

REFERENCES

- Ackley, M.W., Rege, S.U., and Saxena H. (2003). Application of natural zeolites in the purification and separation of gases. <u>Microporous and Mesoporous</u> <u>Materials</u>, 61, 25-42.
- Anson, M., Marchese, J., Garis, E., Ochoa, N., and Pagliero, C. (2004). ABS copolymer-activated carbon mixed matrix membranes for CO₂/CH₄ separation. Journal of Membrane Science, 243, 19-28.
- Bos, A., Punt, I.G.M., Wessling, M., and Strathmann, H. (1998). Plasticizationresistance glassy polyimide membranes for CO₂/CO₄ separations. <u>Separation and Purification Technology</u>, 14, 27-39.
- Bos, A., Punt, I.G.M., Wessling, M., and Strathmann, H. (1999). CO₂-induced plasticization phenomenon in glassy polymers. <u>Journal of Membrane</u> <u>Science</u>, 155, 67-78.
- Bouma, R.H.B., Checchetti, A., Chidichimo, G., and Drioli, E. (1997). Permeation through a heterogeneous membrane: the effect of dispersed phase. Journal of Membrane Science, 128, 141-149.
- Burns, R.L., and Koros, K.J. (2003). Defining the the challenges for C₃H₆/ C₃H₆ separation using polymeric membranes. Journal of Membrane Science, 211, 299-309.
- Chan, S.S., Wang, R., Chung, T.-S., and Liu, Y. (2002). C₂ and C₃ hydrocarbon separations in poly(1,5-naphthalene-2,2'-bis(3,4 phthalic) hexafluoropropane) diimide dense membranes. <u>Journal of Membrane Science</u>, 210(1), 55-64.
- Chan, S.S., Wang, R., Chung, T.-S., and Liu, Y. (2003). Gas and hydrocarbon (C2 and C3) transport properties of co-polyimides synthesized from 6FDA and 1,5-NDA (naphthalene)/Durene diamines. <u>Journal of Membrane</u> <u>Science</u>, 218, 235–245.
- Cong, H., Zhang, J., Radosz, M., and Shen, J. (2007). Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. Journal of Membrane Science, 294(1-2), 178-185.

- Costello, L.M., and Koros, W.J. (1992). Temperature dependence of gas sorption and transport properties in polymers: measurement and applications. <u>Industrial & Engineering Chemistry Research</u>, 31, 2708.-2714.
- Costello, L.M., Walker, D.R.B., and Koros, W.J. (1994). Analysis of a thermally stable polypyrrolone for high temperature membrane-based gas separations. Journal of Membrane Science, 90,117-130.
- Donohue, M.D., Minhas, B.S., and Lee, S.Y. (1989). Permeation behaviour of carbon dioxide-methane mixtures in cellulose acetate membranes. Journal of Membrane Science, 42, 197-214.
- Eldridge, R.B. (1993). Olefin/paraffin separation technology: a review. Industrial & Engineering Chemistry Research, 32, 2208–2212.

Freeman, B.D. (1999). Basis of permeability/selectivity trade-off relations in polymeric gas separation membranes. <u>Macromolecules</u>, 32, 375–380.

- Fu, Y-J., Hu, C-C., Lee, K-R., Chen, Y-J., and Lai, J-Y. (2006). Zeolite-filled PMMA composite membranes: influence of surfactant addition on gas separation properties. <u>Desalination</u>, 200(1-3), 250-252.
 - Gantzel, P.K., and Merten, U. (1970). Gas separations with high flux cellulose acetate membranes. <u>Industrial Engineering Chemistry Resources</u>, 9, 331-332.
 - Gonzo, E.E., Parentis, M.L., and Gottifredi, J.C. (2006). Estimating model for predicting effective permeability of mixed matrix membranes. <u>Journal of</u> <u>Membrane Science</u>, 277, 46-54.
 - Gur, T.M. (1994). Permselectivity of zeolite filled polysulfone gas separation membranes. Journal of Membrane Science, 93, 283-289.
 - Huang, Z., Guan, H-M., Tan, W.L., Qiao, X-Y., and Kulprathipanja, S. (2006). Journal of Membrane Science, 276, 260-271.
 - Henley, E.J., and Santos, M.L.D. (1967). Permeation of vapors through polymers at low temperatures and elevated pressure, <u>AIChE Journal</u>, 13, 1117-1119.
 - Hess, S., Staudt-Bickel, C., Lichtenthaler, R.N. (2006). Propene/propane separation with copolyimide membranes containing silver ions. Journal of Membrane Science, 275, 52-60.

- Hibshman, C., Mager, M., and Marand, E. (2004). Effects of feed pressure on fluorinated polyimide-organosilicate hybrid membranes. <u>Journal of</u> <u>Membrane Science</u>, 229, 73-80.
- Hirayama, Y., Yoshinaga, T., Kusuki, Y., Ninomiya, K., Sakakibara, T., and Tamari,
 T. (1996). Relation of gas permeability with structure of aromatic polyimide imide Journal of Membrane Science, 111, 169-182.
- Husain S., and Koros, W.J. (2007). Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. Journal of Membrane Science, 288(1-2), 195-207.
- Ilinitch, O.M., Semin, G.L., Chertova, M.V., and Zamaraev, K.L. (1992). Novel polymeric membranes for the separation of olefin/paraffin mixtures. <u>Journal of Membrane Science</u>, 66, 1-8.
- Ismail, A:F., and Lorna, W. (2002). Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. <u>Separation and</u> <u>Purification Technology</u>, 27, 173-194.
 - Ismail, A.F., and Lorna, W. (2003). Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique. <u>Separation and</u> <u>Purification Technology</u>, 30, 37-46.
 - Ito, A., and Hwang, S.T. (1989). Permeation of propane and propylene through cellulosic polymer membranes. <u>Journal of Applied Polymer Science</u>, 38, (3), 483-490.
 - Jordan, M., Henson, M.A., and Koros, W.J. (1990). The effects of carbon dioxide conditioning on the permeation behaviour of hollow fiber asymmetric membranes, Journal of Membrane Science, 54, 103-120.
 - Kazarian, S.G., Brantley, N.H., and Eckert, C.A. (1999). Applications
 of vibrational spectroscopy to characterize poly(ethylene terephthalate)
 processes with supercritical CO₂. <u>Vibrational Spectroscopy</u>. 19, 277-283.
 - Kawakami, M., Iwanaga, H., Hara, Y., Iwamoto, M., and Kagawa, S. (1982). Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes. <u>Journal of Applied Polymer Science</u>, 27, 2387-2393.

•

....

- Kesting, R.E., and Fritzsche, A.K. (1995). <u>Polymeric Gas Separation Membranes</u>. New York: John Wiley & Sons, Inc.
- Kim, J.H., Ha, S.Y., Nam,S.Y., Rhim, J.W., Baek, K.H., and Lee, Y.M. (2001). "Selective permeation of CO₂ through pore-filled polyacrylonitrile membrane with poly(EthyleneGlycol). <u>Journal of Membrane Science</u>, 186,97-107.
- Kim, S., Chen, L., Karl Johnson, J., and Marand, E. (2007). Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. <u>Journal of Membrane Science</u>, 294(1-2), 147-158.
- Koros, W.J., and Mahajan, R (2002). Mixed matrix membrane materials eith glassy polymers: Part 1. Polymer Engineering and Science, 42,1420–1431.
- Koros, W.J., and Mahajan, R. (2002). Mixed matrix membrane materials eith glassy polymers: Part 2. Polymer Engineering and Science, 42, 1432–1441.
- Krol, J.J., Boerrigter, M., and Koops, G.H. (2001). Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments. Journal of Membrane Science, 184, 275-286.
- Kulprathipanja, S., Neuzil, R.W. and Li, N.N. (1988). Separation of Fluids by Means of Mixed Matrix Membranes, US Patent 4740219.
- Kulprathipanja, S., Neuzil, R.W. and Li, N.N. (1988). Separation of Gases by Means of Mixed Matrix Membranes, US Patent 5127925.
- Kulprathipanja, S. (1986). Separation of Polar Gases From Nonpolar Gases, US Patent 4606740.
- Kulprathipanja, S. and Kulkarni, S.S. (1986). Separation of Polar Gases From Nonpolar Gases, US Patent 4606060.
- Kulprathipanja, S., Kulkarni, S.S. and Funk, E.W. (1988). Multicomponent Membranes, US Patent 4737165.
- Kulprathipanja, S., Kulkarni, S.S. and Funk, E.W. (1988). Preparation of Gas Selective Membranes, US Patent 4751102.
- Kulprathipanja, S. (2002). Mixed matrix membrane development. Journal_of Membrane Science, 2002(4), 9-12.

