42
3.3.5 Chemically Functional Group Analysis	42
3.3.6 Porosity and Density Measurement	42
3.3.7 Mechanical Testing	43
3.3.8 In vitro Bioactivity Using Simulated Body Fluid (SBF)	
Immersion Technique	44
CHAPTER IV RESULTS AND DISCUSSION	46
4.1. Porous Hydroxyapatite Using Uniaxial Pressing	46
4.1.1 Characterizations of the as received HA Powder	46
4.1.2 Microstructural Evolution of Pure HA after Sintering	48
4.1.3 Phase Formation of Pure HA after Sintering	
4.1.4 In vitro Bioactivity of Pure HA	51
4.2 Effect of Silica (Aerosil-200) Content on Porous HA	
using Uniaxial Pressing	56
4.2.1 Microstructural Evolution of Porous HA with SiO ₂ Additive	56
4.2.2 Phase Formation of Porous HA with SiO ₂ Additive	58
4.2.3 Porosity and Density Measurement of HA with SiO ₂ Additive	e67
4.2.4 Mechanical Properties of Porous HA with SiO ₂ Additive	68
4.2.5 In vitro Bioactivity of Porous HA with SiO ₂ Additive	72
4.3 Effect of Glass frit on Porous Hydroxyapatite	
Using Uniaxial Pressing	76

D	ิล	a	е
	ч	Э	\sim

	Page
	4.3.1 Microstructural Evolution of Porous HA with Glass Additive
	4.3.2 Phase Formation of Porous HA with Glass Frit Additive
	4.3.3 Porosity and Density Measurement8
	4.3.4 Mechanical Properties of Porous HA with Glass Frit Additive8
	4.3.5 In vitro Bioactivity of Porous HA with Glass Frit Additive84
4.4	Preparation Porous HA with and without Glass Frit Additive by
	Polymeric Sponge Method
	4.4.1 Microstructural of Porous Hydroxyapatite
	4.4.2 Microstructural Evolution of Porous HA with Glass Frit Additive90
	4.4.3 Mechanical Properties of Porous HA with Glass Frit Additive93
CHAPTER V	CONCLUSIONS
CHAPTER VI	SUGGESTIONS FOR FUTURE WORK
CHAPTER VII	THESIS OUTPUTS
REFERENCE	S100
APPENDICES	S106
	Appendix A SEM Micrographs of HA and HA with Glass Frit Additive
	Sintered at 1300 °C107
	Appendix B FT-IR patterns of Polymer Foam from (a) waste as replica
	and (b) Commercial Polyurethane Foam108
	Appendix C Properties of Porous HA with varied amount of SiO_2 and
	Glass Frit Additive using Polymeric Sponge Method
	111

LIST OF TABLES

Page	
Table 2.1 Composition of bone 5	
Table 2.2 Physical characteristics of bone 5	
Table 2.3 Present uses of bioceramics in medical applications	
Table 2.4 Physical properties of calcium phosphate 12	
Table 2.5 Physical properties of various phases of calcium phosphate	
bioceramics13	
Table 2.6 Solubility and pH stability of different phases of calcium	
Phosphates15	
Table 2.7 Calcium phosphate compounds used a biomaterial 16	
Table 3.1 Composition of hydroxyapatite as a raw material 36	
Table 3.2 Chemical composition of the HA powder and glass frit (No. 7406)37	
Table 3.3 Nominal ion concentrations of simulated body fluid (SBF) in	
comparison with those in human blood plasma45	
Table 4.1 Variation of phase composition and apparent density of HA with SiO_2	
additive sintered at 1150 °C59	
Table 4.2 Chemical analysis data of HA with silica additive from figure 4.18	

LIST OF FIGURES

Page
Figure 2.1 Organization of a typical bone6
Figure 2.2 Typical X-ray analysis of a human bone6
Figure 2.3 Bioactivity spectrums for various bioceramic implants (a)relative rate of
bioreactivity and (b) time dependence of bone formation bonding at
an implant interface9
Figure 2.4 Solubility phase diagrams for the ternary system, $Ca(OH)_2$ -H ₃ PO ₄ -H ₂ O
at 37 $^{\circ}\mathrm{C}$ showing two logarithms of the concentrations of (a) calcium
phosphate (b) phosphate as a function of the pH in solution saturated
with various salt in the solubility isotherm14
Figure 2.5 Structure of hydroxyapatite
Figure 2.6 Hydroxyapatite structure projected down the c axis onto the basal
plane20
Figure 2.7 Schematic explanation of the negative charge occurring on the HA
surface and the process of bonelike apatite formation immersed in
SBF21
Figure 2.8 The variation of the bone growing rate as a function of the pore
dimensions under constant porosity condition
Figure 2.9 Flowchart of an example of a macroporous body manufacture
Figure 2.10 (a) PMMA balls as porogen agent (diameter balls :190 $\mu\text{m})$
and (b) porous structures obtained after debinding and sintering
treatments (pore diameter :110µm)26
Figure 2.11 Step- by –step of a polymeric sponge method
Figure 2.12 Mechanism of apatite formation on CaO-SiO ₂ glasses in SBF
Figure 3.1 Size and particle size distribution of
hydroxyapatite powder
Figure 3.2 Flow chart of the porous hydroxyapatite by uniaxial pressing method38
Figure 3.3 Flowchart of porous HA fabricated by polymeric sponge method40

