UTILIZATION OF ELECTROSPUN POLY(VINYL ALCOHOL) AND CELLULOSE ACETATE FIBER MATS AS CARRIERS FOR TOPICAL RELEASE OF NSAIDS AND VITAMINS

Pattama Taepaiboon

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2007

502076

CLAIN ORP

Thesis Title:	Utilization of Electrospun Poly(vinyl alcohol) and Cellulose
	Acetate Fiber Mats as Carriers for Topical Release of NSAIDs
	and Vitamins
By:	Pattama Taepaiboon
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Pitt Supaphol
	Dr. Uracha Rungsardthong

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

......Nanlays Januart College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Nantage Janumet

(Assoc. Prof. Nantaya Yanumet)

(Assoc. Prof. Pitt Supaphol)

Anurallowal

(Dr. Uracha Rungsardthong)

Uracha Rungsard thang

(Assoc. Prof. Anuvat Sirivat)

ttpt 2M.

(Assoc. Prof. Ittipol Jangchud)

ABSTRACT

4682006063: Polymer Science Program
Pattama Taepaiboon: Utilization of electrospun poly(vinyl alcohol) and cellulose acetate fiber mats as carriers for topical release of NSAIDs and vitamins
Thesis Advisor: Assoc. Prof. Pitt Supaphol and Dr. Uracha
Rungsardthong, 183 pp.
Keywords: Electrospinning/ Nanofibers/ Poly(vinyl alcohol)/ Cellulose acetate/

Keywords: Electrospinning/ Nanofibers/ Poly(vinyl alcohol)/ Cellulose acetate/ Transdermal drug delivery system

Mats of poly(vinyl alcohol) (PVA) and cellulose acetate (CA) nanofibers were successfully prepared by the electrospinning process and were developed as carriers of drugs and vitamins for transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drugs (NSAIDs) of varying water solubility, i.e. sodium salicylate (SS), diclofenac sodium (DS), naproxen (NAP), and indomethacin (IND) were incorporated in the mats of PVA nanofibers. Due to the high amounts of SS released from the mats of SS-containing PVA nanofibers, cross-linking of the polymer matrix (PVA) was required in order to retard the rate of drug (SS) released. Cross-linking of the SS-loaded electrospun PVA mats was achieved by exposing the mats to the vapor from 5.6 M aqueous solution of either glutaraldehyde or glyoxal for various exposure time intervals. Moreover, mats of CA nanofibers were also developed as carriers for delivery of the model vitamins, i.e., vitamin A acid (Retin-A) and vitamin E (Vit-E). The morphological appearance of the electrospun nanofibers containing NSAIDs and vitamins depended on the nature of the polymers, the solvent, the drugs, the vitamins, and their solutions. Chemical integrity of the drugs within the drug-loaded as-spun mats, thermal property, swelling and weight loss behavior of neat and drug-loaded as-spun mats in an aqueous medium was studied. In addition, the release characteristics of NSAIDs and vitamins from electrospun nanofibers were investigated. Two types of release study, i.e. total immersion and transdermal diffusion through a pig skin, were carried out.

บทคัดย่อ

ปัทมา แต้ไพบูลย์ : การประยุกต์ใช้แผ่นเส้นใยอิเล็กโตรสปันพอลิไวนิลแอลกอฮอล์และ เซลลูโลสอะซิเดตเป็นวัสคุนำส่งเฉพาะที่ของยา NSAID และไวตามิน (Utilization of Electrospun Poly(vinyl alcohol) and Cellulose Acetate Fiber Mats as Carriers for Topical Release of NSAIDs and Vitamins) อ. ที่ปรึกษา : รองศาตราจารย์คร พิชญ์ ศุภผล และ คร อุรชา รังสาคทอง 183 หน้า