- Kawakami, H., Mikawa, M., and Nagaoka, S. (1996). Gas transport properties in thermally cured aromatic polyimide membranes. <u>Journal of Membrane</u> <u>Science</u>,118, 223-230.
- Lee, K.R., and Hwang, S.T. (1992) Separation of propylene and propane by polyimide hollow-fiber membrane module, <u>Journal of Membrane</u> <u>Science</u>, 73, 37-45.
- Li, J., Wang, S., Nagai, K. Nakagawa, T. and Mau, A.W-H. (1998). Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes. <u>Journal of Membrane Science</u>, 138, 143-152.
- Li, Y. Chung, T-S., Cao, C., and Kulprathipanja, S. (2005). The effects of polyer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 260, 45-.
- Li, Y., Guan, H-M., Chung, T-S., and Kulprathipanja, S. (2006). Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 275, 17-28.
- Liu, Y., Wang, R., and Chung, T-S. (2001). Chemical cross-linking modification of polyimide membranes for gas separation. <u>Journal of Membrane Science</u>, 189(2), 231-239.
- Loeb, S., and Sourirajan, S. (1962). Sea water demineralization by means of an osmotic membrane. <u>Advanced in Chemistry Series</u>, 86(4), 881-890.
- Mahajan, R., (1998). Formation, characterization and modeling of mixed matrix membrane materials <u>Ph.D. Dissertation</u>, The University of Texas at Austin.
- Mahajan, R. (2000). Formation, Characterization and Modeling of Mixed
 Matrix Membrane Materials. <u>Ph.D. Dissertation</u>, The University of Texas at Austin.
- Mahajan, R., Burns, R., Schaeffer, M., and Koros, W.J. (2001). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. <u>Journal of Applied Polymer Science</u>, 86(4), 881-890.

. .

- Mahajan, R., Burns, R., Schaeffer, M., and W.J. Koros, (2002). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. <u>Journal of Applied Polymer Science</u>, 86 881- 890.
- Matsumoto, K., and Xu, P. (1993). Gas Permeation Properties of Hexafluoro AromaticPolyimides. Journal of Applied Polymer Science, 47, 1961-1972.
- Minhas, B.S., Matsuura, T., and Sourirajan, S. (1987). Formation of asymmetric cellulose acetate membranes for the separation of carbon dioxide-methane of gas mixtures. <u>Industrial Engineering Chemistry Resources</u>, 26, 2344-2348.
- Moore, T.T., Mahajan, R., Vu, D.Q., and Koros, W.J. (2004). Hybrid membrane materials comprising organic polymers with rigid dispersed phases. <u>AICHE</u> <u>Journal</u>, 50 (2) 311-321.
- Okamoto, K., Umeo, N., Okamyo, S., Tanaka, K., and Kita, H. (1993). Selective permeation of carbon dioxide over nitrogen through polyethylene-containing polyimide membranes. <u>Chemistry Letter</u>, 225-228.
- Okamoto, K., Fujii, M., Okamyo, S., Suzuki, H., Tanaka, K., and Kita, H., (1995). Gas PermeationProperties of Poly(Ether Imide) Segmented Copolymers. <u>Macromolecules</u>, 28, 6950-6956.
- Pal, R. (2007). Permeation models of mixed matrix membranes. Journal of Colloid and Interface Science, accepted manuscript.
- Petropoulos, J. H. (1992). Plasticization effects on the gas permeability and permselectivity of polymer membranes. <u>Journal of Membrane Science</u>, 75(1-2), 47-59.
- Pechar, T.W., Tsapatsis, M., Marand, E. and Davis, R. (2002). Preparation and Characterization of glassy fluorinated polymerimise-zeolite mixed matrix membrane. <u>Desalination</u>, 146, 3-9.
- Pechar, T.W., Kim, S., Vaughan, B., and Marand, E. (2006). Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separation. Journal of Membrane Science, In Press.
- Powell, C E, Duthie, X.J., Kentish, S.E., Qiao, G G, and Stevens, G.W. (2007). Reversible diamine cross-linking of polyimide membranes. <u>Journal of</u> <u>Membrane Science</u>, 291(1-2), 199-209.

- Rallabandi, P.S. and Ford, D.M. (2000). Entropic and energetic selectivity in air separation with microporous materials. <u>AICHE Journal</u>, 46 (1), 99-109.
- Rattanawong, W. (2001). Zeolite/Cellulose acetate mixed matrix membranes for olefin/paraffin separation. The Petroleum and Petrochemical College, Chulalongkorn University.
- Robeson, L.M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62, 165–185.
- Santiworawut, P. (2003). Performance of mixed matrix membranes for C8aromatics, olefins, and paraffins separation. The Petroleum and Petrochemical College, Chulalongkorn University.
- Suer, M.G., Bac, N., and Yilmaz, L. (1994). Gas Permeation Characteristics of Polymer-Zeolite Mixed Matrix Membranes. <u>Journal of Membrane Science</u>, 91, 77-86.
- Shao, L., Chung, T.S., Goh, S.H., and Pramoda, K.P. (2005). Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance. Journal of Membrane Science, 256, 46-56.
- Sefcik, M.D., and Schaefer, J. (1983). Solid-state 13C NMR evidence for gas polymer interactions in the carbon dioxide-poly(vinyl chloride) system. <u>Journal of Polymer Science: Polymer Physics Edition</u>, 21(7), 1055-1062.
- Semenova, S. I. (2004). Polymer membranes for hydrocarbon separation and removal. Journal of Membrane Science, 231(1-2), 189-207.
- Sen, D., Kalipcilar, H, and Yilmaz, L. (2007). Journal of Membrane Science, 303, 194-203.
- Shimazu, A., Hacchisuka, H., and Ikeda, K. (1996). Separation, dissolution and diffusion characteristics of olefins and paraffins using fluorinecontaining polyimide membranes. <u>Kagaku Kogaku</u>, 60(4), 262–263.
- Shimazu, A., Miyazaki, T., Maeda, M., and Ikeda, K. (2000). Relationships between the chemical structures and the solubility, diffusivity and permselectivity of propylene and propane in 6FDA-based polyimides. Journal of Polymer Science. PartB: Polymer Physics, 38, 2525-2536.

- Sridhar, S., and Khan A.A., (1999). Simulation studies for the separation of propylene and propane by ethylcellulose membrane. <u>Journal of Membrane</u> <u>Science</u>, 159(1-2), 209-219.
- Sridhar, S., Smitha, B., Ramakrishna, M., and Aminabhavi, T.M. (2006). Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. Journal of Membrane Science, 280(1-2), 202-209.
- Srisilp A. (2004). Zeolite-Polyimide mixed matrix membranes for olefin/paraffin separation. The Petroleum and Petrochemical College, Chulalongkorn University.
- Staudt-Bickel, C., and Koros, W.J. (1999). Improvement of CO₂/CH₄ separation characteristics of polyimides by chemical crosslinking. <u>Journal of</u> <u>Membrane Science</u>, 155, 145-154.
- Staudt-Bickel, C., and Koros, W.J. (2000). Olefin/paraffin gas separations with 6FDA-based polyimide membranes. Journal of Membrane Science, 170(2), 205-214
- Stern, S.A., MI, Y., and Yamamoto, H. (1989). Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures. Journal of Poymer Science. PartB: Polymer Physics, 27, 1887-1909.
- Süer, M.G., Baç, N., and Yilmaz, L. (1994). Gas permeation characteristics of polymer-zeolite mixed matrix membranes. <u>Journal of Membrane Science</u>, 91, 77-86.
- Sukapintha, W. (2000). Mixed matrix membrane for olefin/paraffin separation. The Petroleum and Petrochemical College, Chulalongkorn University
- Suzuki, H., Tanaka, K., Kita, H., Okamoto, K., Hoshino, H., Yoshinaga, T., and Kusuki, Y. (1998). Preparation of Composite Hollow Fiber Membranes of Poly(ethylene oxide)-Containing Polyimide and Their CO₂/N₂ Separation Properties. Journal of Membrane Science, 146, 31-37.
- Takahashi, A., Yang, R.T., Munson, C.L., and Chinn, D. (2001). Influence of Ag content and H₂S exposure on 1,3-butadiene/1-butene adsorption by Ag ionexchanged Y-zeolites (Ag-Y). <u>Industrial & Engineering Chemistry</u> Research, 40, 3979–3988.
- Takahashi, A., Yang, R.T., Munson, C.L., Chinn, D. (2001). Cu(I)-Y-zeolite as a

superior adsorbent for diene/olefin separation. Langmuir, 17, 8405-8413.