xii

Figure 4.1 ((a) SEM micrographs and (b) X-ray diffraction pattern of
â	as-received HA powder47
Figure 4.2	EDS analysis of as-received HA powder47
Figure 4.3	SEM micrographs of hydroxyapatite sintered at 1150 °C and
1	300 °C, respectively
Figure 4.4	X-ray diffraction pattern of hydroxyapatite as received and
S	sintered at 1150 °C and 1300 °C50
Figure 4.5	FT-IR spectra of hydroxyapatite as received and
S	sintered at 1150 °C and 1300 °C50
Figure 4.6	SEM images of HA without additive after soaking in SBF at 37 $^\circ ext{C}$
	for varied periods
Figure 4.7	SEM micrographs of HA (a) before and (b) after immersion in SBF.
1	Note : the growth of crystals is in the pores opening to the surface53
Figure 4.8	AFM scans of the HA surface (a) before and (b) after immersion
i	in SBF for 12 h and (c) 3 days, showing the morphological change
C	during the early stage of HA dissolution54
Figure 4.9	SEM image and EDS analysis of the porous HA after
i	immersion in SBF54
Figure 4.10	X-ray diffraction patterns of porous HA before and after exposure
	in SBF at 37 °C55
Figure 4.11	SEM micrographs of the HA without and with SiO_2 additive sintered at
	1150 °C and fabricated by uniaxial pressing57
Figure 4.12	SEM micrograph and X-ray diffraction pattern of fumed silica
	(SiO ₂ ; Aerosil-200)
Figure 4.13	XRD patterns of HA with varied amount of SiO ₂ after sintered
	at 1150 °C60
Figure 4.14	FT-IR spectra of pure HA, β -TCP and fumed silica (SiO ₂ ; aerosil-200) 61
Figure 4.15	FT-IR spectra of HA with varies amount of SiO ₂ additive after
	sintering at 1150 °C63

Page
Figure 4.16 FT-IR spectra measured near (a) 3570 cm ⁻¹ and (b) 630 cm ⁻¹
as a function of SiO_2 content. This corresponds to the OH
stretching frequency64
Figure 4.17 SEM images and EDS results of (a) HA without silica (b) HA with
5.0wt% silica sintered at 1150 °C65
Figure 4.18 SEM images and associated EDS analysis of 5.0wt% SiO_2 – doped
HA sintered at 1150 $^{\circ}\mathrm{C}$ (Arrow indicates the selected area of analysis)66
Figure 4.19 OM micrographs of the sintered HA (a) without and (b) with SiO_2
additive 10.0 wt% SiO ₂ using uniaxial pressing67
Figure 4.20 Sintered densities of HA with varied amount of SiO ₂ additive68
Figure 4.21 Effect of SiO ₂ additives on the compressive strength and
Vickers microhardness70
Figure 4.22 Typical load-displacement curves of the sintered HA with
\rm{SiO}_2 additive (a) 0.5 wt% and (b) 10.0 wt% \rm{SiO}_2 71
Figure 4.23 SEM images of HA with and without SiO ₂ additive after immersion
in SBF at 37 $^\circ\mathrm{C}$ for 5 days73
Figure 4.24 SEM images of pure HA after immersion in SBF for 1 day
and 7 days74
Figure 4.25 SEM images of HA with 10.0 SiO ₂ additive after immersion in
SBF for 3 and 7 days74
Figure 4.26 XRD patterns of HA with 0.5wt% SiO_2 addition soaked in SBF
for varied periods76
Figure 4.27 SEM micrographs of (a) HA and (b) glass additive powders
(Frit 7406)77
Figure 4.28 SEM micrographs of the sintered HA without additive,
sintered at (a) 1150 $^\circ$ C, (b) 1300 $^\circ$ C and (c-d) HA with glass
additive (20.0 wt%) sintered at 1150 °C and 1300 °C, respectively78

Page
Figure 4.29 Comparison set of XRD patterns of glass frit additive
and HA powder before and after sintering at 1150 $^\circ \rm C$ and
1300 °C, respectively79
Figure 4.30 XRD patterns of HA without and with glass frit additive,
after sintering at 1150 °C80
Figure 4.31 Densities of HA without and with varied amount of glass frit additive
sintered at (a) 1150 °C and (b) 1300 °C82
Figure 4.32 Compressive strength of the HA samples sintered at 1150 $^\circ$ C and
1300 °C with and without different additive content
Figure 4.33 Vicker's micro-hardness of the HA samples with varied amount
of glass frit content sintered at 1150 $^\circ$ C and 1300 $^\circ$ C83
Figure 4.34 SEM images of HA without and with glass frit
additive after immersion in SBF at 37 °C for 7 days
Figure 4.35 SEM micrograph showing the pores and the struts of
polymer foam from waste87
Figure 4.36 Porous HA scaffolds, made from HA without and with glass frit additive,
in different size and shape sintered at 1300 $^{\circ}\mathrm{C}$ (The scale
is centimeter.)87
Figure 4.37 SEM micrographs of HA without additive sintered (a-b) at 1200 $^\circ \! C$
and (c-d) 1300 °C, respectively89
Figure 4.38 Polished surface of the porous HA with varied amount of
glass frit additive sintered at 1300 °C89
Figure 4.39 Porous HA with varied amount of glass frit additive
using polymeric sponge method after sintering at 1300 $^\circ C$ 91
Figure 4.40 SEM Micrographs of HA with 10.0 wt% glass frit additive sintered
at 1200 $^{\circ}\mathrm{C}$ and fabricated by uniaxial pressing and polymeric
sponge method92

Pa	age
Figure 4.41 SEM micrographs of HA with 5 wt% and 10.0 wt% SiO_2 and	
glass frit additives sintered at 1300 $^\circ \rm C$ and fabricated by	
polymeric sponge bone	92
Figure 4.42 Relationship between compressive strength,	
porosity of HA and the varied amount of glass frit additive	
after sintering at 1300 °C	94