้งานวิจัยนี้เป็นการนำกระบวนการปั่นเส้นใยด้วยไฟฟ้าสถิตมาใช้เพื่อขึ้นรูปเส้นใยพอลิ ้ไวนิลแอลกอฮอล์และเซลลูโลสอะซิเคค เส้นใยที่ได้จะถูกนำมาพัฒนาเป็นวัสคุนำส่งยาด้นแบบ รวมทั้งสารจำพวกไวตามิน เพื่อใช้สำหรับสำหรับกระบวนการนำส่งยาผ่านทางผิวหนัง ยาต้นแบบ ในงานวิจัยนี้เป็นยาแก้ปวดในกลุ่มเอ็นเซคที่มีความสามารถในการละลายน้ำต่างกันทั้งหมด 4 ประเภท ได้แก่โซเดียมซาลิไซเลต ไคโครฟีแนคโซเดียม นาพรอกเซนและ อินโคเมทาซิน ยา ้เหล่านี้จะอยู่ในเส้นใยพอลิไวนิลแอลกอฮอล์ นอกจากนี้ เพื่อที่จะควบคุมอัตราการปลคปล่อยของ ยา จึงได้มีการเชื่อมโยงเส้นใยพอลิไวนิลแอลกอฮอล์โดยวิธีการอังไอระเทยของสารละลายกลูตา-รอลดีไฮด์และ สารละลายไกรออกซอลด้วยระยะเวลาที่ต่างๆกัน ตามด้วยการให้ความร้อนในต้อบ สุญญากาศ นอกจากพอถิไวนิลแอลกอฮอล์แล้ว เส้นใยเซลลูโลสอะซิเตตที่ได้จากกระบวนการปั้น เส้นใยด้วยไฟฟ้าสถิตยังถูกนำมาพัฒนาเพื่อใช้นำส่งสารจำพวกไวตามิน ในงานวิจัยนี้ได้ใช้ไว-ตามินอี และไวตามินเอเอซิคเป็นสารที่ด้องการนำส่ง ลักษณะพื้นผิวของเส้นใยที่ได้ขึ้นกับสมบัติ ้งองยาค้นแบบหรือ ไวตามินที่รวมอยู่ค้วย งานวิจัยนี้ได้มีการศึกษาสมบัติทางความร้อน ความ ้แข็งแรงเชิงกล การบวมน้ำและการสูญเสียมวลเนื่องจากการละลายน้ำของเส้นใยทั้งที่มียาค้นแบบ และไม่มียาต้นแบบรวมถึงไวตามินด้วย และได้ทำการทดลองเพื่อศึกษาการปลดปล่อยยางากเส้น ใยพอลิเมอร์โคยใช้วิธีการทดลองแบบงุ่ม และการทคลองการปลคปล่อยยาแบบซึมผ่านผิวหนัง โดยใช้หนังหมู

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisor, Assoc. Prof. Pitt Supaphol from The Petroleum and Petrochemical College, Chulalongkorn University for giving her invaluable knowledge, meaningful guidance and their encouragement all along the way. She also would like to express her sincere thanks to Professor David C. Martin and colleagues from the University of Michigan for giving her useful advises and suggestions while she did a short research at the University of Michigan.

She gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance. Moreover she would like to give her special thanks to all members in her research group and all of her friends for their kind assistance, continual encouragement and wonderful friendship.

Assoc. Prof. Nantaya Yanumet, Assoc. Prof. Pitt Supaphol, Assoc. Prof. Anuvat Sirivat, Dr. Uracha Rungsardthong and Assoc. Prof. Ittipol Jangchud are further acknowledged for being her dissertation committees, making valuable comments and suggestions.

She wishes to express her deep gratitude to her family for their unconditioned love, understanding and very supportive during all these years she spent for her Ph.D. study.

Finally, she is grateful for the partial fund by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium), National Nanotechnology Center (through an inhouse research grant) and a doctoral scholarship received from the Thailand Graduate Institute of Science and Technology (TGIST) (TG-55-09-874D). This work would not be carried out successfully without all financial supports.