- Tanaka, K., Taguchi, A., Hao, J., and Kamoto, K.O. (1996). Permeation and separation properties of polyimide membranes to olefins and paraffins, <u>Journal of Membrane Science</u>, 121, 197-207.
- Tantekin-Ersolmaz, S.B., Atalay-Oral, C., Tatier, M., Erdem-Senatalar, A., Schoeman, B., and Sterte, J. (2000). Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. <u>Journal of</u> <u>Membrane Science</u>, 175, 285-288.
- Tanupabrungsun T. (2007). Mixed matrix membrane for gas separation. The Petroleum and Petrochemical College, ChulalongkornUniversity.
- Tin, P.S., Chung, T-S., Jiang, L., and Kulprathipanja, S. (2005). Carbon-zeolite composite membranes for gas separation. <u>Carbon</u>, 43(9), 2025-2027.
- Vieth, W.R. (1991). <u>Diffusion In and Through Polymers: principles and</u> <u>applications</u>. New York: Carl Hanser Verlag.
- Vu, D.Q., Koros, W.J. and Miller, S.J. (2003). Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results. <u>Journal of</u> <u>Membrane Science</u>, 221, 311-334.
- Wijmans, J.G., and Baker R.W. (1995). The solution-diffusion model: a review. Journal of Membrane Science, 107(1,2), 1-21.
- Wind, J.D., Paul, D.R., and Koros, W.J. (2004). Natural gas permeation in polyimide membranes. Journal of Membrane Science, 228, 227-236.
- Yang, D., Barbero, R.S., Devlin, D.J., Cussler, E.L., Colling, C.L. and Carrera, M.E. (2006). Hollow fibers as structured packing for olefin/paraffin separations. Journal of Membrane Science, 279(1,2) 61-69.
- Yang, J-S., and Hsiue G-H. (1997). Selective olefin permeation through Ag(l) contained silicone rubber grafted-poly(acrylic acid) membranes. <u>Journal of</u> <u>Membrane Science</u>, 126, 139-149.
- Zhang, Z-B., Fan, GY., Sankir, M., Park H.B.and Freeman, B.D., Mcgrath, J.E. (2006). Synthesis of di-sulfonated poly(arylene ether sulfone) random copolymers as novel candidates for chlorine-resistant reverse osmosis membranes (PMSE 494). 32nd National Meeting of the American Chemical Society, San Francisco.

APPENDICES

Appendix A The calculation of gas permeation rate

The permeance or pressure normalized flux of component 'i' is expressed as a thickness normalized permeation rate, $\left(\frac{P}{\delta}\right)_i$. Permeances are expressed in gas permeation units, GPU, where GPU = 1*10⁻⁶ cm³(STP)/cm².sec.cmHg.

$$\left(\frac{P}{\delta}\right)_{i} = \frac{Q_{i} \times 14.7 \times 10^{6}}{(A) \times (\Delta P) \times 76}$$

an an an

Where

$$\left(\frac{P}{\delta}\right)_{i} = \text{permeance of gas 'i' (GPU)}$$

$$P = \text{permeability of gas 'i' (cm^{3}(STP).cm/cm^{2}.sec.cmHg)}$$

$$\delta = \text{thickness of membrane (cm)}$$

$$Q_{i} = \text{volumetric flow rate of gas 'i' (cm^{3}/sec)}$$

$$A = \text{area of membrane (cm^{2})}$$

$$\Delta P = \text{pressure different across membrane (psi)}$$

Appendix B The Experimental flow rate of methane (CH₄), and carbon dioxide (CO₂) of mixed matrix membranes in performance at pressure 50 psia and 100 psia for CH₄ and CO₂.

Table B1 Pure CA

Gas	P (nsia)	vol. (ml)	time (sec)	Flow rate (ml/sec)	Permeance (GPU)	Average of Permeance (GPU)	STDEV of Permeance
	(P)	0.25	2.72	0.0919	8.048		
		0.25	2,60	0.0962	8.420		
CO ₂	50	0.25	2.69	0.0929	8.138	8.040	0.30
		0.25	2.73	0.0916	8.019		
		0.25	2.89	0.0865	7.575		
		0.25	1.36	0.1838	8.048		
		0.25	1.49	0.1678	7.346		
CO ₂	100	0.25	1.33	0.1880	8.230	8.256	0.62
		0.25	1.25	0.2000	8.756		
		0.25	1.23	0.2033	8.899		
		0.25	31.25	0.0080	0.701		1. A.
	1	0.25	30.43	0.0082	0.719		
CH₄	50	0.25	29.42	0.0085	0.744	0.712	0.02
		0.25	31.39	0.0080	0.697		
		0.25	31.30	0.0080	0.699		
		0.25	15.18	0.0165	0.721		
		0.25	15.39	0.0162	0.711		
CH₄	100	0.25	15.78	0.0158	0.694	0.718	0.02
		0.25	15.47	0.0162	0.708		
		0.25	14.51	0.0172	0.754		

Table B2 CO₂/CH₄ selectivity at 50 psia and 100 psia for CA membrane

Feed Pressure (psia)	CO ₂ /CH ₄ selectivity
50	11.30
100	11.50

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	3.56	0.0702	6.149		
		0.25	4.08	0.0613	5.365		
CO_2	50	0.25	3.54	0.0706	6.184	6.01	0.36
		0.25	3.54	0.0706	6.184		
		0.25	3.55	0.0704	6.166		
		0.25	1.51	0.1656	7.249		
		0.25	2.34	0.1068	4.678		
CO ₂	100	0.25	1.88	0.1330	5.822	6.09	1.20
		0.25	2.06	0.1214	5.313		
		0.25	1.48	0.1689	7.396		
		0.25	40.75	0.0061	0.537		
		0.25	39,90	0.0063	0.549		
CH_4	50	0.25	44.45	0.0056	0.492	0.52	0.06
		0.25	36.98	0.0068	0.592		
		0.25	48.96	0.0051	0.447		
		0.25	21.25	0.0118	0.515		
		0.25	23.43	0.0107	0.467		
CH₄	100	0.25	19.43	0.0129	0.563	0.53	0.04
		0.25	20.56	0.0122	0.532		
		0.25	19,28	0.0130	0.568		

Table B3 10% NaY-CA MMMs

Table B4 20% NaY-CA MMMs

. .

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.05	0.0617	5.405		
		0.25	3.49	0.0716	6.272		
CO ₂	50	0.25	4.82	0.0519	4.542	5.95	0.97
		0.25	3.26	0.0767	6.715		
		0.25	3.21	0.0779	6.820		
		0.25	2.42	0.1033	4.523		
		0.25	1.92	0.1302	5,701		
CO ₂	100	0.25	1.34	0.1866	8.168	6.04	1.63
		0.25	1.51	0.1656	7.249		
		0.25	2.40	0.1042	4.561		
		0.25	41.56	0.0060	0.527		
		0.25	42.56	0.0059	0.514		
CH.	50	0_25	43.90	0.0057	0.499	0.51	0.01
		0.25	43.04	0.0058	0.509		
		0.25	44.56	0.0056	0,491		
		0.25	19.35	0.0129	0.566		
		0.25	24.14	0.0104	0.453		
CH_4	100	0_25	18.36	0.0136	0.596	0.51	0.08
		0.25	20.30	0.0123	0.539		
		0.25	26.32	0.0095	0.416		

÷

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.37	0.0572	5.009		
		0.25	3.34	0.0749	6.554		
CO ₂	50	0.25	3.43	0.0729	6.382	5.93	0.61
		0.25	3.82	0.0654	5.731		
		0.25	3.67	0.0681	5.965		
		0.25	2.25	0.1111	4.865		
		0.25	1.44	0.1736	7.601		
CO ₂	100	0.25	1.57	0.1592	6.972	6.01	1.42
1.1		0.25	1.72	0.1453	6.364		
		0.25	2.58	0.0969	4.242		
		0.25	44.54	0.0056	0.491		
		0.25	47.37	0.0053	0.462		
CH₄	50	0.25	45.03	0.0056	0.486	0.51	0.05
		0.25	44.03	0.0057	0.497		
		0.25	37,02	0.0068	0.591		
		0.25	22.75	0.0110	0.481		
		0.25	20.34	0.0123	0.538		
'. CH.	100	0.25	20.42	0.0122	0.536	0.51	0.03
		0.25	23.59	0.0106	0.464		
		0.25	20.68	0.0121	0.529		

Table B5 30% NaY-CA MMMs

Table B6 40% NaY-CA MMMs

.

Gas	P (psia)	vol. (ml)	time (sec)	Flow rate (ml/sec)	Permeance (GPU)	Average of Permeance (GPU)	STDEV of Permeance
7		0.25	4.35	0.0575	5.032		
		0.25	3.24	0.0772	6.756		
CO ₂	50	0.25	4.28	0.0584	5.115	5.94	0.81
		0.25	3.34	0.0749	6.554		
		0.25	3.51	0.0712	6.237		
		0.25	1.89	0.1323	5.791		
		0.25	1.93	0.1295	5.671		
CO ₂	100	0.25	1.78	0.1404	6.149	5.97	0.48
		0.25	1.63	0.1534	6.715		
		0.25	1.98	0.1263	5.528		
		0.25	44.03	0.0057	0.497		
		0.25	47.32	0.0053	0.463		
CH₄	50	0.25	44.37	0.0056	0.493	0.51	0.05
		0.25	44.01	0.0057	0.497		
		0.25	37.05	0.0067	0.591		
		0.25	22.79	0.0110	0.480		
		0.25	20,36	0.0123	0.538		,
CH.	100	0.25	20,12	0.0124	0.544	0.51	0.04
		0.25	24.32	0.0103	0.450		
		0.25	20.47	0.0122	0.535		

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.30
10%NaY	11.48
20%NaY	11.70
30%NaY	11.71
40%NaY	11.69

Table B7 Selectivity at 50 psia of NaY-CA MMMs

Table B8 Selectivity at 100 psia of NaY-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.50
10%NaY	11.51
20%NaY	11.75
30%NaY	11.78
40%NaY	11.74

Table B9 10% NaX-CA MMMs

•

÷. †

.

. .

Gas	P (psia)	vol. (ml)	time (sec)	Flow rate (ml/sec)	Permeance (GPU)	Average of Permeance (GPU)	STDEV of Permeance
		0.25	3.34	0.0749	6.554		Termeunee
		0.25	4.13	0.0605	5.300		
CO ₂	50	0.25	3.23	0.0774	6.777	6.12	0.61
		0.25	3.84	0.0651	5.701		
		0.25	3.49	0.0716	6.272		
		0.25	1.51	0.1656	7.249		
		0.25	1.34	0.1866	8.168		
CO ₂	100	0.25	1.88	0.1330	5,822	6.16	1.53
		0.25	2.13	0.1174	5.139		
		0.25	2.47	0.1012	4.431		
		0.25	37.95	0.0066	0.577		
		0.25	38.70	0.0065	0.566		
CH.	50	0.25	44.47	0.0056	0.492	0.53	0.06
		0.25	38.18	0.0065	0.573		
		0.25	47.96	0.0052	0.456		
		0.25	21.23	0.0118	0.516		
		0.25	19.89	0.0126	0.550		
CH₁	100	0.25	19.73	0.0127	0.555	0.54	0.02
		0.25	20.47	0.0122	0.535		
		0.25	20.79	0.0120	0.526		

			unic	Flow rate	Permeance	Average of	SIDEVOI
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	3.30	0.0758	6.634		
		0.25	4.11	0.0608	5.326		
CO ₂	50	0.25	3.24	0.0772	6.756	6.13	0.59
		0.25	3.74	0.0668	5.853		
		0.25	3.60	0.0694	6.081		
		0.25	1.20	0.2083	9.121		
		0.25	2.15	0.1163	5.091		
CO ₂	100	0.25	1.76	0.1420	6.219	6.19	1.70
		0.25	2.09	0.1196	5.237		
		0.25	2.08	0.1202	5.262		
		0.25	67.56	0.0037	0.324		
		0.25	68.76	0.0036	0.318		
CH₄	50	0.25	74.42	0.0034	0.294	0.30	0.02
		0.25	78.57	0.0032	0.279		
		0.25	72.16	0.0035	0.303		
		0.25	37.51	0.0067	0.292		
		0.25	38.76	0.0064	0.282		
CH₄	100	0.25	34.42	0.0073	0.318	0.03	0.03
		0.25	38.52	0.0065	0.284		
		0.25	32.06	0.0078	0.341		

Table B10 20% NaX-CA MMMs

Table B11 30% NaX-CA MMMs

Gas	P (psia)	vol. (ml)	time (sec)	Flow rate (ml/sec)	Permeance (GPU)	Average of Permeance (GPU)	STDEV of Permeance
		0.25	3.32	0.0753	6.594		
		0.25	4.10	0.0610	5.339		
CO_2	50	0.25	3.22	0.0776	6.798	6.14	0.58
		0.25	3.72	0.0672	5.885		
		0.25	3.60	0.0694	6.081		
		0.25	1.29	0.1938	8.485		
		0.25	2.20	0.1136	4.975		
CO_2	100	0.25	1.81	0.1381	6.047	6.23	1.33
		0.25	1.87	0.1337	5.853		
		0.25	1.89	0.1323	5,791		
		0.25	63.32	0.0039	0.346		
		0.25	78.72	0.0032	0.278		
CH.	50	0.25	73.32	0.0034	0.299	0.32	0.03
		0.25	68,51	0.0036	0.320		
		0.25	62.19	0.0040	0.352		
		0.25	37.43	0.0067	0.292		
CH ₄	100	0.25	38.65	0.0065	0.283	0.31	
		0.25	32 34	0.0077	0.338		0.03
		0.25	38.19	0.0065	0.287		
		0.25	32.01	0.0078	0.342		

Gas	P	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	3.31	0.0755	6.614		
		0.25	4.09	0.0611	5.352		
CO ₂	50	0.25	3.32	0.0753	6.594	6.14	0.52
		0.25	3.58	0.0698	6.115		
		0.25	3.63	0.0689	6.031		
		0.25	1.32	0.1894	8.292		
		0.25	2.12	0.1179	5.163		
CO ₂	100	0.25	1.75	0,1429	6.255	0.13	1.20
		0.25	1.88	0.1330	5.822		
}		0.25	1.91	0.1309	5.731		
		0.25	62.09	0,0040	0.353		
		0.25	77.54	0.0032	0.282		
CH₄	50	0.25	71.32	0.0035	0.307	0.33	0.03
		0.25	66.51	0.0038	0.329		
		0.25	62.19	0.0040	0.352		
		0.25	36.43	0.0069	0.300		
		0.25	38.34	0.0065	0.285		
CH ₄	100	0.25	32.32	0.0077	0.339	0.31	0.03
	<u>ب</u>	0.25	38.11	0.0066	0.287		
		0.25	32.01	0.0078	0.342		
						•	

Table B12 40% NaX-CA MMMs

Table B13 Selectivity at 50 psia of NaX-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.30
10%NaX	11.45
20%NaX	20.21
30%NaX	19.21
40%NaX	18.85

Table B14 Selectivity at 100 psia of NaX-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.50
10%NaX	11.49
20%NaX	20.28
30%NaX	20.14
40%NaX	20.04

ncia)		ci inc	Flow rate	Permeance	Average of	SIDEV of
psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
	1.00	20.57	0.0486	4.257		
	1.00	18.58	0.0538	4.713		
50	1.00	20.34	0.0492	4.305	4.45	0.31
	1.00	21.18	0.0472	4.134		
	1.00	18.08	0.0553	4.843		
	1.00	9.82	0.1018	4.458		
	1.00	9.79	0.1021	4.472		
100	1.00	9.72	0.1029	4.504	4.48	0.03
	1.00	9.69	0.1032	4.518		
	1.00	9.85	0.1015	4.445		
	0.25	58.89	0.0042	0.372		
	0.25	57.35	0.0044	0.382		
50	0.25	54.76	0.0046	0.400	0.40	0.02
	0.25	53.87	0.0046	0.406		
	0.25	51.06	0.0049	0.429		
	0.25	26.65	0.0094	• 0.411		
	0.25	28.36	0.0088	0.386		
100	0.25	27.71	0.0090	0.395	0.40	0.01
	0.25	28.01	0.0089	0.391		
	0.25	27.01	0.0093	· 0.405		
	50 100 50 100	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 0.25\\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

.