TABLE OF CONTENTS

		PAGE
Title	Page	i
Abst	tract (in English)	iii
Abst	tract (in Thai)	iv
Ack	nowledgements	v
Tabl	e of Contents	vi
List	of Tables	ix
List	of Figures	xii
Abb	reviations	xvii
List	of Symbols	xviii
СНАРТЕ	R	
I	INTRODUCTION	1
II	THEORITICAL BACKGROUND	
	AND LITERATURE SURVEY	4
	•	
III	EXPERIMENTAL	28
IV	DRUG-LOADED ELECTROSPUN MATS	33
	OF POLY(VINYL ALCOHOL) FIBERS AND	
	THEIR RELEASE CHARACTERISTICS OF	
	FOUR MODEL DRUGS	
	4.1 Abstract	33
	4.2 Introduction	34
	4.3 Experimental	36
	4.4 Results and Discussion	40
	4.5 Conclusion	51
	4.6 Acknowledgements	52

СН	APTE	R	PAGE
	IV	4.7 References	52
	v	EFFECT OF CROSS-LINKING ON PROPERTIES	70
		AND RELEASE CHARACTERISTICS OF	
		SODIUM SALICYLATE-LOADED ELECTROSPUN	
		POLY(VINYL ALCOHOL) FIBER MATS	
		5.1 Abstract	70
		5.2 Introduction	71
		5.3 Experimental	73
		5.4 Results and Discussion	78
		5.5 Conclusion	86
		5.6 Acknowledgements	88
		5.7 References	88
	VI	VITAMIN-LOADED ELECTROSPUN	103
		CELLULOSE ACETATE NANOFIBER MATS	
		AS TRANSDERMAL AND DERMAL	
		THERAPEUTIC AGENTS OF VITAMIN A ACID	
		AND VITAMIN E	
		6.1 Abstract	103
		6.2 Introduction	104
		6.3 Experimental	107
		6.4 Results and Discussion	110
		6.5 Conclusion	117
		6.6 Acknowledgements	118
		6.7 References	119
	VII	CONCLUSION AND RECOMMENDATIONS	133
		REFERENCES	136

APPENDIC	CS	143
Appendix A	Morphological appearance and fiber diameters	
	of electrospun fibers	143
Appendix B	Mechanical properties of neat and the	
	vitamin-loaded as-spun fiber mats and	
	as-cast CA films	153
Appendix C	Stability of vitamins	156
Appendix D	Cumulative Release of NSAIDs (%)	
	from as-spun PVA mats and as-cast PVA films	158
Appendix E	Cumulative Release of SS from cross-linked	
	as-spun PVA mats containing SS	167
Appendix F	Cumulative Release of vitamins (%)	
	from as-spun CA mats and as-cast CA films	172
Appendix G	Rheological properties of the SS-loaded	
	as-spun PVA fiber mats both before and	
	after cross-linking with either glutaraldehyde	
	or glyoxal vapor	176

CURRICULUM VI	ITAE	181

LIST OF TABLES

TABLE

PAGE

CHAPTER II

2.1	General chemical, physical, and thermal properties of	13
	polyvinyl alcohol (DeMerlis, 2003; Finch, 1992)	
2.2	General properties of cellulose acetate (40.4% acetyl	
	content) (Mark, 1985)	14
2.3	Solubility characteristics of cellulose acetate (Mark, 1985)	14

CHAPTER IV

4.1	Some properties of neat and drug-containing PVA solutions	56
4.2	Selected scanning electron micrographs (10,000x) of drug-	
	loaded as-spun PVA mats from 10% w/v PVA solutions	
	loaded with a model drug at either 10 or 20% by weight of	
	PVA. The electrostatic field strength was 15 kV/15 cm and	
	the collection time was 5 min	57
4.3	Fiber diameter, bead density and bead diameter of PVA	
	electrospun mats with and without drugs added	58
4.4	Actual amount of model drugs within drug-loaded	
	electrospun PVA mats and as-cast PVA films. The original	
	amount of the model drugs loaded in the spinning and the	
	casting solutions was 20% based on the weight of PVA	59
4.5	Analyses of the release kinetics of the model drugs from	
	drug-loaded as-spun PVA mats and as-cast PVA films based	
	on the Fickian diffusion type of release mechanism. The	
	experimental results were based on the transdermal diffusion	
	through a pig skin method	60

......