 Table B15
 10% Silicalite-CA MMMs

		0.25	27.01	0.003
				-
Table B1	6 20	% Silic	alite-CA	MMMs
		4		

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.81	0.0520	4.551		
		0.25	4.75	0.0526	4.609		
CO ₂	50	0.25	4.73	0.0529	4.628	4.48	0.17
		0.25	5.19	0.0482	4.218		
		0.25	4.98	0.0502	4.396		
		0.25	2.35	0.1064	4.658		
r		0.25	2.55	0.0980	4.292		
CO ₂	100	0.25	2.38	0.1050	4.599	4.55	0.15
		0.25	2.39	0.1046	4.580		
		0.25	2.37	0.1055	4.618		
		0.25	53.69	0.0047	0.408		
		0.25	55.89	0.0045	0.392		
CH4	50	0.25	56.24	0.0044	0.389	0.40	0.03
		0.25	48,43	0.0052	0.452		
		0.25	58.45	0.0043	0.375		
		0.25	26,59	0.0094	0.412		
		0.25	24.26	0.0103	0.451		
CH ₄	100	0.25	29.80	0.0084	0.367	0.41	0.03
		0.25	26.92	0.0093	0.407		
		0.25	27.21	0.0092	0.402		

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.54	0.0551	4.822		-
		0.25	5.29	0.0473	4.138		
CO ₂	50	0.25	5.36	0.0466	4.084	4.52	0.38
		0.25	4.69	0.0533	4.668		
		0.25	4.48	0.0558	4.886		
		0.25	2.50	0,1000	4.378		
		0.25	2.07	0.1208	5.288		
CO ₂	100	0.25	3.09	0.0809	3.542	4.58	0.66
		0.25	2.28	0.1096	4.801		
		0.25	2.24	0.1116	4.886		
		0.25	58.79	0.0043	0.372		
		0.25	55,04	0.0045	0.398		
CH₄	50	0.25	51.36	0.0049	0.426	0.41	0.03
		0.25	54.10	0.0046	0.405		
		0.25	50.02 .	0.0050	0.438	2	
		0.25	29.57	0.0085	0.370		
	÷.	0.25	24.87	0.0101	0.440		
CH4	100	0.25	27.13	0.0092	0.403 .	0.41	0.05
		0.25	22.75	0.0110	0.481		
		0.25	29.59	0.0084	0.370		
				. *		3. m	

•

 Table B17
 30% Silicalite-CA MMMs

Table B18 40% Sil	icalite-CA MMMs
--------------------------	-----------------

.....

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.32	0.0579	5.067		
		0.25	4.69	0.0533	4.668		
CO ₂	50	0.25	5.08	0.0492	4.309	4.58	0.31
		0.25	4.85	0.0515	4.514		
		0.25	5.04	0.0496	4.343		
		0.25	2.35	0.1064	4.658		1
		0.25	2.36	0.1059	4.638		
CO ₂	100	0.25	2.32	0.1078	4.718	4.62	0,13
		0.25	2.49	0.1004	4.396		ł
		0.25	2.33	0.1073	4.698		
		0.25	49.45	0.0051	0.443		
		0.25	48.57	0.0051	0.451		
CH4	50	0.25	58 58	0.0043	0.374	0.42	0.03
		0.25	52.50	0.0048	0.417		
		0.25	53.79	0.0046	0.407		
		0.25	28.04	0.0089	0.390		
		0.25	25.01	0.0100	0.438		
CH4	100	0.25	26.04	0.0096	0.420	0.42	0.02
		0.25	25.74	0.0097	0.425		
		0.25	26.11	0.0096	0.419		

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.30
10% Silicalite	11.17
20% Silicalite	11.11
30% Silicalite	11.07
40% Silicalite	10.95

Table B19 Selectivity at 50 psia of Silicalite-CA MMMs

Table B20 Selectivity at 100 psia of Silicalite-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity	
CA membrane	11.50	
10% Silicalite	11.23	7
20% Silicalite	11.16	
30% Silicalite	11.08	
40% Silicalite	11.01	

·. ·

Table B21 10% Beta-CA MMMs

Gas	P	vol.	time	Flow rate	Permeance	Average of	STDEV of	
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance	
		0.25	4.39	0.0569	4.987			
		0.25	4.59	0.0545	4.769			
CO ₂	50	0.25	4.68	0.0534	4.678	4.86	0.29	
		0.25	4.80	0.0521	4.561	· · · ·		
		0.25	4.14	0.0604	5.288			
		0.25	2.38	0.1050	4.599			
		0.25	2.22	0.1126	4.930			
CO ₂	100	0.25	1.95	0.1282	5.613	4.96	0.40	
		0.25	2.18	0.1147	5.021			
		0.25	2.35	0.1064	4.658			
		0.25	48.76	0.0051	0.449			
		0.25	52.50	0.0048	0.417			
CH₄	50	0.25	48.56	0.0051	0.451	0.44	0.01	
		0.25	49.27	0.0051	0.444			
		0.25	51.10	0.0049	0.428			
		0.25	25.48	0.0098	0.430			
		0.25	22.57	0.0111	0.485			
CH ₄	100	0.25	21.42	0.0117	0.511	0.45	0.05	
		0.25	26.08	0.0096	0.420			
		0.25	27.76	0.0090	0.394			

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.56	0.0548	4.801		
		0.25	4.16	0.0601	5.262		
CO ₂	50	0.25	4.53	0.0552	4.832	4.87	0.23
		0.25	4.55	0.0549	4.811		1
		0.25	4.72	0.0530	4.638		
		0.25	2.13	0.1174	5.139		
		0.25	2.22	0.1126	4,930		
CO ₂	100	0.25	2.28	0.1096	4.801	4.99	0.13
		0.25	2.15	0.1163	5.091		
		0.25	2.19	0.1142	4.998		
		0.25	48.49	0.0052	0.451		* <u>.</u>
		0.25	48.78	0.0051	0.449		
CH₄	50	0.25	48.29	0.0052	0.453	0.44	0.01
		0.25	49.56	0.0050	0.442		-
		0.25	51.35	0.0049	0.426		1920
		0.25	22.37	0.0112	0.489		•
		0.25	22.47	0.0111	0.487		
CH₄	100	0.25	21.53	0.0116	0.508	0.50	0.01
		0.25	22.36	0.0112	0.490	· · · · · · · · · · · · · · · · · · ·	
		0.25	21.25	0.0118	0.515		- D

· · ·

Table B22 20% Beta-CA MMMs

Table B23 30% Beta-CA MMMs

÷

Gas	P (psia)	vol. (ml)	time (sec)	Flow rate (ml/sec)	Permeance (GPU)	Average of Permeance (GPU)	STDEV of Permeance
		0.25	4.34	0.0576	5.044		
		0.25	4.29	0.0583	5.103		
CO_2	50	0.25	4.29	0.0583	5.103	4.92	0.26
		0.25	4.53	0.0552	4.832		
		0.25	4.86	0.0514	4.504		
		0.25	2.15	0.1163	5.091		
		0.25	2.23	0.1121	4.908		
CO ₂	100	0.25	2.10	0.1190	5.212	5.14	0.20
		0.25	2.17	0.1152	5.044		
		0.25	2.01	0.1244	5.445		
		0.25	47.49	0.0053	0.461		
		0.25	48.13	0.0052	0.455		
CH_4	50	0.25	48.19	0.0052	0.454	0.46	0.01
		0.25	46.02	0.0054	0.476		
		0.25	49.06	0.0051	0.446		
		0.25	25.21	0.0099	0.434		
		0.25	21.32	0.0117	0.513		
CH_4	100	0.25	20.19	0.0124	0.542	0.48	0.05
		0.25	24.67	0.0101	0.444		
		0.25	24.22	0_0103	0.452		

•

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.28	0.0584	5.115		
		0.25	4.46	0.0561	4.908		
CO ₂	50	0.25	4.59	0.0545	4.769	4.96	0.15
		0.25	4.28	0.0584	5.115		
		0.25	4.47	0.0559	4.897		
		0.25	2.09	0.1196	5.237		
		0.25	2.14	0.1168	5.115		
CO ₂	100	0.25	2.03	0.1232	5.392	5.20	0.14
		0.25	2.18	0.1147	5.021		
		0.25	2.09	0.1196	5.237		
		0.25	49.67	0.0050	0.441		
		0.25	48.76	0.0051	0.449		
CH4	50	0.25	49.18	0.0051	0.445	0.47	0.05
		0.25	48,81	0.0051	0.448		
		0.25	40.04	0.0062	0.547		(ii).
		0.25	0.25	24.68	0.0101		
		0.25	0.25	22.03	0.0113		
CH₄	100	0.25	0.25	22.20	0.0113	0.49	0.02
		0.25	0.25	22.09	0.0113		
		0.25	0.25	21.95	0.0114		

Table B24 40% Beta-CA MMMs

·· · ·

Table B25 Selectivity at 50 psia of Beta-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.30
10% Beta	11.10
20% Beta	10.98
30% Beta	10.75
40% Beta	10.63

Table B526 Selectivity at 100 psia of Beta-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.50
10% Beta	11.10
20% Beta	11.02
30% Beta	10.78
40% Beta	10,70

low rate	Permeance	Average of	STDEV of
(ml/sec)	(GPU)	Permeance (GPU)	Permeance
0.0967	8.468		
0.0816	7.148		
0.0903	7.903	4.69	0.79
0.0858	7.516		
0.1044	9.140		
0.1064	4.658		
0.1067	4.673		
0.1168	5.115	4.96	0.28
0.1193	5.225		
0.1176	5.151		
0.0024	0.206		
0.0024	0.208		
0.0023	0.203	0.21	0.002
0.0024	0.207		
0.0024	0.208	1. Contract (1. Contract)	
0.0049	0.214		
0.0047	0.206		
0.0050	0.217	0.21	0.01
0.0047	0.204]
0.0049	0.213		
(0.0049	0.0049 0.213	0.0049 0.213

Table B2710% NaA-CA MMM

Table B28 20% NaA-CA MMMs

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	6.31	0.0396	3.469		
1		0.25	6.14	0.0407	3.565		
CO ₂	50	0.25	6.88	0.0363	3.182	3.62	0.32
		0.25	5.53	0.0452	3.959		
		0.25	5.61	0.0446	3.902		
		0.25	2.51	0.0996	4.361		
		0.25	2.34	0.1068	4.678		
CO ₂	100	0.25	2.88	0.0868	3.800	4.29	0.32
		0.25	2.61	0.0958	4.194		
		0.25	2.48	0.1008	4.413		
		0.25	164.54	0.0015	0.133		
		0.25	156.67	0.0016	0.140		}
CH₄	50	0.25	161.83	0.0015	0.135	0.14	0.003
1		0.25	164.04	0.0015	0.133		
		0.25	163.32	0.0015	0.134		
		0.25	72.25	0.0035	0.151		
		0.25	68.11	0.0037	0.161		
CH₄	100	0.25	67.02	0.0037	0.163	0.16	0.01
		0.25	73.09	0.0034	0.150		

•,

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	6.31	0.0396	3.468		
		0.25	6.12	0.0408	3.577		
CO ₂	50	0.25	6.30	0.0397	3.475	3.35	0.08
		0.25	6.02	0.0415	3.636		
		0.25	6.07	0.0412	3.606		
		0.25	3.04	0.0822	3.600		
CO ₂	100	0.25	3.07	0.0814	3.565	3.55	0.04
		0.25	3.12	0.0801	3.508		
		0.25	3.08	0.0812	3.554		
		0.25	194.54	0.0013	0.113		
		0.25	189.67	0.0013	0.115		
CH ₄	50	0.25	189.83	0.0013	0.115	0.11	0.002
		0.25	194.53	0.0013	0.113		
		0.25	187.82	0.0013	0.117		
		0.25	92.25	0.0027	0.119		
		0.25	92.34	0.0027	0.119		
CH₄	100	0.25	97,42	0.0026	0.112	0.12	0.004
		0.25	93.59	0.0027	0.117		
		0.25	100.68	0.0025	0.109		

Table B2930% NaA-CA MMMs

Table B3040% NaA-CA MMMs

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	7.31	0.0342	2.994		
		0.25	7.09	0.0353	3.088		
CO ₂	50	0.25	7.12	0.0351	3.075	3.06	0.04
		0.25	7.15	0.0349	3.060		
		0.25	7.12	0.0351	3.075		
		0.25	3.24	0.0772	3.378		
		0.25	3.26	0.0767	3.357		
CO_2	100	0.25	3.27	0.0765	3.347	3.35	0.04
		0.25	3.33	0.0751	3.287		
		0.25	3.25	0.0769	3.368		
		0.25	229.16	0.0011	0.096		
		0.25	229.37	0.0011	0.095		
CH4	50	0.25	229.76	0.0011	0.095	0.01	0.004
		0.25	228.33	0.0011	0.096		
		0.25	230.90	0.0011	0.095		
		0.25	106.78	0.0023	0.103		
		0.25	109.49	0.0023	0.100		
CH_4	100	0.25	112.54	0.0022	0.097	0.01	0.003
		0.25	114.67	0.0022	0.095		
		0.25	113.68	0.0022	0.096		

. •

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.30
10% NaA	22.73
20% NaA	26.67
30% NaA	29.34
40% NaA	32.19

Table B31 Selectivity at 50 psia of NaA-CA MMMs

Table B32 Selectivity at 100 psia of NaA-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.50
10% NaA	23.45
20% NaA	27.82
30% NaA	30.87
40% NaA_	34.16

Table B33 10% AgA-CA MMMs

Gas	P	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		1.00	15.69	0.0637	5.581		
		1.00	16.34	0.0612	5.359		
CO ₂	50	1.00	16.32	0.0613	5.365	5.58	0.22
		1.00	15.05	0.0664	5.818		
		1.00	15.11	0.0662	5.795		
		1.00	6.78	0.1475	6.457		
		1.00	6.59	0.1517	6.644		
CO ₂	100	1.00	6.37	0.1570	6.873	6.61	0.38
		1.00	7.24	0.1381	6.047		
		1.00	6.23	0.1605	7.028		
		0.25	108.45	0.0023	0.202		
		0.25	108.92	0.0023	0.201		
CH4	50	0.25	107.87	0.0023	0.203	0.20	0.001
		0.25	108.87	0.0023	0.201		
		0.25	109.84	0.0023	0.199		
		0.25	53.45	0.0047	0.205		
		0.25	51.90	0.0048	0.211		
CH ₄	100	0.25	54.60	0.0046	0.200	0.20	0.004
		0.25	54.27	0.0046	0.202		
		0.25	52.61	0.0048	0.208		

÷ .

÷....