CHAPTER V

5.1	Selected scanning electron micrographs (magnification =	
	10,000x; scale bar = 1 μ m) of sodium salicylate-loaded	
	electrospun PVA fiber mats after cross-linking with the vapor	
	from aqueous solution of either glutaraldehyde or glyoxal at	
	various exposure time intervals	93
5.2	Degree of swelling (%) and weight loss (%) of sodium	
	salicylate-loaded electrospun PVA fiber mats before and	
	after cross-linking with the vapor from aqueous solution of	
	either glutaraldehyde or glyoxal at various exposure time	94
	intervals	
5.3	Analyses of the release kinetics of sodium salicylate from	
	neat and cross-linked sodium salicylate-loaded electrospun	
	PVA fiber mats based on the Fickian diffusion type of release	
	mechanism	95
5.4	Indirect cytotoxicity evaluation of sodium salicylate-loaded	
	electrospun PVA fiber mats before and after cross-linking	
	with the vapor from aqueous solution of either	
	glutaraldehyde or glyoxal at various exposure time intervals	96
	CHAPTER VI	
6.1	Some properties of neat and vitamin-containing CA	122
	solutions	
6.2	Actual amount of vitamins incorporated in vitamin-loaded	
	as-spun CA fiber mats and corresponding as-cast CA films.	
	The initial amounts of Vit-E and Retin-A loaded in the	
	spinning and the casting solutions were 5 and 0.5% (based	
	on the weight of PVA), respectively	123
6.3	Analyses of the release kinetics of vitamins from vitamin-	

loaded as-spun CA fiber mats based on the Fickian diffusion type of release mechanism

. .

124

LIST OF FIGURES

FIGURE

PAGE

.

CHAPTER II

2.1	Schematic drawing of the electrospinning process (Dan,		
	2004).	7	
2.2	Drug delivery from a typical matrix drug delivery system.	10	
2.3	Drug delivery from typical reservoir devices: (a) implantable		
	or oral systems, and (b) transdermal systems.	11	
2.4	Transport processes in transdermal drug delivery (Ishihara,		
	1983).	12	
2.5	Chemical structure of (a) sodium salicylate (SS), (b)		
	diclofenac sodium (DS), (c) naproxen (Nap), (d)		
	indomethacin (Ind), (e) vitamin E or α -tocopherol (Vit-E)		
	and (f) all-tran retinoic acid or vitamin A acid (Retin-A).	18	

CHAPTER III

3.1	A schematic photograph of electrospinning apparatus.	30
-----	--	----

CHAPTER IV

4.1	Chemical structure of (a) sodium salicylate (SS), (b)	
	diclofenac sodium (DS), (c) naproxen (Nap), and (d)	
	indomethacin (Ind).	61
4.2	Selected scanning electron micrograph (10,000) of	
	electrospun mat from 10% w/v PVA solution. The	
	electrostatic field strength was 15 kV/15 cm and the	
	collection time was 5 min.	62

4.3	¹ H-nuclear magnetic resonance spectra of neat and drug-	
	loaded electrospun PVA mats after dissolution in deuterated	
	dimethylsulfoxide.	63
4.4	Differential scanning calorimetric thermograms of neat	
	electrospun PVA mat, pure model drugs of (a) sodium	
	salicylate (SS), (b) diclofenac sodium (DS), (c) naproxen	
	(NAP), and (d) indomethacin (IND), and corresponding	
	drug-load electrospun PVA mats.	64
4.5	Thermogravimetric analytical thermograms of neat	
	electrospun PVA mat, pure model drugs of (a) sodium	
	salicylate (SS), (b) diclofenac sodium (DS), (c) naproxen	
	(NAP), and (d) indomethacin (IND), and corresponding	
	drug-load electrospun PVA mats.	65
4.6	(a) Degree of swelling (%) and (b) weight loss (%) of neat	
	and drug-loaded electrospun PVA mats and as-cast PVA	
	films.	66
4.7	Profile of (\bullet) sodium salicylate, (\blacktriangle) diclofenac sodium, (\triangledown)	
	indomethacin, and () naproxen drugs released from drug-	
	loaded electrospun PVA mats (closed symbols) and as-cast	
	PVA films (open symbols) by total immersion technique	
	during (a) 0 – 1440 min and (b) 0 – 120 min.	67
4.8	Profile of (\bullet) sodium salicylate, (\blacktriangle) diclofenac sodium, (\triangledown)	
	indomethacin, and () naproxen drugs released from drug-	
	loaded electrospun PVA mats (closed symbols) and as-cast	
	PVA films (open symbols) by transdermal diffusion through a	
	pig skin technique during 0 – 1440 min.	68
4.9	Selected scanning electron micrographs of (a) neat as-cast	
	PVA film, (b) DS-loaded as-cast PVA film, (c) NAP-loaded	
	as-cast PVA film, and (d) IND-loaded as-cast PVA film.	69