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	4.31	0.0580	5.079		
		0.25	5.97	0.0419	3.667		
CO ₂	50	0.25	4.64	0.0539	4.718	4.30	0.59
		0.25	5.32	0.0470	4.115		
		0.25	5.60	0.0446	3.909		
		0.25	2.04	0.1225	5.365		
		0.25	2.25	0.1111	4.865		
CO ₂	100	0.25	2.23	0.1121	4.908	5.34	0.45
1		0.25	1.89	0.1323	5,791		
		0.25	1.90	0.1316	5.761		
		0.25	173.98	0.0014	0.126		
		0.25	171.03	0.0015	0.128		
CH₄	50	0.25	174.51	0.0014	0.125	0.13	0.003
		0.25	165.79	0.0015	0.132		
	}	0.25	164.70	0.0015	0.133		
		0.25	72.57	0.0034	0.151		
		0.25	86.97	0.0029	. 0.126		
CH₄	100	0.25	85.64	0.0029	0.128	0.13	0.01
		0.25	82.68	0.0030	0.132		
		0.25	86.19	0.0029	0.127		

Table B34 20% AgA-CA MMMs

Table B3530% AgA-CA MMMs

Gas	P (nsia)	vol.	time	Flow rate	Permeance	Average of Permeance (CPII)	STDEV of
	(1514)	(111)	(Sec)	0.0497	(GrU) 4 267	refineance (Gr U)	rermeance
		0.25	5.13	0.0487	4.207		
		0.25	5.18	0.0483	4.226		0.0.5
CO_2	50	0.25	5.01	0.0499	4.369	4.28	0.05
		0.25	5.13	0.0487	4.267		
		0.25	5.10	0.0490	4.292		
		0.25	2.04	0.1225	5.365		
		0.25	2.15	0.1163	5,091		
CO ₂	100	0.25	2.06	0.1214	5.313	5.28	0.21
		0.25	2.16	0.1157	5.067		
		0.25	1.96	0.1276	5.584		
		0.25	196.78	0.0013	0.111		
		0.25	193.68	0.0013	0.113		
CH ₄	50	0.25	198.03	0.0013	0.111	0.11	0.002
		0.25	200.24	0.0012	0.109		
	2.00	0.25	191.26	0.0013	0.114		
		0.25	96.25	0.0026	0.114		
		0.25	90.86	0.0028	0.120		
CH4	100	0.25	93.46	0.0027	0.117	0.12	0.01
		0.25	98.10	0.0025	0.112		
		0.25	87.80	0.0028	0.125		

Gas	P	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	5.35	0.0467	4.092		
CO ₂	50	0.25	5.20	0.0481	4.210		
		0.25	5.38	0.0465	4.069	4.12	0.06
		0.25	5.34	0.0468	4.099		
		0.25	2.22	0.1126	4.930		
		0.25	2.35	0.1064	4.658		
CO ₂	100	0.25	2.43	0.1029	4.504	5.11	0.59
		0.25	1.93	0.1295	5.671		
		0.25	1.89	0.1323	5.791		
		0.25	231.25	0.0011	0.095		
		0.25	223.65	0.0011	0.098		
CH₄	50	0.25	232.13	0.0011	0.094	0.09	0.004
		0.25	251.89	0.0010	0.087		
		0.25	241.64	0.0010	0.091		
		0.25	102.78	0.0024	0.106		
	1	0.25	100.34	0.0025	0.109		
CH4	100	0.25	101.56	0.0025	0.108	0.11	0.004
		0.25	110.43	0.0023	0.099		
		0.25	100.19	0.0025	0.109		

Table B36 40% AgA-CA MMMs

Table B37 Selectivity at 50 psia of AgA-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.30
10% AgA	27.78
20% AgA	33.32
30% AgA	38.25
40% AgA	44.32

 Table B38
 Selectivity at 100
 psia of AgA-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.50
10% AgA	32.24
20% AgA	40.12
30% AgA	44.78
40% AgA	48.23

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		1.00	15.57	0.0642	5.624		
		1.00	14.58	0.0686	6.007		
CO ₂	50	1.00	15.78	0.0634	5.549	5.53	0.42
		1.00	15.59	0.0641	5.617		
		1.00	18.08	0.0553	4.843		
,		1.00	7.32	0.1366	5.981		
		1.00	7.39	0.1353	5.924		
CO ₂	100	1.00	7.44	0.1344	5.885	5.95	0.17
		1.00	7.62	0.1312	5.745		
		1.00	7.05	0.1418	6.210		
		0.25	98.59	0.0025	0.222		
	ļ	0.25	97.65	0.0026	0.224		
CH4	50	0.25	99.76	0.0025	0.219	0.22	0.01
		0.25	93.57	0.0027	0.234		
		0.25	99.58	0.0025	0.220		
		0.25	44.65	0.0056	0.245		
1		0.25	48,76	0.0051	0.224		
CH₄	100	0.25	45.71	0.0055	0.239	0.24	0.01
		0.25	48.81	0.0051	0.224		
		0.25	45.30	0.0055	0.242		

Table B39 10% CaA-CA MMMs

Table B40 20% CaA-CA MMMs

Gas	P	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	5.31	0.0471	4.123		
		0.25	4.75	0.0526	4.609		
CO ₂	50	0.25	4.73	0.0529	4.628	4.45	0.21
ĺ		0.25	4.87	0.0513	4.495		
		0.25	4.98	0.0502	4.396		
		0.25	2.12	0.1179	5.163		
		0.25	2.45	0.1020	4.468		
CO ₂	100	0.25	2.58	0.0969	4.242	4.75	0.45
		0.25	2.39	0.1046	4.580		
		0.25	2.07	0.1208	5.288		
		0.25	142.69	0.0018	0.153		
		0.25	135.89	0.0018	0.161		
CH.	50	0.25	136.24	0.0018	0.161	0.15	0.01
		0.25	147.80	0.0017	0.148		
		0.25	148.45	0.0017	0.147		
		0.25	64.59	0.0039	0.169		
		0.25	64.26	0.0039	0.170		
CH.	100	0.25	69. 80	0.0036	0.157	0.17	0.01
		0.25	60.92	0.0041	0.180		
		0.25	68.21	0.0037	0.160		

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	5.54	0.0451	3.951		
		0.25	5.59	0.0447	3.916		
CO ₂	50	0.25	5.39	0.0464	4.061	4.00	0.07
		0,25	5.48	0.0456	3.995		
		0.25	5.39	0.0464	4.061		
		0.25	2.19	0.1142	4.998		
		0.25	1.98	0.1263	5.528		
CO ₂	100	0.25	3.49	0.0716	3.136	4.41	1.00
		0.25	2.28	0.1096	4.801		
		0.25	3.04	0.0822	3.600		
		0.25	181.79	0.0014	0.120		
		0.25	175.04	0.0014	0.125		
CH₄	50	0.25	171.36	0.0015	0.128	0.13	0.01
		0.25	168.57	0.0015	0.130		
		0.25	161.52	0.0015	0.136		
		0.25	78.57	0.0032	0.139		
		0.25	80.87	0.0031	0.135		
CH₄	100	0.25	80.90	0.0031	0.135	. 0. 14	0.002
		0.25	80.75	0.0031	0,136		
		0.25	78.19	0.0032	0.140		

Table B41 30% CaA-CA MMMs

Table B4240% CaA-CA MMMs

Gas	P (psia)	vol. (ml)	time (sec)	Flow rate (ml/sec)	Permeance (GPU)	Average of Permeance (GPU)	STDEV of Permeance
		0.25	6.32	0.0396	3.464		
		0.25	5.69	0.0439	3.847		
CO ₂	50	0.25	5.89	0.0424	3.717	3.67	0.14
		0.25	5.93	0.0422	3,692		
		0.25	6.05	0.0413	3.620		
		0.25	2.54	0.0984	4.309		
		0.25	2.57	0.0973	4.259		
CO ₂	100	0.25	2.42	0.1033	4.523	4.34	0.18
		0.25	2.67	0.0936	4.099		
		0.25	2.43	0.1029	4.504		
		0.25	218.45	0.0011	0.100		
		0.25	220.57	0.0011	0,099		
CH ₄	50	0.25	216.58	0.0012	0.101	0.10	0.003
		0.25	211.50	0.0012	0.104		
		0.25	200.79	0.0012	0.109		
,		0.25	98.04	0.0025	0.112		
		0.25	90.23	0.0028	0.121		
CH ₄	100	0.25	89.12	0.0028	0.123	0_12	0.005
		0.25	95.74	0.0026	0.114		
		0.25	90.29	0.0028	0.121		

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.30
10% CaA	23.67
20% CaA	28.89
30% CaA	31.24
40% CaA	35.67

Table B43 Selectivity at 50 psia of CaA-CA MMMs

Table B44 Selectivity at 100 psia of CaA-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.50
10% CaA	25.32
20% CaA	28.43
30% CaA	32.21
40% CaA	36.76

Table B45 10% Mor-CA MMMs

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		1.00	18.48	0.0541	4.738		
		1.00	18.80	0.0532	4.658		
CO ₂	50	1.00	19.81	0.0505	4.420	4.69	0.19
		1.00	18.78	0.0532	4.663		
		1.00	17.66	0.0566	4.958		
		1.00	8.92	0.1121	4.908		
		1.00	9.07	0.1103	4.827		
CO ₂	100	1.00	8.46	0.1182	5.175	4.96	0.25
		1.00	9.44	0.1059	4.638		
		1.00	8.34	0.1199	5.250		
		0.25	103.45	0.0024	0.212		
		0.25	106.54	0.0023	0.205		
CH₄	50	0.25	109.03	0.0023	0.201	0.21	0.01
		0.25	107.34	0.0023	0.204		
		0.25	105.87	0.0024	0.207		
		0.25	47.68	0.0052	0.230		
		0.25	44.95	0.0056	0.244		
CH₄	100	0.25	48.32	0.0052	0.227	0.21	0.03
		0.25	46.59	0.0054	0.235		
		0.25	44.32	0.0056	0.247		

and a

Gas	P	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	5.89	0.0424	3.717		
}		0.25	6.11	0.0409	3.583		
CO ₂	50	0.25	6.84	0.0365	3.200	3.62	0.35
		0.25	5.28	0.0473	4.146		
		0.25	6.38	0.0392	3.431		
		0.25	2.28	0.1096	4.801		
		0.25	2.98	0.0839	3.673		
CO ₂	100	0.25	2.17	0.1152	5.044	4.33	0.57
		0.25	2.71	0.0923	4.039		
		0.25	2.68	0.0933	4.084		
		0.25	160.56	0.0016	0.136		
		0.25	165,82	0.0015	0.132		
CH₄	50	0.25	164.56	0.0015	0.133	0.14	0.01
		0.25	161.79	0.0015	0.135		
		0,25	150,56	0.0017	0.145		
		0.25	68.35	0.0037	0.160		
		0.25	64.90	0.0039	0.169		
CH₄	100	0.25	67.45	0.0037	0.162	0.16	0.01
		0.25	75.46	0.0033	0.145		
		0.25	74.92	0.0033	0.146		

Table B46 20% Mor-CA MMMs

Table B47 30% Mor-CA MMMs

.

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	6.61	0.0378	3.312		
		0.25	6.29	0.0397	3.480		
CO ₂	50	0.25	6.59	0.0379	3.322	3.35	0.08
		0.25	6,46	0.0387	3.389		
		0.25	6.71	0.0373	3.262		
		0.25	3.01	0.0831	3.636		
		0.25	3.04	0.0822	3.600		
CO ₂	100	0.25	3.03	0.0825	3.612	3.55	0.09
	9	0.25	3.16	0.0791	3.464		
		0.25	3.19	0.0784	3.431		
		0.25	195.23	0.0013	0.112		
		0.25	195.35	0.0013	0.112		
CH₄	50	0.25	199.78	0.0013	0.110	0.11	0.01
		0.25	187.43	0.0013	0.117		
		0.25	179.79	0.0014	0.122		
		0.25	93.24	0.0027	0.117		
1		0.25	98.26	0.0025	0.111		
CH.1	100	0.25	86.30	0.0029	0.127	0.12	0.01
		0.25	92.32	0.0027	0.119		
		0.25	107.15	0.0023	0.102		

Gas	Р	vol.	time	Flow rate	Permeance	Average of	STDEV of
	(psia)	(ml)	(sec)	(ml/sec)	(GPU)	Permeance (GPU)	Permeance
		0.25	6.15	0.0407	3.559		
		0.25	7.09	0.0353	3.088		
CO ₂	50	0.25	8.02	0.0312	2.730	3.05	0.31
		0.25	7.48	0.0334	2.927		
		0.25	7.47	0.0335	2.930		
		0.25	3.28	0.0762	3.337		
		0.25	3.26	0.0767	3.357		
CO ₂	100	0.25	3.20	0.0781	3.420	3.34	0.06
		0.25	3.35	0.0746	3.267		
		0.25	3.30	0.0758	3.317		
		0.25	236.64	0.0011	0.093		
		0.25	222.89	0.0011	0.098		
CH₄	50	0.25	236.40	0.0011	0,093	0.10	0.01
		0.25	227.74	0.0011	0.096		
1		0.25	223.58	0.0011	0.098		
		0.25	97.78	0.0026	0.112		
		0.25	113.90	0.0022	0.096		
CH ₄	100	0.25	110.34	0.0023	0.099	0.10	0.01
		0.25	120.61	0.0021	0.091		
		0.25	118.05	0.0021	0.093		

Table B48 40% Mor-CA MMMs

1

•

.

•

•

÷

Table B49 Selectivity at 50 psia of Mor-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.302
10%Mor	15.44
20% Mor	18.28
30% Mor	22.75
40% Mor	25.06

Table B50 Selectivity at 100 psia of Mor-CA MMMs

Membrane	CO ₂ /CH ₄ selectivity
CA membrane	11.45
10% Mor	17.21
20% Mor	19,48
30% Mor	23.82
40% Mor	27.38

s .*

Appendix C The modified Maxwell model

. .

.

- *

Table C1 Calculated volume fraction data of dispersed phase in different phases of NaA-CA MMMs in the new modified Maxwell model which simultaneously considers both polymer chain rigidification and partial pore blockage of zeolites.

Calculated volume fraction of the bulk of zeolite 4A (consid-		0.980
calculated volume fraction of the third phase (considered as		
the dispersed phase) in the second phase		0.579
Calculated volume fraction of the second phase(considered as		0.070
the dispersed phase) in the whole mixed matrix membrane	10 wt.% zeolite loading	0.079
	20 wt.% zeolite loading	0.146
	30 wt.% zeolite loading	0.204
	40 wt % zeolite loading	0.255
· · ·		
·		

Table C2Comparison of O_2 permeances of NaA-CA MMMs based on experimentaland modified Maxwell model data.

Membrane	Experimental O ₂ permeability (Barrer)	Modified Maxwell model O ₂ permeability (Barrer)
CA membrane	3.477	3.477
10% NaA	3.145	3,168
20% NaA	2.921	2.918
30% NaA	2.696	2.712
40% NaA	2.562	2.539

 Table C3
 Comparison of N2 permeability of NaA-CA MMMs based on experimental and modified Maxwell model data.

Membrane	Experimental N ₂ permeability (Barrer)	Modified Maxwell model N ₂ permeability (Barrer)
CA membrane	1.014	1:014
10% NaA	0.905	0.914
20% NaA	0.838	0.834
30% NaA	0.763	0.768
40% NaA	0.707	0.713

Membrane	Experimental N ₂ permeability (Barrer)	Modified Maxwell model N ₂ permeability (Barrer)
CA membrane	3.430	3.43
10% NaA	3.475	3.467
20% NaA	3.486	3.501
30% NaA	3.533	3.533
40% NaA	3.624	3.563

Table C4 Comparison of O_2/N_2 selectivity of NaA-CA MMMs based on experimen-tal and modified Maxwell model data.

CURRICULUM VITAE

Name:Pipat Singha-inDate of Birth:January 11, 1983Nationality:Thai

University Education:

2006-2008 Master of Science in Petrochemical Technology, Petroleum and Petrochemical College, Chulalongkorn University, Thailand.

2001-2006 Bachelor Degree of Science in Chemistry, Faculty of Science, Mahidol University, NaKhon Pathom, Thailand.

Work Experience:

. .

Sep. 2007-Nov. 2007 Position :

Position : Internship student

Company name: UOP LLC (Des Planines, IL, USA)

Presentations:

- Singha-in, P., Rirksomboon, T., and Kulprathipanja, S. (2008, April 23) Mixed Matrix Membranes for CO₂/CH₄ Separation: Effects of Various Zeolites Incorporated into Cellulose Acetate. Proceedings of <u>The 14th PPC Symposium on</u> Petroleum, Petrochemicals, and <u>Polymers</u>, Bangkok, Thailand.
- Singha-in, P., Rirksomboon, T., and Kulprathipanja, S. (2007, November 4-9) Mixed Matrix Membranes for Gas Separation. Poster presented at <u>AIChE Annual</u> <u>Meeting 2007</u>, Salt Lake City, Utah, USA.
- Singha-in, P., Tantirungrotechai, Y. (2006, March 14-15) Substituent Effects on Activation Energy of Cope Rearrangement : A Theoretical Study. Poster presented at <u>DPST Meeting 2006</u>, Bangkok, Thailand.