CHAPTER V

Selected scanning electron micrographs (magnification = 5.1 10,000x; scale bar = 1 μ m) of electrospun fiber mats from 10% w/v PVA solutions a) without and b) with the addition of 20% sodium salicylate (based on the weight of PVA powder). The electrostatic field strength was 15 kV/15 cm 97 and the collection time was 5 min. 5.2 Differential scanning calorimetric thermograms of neat sodium salicylate-loaded electrospun PVA fiber mat (denotes as "neat") and the mats that were cross-linked with the vapor from the aqueous solution of (a) glutaraldehyde and (b) 98 glyoxal at various exposure time intervals. 5.3 Strain sweep test results illustrating the storage moduli (E')as a function of strain (0.01-10%) at a fixed frequency of 1 rad s⁻¹ of neat sodium salicylate-loaded electrospun PVA fiber mat (denotes as "neat") and the mats that were crosslinked with the vapor from the aqueous solution of (a) glutaraldehyde and (b) glyoxal at various exposure time 99 intervals. The test temperature was $26 \pm 1^{\circ}$ C. 5.4 Frequency sweep test results illustrating the storage moduli (E') as a function of frequency $(0.1-100 \text{ rad} \cdot \text{s}^{-1})$ at a fixed strain of 0.5% of neat sodium salicylate-loaded electrospun PVA fiber mat (denotes as "neat") and the mats that were cross-linked with the vapor from the aqueous solution of (a) glutaraldehyde and (b) glyoxal at various exposure time 100 intervals. The test temperature was $26 \pm 1^{\circ}$ C.

- 5.5 Profile of sodium salicylate released from neat sodium salicylate-loaded electrospun PVA fiber mat (denotes as "neat") and the fiber mats that were cross-linked with the vapor from the aqueous solution of a) glutaraldehyde or b) glyoxal at various exposure time intervals as determined by transdermal diffusion through a pig skin method.
- 5.6 Morphology of human dermal fibroblast cells that were cultured on the surfaces of the (a) control, (b) SS-loaded e-spun PVA fiber mats, the SS-loaded e-spun PVA fiber mats cross-linked with (c) glutaraldehyde vapor for 5 h and (d) glyoxal vapor for 8 h.

CHAPTER VI

Chemical structures of (a) vitamin E or α -tocopherol (Vit-E)	125
and (b) all-tran retinoic acid or vitamin A acid (Retin-A).	
Selected scanning electron micrographs (10 000x) of as-spun	
CA fiber mats from (a) neat 17% w/v CA solution in 2:1 v/v	
acetone/DMAc and from the CA solutions that contained (b)	
5 wt.% of Vit-E and (c) 0.5 wt.% of Retin-A. The	
electrostatic field strength was 17.5 kV/15 cm and the	
collection time was 5 min. The average diameters for these	
as-spun fibers (n = 50) were 265 \pm 39, 253 \pm 41, and 247 \pm	
31 nm, respectively.	126
Selected scanning electron micrographs (2000x) of as-cast	
CA films from (a) neat 4% w/v CA solution in 2:1 v/v	
acetone/DMAc and from the CA solutions that contained (b)	
5 wt.% of Vit-E and (c) 0.5 wt.% of Retin-A.	127
Mechanical properties of vitamin-loaded as-spun CA fiber	
mats and corresponding as-cast CA films: (a) tensile strength	
(MPa) and (b) strain at maximum (%).	128
	Chemical structures of (a) vitamin E or α -tocopherol (Vit-E) and (b) all-tran retinoic acid or vitamin A acid (Retin-A). Selected scanning electron micrographs (10 000x) of as-spun CA fiber mats from (a) neat 17% w/v CA solution in 2:1 v/v acetone/DMAc and from the CA solutions that contained (b) 5 wt.% of Vit-E and (c) 0.5 wt.% of Retin-A. The electrostatic field strength was 17.5 kV/15 cm and the collection time was 5 min. The average diameters for these as-spun fibers (n = 50) were 265 ± 39, 253 ± 41, and 247 ± 31 nm, respectively. Selected scanning electron micrographs (2000x) of as-cast CA films from (a) neat 4% w/v CA solution in 2:1 v/v acetone/DMAc and from the CA solutions that contained (b) 5 wt.% of Vit-E and (c) 0.5 wt.% of Retin-A. Mechanical properties of vitamin-loaded as-spun CA fiber mats and corresponding as-cast CA films: (a) tensile strength (MPa) and (b) strain at maximum (%).

102

6.5	Stability of (a) Vit-E and (b) Retin-A in the acetate buffer	
	solution containing 0.5 vol.% of Tween 80 and 10 vol.% of	
	methanol at 37°C (i.e., B/T/M medium).	129
6.6	Profiles of (a) Vit-E (immersion period = 0-1440 min) or (b)	
	Retin-A (immersion period = 0-360 min) released from (\bullet)	
	vitamin-loaded as-spun CA fiber mats and (O) corresponding	
	as-cast CA films in B/T medium and (■) vitamin-loaded as-	
	spun CA fiber mats and (\Box) corresponding as-cast CA films	
	in B/T/M medium.	130
6.7	Selected scanning electron micrographs (1000x) of Vit-E-	
	loaded as-cast CA films after immersion in (a) B/T or (b)	
	B/T/M medium for 24 h.	131
6.8	Selected scanning electron micrographs (5000x) of Vit-E-	
	loaded as-spun CA fiber mats after immersion in (a) B/T or	
	(b) B/T/M medium for 24 h and Retin-A-loaded as-spun CA	
	fiber mats after immersion in (c) B/T or (d) B/T/M medium	
	for 6 h.	132

ABBREVIATIONS

PVA	Poly(vinyl alcohol)
CA	Cellulose acetate
SS	Sodium salicylate
DS	Diclofenac sodium
NAP	Naproxen
IND	Indomethacin
Vit-E	Vitamin E or α -tocopherol
Retin-A	All-trans retinoic acid or vitamin A acid
NSAID	Non-steroidal anti-inflammatory drug
TDDS	Transdermal drug delivery system
NHDF	Normal human dermal fibroblast cell
SEM	Scanning electron microscope
¹ HNMR	¹ H-Nuclear magnetic resonance
TGA	Thermogravimetric analysis
DSC	Differential scanning calorimeter
HPLC	High pressure liquid chromatography

.

LIST OF SYMBOLS

- γ Surface tension
- ρ Density
- V• Critical Potential
- V_c Critical Voltage
- DC Direct current
- E' Storage modulus (Pa/s)
- T_m Melting temperature
- T_d Degradation temperature
- *M* Weight of sample after submersion in the testing solution
- M_i Initial weight of the sample in its dry state
- M_d Weight of the sample after submersion in the testing solution in its dry state
- M_r Weight of a model drug or vitamins that were released from the sample

...

- M_t Accumulative amount of drugs released at an arbitrary time t
- M_{α} Accumulation amount of drugs released at an infinite time
- n Characteristic exponent
- k Rate parameter $(s^{-0.5})$